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Abstract: The probabilistic collocation method (PCM) based on the Karhunen-Loevè expansion (KLE) 
and Polynomial chaos expansion (PCE) is applied for uncertainty analysis of flood inundation 
modelling. The floodplain hydraulic conductivity (KS) is considered as one of the important parameters 
in a 2-dimensional (2D) physical model FLO-2D (with Green-Ampt infiltration method) and has a 
nonlinear relationship with the flood simulation results, such as maximum flow depths (hmax). In this 
study, due to the spatial heterogeneity of soil, log-transformed Ks was assumed a random field in 
spatiality with normal distribution and decomposed with KLE in pairs of corresponding eigenvalues and 
eigenfuctions. The hmax random field is expanded by a second-order PCE approximation and the 
deterministic coefficients in PCE are solved by FLO-2D. To demonstrate this method, a simplified flood 
inundation case was used, where the mean and variance of the simulation outputs were compared 
with those from direct Monte Carlo Simulation. The comparison indicates that PCM could efficiently 
capture the statistics of flow depth in flood modelling with much less computational requirements. 
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1. INSTRUCTION  

Flood inundation modelling processes often involve a large amount of uncertainties, especially at 
topographical formation where insufficient data are available for model parameterization, calibration 
and validation. During the past decades, many studies were developed to do uncertainty quantification 
of flood modelling, during which two traditional approaches are widely used including Bayesian method 
and Monte Carlo simulations (MCS) (Beven and Binley, 1992, Van Vuren et al., 2005, Lu and Zhang, 
2007, Reza Ghanbarpour et al., 2011, Jung and Merwade, 2012). However, most of these studies 
assumed homogenous values of parameter over the modelling domain, which would result in obvious 
deviations between the observed data and simulation results. It has been recognized that spatial 
heterogeneity of geological media could bring significant effects on fluid modelling system; however, 
for many cases, only a limited number of locations are taken with measurement or survey of soil media; 
consequently error occurs when the measured data is applied for the entire modelling system (Liu et 
al., 2006). During a two-dimensional (2D) fluid numerical modelling system, the 2D governing 
equations have to be converted from the deterministic equations into stochastic (Li and Zhang, 2009, 
Liu and Matthies, 2010). Traditional Monte Carlo Simulation (MCS) and other approaches based on 
the MCS are normally used for such a type of uncertainty quantifications (Huang et al., 2001, Ballio 
and Guadagnini, 2004, Zhang and Lu, 2004, Lu and Zhang, 2007). The MCS approach is easy to 
understand and simple to operate. However, a significant drawback is that the computation is intensive, 
especially for flood modelling system. In recent decades, new approaches based on the Karhunen-
Loevè expansion (KLE) and Polynomial chaos expansion (PCE) are developed for uncertainty analysis 
in many fields such as subsurface modelling system (Liu et al., 2006, Li and Zhang, 2007). However, 
studies with consideration of spatial distribution are relatively limited for the flood modelling under 
uncertainty. One attempt was made by Liu and Matthies (2010), who developed a framework of 
uncertain analysis combing the KLE and PCE expansion (based on Galerkin projection) and examined 
three uncertain parameters including inflow, topography and floodplain manning’s n over the entire 
flood modelling. In this study, we aim to apply the KLE-based PCM to analyze the uncertainty 
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propagation of floodplain hydraulic conductivity (KS) which is deemed a key parameter of Green-Ampt 
method for modelling the infiltration process during the flood inundation modelling using FLO-2D, a 
two-dimensional flood model; no previous studies have specifically looked into such a parameter. A 
simplified inundation case is used for demonstrating the methodology. 

2. METHODOLOGY 

2.1. Stochastic Flood Inundation Model 

To describe a 2D flood inundation process, shallow water equations can be used (Chow et al., 1988, 
FLO-2D Software, 2012):  
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where, h(X, t) is defined as the flow depth; V is the averaged-in-depth velocity in each direction; X= (x, 
y) represents 2D Cartesian coordinate spatially; t is the time; So is the bed slope, and Sf is the friction 
slope; R is rainfall intensity and I is surface infiltration rate; F is the total infiltration; n is the soil 
porosity; KS(X) is defined as saturated hydraulic conductivity; ∆ is the effective soil moisture;  is the 
dry suction, generally in negative values, h0  represents the ponded depth on the soil surface and can 
be negligible compared to . Equations (1) and (2) represent the 2D continuity equation and the 
momentum equation, both of which are the fundamental equations in the flood modelling. Equation 
1(c) represents the Green-Ampt infiltration model.  

2.2. Karhunen-Loevè Expansion (KLE) of Kf  

In this study, Kf (X) is assumed as a random field of floodplain hydraulic conductivity and K(X) = ln[Kf 

(X, ω)], where X  D and ω    (a probabilistic space), which means that lnKf varies over the domain 
spatially with a bounded, symmetric, and positive covariance function K(x,y) =< K’ (X,ω) K’ (X,ω)>, 
which can be expressed as (Ghanem and Spanos, 1991):  
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where λn represent eigenvalues; fn(x) and fn(y) are eigenfunctions, which are orthogonal and 
determined by dealing with the Fredholm equation analytically or numerically  (Courant and Hilbert, 
1953):  
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where λn and fn (x) for some specific covariance functions could be solved analytically (Zhang and Lu, 
2004). The KLE representation of floodplain roughness coefficients can be expressed as (Liu et al., 
2006): 
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where u(X) represents the mean of K; and ςn(ω) represent the orthogonal random variables with 
standard Gaussian distribution. Here, ω is omitted in following related expressions and equations. The 
calculated λn can be ranked as monotonically decreasing series with index n. In order to make the 
approximation effective in both computational effort and accuracy, the KLE representation of lnKf (x) 
can be written in a finite form as follows (Liu et al., 2006):	
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where m represents the number of the items saved in the equation (5). Generally, the more the items 
obtained in equation, the more accurate the random hydraulic conductivity filed is approximated, which 
implies that more random field energy is saved, but with an increasing significant computational 
efforts. For simplicity of expression, the tilde over the symbol K is omitted in the future expressions and 
functions. 

2.3. Polynomial Chaos Expansion 

Polynomial chaos expansion (PCE), develop by Wiener (1938), is applied to express the dependent 
random fields of the simulation results, which can be decomposed as (Wiener, 1938): 
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where a0(X) and 

i iN1
,...,a  (X)  represents the deterministic coefficients. The basis Γm (ςi1…ςim) are defined 

as a set of m-order polynomial chaos for the random variables (ςi1…ςim). Here, random variables 
(ςi1…ςim) are assumed as normal distribution and the Γm (ςi1…ςim) are m-order N-dimensional Hermite 
Polynomials defined as (Wiener, 1938): 
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where ς representing a vector (ςi1…ςim)T; it exists corresponding relationship between the items in 
equation (6). The total number of the items P can be determined by m and N: P = (N+m)!/N!m!. The 
Hermite polynomials can be used to build up the best orthogonal basis for the normal random 
variables ς and therefore can be used to set up the random fields of hmax (Ghanem and Spanos, 1991). 
A second-order PCE approximation of  K(X) can be expressed as: 
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where N represents the total number of the random variables and, in this study, it is the number of 
pairs of the eigenvalues and eigenfuctions correspondingly, the tilde over the symbol hmax (x) is 
omitted in the future expressions and functions. Define the coefficients in the equation (8) as c1(x), 
c1(x),…, cP(x) and then define a coefficients matrix as C(x)=[ c1(x), c1(x),… cP(x)]. Subsequently, we 
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can transform the expression of equation (8) into: ZC(x)=h(x), in which Z is PXP corresponding to 
Hermite polynomials in the equation (8) with the selected sets of collocation points and h(x) is the 
output matrix [hmax1(x), hmax2(x),…, hmaxP(x)]T accordingly. 

2.4. KLE-based Probabilistic Collocation Method (PCM) 

Based on the PCE, pprobabilistic collocation method easily transfers the complicated nonlinear 
problems into to independent deterministic equations. The details of the application of second-order  
KLE-based PCM are listed as follows (Liu et al., 2006, Li and Zhang, 2007):  
 

(i) Choose the P collocation points ςi
 (ςI1 ς I2,, …, ςIN)T, i=1, 2, …P, which have the highest probability 

in the probabilistic space. As one key procedure of influencing the performance of PCM, one 
typical way is to take the roots of the higher hermiter polynomials. For instance, the collocation 
points for second-order PCE expansion are chosen form the roots of the 3-order N-

dimensional Hermite Polynomials H3(ς)= ς3- 3ς: (0, 3 , 3 ). For 0, it has the highest 
probability for the standard normal random distribution, so the first set of collocation set is 
(0, …, 0).   

(ii) Substitute ςi
 = (ςi1 ςi2,, …, ςiN)T into the KLE and obtain the corresponding realizations for the input 

Ks  random field.  
(iii) Put the P realizations of Ks into the 2D physical model FLO-2D, run them and extract the 

maximum flow depth hmax from the simulation results. 
(iv) Build up the relationship between Z and h(x), calculate the coefficients matrix C(x). 
(v) Evaluate the stochastic moments of the simulated outputs. 
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Figure 1 – (a) Ground surface elevation of modelling domain with 228.6-meter grid; (b) the 5th 

realization of floodplain hydraulic conductivity. 

3. ILLUSTRATIVE EXAMPLE  

3.1. Case Study 

In this study, a simplified 2D alluvial flood inundation case located in Nevada, USA, is chosen to 
demonstrate the KLE-based PCM approach (FLO-2D Software, 2012). The average elapsed time is 
about 5.5 seconds based on the following computational platform: (i) operation system: Microsoft 
Windows 7 Professional edition (64 bits); (ii) CPU: AMD Phenom (tm) ×4 B95 @ 3.00GHz; (iiI) SIMM: 
4GB (HLX DDR2 667MHZ). The basic settings for the case (as shown in Figures 1a and 1b) are: (i) 
the domain area is divided into 983 grid elements with 31 grid elements in x-direction and 33 grid 
elements in y-direction; (ii) the length of rectangular grid elements is 228.6 m (750 inch); (iii) and the 
elevation changes from 835.6 m to 1120.1 meter; (iv) mx = 3, 4 and 5 and my = 3, 4 and 5  items are 
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retained for x-direction and y-direction separately and the total items are 3 x 3 = 9, 4 x 4 = 16 and 5 x 5 
= 25; they are kept for the KLE decomposition with K random fields and the corresponding PCM items 
are 55, 153 and 351 according to equation (7); the K random field is in normal distribution with mean 
being 0.1145 mm/hour and standard deviation being 1.3931 mm/hour; Figure (1b) shows the 5th 

realization of the random field of floodplain hydraulic conductivity by KLE approximation; (v) the 
normalized correlation length is assumed as 0.5; (vi) to evaluate the performance of PCM, 10,000 runs 
of Monte Carlo simulation with the same random field of K are carried out. 
 

 
 
Figure 2 - Means of the maximum flow depth distributions from PCM and MCS simulations. PCM2-55 

denotes the second-order PCM with 55 items; PCM2-153 denotes the second-order PCM with 153 
items, PCM2-351 denotes the second-order PCM with 351 items and MCS denotes the Monte Carlo 

simulation. 
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Figure 3 - Standard deviations of the maximum flow depth distributions from PCM and MCS 
simulations. PCM2-55 denotes the second- order PCM with 55 items; PCM2-153 denotes the second-

order PCM with 153 items, PCM2-351 denotes the second-order PCM with 351 items and MCS 
denotes the Monte Carlo simulation results. 

3.2. Comparison with MCS 

Figure 2 presents the mean of maximum flow depth distribution calculated by second-order PCM with 
55, 153 and 351 items and the MCS simulation results. The total number of runs of the flood physical 
models in PCM2-55, PCM2-153, and PCM2-351 are 55, 153, and 351 runs, respectively. It can be 
seen from the figures that the mean by second-order PCM could capture the mean of the MCS 
simulation results very well. Beside, for the same order of the PCM, the more items retained in the 
expansion the more accurate of the simulation results will be but the corresponding computation 
burden would increase significantly. Figure 3 shows the standard deviation (SD) of the simulated 
results by the second-order PCM with different items and MCS. The second-order PCM with 55 items 
and 153 items are much higher than that of 10,000 runs of MCS. The SD of the simulated results by 
the second-order PCM with 351 items (PCM2-351) fit the MC very well. Though the simulation runs 
have increased compared with those based on 55 and 153 items, the time of runs within the 
framework of PCM2-351 is much shorter. 
 
Figure 4 demonstrates the mean and standard deviation of the maximum flow depth distributions for 
PCM and MCS simulation results crossing the 16th grid location expanding in x-direction.  It seems that 
the second-order PCM with 55 items, 153 items and 531 items could well capture the mean of the 
maximum flow depth distributions crossing the 16th grid location expanding in x-direction calculated by 
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MCS. Furthermore, the second-order PCM with 351 items shows the best performance than PCMs 
with 55 items and 153 items (shown in Figure 4a). The SD of the results shown in the Figure (4b) 
indicates different divergences. The SD calculated by PCM with 55 items and 153 items are somewhat 
higher than that from MCS. For example, at the 9th grid element indexing in the x direction, the SD for 
the 55 items and 153 items are 0.13691 m and 0.1167 m, respectively; in comparison, the SD from 
MCS is 0.1076. From the comparison results, it is concluded that the PCM with 351 items fit the MCS 
better than those with 55 items and 153 items, although the computational time is higher; considering 
the time taken for the MCS (i.e. 10,000 runs), it is still efficient.  
 

 
 

Figure 4 – Means and Standard deviations of the maximum flow depth distributions from PCM and 
MCS simulation crossing the 16th grid indexed in the y-direction. PCM2-55 denotes the second-order 

PCM with 55 items; PCM2-153 denotes the second-order PCM with 153 items, PCM2-351 denotes the 
second-order PCM with 351 items, and MCS denotes Monte Carlo simulation. 

4. CONCLUSIONS 

In this study, a second-order Karhunen-Loevè expansion (KLE) based probabilistic collocation method 
(PCM) was used to investigate the uncertainty propagation of uncertainty associated with floodplain 
hydraulic conductivity (Ks). The results including the mean and standard deviation were compared with 
those calculated from traditional Monte Carlo simulation (MCS). The 9, 16 and 25-items KLE 
decomposition were carried out and the corresponding PCM items were 55, 153 and 351 for the 
normally-distributed field of log-transformed Ks (K) considering the uncertain spatial distribution 
represented by pairs of eigenvalue and eigenfuctions. The results indicated that the mean of the 
maximum flow depth field by the second-order PCMs reproduced well the results calculated by MCS, 
but the standard deviation results were somewhat overestimated. Although the number of simulation 
runs by PCM2-351 was higher than those by PCM2-55 and PCM2-153, the computational effort was 
much lower than direct MCS (which took about 10,000 runs). A number of future works are expected: 
(i) compared with second-order KLE-based PCM, the 3-order expansion may bring about more 
accurate approximation of the random outputs fields, but the required computational effort would 
increase dramatically during the flood inundation modelling; improvement on the method is needed (ii) 
for our study, the simulation is taken for a single input random field, the PCM study for multi-input 
random field for flood inundation modelling could be potentially explored; (iii) in this study, the spatially-
distributed uncertainty of the random input field was tackled; more complicated cases involving 
temporal uncertainties are desired to be examined.   
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