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ABSTRACT: This paper reports the experimentally measured phase equilibrium conditions for 

the clathrate hydrates formed from simulated mine ventilation air (0.50 vol% CH4 + 99.50 vol% 

air) in the presence of 0, 5, 20, 37.1 and 50 wt% of Tetrabutylphosphonium Bromide (TBPB). 

These equilibrium conditions were measured at the temperature range of (281.62 to 292.49) K 

and pressure range of (1.92 to 18.55) MPa by using an isochoric equilibrium step-heating 

pressure search method. The results showed that addition of TBPB allowed the hydrate 

dissociation condition for mine ventilation air to become milder and at a given temperature, the 

lowest hydrate dissociation pressure was achieved at 37.1 wt% TBPB, corresponding to the 

stoichiometric composition for TBPB·32H2O. For each TBPB concentration tested, the 

semilogarithmic plots of hydrate dissociation pressure versus reciprocal absolute temperature can 

be satisfactorily fitted to two straight lines intersecting at 6.5 MPa. The slopes of these fitted 

straight lines are indifferent to changes in TBPB concentration. Gas composition analysis by gas 

chromatography also found that in the presence of 37.1 wt% TBPB, CH4 could be enriched 

approximately 3.5-fold in the hydrate phase. 
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1. INTRODUCTION 

Fossil fuels will continue to be the primary energy source in the foreseeable future. CO2 

generated from fossil fuel combustion needs to be captured and sequestrated. There are many 

technical options for separation and/or capture of CO2 from combustion flue gas and other 

industrial effluents.1 However, relatively little attention is paid to capture of methane, which has 

approximately twenty-one times higher greenhouse effect than carbon dioxide. Capture of 

fugitive methane is attractive environmentally as well as providing a potential energy source.2 

One of the major sources of fugitive methane is the dilute methane emitted from coal mine 

ventilation shafts, known as mine ventilation air (MVA). MVA is most difficult to use as an 

energy source as the air volume is large and the methane resource is dilute and variable in 

concentration, generally less than 1.0 vol% methane (typically around 0.3 - 0.5 vol%).3,4 There is 

a clear need for enriching methane from low levels up to requirements of lean-burn methane 

utilisation technologies (e.g. 1.0 vol% CH4 for CSIRO system,5 1.6 vol% CH4 for Carburetted 

Gas Turbine system,6 and 2.0 vol% CH4 for Kawasaki Turbine system7).  

The most common attempted methods for capturing methane from MVA include adsorption 

(solvent adsorption, temperature swing adsorption, pressure swing adsorption) and separation 

(cryogenic separation and membrane separation).8 These methods are expensive or ineffective 

for capturing methane from MVA and may suffer from the negative impact of water vapor and 

particulate contaminations. Gas hydrate crystallization with a lattice of hydrogen bonded water 

molecules encaging small gaseous molecules such as CO2 or CH4 is a promising method for 



 

carbon capture and sequestration.9-11 For MVA, it involves converting methane into hydrate and 

keeping the other gases in gaseous form, thereby allowing methane to be separated from others. 

The equilibrium formation pressure of CH4 hydrate is much lower than those of N2 and O2 

hydrates at the same temperature.12,13 Therefore, CH4 enters the hydrate phase preferentially and 

can be recovered from the CH4-N2-O2 gas mixture after hydrate decomposition.14 Despite its 

compelling advantages, hydrate formation generally requires high pressure (usually above 5 MPa) 

at room ambient temperature. 

A group of additives, known as semi-clathrate hydrate (SCH) formers or ionic hydrate formers, 

can remarkably lower pressure requirement for hydrate formation.15 A typical SCH former is 

tetra-n-butyl ammonium bromide (TBAB), which is capable of reducing the hydrate formation 

pressure and is extensively investigated for storing and separating gases.11, 16-22 TBAB has also 

been examined for its potential to separate methane from coal methane gas.23, 24 However, the 

methane concentrations in these studies were relatively high, over 25 vol%. Only one theoretical 

study undertaken by Adamova et al.25 reports the hydrate formation pressure of coal mine gas 

with dilute methane (0.5 vol% CH4, 75 vol% N2 and 24.5 wt% O2) and suggests that it might be 

possible to upgrade methane from MVA using gas hydrate technology. 

Another SCH former, tetrabutylphosphonium Bromide (TBPB) has recently drawn intention 

from researchers because of its higher gas storage capacity than TBAB and similar capability of 

reducing hydrate formation pressure.18, 26, 27 One of the stoichiometric compositions for TBPB 

hydrate is TBPB·32H2O, which has ten 512 small cages, sixteen 51262 and four 51263 cages per 



 

unit cell.28, 29 Recently, the SCH stability conditions of TBPB with pure gases such as CO2,
26, 30-33 

H2,
18 CH4

 20, 26 and N2 
26, 32 have been reported, and the experimental conditions are summarized 

in Table 1. These results show the possibility of capturing CH4 from the MVA at proper 

thermodynamic conditions by using gas hydrate technology in the presence of TBPB. To the best 

of our knowledge, neither experimental measurements of the thermodynamic conditions of 

TBPB + MVA semi-clathrate hydrates nor experimental investigations on the potential viability 

and efficiency of this separation process have been reported. In the present work, we 

systematically report the phase equilibrium conditions of MVA + TBPB SCHs and analyze the 

gas composition in the hydrate whose initial formation pressure is relatively low. These data are 

essential for technology development for recovering CH4 from MVA by gas hydrate 

crystallization. 

2. EXPERIMENTAL 

2.1. Materials 

TBPB (powder, 98 wt% pure) was purchased from Sigma-Aldrich. Simulated ventilation air 

methane (0.50 vol% CH4 + 99.50 vol% air) was obtained from Coregas. All of these materials 

were used as received. Deionized water was used to prepare the aqueous solutions of TBPB.  

2.2. Experimental apparatus  

The experimental apparatus used for phase equilibrium condition measurements in the present 

work was the same as in our previous study.34 Briefly, a home-made non-visual 102 ml stainless 

steel cylindrical vessel with inside diameter of 38 mm and inside depth of 90 mm was used as the 

hydrate reactor. The reactor was immersed in a liquid bath, which was connected to a 



 

temperature control circulator (Haake A25). A thermowell coupled with a matched 1/10 DIN 

ultraprecise immersion RTD sensor (Omega) was inserted into the reactor to measure the liquid 

or hydrate phase temperature with an uncertainty of ± 0.03 K. A pressure transducer (Omega part 

number MMA5.0KC1P1C2T4A6CE) with accuracy of ± 0.01 MPa was used to measure the gas 

pressure inside the reactor. A magnetically driven stirrer with rotating speed of 600 rpm was used 

to agitate the test liquid. The gas discharged from a gas booster outlet was fed into the reactor. 

The experimental data were collected using a data acquisition system (Agilent 34970A) at 10 s 

intervals. 

A 362.5 ml stainless steel vessel (Model BR300, Berghof) was used to prepare the MVA 

semiclathrate hydrate samples for gas composition analysis. More details on this vessel can be 

found in our previous study.36 The gas composition analysis was carried out using a gas 

chromatograph (GC, Shimazu model GC-2014), which is equipped with Alltech Washed 

Molesieve 5A 80/100 column, with ultra-high purity Argon used as carrier gas. 

2.3. Experimental procedure 

The hydrate phase equilibrium measurements were carried out as follows. First, the 102 ml 

high pressure cell was cleaned at least seven times with using deionized water and dried prior to 

introduction of TBPB aqueous solution. The test solution (40 g) was then loaded into the clean 

and dry reactor. A vacuum pump (Javac CC-45) was used to degas the entire system except the 

reactor for 5 to 10 minutes. Subsequently, the test solution in the reactor was degassed for 0.5 - 1 

minute before undergoing hydrate experiments. The effect of degassing on the concentration of 

the test solution was negligible. The hydrate dissociation condition measurements were 



 

performed at the temperature range of (281.62 to 292.49) K and pressure range of (1.92 to 18.55) 

MPa with using the same isochoric equilibrium step-heating pressure search method as in our 

previous work.34 Figure 1 shows a typical pressure-temperature trace (for 5 wt% TBPB solution 

+ MVA SCH), from which the dissociation point was determined to be 288.51 K and 18.39 MPa. 

The maximum uncertainties for determining the hydrate dissociation temperatures and pressures 

were 0.1 K and 0.01 MPa, respectively, which are comparable to the measuring uncertainties 

reported by Mohammadi and Richon.35 

The MVA semiclathrate hydrate samples for gas composition analysis were formed from 75 ml 

solution in the 362.5 ml vessel with stirring rate of 600 rpm at 278 K and initial pressure 4 MPa. 

After a sufficiently long period for the hydrate formation to be complete (indicated by gas 

pressure having remained constant for more than 3 hours), the GC was used to measure the gas 

composition of the co-existing vapor phase in the headspace. Then the vapor phase was 

completely evacuated from the reactor by using a vacuum pump, followed by dissociation of the 

hydrate at elevated temperature for releasing the trapped gas, whose composition was measured 

by the GC. For each gas sample, at least three readings were taken and their average was 

recorded. All the gas samples were collected using Tedlar gas sample bags (0.5 liter, SKC). 

Before sampling, the sample bags were degassed by the vacuum pump for 1 – 2 minutes and 

rinsed with the sample gas 3 – 4 times.  

3. RESULTS AND DISCUSSION 

The reliability of our experimental system was given in detail in a previous communication of 

ours,34 which shows excellent agreement between our phase equilibrium data of TBAB + H2O + 



 

N2 or CH4 and those reported by other research groups. In the present work, the measured phase 

equilibrium conditions of MVA SCHs at 0, 5, 20, 37.1 and 50 wt% TBPB are tabulated in Tables 

2 and 3 and plotted in Figure 2. For comparison, the phase equilibrium conditions of air hydrate13 

are also plotted in Figure 2. As shown, the equilibrium pressure increased with increasing 

temperature. At a given temperature, the equilibrium pressure of MVA hydrate without chemical 

additives was lower than that of air hydrate, suggesting that 0.5 vol% CH4 had a stabilizing effect 

on air hydrate. This result is consistent with the fact that CH4 hydrate is thermodynamically more 

stable than N2 and O2 hydrates.37  

At a given temperature, the equilibrium pressure of MVA hydrate in the absence of any 

chemical additives was substantially higher than that of MVA + 5 wt% TBPB SCHs. Increasing 

TBPB concentration from 0 to 20 wt% noticeably shifted the phase equilibrium curve to the 

lower right region. However, increasing TBPB concentration from 20 to 37.1 wt% shifted the 

phase equilibrium curve to the right only slightly, and further increase in TBPB concentration to 

50 wt% brought the curve back slightly, indicating that the overly dosed TBPB would have less 

effective in reducing the pressure requirement for MVA hydrate formation. Overall, the hydrate 

equilibrium conditions were less sensitive to changes in TBPB concentration in the range of 20 

to 50 wt% than those in the range of 0 to 20 wt%, and the most thermodynamically stable 

equilibrium condition was obtained at 37.1 wt% TBPB. Similar observation was made by other 

workers for the hydrate phase equilibrium conditions of N2 + TBPB solution.32 

When reporting the hydrate phase equilibrium data of a gas mixture, one should consider 

reporting the composition of the gas in the headspace of the reactor under hydrate equilibrium 



 

condition. 38,39 In this work, the phase equilibrium data were reported with the assumption that 

the composition of the simulated MVA sourced from the gas cylinder was the same as that in the 

reactor under hydrate dissociation condition because there was large volume of gas in the 

headspace of the reactor, and the solubility of CH4 and air in water would be exceedingly low 

and close to each other. Final proof for this assumption would require measurements of the 

solubility of CH4 and air in TBPB solutions.  

Comparison of hydrate dissociation conditions in TBPB + MVA, CH4 or N2 systems was made 

and presented in Figure 3 by the semilogarithmic plot of semi-clathrate hydrate phase 

equilibrium pressure (lnP) versus reciprocal temperature (1/T). As a first approximation, these 

SCH systems can be considered roughly complying with the requirement of the 

Clausius–Clapeyron equation, and the energetics of SCH dissociation can be inferred by the 

slope of the straight lines fitted to lnP versus 1/T data. The equilibrium data reported in ref 33 for 

N2 + TBPB SCHs (above 7 MPa) can be satisfactorily fitted to straight lines with the same slope, 

irrespective of TBPB concentration (see Figure 3a), suggesting that the concentration of TBPB 

has little influence on the enthalpy of hydrate dissociation. The lnP versus 1/T plots made from 

the equilibrium data (below 5 MPa) adapted from ref 26 can be satisfactorily fitted by two 

straight lines intersecting at 1.8 MPa for the N2 + 35 wt% TBPB SCH and 0.8 MPa for the CH4 + 

35 wt% TBPB SCH. Likewise, the equilibrium data for MVA + TBPB SCHs obtained in the 

present work can be satisfactorily fitted to two straight lines crossing over each other at 6.5 MPa, 

at all TBPB concentrations tested. Overall, the heat of dissociation seemed smaller at higher 

pressures, which could be attributed to an occupation change of guest gas molecules in the empty 



 

cages of these SCHs. According to Sloan and Koh36, the approximate heat of dissociation should 

be relevant to cavity occupation, and less energy is required to dissociate structures with more 

cavities filled than those with fewer cavities filled. The above slope change might also be linked 

to a possible hydrate structure transition induced by the pressure change, which points to the 

need for further work with applying suitable techniques such as Raman spectroscopy or X-ray to 

examine the hydrate structure at different pressures. 

To verify the potential viability of the hydrate-based separation method for methane capture 

from MVA with TBPB, we measured the gas composition (CH4, N2, and O2 content, on a 

water-free basis) of the hydrate phase formed from 75 ml 37.1 wt% TBPB solution at 278 K 

(subcooling was 8.5 K) and initial pressure 4 MPa. The experiment was repeated independently. 

Table 4 shows that the hydrate phase had an average CH4 content of 1.75 vol%, with standard 

deviation of 0.05 vol%. This CH4 content was 3.5 times higher than that of the feed gas (i.e., 

0.50 vol%), suggesting that CH4 was substantially enriched in the hydrate phase and that it is 

promising to separate methane from MVA by clathrate hydrate crystallization aided by TBPB. 

Further work is under way to improve the selectivity and efficiency of this process and the 

results will be reported in the next communication. 

Note that the O2 content in the MVA semiclathrate hydrate phase was also higher than in the 

feed gas, in contrast to the decreased N2 content. This finding is in coincidence with the reported 

substantial oxygen enrichment in the natural air hydrate formed in Arctic and Antarctic ice 

sheets40,41 and synthetic air hydrate42,43 probably owing to the preferential occupation of small 

cavities by O2 in air hydrate.44 Air hydrates usually form a type II crystal structure, which is built 



 

from 8 large and 16 small cages per unit cell, and nitrogen and oxygen contained in the air enter 

into these cages.45 Pure nitrogen and oxygen also form structure II hydrates whereas pure 

methane forms structure I hydrate, which is built from 6 large and 2 small cages per unit cell.17 It 

is reported that TBAB semiclathrate hydrate can only incorporates gas molecules that fit in the 

empty small cage.46 It is, therefore, possible that MVA semiclathrate hydrates formed from TBPB 

solutions might also incorporate the gases in the small cages alone. Further work with applying 

suitable techniques such as Raman spectroscopy is needed to understand the cage filling. The 

observed enrichment of CH4 and O2 in the MVA semiclathrate hydrate phase could be attributed 

to the higher affinity of CH4 and O2 to the small cages than that of N2. At 273.15 K, for ordinary 

gas hydrates, the dissociation pressures of CH4 and O2 hydrates are almost 13 and 4 MPa lower 

than that of N2 hydrate, respectively.26,37 Likewise, at a given temperature and TBPB 

concentration, the dissociation pressure of CH4 + TBPB semiclathrate hydrate is much lower 

than that of N2 + TBPB semiclathrate hydrate.26,32  

 

4. CONCLUSIONS 

The phase equilibrium conditions of SCHs formed from mine ventilation air in the presence of at 

0, 5, 20, 37.1 and 50 wt% TBPB were measured in the temperature range of (281.62 to 292.49) 

K and pressure range of (1.92 to 18.55) MPa. It was found that addition of TBPB moved the 

MVA hydrate equilibrium conditions to higher temperatures and lower pressures, and the most 

thermodynamically stable TBPB + MVA SCH was obtained at 37.1 wt%. The hydrate 

equilibrium conditions were relatively indifferent to changes in TBPB concentration from 20 to 



 

50 wt%. For each TBPB concentration tested, the semilogarithmic plots of hydrate dissociation 

pressure versus reciprocal absolute temperature can be satisfactorily fitted to two straight lines 

crossing over each other at 6.5 MPa. The slopes of these fitted straight lines are indifferent to 

changes in TBPB concentration. It was also found that in the presence of 37.1 wt% TBPB, CH4 

was preferentially incorporated into the hydrate phase and the enrichment was approximately 

3.5-fold, suggesting that a hydrate-based method is promising for separating methane from 

MVA.  
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FIGURE CAPTIONS 

Figure 1. Determination of hydrate dissociation point from a typical pressure-temperature trace. 

Figure 2. Phase equilibrium data of MVA in the presence of TBPB at different concentrations: ○, 

deionized water (0 wt%); ■, 5 wt%; ▲, 20 wt%; ●, 37.1 wt%; ╳╳╳╳, 50 wt%. ◇, air + deionized 

water (adapted from ref 13). The lines are drawn to guide the eye. 

Figure 3. Semilogarithmic plot of semi-clathrate hydrate phase equilibrium pressure versus 

reciprocal phase equilibrium temperature: (a) pure gases; (b) MVA.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table 1. Experimental Conditions for SCHs of gases + TBPB. 

Authors wt%TBPB Guest gas T/K P/MPa 

Mayoufi et al.30 37.1 CO2 (281.1 to 289) (0.5 to 2) 

Deschamps et al.18 37.1 H2 (285 to 287.2) (12.1 to 23.3) 

Mayoufi et al.31 (5 to 60) CO2 (284.6 to 288.5) (0.5 to 1.7) 

Gholinezhad20 37 CH4 283.15 0.1 

Suginaka et al.26 35 CO2, CH4, N2 (282.6 to 291.6) (0.15 to 5.1) 

Shi et al.32 5, 10, 37.1, 60 CO2, N2 (282.2 to 292.0) (1.32 to 16.86) 

Zhang et al.33 10, 20, 35, 50 CO2 (281.0 to 292.0) (0.4 to 4.0) 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table 2.  Phase Equilibrium Data of MVA Hydrate in the Absence of Chemical Additives. 

Simulated Ventilation Air Methane + H2O 

T/K ± 0.1 P/MPa ± 0.01 

276.79 16.91 

277.22 17.99 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table 3. Phase Equilibrium Data of MVA in the Presence of TBPB at Different 

Concentrations. 

MVA + TBPB + H2O 

5 wt% 20 wt% 37.1 wt% 50 wt% 

T/K ± 0.1 P/MPa±0.01 T/K± 0.1 P/MPa±0.01 T/K± 0.1 P/MPa±0.01 T/K± 0.1 P/MPa±0.01 

281.62 1.92 285.05 2.52 285.26 1.99 285.3 2.57 

282.99 4.62 285.85 3.81 287.45 5.57 286.77 5.08 

285.13 9.31 288.18 8.14 289.68 9.96 288.41 8.11 

286.96 14.18 290.35 13.77 291.41 14.48 290.49 12.87 

288.51 18.39 292.02 18.55 292.49 18.33 292.22 18.12 

 

 

 

 

 

 

 

 

 

 



 

Table 4. Composition of gases (on a water-free basis) in different phasesa  

CH4  

(vol%) 

N2  

(vol%) 

O2  

(vol%) 

Hydrate phase 1.75 ± 0.05 72.4 ± 0.3 25.5 ± 0.2 

Co-existing gas phase  0.45 ± 0.05 79.4 ± 1.4 19.9 ± 0.8 

a Feed gas composition = 0.50 vol% CH4 + 78.6 vol% N2 + 20.9 vol% O2 
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Figure 1. Determination of hydrate dissociation point from a typical pressure-temperature trace. 
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Figure 2. Phase equilibrium data of MVA in the presence of TBPB at different concentrations: ○, 

deionized water (0 wt%); ■, 5 wt%; ▲, 20 wt%; ●, 37.1 wt%; ╳╳╳╳, 50 wt%. ◇, air + deionized 

water (adapted from ref 13). The lines are drawn to guide the eye. 
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Figure 3. Semilogarithmic plot of semi-clathrate hydrate phase equilibrium pressure versus 

reciprocal phase equilibrium temperature: (a) pure gases; (b) MVA.   
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