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This work considers how the properties of hydrogen bonded complexes, X–H· · ·Y, are modified by
the quantum motion of the shared proton. Using a simple two-diabatic state model Hamiltonian, the
analysis of the symmetric case, where the donor (X) and acceptor (Y) have the same proton affinity,
is carried out. For quantitative comparisons, a parametrization specific to the O–H· · ·O complexes
is used. The vibrational energy levels of the one-dimensional ground state adiabatic potential of the
model are used to make quantitative comparisons with a vast body of condensed phase data, span-
ning a donor-acceptor separation (R) range of about 2.4−3.0 Å, i.e., from strong to weak hydrogen
bonds. The position of the proton (which determines the X–H bond length) and its longitudinal vi-
brational frequency, along with the isotope effects in both are described quantitatively. An analysis
of the secondary geometric isotope effect, using a simple extension of the two-state model, yields
an improved agreement of the predicted variation with R of frequency isotope effects. The role of
bending modes is also considered: their quantum effects compete with those of the stretching mode
for weak to moderate H-bond strengths. In spite of the economy in the parametrization of the model
used, it offers key insights into the defining features of H-bonds, and semi-quantitatively captures
several trends. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4873352]

I. INTRODUCTION

In most chemical systems, nuclear quantum zero-point
motion and tunneling do not play a significant role. Most of
chemistry can be understood in terms of semi-classical mo-
tion of nuclei on potential energy surfaces. In contrast, the
quantum dynamics of protons involved in hydrogen bonds
plays an important role in liquid water,1–3 ice,4, 5 transport
of protons and hydroxide ions in water,6 surface melting
of ice,7 the bond orientation of water and isotopic frac-
tionation at the liquid-vapour interface,8 isotopic fractiona-
tion in water condensation,9 proton transport in water-filled
carbon nanotubes,10 hydrogen chloride hydrates,11 proton
sponges,12, 13 water-hydroxyl overlayers on metal surfaces,14

and in some proton transfer reactions in enzymes.15 Experi-
mentally, the magnitude of these nuclear quantum effects are
reflected in isotope effects, where hydrogen is replaced with
deuterium.

The quantum effects are largest for medium to strong
symmetric bonds where the proton donor (X) and acceptor
(Y) are identical (i.e., have the same proton affinity) and are
separated by distances (R) of about 2.4−2.5 Å. In a recent
review about the solvation of protons, Reed noted the im-
portance of this parameter regime: “In contrast to the typ-
ical asymmetric H-bond found in proteins (NH· · ·O) or ice
(OH· · ·O), the short, strong, low-barrier (SSLB) H-bonds
found in proton disolvates, such as H(OEt2)+2 and H5O+

2 , de-
serve much wider recognition.”16

The approach of this paper is to consider a simple, phys-
ically insightful model, and to probe the extent to which

a)E-mail: r.mckenzie@uq.edu.au. URL: condensedconcepts.blogspot.com.

the quantum treatment of the one-dimensional proton motion
afforded by it modifies properties of hydrogen bonded com-
plexes. While the model is general, we specifically target
O–H· · ·O bonds for quantitative comparisons. We compare
the predictions of the model to a large body of experimen-
tal data, where the O· · ·O distance spans a range from about
2.4 Å (strong bonding) to 3.0 Å (weak bonding).

Many other works using multi-dimensional potential
energy surfaces, parametrised by ab initio calculations for
specific molecular complexes, have been carried out earlier.
However, such studies are computationally rather demanding.
The present work is intended to complement such studies: we
attempt to demonstrate that much of the crucial physics can
be described by a one-dimensional quantum treatment alone.
But, we also show this treatment cannot describe the sec-
ondary geometric isotope effect for weak to moderate bonds;
inclusion of bending vibrations is necessary.

The outline of the paper is as follows. In Sec. II, we
describe a simple potential energy surface based on a two-
diabatic-state model, considered in Ref. 17 recently. This
potential has the key property that it undergoes qualitative
changes as R varies between 2.4 Å and 2.6 Å. We focus on its
one-dimensional slices along the linear proton path between
the donor and the acceptor. Vibrational eigenstates obtained
for these slices for a large range of X–Y separations (Sec. III)
are used to analyse various properties of the H-bond and com-
pare the results with experiment. Section IV presents the mod-
ification of the X–H bond lengths. Section V considers the
correlation between the X–H stretch frequency and the donor-
acceptor distance, showing the importance of anharmonic
effects. Section VI discusses geometrical and vibrational fre-
quency isotope effects; they are largest when the zero-point

0021-9606/2014/140(17)/174508/13/$30.00 © 2014 AIP Publishing LLC140, 174508-1
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energy is comparable to the height of the potential barrier for
proton transfer. We show that for strong to moderate bonds,
the secondary geometric isotope effect is dominated by the R
dependence of the zero-point energy associated with the X–H
stretch mode. Simple model potentials provide some insight
into the trends in the isotope effects that are observed as R
is varied. Section VII discusses how description of the sec-
ondary geometric isotope effects for weak bonds requires in-
clusion of the competing quantum effects associated with the
zero-point motion of the bending vibrational modes.

II. A SIMPLE MODEL FOR GROUND STATE
POTENTIAL ENERGY SURFACES

This is based on recent work by one of us.17 We briefly
review the underlying physics and chemistry behind the sim-
ple effective Hamiltonian which produces the potential energy
surfaces that we use to describe the nuclear motion.

A. Reduced Hilbert space for the
effective Hamiltonian

Diabatic states,20 including valence bond states, are a
powerful tool for developing chemical concepts.21 It has been
proposed in many earlier works that hydrogen bonding and
hydrogen transfer reactions can be described by an Empiri-
cal Valence Bond (EVB) model22–27 involving valence bond
states. In the present case, the reduced Hilbert space has a
basis consisting of two diabatic states that can be denoted
as |X-H+, Y〉 and |X, H-Y+〉. The latter represents a product
state of the electronic states of an isolated X molecule and of
an isolated Y-H+ molecule. The difference between the two
diabatic states is transfer of a proton from the donor to the
acceptor. Note that the positive charges in this notation are
nominal, only indicating the presence of the transferring pro-
ton on X or Y. The total charge on each of X–H and Y-H
would, of course, depend on the charges of X and Y them-
selves. The X–H and H-Y bonds have both covalent and ionic
components, the relative weights of which depend on the dis-
tances r and r∗. To illustrate these diabatic states we consider
three specific examples.

1. For the Zundel cation, (H5O2)+, a proton is transferred
between two water molecules, X = Y = H2O. The two
diabatic states are |H3O+, H2O〉 and |H2O, H3O+〉 which
are degenerate at their equilibrium geometries.

2. For the (H3O2)− ion, a proton is transferred between two
hydroxide anions: X= Y= OH−. The two diabatic states
are |H2O, OH−〉 and |OH−, H2O〉, which are degenerate.

3. Hydrogen bonding between two water molecules can
be viewed in terms of proton transfer between a water
molecule and a hydroxide anion: X=OH− and Y = H2O,
and so this is an asymmetric case. The two diabatic
states are |H2O, H2O〉 and |OH−, H3O+〉, which are non-
degenerate. A very crude estimate of the energy differ-
ence between these two states, neglecting significant sol-
vation effects present in aqueous solution, is the free en-
ergy difference 21 kcal/mol corresponding to an equilib-
rium constant of 10−14.

R

Hr
r*

D
..................

FIG. 1. Definition of geometric variables for a hydrogen bond between a
donor (X) and an acceptor (Y). This paper is concerned with the quantum
motion of the proton H relative to X and Y. The focus in on the case of linear
bonds where φ = 0 and r∗ = R − r. The quantum effects are largest when the
donor-acceptor distance R is about 2.4−2.5 Å.

In this paper, we focus solely on the symmetric case
where the donor and acceptor have the same proton affinity.

B. Effective Hamiltonian

The Hamiltonian for the two diabatic states has ma-
trix elements that depend on the X–H bond length r, the
donor-acceptor separation R, and the angle φ, which describes
the deviation from linearity (compare Figure 1). It was re-
cently shown that one can obtain both a qualitative and semi-
quantitative description of hydrogen bonding using a sim-
ple and physically transparent parametrisation of these ma-
trix elements.17 This approach unifies H-bonding involving
different atoms and weak, medium, and strong (symmetrical)
H-bonds.

The Morse potential describes the energy of a single bond
within one of the molecules in the absence of the second (and
thus the diabatic states). A simple harmonic potential is not
sufficient because the O–H bond is highly anharmonic and
we will be interested in regimes where there is considerable
stretching of the bonds. The two cases j =X, Y denote the
donor X–H bond and acceptor Y–H bond, respectively. The
Morse potential is

Vj (r) = Dj [e−2aj (r−r0j ) − 2e−aj (r−r0j )], (1)

where Dj is the binding energy, r0j is the equilibrium bond
length, and aj is the decay constant. DX and DY denote the
proton affinity of the donor and the acceptor, respectively. For
O–H bonds, approximate parameters are D � 120 kcal/mol, a
� 2.2 Å−1, r0 � 0.96 Å, which correspond to an O–H stretch
harmonic frequency, ω, of � 3750 cm−1.

We take the effective Hamiltonian describing the two in-
teracting diabatic states to have the form

H =
(

VX(r) �XY (R, φ)

�XY (R, φ) VY (r∗)

)
, (2)

where

r∗ =
√

R2 + r2 − 2rR cos φ (3)

is the length of the Y–H bond (see Figure 1). The diabatic
states are coupled via the off-diagonal matrix element

�XY (R, φ) = �1 cos φ
(R − r cos φ)

r∗ e−b(R−R1) (4)

(see Figure 1), and b defines the decay rate of the matrix ele-
ment with increasing R. R1 is a reference distance that we take
as R1 ≡ 2r0 + 1/a � 2.37 Å. This is introduced so that the con-
stant �1 sets an energy scale that is physically relevant. The
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functional dependence on R and φ can be justified from or-
bital overlap integrals28 together with a valence bond theory
description of four-electron three-orbital systems (see page 68
of Ref. 21). There will be some variation in the parameters �1

and b with the chemical identity of the atoms (e.g., O, N, S,
Se, . . . ) in the donor and acceptor that are directly involved in
the H-bond.

C. Parametrisation of the diabatic coupling

Since the Morse potential parameters are those of iso-
lated X–H and Y–H bonds, the model has essentially two
free parameters, b and �1. These respectively set the length
and energy scales associated with the interaction between the
two diabatic states. That only two parameters are used here
is in contrast to most multi-parameter EVB models and em-
pirical ground state potential energy surfaces.29 For example,
one version of the latter involves 11 parameters for symmetric
bonds and 27 parameters for asymmetric bonds.30 A signifi-
cant point of Ref. 17 was that just the two parameters, b and
�1, are sufficient to obtain a semi-quantitative description of
a wide range of experimental data for a chemically diverse
set of complexes. The parameter values that are used here,
�1 = 0.4D � 2 eV and b = 2.2 Å−1 for O–H· · ·O systems,
were estimated from comparisons of the predictions of the
model with experiment.17

D. Potential energy surfaces

In the adiabatic limit, the electronic energy eigenvalues
of Eq. (2) for linear bonds (φ = 0) are the eigenvalues of the
effective Hamiltonian matrix:

ε±(r, R) = 1

2
[VX(r) + VY (R − r)]

±1

2
[(VX(r) − VY (R − r))2 + 4�(R)2]

1
2 . (5)

In this paper, we focus on the case of symmetric bonds where
the parameters in VX and VY are identical.

Figure 2 shows the eigenvalues (potential energy curves)
ε−(r, R) and ε+(r, R) as a function of r, for three differ-
ent fixed R values. These are three qualitatively different
curves, corresponding to weak, moderate, and strong hydro-
gen bonds, and are discussed in more detail below. [Note that
Figure 2 of Ref. 17 contained an error in the plots of the poten-
tial energy curves and so the corrected curves are shown here.]
The surface ε+(r, R) describes an electronic excited state, and
should be observable in UV absorption experiments.17 This
excited state is seen in quantum chemical calculations for the
Zundel cation.31

III. VIBRATIONAL EIGENSTATES

Under the Born-Oppenheimer approximation, the nuclear
dynamics is determined by the adiabatic electronic ground
state potential energy, ε−(r, R). We numerically solve the
one-dimensional Schrödinger equation for motion of a nu-
cleus (proton or deuteron) of reduced mass M in this potential

FIG. 2. Potential energy curves for the diabatic and adiabatic states of a sym-
metric hydrogen bonded system. The horizontal axis is proportional to the
extent of stretching of the X–H bond. The vertical energy scale is D, the
binding energy of an isolated X–H bond. The adiabatic curves are for an
off-diagonal coupling with parameters �1 = 0.4D and b = a. The diabatic
curves are Morse potentials centred at r = r0 (dashed lines) and r∗ = R − r0
(dotted lines) and correspond to isolated X–H and H–Y bonds, respectively.
For parameters relevant to an O–H· · ·O system, the three sets of curves cor-
respond (from top to bottom) to oxygen atom separations of R = 2.9, 2.6,
and 2.3 Å, respectively, characteristic of weak, moderate (low barrier), and
strong hydrogen bonds.18 Note that the upper two panels differ from the cor-
responding figure in Ref. 17 due to an error in that work.

ε−(r, R) for different fixed donor-acceptor distances R,

(
− ¯

2

2M

d2

dr2
+ ε−(r, R)

)
�n(r) = En�n(r), (6)

to find the low-lying vibrational eigenstates �n(r) and energy
eigenvalues En. Isotope effects arise because the solutions de-
pend on M (see note32). Two different numerical methods
were used in order to check the results, viz., the Discrete Vari-
able Representation (DVR)33, 34 with a basis of sinc-functions,
and the FINDIF program.35
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Figure 3 illustrates how the vibrational energy eigenval-
ues vary as the donor-acceptor distance R is varied. There are
three qualitatively distinct regimes:

1. Weak bonds (R > 2.6 Å)
There is a large potential barrier, and so the tunnel split-
tings are a small fraction of the energy spacings. They
are not visible for any of the levels on the scale of the
plot shown for R = 2.9 Å in Figure 3. Nevertheless, in
the gas phase small tunnel splittings have been observed
for malonaldehyde (26 cm−1) and tropolone (1 cm−1)
and their derivatives.37

2. Low-barrier bonds (R � 2.4–2.6 Å)
The zero-point energy is comparable to (but less than)
the potential barrier. There is a visible tunnel splitting of
the two lowest levels. The role of such bonds in enzyme
catalysis is controversial.38–40

3. Strong bonds (R � 2.4 Å)
The ground state lies above the barrier or there is no
barrier.41 All the vibrational energy levels are well-
separated.

A. Proton probability density

The relevance of the probability density to X–H bond
lengths is discussed in Sec. IV. As an aside, we note that
the spatial probability density of the ground state, ρ(r)
= |�0(r)|2, is the Fourier transform of the momentum den-
sity n(p) along the direction on of the X–H bond. A di-
rectional average of this quantity can be measured by deep
inelastic neutron scattering.42 The momentum probability
density has been observed for a wide range of systems in-
cluding liquid water, ice, supercooled water, water confined
in silica nanopores,43 water at the surface of proteins,44 water
bound to DNA,45 water inside carbon nanotubes,46 the ferro-
electric KH2PO4,47 hydrated proton exchange membranes,49

and a superprotonic conductor Rb3H(SO4)2.48

For all the radial distributions, p2n(p) has a peak for
p ∼ 7 Å−1. However, with the exception of Rb3H(SO4)2, liq-
uid water, and ice, a shoulder or second peak is seen at larger
momentum, p ∼ 15–20 Å−1. Taking the Fourier transform
leads to a real-space ground state probability density that is
bimodal, as a result of the second peak. It can be fitted with
two Gaussians with peaks about 0.2–0.3 Å apart. Further-
more, with knowledge of the average kinetic energy and the
probability density one can construct an effective one-body
one-dimensional potential energy for the motion of the pro-
ton along the hydrogen bonding direction. For the bimodal
distributions the potential is a double well, whereas for the
superprotonic conductor it is narrow single well.48

These experimental results can be compared to the one-
dimensional potentials and ground state wave functions that
we present here. The comparison suggests that in the systems
with bimodal distributions that there is some fraction of the
water molecules that are sufficiently close that the oxygen-
oxygen distance is about 2.4−2.5 Å. For reference, in bulk
water this distance is about 2.8−2.9 Å. However, it is possi-
ble the water molecules could be forced closer to one another
due to the interaction of the water with the relevant surface via

FIG. 3. Evolution of the potential energy curve and the vibrational en-
ergy levels with decreasing donor-acceptor distance R, from top to bottom.
This variation corresponds to changing from weak to moderate to strong
symmetric bonds. The energy levels shown are for protons. Note that for
R > 2.6 Å, the tunnel splitting between the two levels localised on oppo-
site sides of the potential barrier is not visible. In contrast, at shorter R, the
zero-point energy becomes comparable to the barrier height and the tunnel
splitting between the two lowest levels becomes visible. Note that the hori-
zontal and vertical scales of the above graphs are slightly different from one
another.
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bonding to the surface or by making the water acidic or basic
[producing H5O+

2 or H3O−
2 units]. Indeed, both effects occur

for water-hydroxyl overlayers on transition metal surfaces.14

However, atomistic simulations of some of these specific sys-
tems [e.g., water in silica pores50] do not seem to produce this
effect.

The probability density has been calculated for various
phases of water by path integral techniques by Morrone, Lin,
and Car, using potential energy functions from electronic
structure calculations based on density functional theory.51

For water, they considered three different donor-acceptor dis-
tances of 2.53, 2.45, and 2.31 Å, corresponding to three
different high pressure phases of ice, VIII, VII, and X, re-
spectively. In Ref. 52, these results have been interpreted in
terms of a simple empirical one-dimensional model potential.
But it was also suggested that a single proton distribution is
problematic due to proton correlations such as those associ-
ated with the “ice rules.” Perhaps such effects could be treated
here in a rather limited fashion by allowing for donor-acceptor
asymmetries.

IV. BOND LENGTHS

Classically, the X–H bond length is simply defined by
rmin, the minimum in the ground state potential energy. How-
ever, if the quantum motion of the proton is taken into ac-
count, there are ambiguities in defining the bond length that is
measured in a neutron scattering experiment. Presumably, this
bond length is some sort of motional average associated with
the ground state probability density. One possibility, then, is
to define the bond length by rmax, the maximum in the prob-
ability density (square of the wave function) for the proton.
If the potential energy is not symmetric about the minimum,
as is the case here, the maximum of the probability density
does not correspond to the minimum of the potential energy;
this difference has been pointed out previously by Sokolov,
Vener, and Saval’ev.60 These two different definitions of the
X–H bond length are illustrated in Figure 4 for moderate-to-
strong bonds.

Figure 5 shows how quantum nuclear motion signifi-
cantly shifts rmax (red solid line for the hydrogen and blue
dashes for the deuterium) from rmin (green dotted-dashes) as
a function of the donor-acceptor distance. The blue crosses
are experimental data in Figure 6 of Ref. 64 for O–H· · ·O
bonds in a wide range of crystal structures. A useful length
scale for comparison is the zero-point amplitude of an isolated
X–H bond vibration, which is about 0.1 Å for O–H bonds
with ∼3600 cm−1 harmonic frequencies. Relative to this met-
ric, the two bond length definitions give distinct trends in
Figure 5; the rmax curve corresponds more closely to the mea-
sured X–H bond lengths. For the moderate-to-strong H-bonds
that occur for R � 2.5 Å, rmax increases more sharply be-
cause the energy barrier becomes comparable to the zero point
energy. Furthermore, there are significant primary geometric
isotope effects in the same R range, i.e., the rmax traces are
significantly different for hydrogen and deuterium. In subse-
quent sections, rmax is referred to as the X–H bond length.

We note that similar curves to those shown in Figure 5
were produced from ab initio path integral calculations for

FIG. 4. Two definitions of the X–H bond length. One is rmin, the minimum
of the ground state adiabatic potential, a classical definition, shown as a
blue vertical line. The other, rmax, shown as a red vertical line, is the max-
imum of the ground state vibrational probability density (right-hand scale),
which accounts for the quantum vibrational zero-point motion in the anhar-
monic and asymmetric (about rmin) ground state potential. The plot is for
R = 2.45 Å, which falls in the moderate-to-strong hydrogen bond range. The
dotted horizontal line is the zero-point energy.

ice under pressure.4 In particular, the transition to symmet-
ric bonds for R < 2.4 Å was identified with the experimen-
tally observed transition to ice X for pressures above 62 GPa
for H2O and 72 GPa for D2O.63 Similar empirical curves
including the correction due to quantum zero-point motion
have been presented for both oxygen [O–H· · ·O] and nitrogen
systems [N–H· · ·N] by Limbach and co-workers.55, 56

V. LONGITUDINAL VIBRATIONAL FREQUENCIES

There is some subtlety in using the calculated vibrational
energy levels to deduce the vibrational frequency that is ac-
tually measured in an infrared spectroscopy experiment. A
good quantum number is the parity of the vibrational energy

 0.9
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FIG. 5. Correlation between the X–H bond length r, defined in two ways,
and the X–Y distance R. The green dotted-dashed curve, rmin, is the classical
bond length (minimum of the adiabatic ground state potential; see Figure 4).
The solid red and blue dashed curves are the bond lengths and are maxima
of the ground state probability distribution for the hydrogen and deuterium
vibrational wavefunctions, respectively; see Figure 4. The blue crosses are
experimental data for O–H· · ·O bonds in a wide range of crystal structures,
and are taken from Figure 6 in Ref. 64. The black dotted line corresponds
to symmetric H-bonds (r = R/2) that occur when the potential has a single
minimum.
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FIG. 6. Softening of the X–H stretch frequency � (in cm−1) with decreasing
donor-acceptor distance R (in Å). The green dashed curve is the harmonic
frequency at the rmin of ε−(r, R). The red dotted-dashed curve is the energy
difference (E0− − E0+ ) between the two lowest lying energy levels (tunnel
splitting of the ground state). The green solid curve is the energy difference
(E1+ − E0− ) between the first and second excited state energy levels. The
blue crosses are experimental data for a wide range of complexes, and are
taken from Figure 4 in Ref. 19.

level, associated with inversion symmetry about r = R/2 in
the potentials shown in Figure 3. Each pair of tunneling-split
levels have opposite parity, and can therefore be labelled 0+,
0−, 1+, 1−, . . . (following the case of the umbrella inversion
mode in ammonia35). The transition dipole operator has odd
parity, which, coupled with room or lower temperature Boltz-
mann weights of the vibrational energy levels, suggest that the
relevant transitions are 0− → 1+ and 0+ → 0−.

Figure 6 compares the frequencies of both transitions
from our calculations with experimental data. As the donor-
acceptor distance decreases, there is a significant soft-
ening in the experimental X–H stretch frequency (blue
crosses),18, 19, 65–68 a trend that is largely traced by the 0− →
1+ energy gap (green solid line). This softening has been pro-
posed as a measure of the strength of a H-bond.36 The har-
monic limit, i.e., the frequency obtained from the curvature
with respect to r at the bottom of the potential ε−(r, R), is
larger in value, and an increasingly poor estimator of tran-
sition frequencies with increasing anharmonicity (decreasing
R).69

The 0+ → 0− (red dotted-dashed line) transition is of
relevance only at R � 2.5 Å. For R � 2.55 Å, the 0+ → 0−

frequency may not be realistically observable in a condensed
phase because the environment will decohere the system and
suppress tunneling.70

For R ≈ 2.45 Å, there are some experimental data points
that lie between the two continuous theoretical curves. We
consider three possible reasons for this discrepancy. First, the
one-dimensional potential may be unreliable in this regime.
However, we consider this unlikely because the potential ap-
pears to successfully describe so many other properties [bond
lengths, geometric and frequency isotope effects]. Second, the
two-dimensional character of the potential becomes impor-
tant [i.e., the coupling of X–H stretch with the X–Y stretch].
Third, there is significant uncertainty in the experimental val-
ues for the frequency in this regime. IR spectra for such
strong H-bonded complexes in this frequency range are broad

(compare Figure 2 in Ref. 65) and it is difficult to identify the
appropriate vibrational frequency.71 This large width is due to
the combined effects of the large thermal and quantum fluctu-
ations in R (compare Figure 6 in Ref. 72) and the fact that the
stretch frequency varies significantly with R.

The present results are relevant to infrared spectra mea-
sured for ice under high pressures, including the symmetric
phase, Ice X.73, 74 Two vibrational modes are seen. These can
be identified with the curves for E1+ − E0− and E0− − E0+

shown in Figure 6. Some caution is in order in making a quan-
titative comparison because water does not have a symmetric
donor and acceptor for hydrogen bonding.

For the rest of this manuscript, we refer to the 0− → 1+

transition frequency as the X–H stretch frequency, �.

VI. ISOTOPE EFFECTS

A. Secondary geometric isotopic effects

Figure 5 and Sec. IV discuss the primary geometric
isotope effects where the X–H bond length changes upon
substitution of the hydrogen with deuterium. Secondary
effects are those where the X–Y bond length changes,
and are also known as the Ubbelöhde effect.53 There have
been extensive experimental54–58 and theoretical36, 59–62, 78–83

investigations of these geometric isotope effects.
The secondary geometric isotope effect complicates the

interpretation of other isotope effects. Since the R value
changes between the isotopes, the effective one-dimensional
potential for each of them is different. Therefore, the shifts
due to the primary isotope effect are further modified. This
convolution of geometric isotope effects is seen by compar-
ing the crystal structure of CrHO2 and CrDO2; in the former
the O–H–O bond appears to be symmetric (r = R/2) with
R = 2.49 ± 0.02 Å, whereas the O–D–O bond is asymmet-
ric with an O–D bond length of 0.96 ± 0.04 Å, with R = 2.55
± 0.02 Å.54 The shift of R value appears small (a 2% change)
for the low frequency motion that represents the X–Y stretch,
but the effect is palpable.

Generally, one observes that for moderate H-bonds the
equilibrium donor-acceptor distance R increases with substi-
tution of hydrogen with deuterium.59 This is sometimes re-
ferred to as a positive secondary geometric isotope effect.
For strong bonds, a negative effect, i.e., decrease of R, is ob-
served. For weak bonds, R decreases, and understanding this
requires inclusion of the transverse vibrational modes,36, 78 as
discussed in Sec. VII.

We now consider a simple extension to our model po-
tential in order to describe the secondary geometric isotope
effect for strong to moderate bonds. We draw from the model
studies by Sokolov, Vener, and Saval’ev.60 Consider a two-
dimensional potential in terms of r and R. This will contain
an attractive (with respect to R) contribution from the H-bond
[ε−(r, R) in our model] as well as a repulsive term associated
with the donor-acceptor repulsion84, 85 [so far not included in
our model]. Competition between these two contributions de-
termines the classical donor-acceptor bond length, here de-
noted R0. Such a two-dimensional potential would be the
same for hydrogen and deuterium. Here we may carry out a
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Born-Oppenheimer-like treatment of r and R. Upon taking an
expectation value with the ground state vibrational wavefunc-
tion along the fast coordinate, r, an effective one-dimensional
potential along R is obtained with the following form:

U0(R) = U (R0) + K(R0)

2
(R − R0)2 + Z(R), (7)

where the first two terms on the right-hand side are a local
quadratic expansion about the R0, and represent the elastic
modulation of energy along the donor-acceptor stretching co-
ordinate. The essential physics of the isotope effect is in the
third term, the zero-point energy,

Z(R) ≡ E0+ (R) − ε−(rmin, R), (8)

of the hydrogen (deuterium) motion.
Note that Z(R) is not required to be a minimum at R0.

Minimising the total energy (7) as a function of R gives the
equilibrium bond length

Req = R0 − 1

K(R0)

dZ(R0)

dR
(9)

to first order in ¯.89 This equation was previously presented by
Sokolov, Vener, and Saval’ev.60 They used zero-point energies
obtained from different model potentials to that used here,
and they also assumed that K(R) was constant. The physics
involved is identical to that used in solid state physics to cal-
culate the effect of isotope substitution on the lattice constant
of a crystal.5, 90

We estimate K(R0), the elastic constant in the above
model, from experimental information in the article by Novak
(Ref. 65, Figure 10 and Table V). It shows significant varia-
tion with R0, increasing by a factor of about 6 as R0 decreases
from 2.7 to 2.44 Å. The data fit an exponential form,

K(R0) = K̄ exp[−c(R0 − R̄0)], (10)

with K̄ = (55 ± 3) × 103 cm−1/Å2, and c = (7.3 ± 0.8) Å−1,
and R̄0 ≡ 2.5 Å.

The zero-point energy of the X–H stretch is a non-
monotonic function of R. The significant variation with R re-
flects the qualitative changes in the one-dimensional potential
that occur as one changes from weak to moderate to strong
bonds (compare Figure 3). Furthermore, there are subtle dif-
ferences between hydrogen and deuterium isotopes. The top
part of Figure 7 shows a plot of the slope dZ/dR versus R for
both hydrogen and deuterium. This slope is small and pos-
itive for large R, increases as R decreases until it reaches a
maximum for R � 2.45 Å for hydrogen (R � 2.40 Å for deu-
terium), becomes zero for R � 2.33 Å, and turns negative for
smaller R.

With the above pieces of information, the secondary ge-
ometric isotope effect is given by

�R ≡ Req, D − Req, H = 1

K(R)

(
dZH

dR
− dZD

dR

)
. (11)

In this equation, the 0 subscript for R has been dropped. R0

was used earlier in the section to indicate the classical min-
imum for various complexes. However, R in the model ef-
fectively takes the role of R0, scanning through the classical
minima of all complexes. The solid curve in the bottom part

−4

−2

0

2

4

6

8

 2.3  2.4  2.5  2.6  2.7  2.8  2.9 3

dZ
/d

R
 (

x1
00

0 
cm

−
1 Å

−
1 )

R (Å)

dZH/dR

dZD/dR

−2

−1

0

1

2

3

4

5

 2.3  2.4  2.5  2.6  2.7  2.8  2.9 3

Δ
R

 (
x1

0−
2  Å

)

Req,H (Å)

Calc(str only)
Calc(str + bend)

Expt

FIG. 7. Non-monotonic dependence of the secondary geometric isotope ef-
fect on the donor-acceptor distance. The top panel shows the slope of the
zero-point energy in cm−1/Å. The red curve is for hydrogen and the dashed
blue curve for deuterium. Note that the maxima occur at different values of
R and that the curves cross for R � 2.4 Å. The difference between the two
curves determines the secondary geometric isotope effect [compare Eq. (11)]
which is shown as the solid curve in the bottom panel. The inclusion of the
zero-point contribution of the bend modes, discussed in Sec. VII and based on
results in Ref. 17, yields the dashed curve in the bottom panel. Experimental
data are taken from Table 1 in Ref. 60.

of Figure 7 (labelled “str only”) shows a plot of �R vs Req, H,
including a comparison with experimental data from a wide
range of complexes, as tabulated in Ref. 60.

We point out that the x-axis of this plot, obtained from
Eq. (9), is different from R, the minimum of the classical po-
tential. For R ≥ 2.35 Å, we find that R − Req, H is, like Z(R),
a non-monotonic function of R. It reaches a maximum value
of 0.1 Å for R � 2.5 Å, and drops towards zero on either
side. Therefore, there is an important difference between plot-
ting the secondary geometric isotope effect versus Req, H and
versus R. The former is the most self-consistent approach,
since Req, H is what is experimentally measured. But both
approaches produce qualitatively similar results.

The proximity of the theoretical prediction by Eq. (11)
to experimental data is encouraging. In particular, the model
predicts negative �R values at short donor-acceptor distances
(strong H-bonds), though the location of the sign change is
slightly offset from experimental data. The fact that the sec-
ondary geometric isotope effect becomes negative (and small)
for strong H-bonds is seen in ab initio molecular dynamics
simulations for H5O+

2 ,91 H7N+
2 ,82 and H3F+

2 .92 For example,
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for H5O+
2 , it is found that at a temperature of 100 K,

R = 2.417 Å and �R = −0.004 Å.91

The value of Req, H from Eq. (9), and consequently �R,
depends on the total zero-point energy, i.e., not just that from
the X–H stretch but also from the X–H bends. It was recently
noted36 that the influence of the bends is rather pronounced
at large X–Y separations (� 2.7 Å). The dashed line labelled
“str+bend” in the lower panel of Figure 7 is an attempt to
include the effect of the zero-point energy of the bending
vibrations as well, and is discussed in detail in Sec. VII.

B. Vibrational frequency isotope effects

The ratio of the frequency of longitudinal X–H stretch-
ing mode for hydrogen to deuterium isotopes is observed
experimentally to be a non-monotonic function of the X–Y
distance with values varying between 0.85 and 2.0.65, 81, 87, 88

In contrast, for the torsional/bending modes, the isotope ef-
fects are trivial. Table 6 of Ref. 65 shows that as the O· · ·O
distance increases from 2.44 Å to 2.71 Å, the ratio of the
O–H to O–D (out of plane) bend frequencies vary little, ly-
ing in the range 1.32–1.44, and show no significant trend.
Broadly, they are consistent with the semi-classical harmonic
ratio

√
2. This is expected since for the bending mode there

is no significant anharmonicity (compared to the stretch
mode). With respect to the φ co-ordinate in Figure 1, hy-
drogen bonding simply hardens the potential for nonlinear
arrangements.

Figure 8 compares the calculated correlation between
the frequency isotope effect with the donor-acceptor distance
for the hydrogen isotope for a wide range of complexes.
It is particularly striking that if one simply calculates the
frequencies for hydrogen and deuterium isotopes at the same
donor-acceptor distance [i.e., with the same one-dimensional
potential] one does not obtain quantitative agreement with
the experimental data for Req, H � 2.4–2.5Å (compare the
dashed curve in Figure 8). Instead, one needs to take into
account the secondary geometric isotope effect and calculate
�D at R = Req, D, given by Eq. (11) and plotted in Figure 7
(lower panel, solid curve). For Req, H � 2.4−2.5 Å, the
secondary geometric isotope effect is largest, �R � 0.03 Å.
Although this change in value is small relative to R, it makes
sufficient alterations in the one-dimensional potential along
r for deuterium so that �D(Req, D) becomes comparable to
�H(Req, H) (their ratio is closer to 1). Previously, Romanowski
and Sobczyk86 calculated a curve similar to the dashed one
shown in Figure 8 and suggested that the discrepancy with
the experimental data may be due to a change in the potential
associated with the secondary geometric isotope effect. We
have shown that this is indeed the case. We also note that the
horizontal axis Req, H is given by Eq. (9).

The � value for both isotopes are calculated as E1+ −E0−

energies. At short O· · ·O distances � 2.5 Å, the E0− − E0+

(ground state tunneling splitting) frequencies also enter the
range of the experimental data. However, the ratio of these
frequencies for hydrogen and deuterium lie above 1.5 (not
shown), and thereby above the available experimental data
for O–H· · ·O. However, experimental data for the frequency

 0.8

 0.9

1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 2.3  2.4  2.5  2.6  2.7  2.8  2.9 3

Ω
H
/ Ω

D

Req,H (Å)

 0.8

 0.9

1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 800  1200  1600  2000  2400  2800  3200

Ω
H
/ Ω

D

ΩH (cm−1)

FIG. 8. Top panel: Correlation between the frequency isotope effect and the
donor-acceptor distance Req,H, of the hydrogen isotope. The vertical axis is
the ratio of the O–H stretch frequency to the O–D stretch in the same com-
pound. The solid curve is �H(Req,H)/�D(Req,D) (i.e., the two frequencies are
calculated for different one-dimensional potentials) whereas the dashed curve
is the frequency ratio calculated at the same distance Req,H (i.e., for the same
potential). The difference between the two curves for Req,H ∼ 2.5 Å, high-
lights the contribution of the secondary geometric isotopic effect, calculated
from Eq. (11). Bottom panel: The data are the same as in the top panel, but
the horizontal axis is �H instead of Req,H. Experimental data in both plots are
from Table 6 in Ref. 65 (crosses) and Table 1 in Ref. 81 (open circles).

ratio of N–H· · ·N systems does increase up to 2 for short
bonds.87

An alternate way of examining the isotope effects with
the same data is with a plot of the ratio �H/�D against �H

rather than Req, H.65, 81, 87 This is done in the lower panel of
Figure 8. The present model’s predictions without (dashed
curve) and with (solid curve) secondary geometric isotope ef-
fect corrections, deviate significantly from the experimental
plot, with particularly strong deviations for Req, H � 2.5 Å,
where the frequency ratio turns upward for �H � 1700 cm−1.
Note, however, that continuous curves do capture the range
of the frequency ratios, just as they do in the upper panel
of the figure. The discrepancy is due in part to �H; it does
not take on values as low as reported in experiments for R
� 2.5 Å, an observation noted previously for Fig. 6. In ef-
fect, the H-bond potential model in this work is able to re-
cover frequency ratios rather well, but not the experimen-
tal frequencies in certain strong H-bonding regions. Then
again, the experimental frequencies in this range are diffi-
cult to unambiguously identify; see Sec. V above as well as
Refs. 71 and 72.
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C. Simple models for frequency isotope effects

Some insight can be gained into the variation of the iso-
tope effects with the donor-acceptor distance by considering
analytical results for simple model potentials that are relevant
in different limits.

1. Harmonic potential
This approximately describes weak hydrogen bonds. For
a potential V (r) = A(r − r0)2/2, the energy eigenval-
ues are En = (n + 1/2)¯

√
A/M . Hence, the frequency

� ≡ (E1 − E0)/¯. The ratio of the frequencies for hydro-
gen and deuterium is

�H

�D

=
√

2 = 1.41. (12)

For weak bonds the anharmonicity factor is small
enough (χ ∼ 0.03 in Eq. (13) below) that the above ratio
is a reasonable approximation.

2. Morse potential
This approximately describes the anharmonicity associ-
ated with (parameterized around) the bottom of the po-
tential for moderate to weak hydrogen bonds. This is
not to be confused with the Morse potential that we use
to describe the diabatic states. For a Morse potential,
the eigenvalues are En = (n + 1

2 )¯ω0 − (n + 1
2 )2¯ω0χ,

where ω0 is the harmonic frequency and χ ≡ ¯ω0/4D0

is the anharmonicity. The transition frequency is then �

= (E1 − E0)/¯ = ω0(1 − 2χ ). The ratio of the hydrogen
and deuterium frequencies is

�H

�D

=
√

2

(
1 − 2χ

1 − √
2χ

)
. (13)

Hence, as R decreases, we expect the frequency ratio
to decrease as is observed. Even for large anharmonic-
ity (χ ∼ 0.2−0.25), the ratio only decreases to about
1.1–1.2, as is observed in the full calculation (compare
the dashed curve in the upper panel of Figure 8).

3. Infinite square well potential
For strong bonds, the potential is approximately a square
well of width L = R − 2r0. This observation was pointed
out in References 12 and 77. For a well of width L, the
energy of the nth level is

En = ¯2n2

2ML2
, (14)

where n = 1, 2, 3, · · ·. The ratio of the frequencies for
the two isotopes is then

�H

�D

= 2. (15)

The detailed calculations of the isotope frequency ratio
shown in Figure 8 are consistent with the above three limits.
As R decreases, �H/�D decreases below 1.4 reaches a min-
imum, and then for R values corresponding to a single well
potential the ratio increases to values larger than 1.4.

The ground state wave function for the infinite square
well is (n = 1)

�g(r) =
√

2

L
sin

(πr

L

)
, (16)

which is independent of the mass M. Hence, the zero-point
energy depends on 1/M, but the zero-point motion is inde-
pendent of M. This is in contrast to the case of a harmonic
potential for which the zero-point wavefunction does have
M dependence. Indeed, this explains why calculations of the
ground state probability distribution |�g(r)|2 for the proto-
nated ammonia dimer N2H+

7 ,82 for H3O−
2 ,83 and for sodium

hydrogen bissulfate (Na3 H(SO4)2)72 found virtually identi-
cal probability distributions for both isotopomers.

The non-monotonic dependence of the zero-point energy
Z(R) on R (compare the upper panel of Figure 7) can also be
understood in terms of the analytic limits discussed above.
As R decreases the potential gets more anharmonic and the
zero-point energy Z = E0 = 1

2¯ω0(1 − ¯ω0/8D0) decreases
because the effective D0 of the local Morse potential also
decreases. However, in the single well regime, Z(R) ∼ 1/
(R − 2r0)2, and the zero-point energy increases with
decreasing R.

VII. COMPETING QUANTUM EFFECTS

There is a torsional or bending vibration associated with
periodic oscillation of the angle φ shown in Figure 1. This is
related to the libration mode in water and ice. The bending vi-
brations make an important contribution to the total zero-point
energy of the system [compare Eqs. (7) and (17) below]. As
the donor-acceptor distance decreases, the bending frequency
and the associated zero-point energy increase (compare Fig-
ure 6 in Ref. 17). This is the opposite trend to the X–H stretch.
These opposite dependences lead to the notion of competing
quantum effects.9, 75, 76

In this section, we make a preliminary analysis of the
role of H-bond bending on the secondary geometric isotope
effects. The total zero-point energy is

Z(R) ≡ Z‖(R) + Z⊥,o(R) + Z⊥,i(R). (17)

The terms are the zero-point energy associated with X–H vi-
brations parallel to the hydrogen bond (stretch), out-of-plane
bend (o), and in-plane bend (i) of X–H· · ·Y. In the diabatic
state model,17 the effect of H-bonding on hardening of the
two bend motions is similar,

�⊥,o/i(R)2 = ω2
⊥,o/i + 2f (R), (18)

where ω⊥,o/i is the frequency in the absence of a H-bond and
the function f(R) is given in Eq. (6) of Ref. 17. At least in the
R range of interest, f(R) is a positive function that monoton-
ically decreases with increasing R: df/dR < 0. In general ω⊥,i

> ω⊥,o and so �⊥,i > �⊥,o. The contributions of the two
bending modes to the zero-point energy (17) are taken to
be Z⊥,o/i = 1

2¯�⊥,o/i(R): they are treated as harmonic
oscillators.

The frequency �⊥,o(R) is taken from (the solid line of)
Figure 6 of Ref. 17. Little data are available for the in-plane
bend �⊥,i(R) because the interpretation of experimental
data is difficult due to the strong mixing of this mode with
others.65 Hence, we use the following simple analysis to
estimate its effect. If we take the derivative of Eq. (18) with
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respect to R we obtain

�⊥,o

d�⊥,o

dR
= �⊥,i

d�⊥,i

dR
= df

dR
. (19)

Hence, we can write the derivative of the total bend ZPE

dZ⊥
dR

= dZ⊥,o

dR

(
1 + �⊥,o

�⊥,i

)
. (20)

It can be seen from Eq. (18) that 1 > �⊥,o(R)/�⊥,i(R)
> ω⊥,o/ω⊥,i, and that this frequency ratio progressively in-
creases towards unity as R decreases. Given that information
about the out-of-plane bend is known better than the in-plane
bend, we make a limiting approximation that �⊥,o � �⊥,i, so
we can write

dZ⊥
dR

� 2
dZ⊥,o

dR
. (21)

This becomes less reliable for larger R (when f(R) becomes
smaller), giving an overestimate of the magnitude of the total
bend derivative.

All terms in Eq. (17) vary significantly with R in the
range of interest (2.3–3.0 Å). The first term has a non-
monotonic trend (as shown in the upper panel of Figure 7),
whereas the bend terms decrease monotonically as R is in-
creased. So the total zero-point energy involves a subtle com-
petition between the stretch and bend components at different
values of R.

The net secondary geometric isotope effect comes from a
balance between [dZ‖, H/dR − dZ‖, D/dR] for the stretch and
2[dZ⊥,o,H/dR − dZ⊥,o,D/dR] for both bends together (com-
pare equation (11)). Noting that �⊥,o/i scale essentially as the
square root of the mass of H or D, the derivative difference
for the bends can be simplified to 2(1 − 1√

2
)dZ⊥,o,H /dR.

At R � 2.4 Å and R � 2.7 Å, the derivative difference for
the stretch mode is small; see the upper panel of Figure 7.
It is in these regions that the bend contributions will be
particularly noticeable. For example, at 2.4 Å, dZ⊥,o,H/dR
� −800 cm−1, so that the derivative difference for both bends
together is about −450 cm−1. The secondary geometric iso-
tope effect is negative in sign at this R value, and contains a
substantial contribution from the bend.

The dashed line in the lower panel of Figure 7 (labelled
“str+bend”) gives an estimate of the secondary geometric iso-
tope effect including both bends. The overall features of the
change in donor-acceptor distance �R are not too different at
short R, apart from an overall downward shift. But at Req, H

� 2.7 Å, the bend contribution overtakes the stretch giving
rise to a negative �R. The position of the crossover may
change slightly with a more refined treatment of the bend
modes and the model itself. Specifically, for weak bonds the
contribution of the in-plane bend will become smaller than
that of the out-of-plane bend (compare Eq. (20)). Indeed, this
difference was also found for path integral simulations of iso-
topic fractionation in water.9 Consequently, �R will become
negative at a larger Req, H than the value of about 2.7 Å shown
in our Figure 7. At still larger distances, Req, H > 3.0 Å, the
H-bonding becomes very weak, and it is expected that the �R
curve eventually goes to zero.

The qualitative aspect of a negative �R for weak H-bonds
is in agreement with recent work of Li et al.36 based on Path

Integral Molecular Dynamics simulations. They showed that
the bend modes would dominate over the stretch for weak
H-bonds, leading to a negative secondary geometric isotope
effect at large donor-acceptor distances. They found a change
in the sign of the geometric isotope effect when the H-bond
strength was such that the X–H stretch frequency was reduced
by about 30%. From Figure 6 we estimate this corresponds to
Req, H � 2.6 Å, a value somewhat lower than the crossover
region we see in Figure 7.

VIII. POSSIBLE FUTURE DIRECTIONS

There are several natural directions to pursue future
work. These include the description of asymmetric com-
plexes where the proton affinity of the donor and acceptor
are different. As a result the one-dimensional potential is
no longer symmetric about r = R/2. Development of a full
two-dimensional potential V (r, R) will allow treatment of
the secondary geometric isotope effect without introducing
the empirical elastic constant K(R) and investigating of the
coupling of thermal and quantum fluctuations between R and
the X–H stretch. This simple diabatic state model approach
can be readily be applied to more complex H-bonded systems
such as those associated with solvated Zundel cations,16

excited state proton transfer, double proton transfer in
porphycenes,93 and water wires.10 Finally, we briefly discuss
two other future directions.

A. Anisotropic Debye-Waller factors

For crystal structures, one assigns ellipsoids associated
with the uncertainty of the positions of individual atoms
determined from X-ray or neutron diffraction experiments.
The relevant quantities are known as Atomic Displacement
Parameters or Debye-Waller factors. In the absence of
disorder, their magnitude is determined by the quantum and
thermal fluctuations in the atomic positions. Anisotropy in the
ellipsoid reflects a directional dependence of bonding and the
associated vibrational frequencies. Anisotropy in the associ-
ated kinetic energy of protons in liquid water and in ice was
recently measured by inelastic neutron scattering.76

The variation in the anisotropy of the ellipsoid with
donor-acceptor distance has been calculated for ice by Benoit
and Marx.94 Anisotropy of the Debye-Waller factor for the
position of protons in enzymes has recently been critically ex-
amined with a view to identifying low-barrier H-bonds.40 The
authors found that anisotropy is correlated with the presence
of short bonds and with “matching pKa’s” [i.e., the donor and
acceptor have similar chemical identity and proton affinity],
as one would expect.

Our calculations of the variation of X–H stretch zero-
point energy with respect to R and the X–H bend frequency
(Figure 6 in Ref. 17) suggest the anisotropy has a non-
monotonic dependence on R.

B. Hamiltonian for non-adiabatic effects

The model Hamiltonian (2) has a natural extension to
describe non-adiabatic effects associated with a quantum
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mechanical treatment of the hydrogen atom co-ordinate r. The
harmonic limit for symmetric donor and acceptor corresponds
to a spin-boson model95 with the quantum Hamiltonian

H = p̂2

2M
+ M

2
ω2q̂2 +

(
g
√

2Mωq̂ �(R)

�(R) −g
√

2Mωq̂

)
,

(22)
where p̂ is the momentum operator, conjugate to q̂ ≡ r̂

− R/2, and g ≡
√

Mω3

2 (R/2 − r0). This Hamiltonian can be
rewritten as

H = �σx + g(a† + a)σz + ωa†a, (23)

where σ x and σ z are Pauli matrices and a and a† are annihila-
tion and creation operators, respectively, associated with the
r co-ordinate. This Hamiltonian has an analytical solution in
terms of continued fractions.96

The fully quantum Morse potential has an exact ana-
lytical solution and an algebraic representation in terms of
creation and annihilation operators.97 Hence, an algebraic
treatment of the quantum version of the model Hamilto-
nian (2) (i.e., without taking the harmonic limit) may also
be possible, because the off-diagonal terms are independent
of r. Given the quantitative importance of the anharmonicity
associated with the Morse potential41 this is desirable.

Previous studies98, 99 of the Hamiltonian (23) suggest that
the most significant deviations from the Born-Oppenheimer
approximation will occur when the bare vibrational frequency
ω ∼ �(R) and also the barrier height. This will occur when
R ∼ 2.5 Å.

IX. CONCLUSIONS

We have clearly shown that the quantum motion of the
proton has a significant effect on the properties of H-bonds of
strong to moderate strength between symmetric donor (X) and
acceptor (Y) groups. A simple one-dimensional potential for
the linear transfer path (X–H stretch) of the proton at various
donor-acceptor separations (R), based on a two-diabatic state
model with only a very few parameters, was used for this pur-
pose. The structure of this potential varies from a high-barrier
double-well for weak and moderate H-bonds (R � 2.7 Å) to
a single well for strong H-bonds (R ∼ 2.4 Å). Our analysis of
the proton motion on this potential gives qualitative and quan-
titative descriptions of several correlations as a function of R
for O–H· · ·O containing materials.

The model’s predictions of the basic properties of
hydrogen bonding, viz. X–H bond length variations and
vibrational frequency red-shifts, for both hydrogen and
deuterium isotopes, compare well with known experimental
information over a wide R range. The key additional pre-
diction using a slight extension of the model is that of the
secondary geometric isotope, or Ubbelöhde, effect, wherein
the donor-acceptor distance is changed due to H to D isotopic
substitution.

The Ubbelöhde effect is a quantum effect whose mag-
nitude depends on zero-point energies (ZPEs) in the proton
and deuteron’s degrees of freedom. We have shown that the
ZPE along the X–H(D) stretch is able to capture the experi-

mental trends for strong H-bonds. The model potential shows
qualitative changes for R � 2.5 Å, when the barrier becomes
comparable to or lower than the ZPE of the X–H(D) stretch
mode. Concomitantly, significant variations in the difference
between the X–H and X–D ZPE derivatives with R are ob-
served in our model, which dominates the secondary geomet-
ric isotope effect for strong to moderate H-bonds. This effect
modulates and, indeed, improves the model’s predictions of
the primary geometric isotope effect as well.

In this paper, we have employed mainly one-dimensional
quantum calculations along the X–H stretch with the donor-
acceptor distance (R) as a control parameter. This alone is
found to be quite insightful. Of course, higher dimensional
quantum treatments that include the X–H bends and R are an-
ticipated to yield a still better quantitative description. Tak-
ing a short step in this direction, we have made a prelimi-
nary analysis of the effect of the X–H bends in the context
of the Ubbelöhde effect. We find, in agreement with other
recent works, that their influence is mainly in the moder-
ate to weak H-bond regime (R ≥ 2.7 Å), and strong H-bonds
(R ∼ 2.4 Å) where they begin to overtake the influence of the
X–H stretch.
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we use for O–H· · ·O bonds with R = 2.4 Å. A similar correspondence was
pointed out in Ref. 87.

89The validity of Eq. (9) requires that K(R) � d2Z

dR2 (R). Estimating the cur-
vature from Figure 7 we see the two terms are of comparable magnitude for
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