
computer programs

810 doi:10.1107/S1600576714004737 J. Appl. Cryst. (2014). 47, 810–815

Journal of

Applied
Crystallography

ISSN 1600-5767

Received 1 December 2013

Accepted 1 March 2014

2014 International Union of Crystallography

Two practical Java software tools for small-angle
X-ray scattering analysis of biomolecules

Andreas Hofmanna,b* and Andrew E. Whittenc*

aStructural Chemistry Program, Eskitis Institute, Griffith University, Nathan, Queensland, Australia, bFaculty of

Veterinary Science, University of Melbourne, Parkville, Victoria, Australia, and cInstitute for Molecular

Biosciences, University of Queensland, St Lucia, Queensland, Australia. Correspondence e-mail:

a.hofmann@griffith.edu.au, a.whitten@imb.uq.edu.au

Small-angle X-ray scattering has established itself as a common technique in

structural biology research. Here, two novel Java applications to aid modelling

of three-dimensional macromolecular structures based on small-angle scattering

data are described. MolScat is an application that computes small-angle

scattering intensities from user-provided three-dimensional models. The

program can fit the theoretical scattering intensities to experimental X-ray

scattering data. SAFIR is a program for interactive rigid-body modelling into

low-resolution shapes restored from small-angle scattering data. The program

has been designed with an emphasis on ease of use and intuitive handling. An

embedded version of MolScat is used to enable quick evaluation of the fit

between the model and experimental scattering data. SAFIR also provides

options to refine macromolecular complexes with optional user-specified

restraints against scattering data by means of a Monte Carlo approach.

1. Introduction
Small-angle X-ray scattering (SAXS) has become a regularly used

technique in the past decade for characterizing the structure of

biological macromolecules. The fact that protein samples originally

prepared for NMR or X-ray crystallographic studies are also

appropriate to be subjected to SAXS experiments is one major

reason for the popularity of this technique. At the same time,

synchrotron facilities are increasingly establishing SAXS beamlines

dedicated to structural biology, thus making the technique even more

accessible.

A frequent experimental question to be addressed in structural

biology is the characterization of the quaternary structure of proteins

and their complexes in solution. A typical work flow for modelling

such structures comprises rigid-body fitting of atomic models of

individual monomers. This task is greatly aided by ab initio calcula-

tion of three-dimensional shapes of the scattering object, typically

represented as accumulations of dummy atoms, beads or density

maps (Chacón et al., 1998; Svergun, 1999; Svergun et al., 2001; Walther

et al., 2000). Using these ab initio shapes as guides, the individual

models can in many cases be manually arranged to fill the restored

volume approximately. To refine such an approximate model further,

small repositioning and adjustments of the relative orientation of the

individual monomers are required and the fit of the model-derived

scattering intensity to the experimental data needs to be evaluated.

Model adjustments can be either made manually or carried out

computationally.

Here, we describe two practical Java software programs that can

perform these tasks. SAFIR is an application that allows for the visual

arrangement of protein monomers into quaternary structures. From

the SAFIR application, the theoretical scattering intensity of a model

can be computed and its fit to experimental data evaluated. This latter

task is carried out by the Java program MolScat, which can also be

used as a standalone program.

Different approaches and software tools have been developed to

generate scattering intensity profiles from molecular models.

CRYSOL is the most popular software in this context and uses

multipole expansion to calculate a scattering profile based on atomic

coordinates (Svergun et al., 1995). In contrast, the FoXS server uses

the Debye formula to calculate scattering profiles (Schneidman-

Duhovny et al., 2010), and ORNL_SAS performs a Monte Carlo

sampling of the interatomic distances in the model (Tjioe & Heller,

2007). A different method to speed up calculation applies coarse

graining by combining several atomic scatterers into a scattering unit

(Grishaev et al., 2005; Wriggers, 2010; Yang et al., 2009).

In order to perform rigid-body modelling of multimeric complexes,

any molecular graphics software can be used and the generated

model, output in PDB format (Protein Data Bank; Berman et al.,

2000), subjected to evaluation of its small-angle scattering intensity

using the software programs above. Many rigid-body modelling

programs in this context focus on the computational modelling/

docking aspects and rely on external graphics software for visuali-

zation and manual manipulation. SITUS, for example, recommends

the molecular graphics program VMD (Humphrey et al., 1996) for this

purpose (http://situs.biomachina.org/tutorial_saxs.html). Similarly,

SAS_RIGID (Meesters et al., 2010) is centred around Monte Carlo

computations, outsourcing the scattering intensity evaluation to

CRYSOL or CRYSON (Svergun et al., 1998). The program MASSHA

offers model visualization and manipulation, but also has a built-in

feature to compute the scattering intensity of the model (Konarev et

al., 2001).

Within our ongoing project of developing fundamental Java classes

and applications for structural biology and biophysical chemistry

research (Hofmann & Wlodawer, 2002), we set out to design SAFIR,

a simple-to-use and portable Java application that aids in the

modelling of quaternary protein structures using solution scattering

data. During this process, it became apparent that the calculation of

http://crossmark.crossref.org/dialog/?doi=10.1107/S1600576714004737&domain=pdf&date_stamp=2014-03-28

theoretical scattering intensities from atomic models would also need

to be implemented, and we therefore developed the standalone

application MolScat.

2. Program implementation and methods

2.1. MolScat: general concept

MolScat is a program to evaluate solution scattering of biological

macromolecules from atomic coordinates. It can be run with terminal

commands given when starting the program or through a graphical

user interface. The program reads three-dimensional structures

provided as PDB files and considers non-water atoms to calculate a

scattering intensity curve. If experimental scattering data are

provided, MolScat will fit the theoretical scattering curve to the

experimental data. Results are provided in the form of graphical

plots, an ASCII file of the theoretical scattering data (and fit with

goodness-of-fit if applicable) and selected biophysical parameters.

After determining the bounding box of the model, this box is

divided into a voxel grid with each voxel having a side length of 3 Å.

In the grid, voxels representing the inside, surface and envelope of

the protein are identified. The envelope is the first shell of unoccu-

pied voxels around the model. From the voxel grid, the pair distance

distribution function p(r) for the protein is generated as a histogram

and smoothed using the KernelEstimator class from the WEKA

package (Hall et al., 2009).

2.2. MolScat

To evaluate X-ray scattering, the pair distance distribution function

p(r) for the provided three-dimensional atomic model is generated by

evaluating the electron density in each voxel (number of electrons in

each voxel divided by the voxel volume, 0.027 nm3). Water molecules

in the model are automatically removed. To enable explicit correc-

tions for excluded volume and solvation shell contrast, we have

implemented a rigorous calculation of the pair distance distribution.

This leads to six components of the pair distribution function,

describing convolutions between the macromolecule and both

envelope and solvent voxels:

p1ðrÞ ¼ 2
P

i;prot

P
j;prot>i;prot

�ðri;protÞ �ðrj;protÞ; ð1Þ

p2ðrÞ ¼ �2�s

�P
i;prot

P
j;prot>i;prot

�ðri;protÞ þ �ðrj;protÞ
� �

þ
P

i;prot

P
j;env

�ðri;protÞ

�
;

ð2Þ

p3ðrÞ ¼ 2
P

i;prot

P
j;env

�ðri;protÞ �ðrj;envÞ; ð3Þ

p4ðrÞ ¼ �2�s

�P
i;env

P
j;env>i;env

�ðri;envÞ þ �ðrj;envÞ
� �

þ
P

i;prot

P
j;env

�ðrj;envÞ

�
;

ð4Þ

p5ðrÞ ¼ 2
P

i;env

P
j;env>i;env

�ðri;envÞ �ðrj;envÞ; ð5Þ

p6ðrÞ ¼ 2�2
s

P
i

P
j>i

1: ð6Þ

Here, the subscripts i and j refer to voxels belonging to either the

macromolecule (prot) or the solvent envelope (env). Hence, �(ri,prot)

refers to the electron density of a voxel containing atoms of the

macromolecule, while �(ri,env) refers to the electron density of the

solvent envelope. The electron density of the bulk solvent is repre-

sented by �s (default value of 334 e nm�3).

The theoretical scattering intensity Ik(q) is calculated by

IkðqÞ ¼ 4�
R

pðrÞ ½sinðqrÞ=ðqrÞ� dr; ð7Þ

(Orthaber et al., 2000) for each of the six pair distance distribution

functions (k = 1–6). The total scattering intensity can be calculated

from the following equation which allows optimization of two scaling

factors, one for the excluded volume Fprot and one for the solvation

shell contrast Fenv:

ItðqÞ ¼F2
protI1ðqÞ þ FprotI2ðqÞ þ FprotFenvI3ðqÞ þ FenvI4ðqÞ

þ F2
envI5ðqÞ þ I6ðqÞ: ð8Þ

The two scaling factors are determined by optimizing the fit of the

total theoretical scattering intensity It(q) to the experimental data

Ie(q). The scaling of theoretical to experimental scattering intensities

and an intensity background are calculated by linear regression:

IeðqÞ ¼ scale ItðqÞ þ background: ð9Þ

The goodness of fit between the two data sets is evaluated using the �
value as defined by Svergun et al. (1995):

� ¼ N�1
P

IeðqÞ � scale ItðqÞ � background
� �

=�eðqÞ
� �2

� 	1=2

; ð10Þ

where N is the number of experimental data points included in the fit

and �e(q) is the experimental error. The final scattering intensity data

are then calculated by spline interpolation to yield data points for

each angular momentum tabulated in the user-provided experimental

data file.

2.3. SAFIR

SAFIR (small-angle scattering data fitting with rigid bodies) is an

application to fit small-angle scattering data with rigid-body objects,

with the main purpose of modelling oligomeric structures of biolo-

gical macromolecules. In the design of the program, a clear emphasis

has been on an intuitive interface and ease of usage. Three-dimen-

sional atomic protein models are therefore rendered as C� traces and

individual monomers are automatically coloured differently. Multi-

meric models can be established by loading individual monomers or

by loading a PDB file with monomers being recognized by their chain

identifier.

The program allows loading of individual protein monomers or

oligomeric structures, which can be displayed and oriented as rigid

bodies in the embedded Jmol molecular graphics viewer (http://

jmol.sourceforge.net/). A shape object restored from small-angle

scattering data can also be displayed, enabling the user to arrange the

protein molecules to fit. For the loaded model, the small-angle scat-

tering can be evaluated and compared with experimental scattering

data using an embedded version of MolScat. Using molecular viewer

features inherited from Jmol, the screen representation of the

structures can be adjusted using the mouse. Modification of the

position and orientation of one or more individual monomers is

achieved by pressing the arrow keys on the number pad.

Other molecular graphics features included in SAFIR comprise an

alignment tool, clash check and visualization. The structural align-

ment algorithm is based on inertia axes, thus allowing for super-

position of high- and low-resolution models. The algorithm follows

the concept introduced by Svergun and colleagues (Kozin & Svergun,

2001), which is based on a distance measure first introduced for

polyhedron matching (Bloch et al., 1993).

computer programs

J. Appl. Cryst. (2014). 47, 810–815 Hofmann and Whitten � Java tools for SAXS analysis of biomolecules 811

Rigid-body refinement of the loaded model has been implemented

by means of a Monte Carlo approach which uses the fit between the

model-derived and experimental scattering data as a target function.

The implemented protocol runs through the following steps:

(1) Initial values for � and Rg (radius of gyration; RgStart) are

calculated for the starting model.

(2) A random movement of all rigid bodies activated by the user is

achieved by a translation vector and three rotations (one each around

the x, y and z axes). For this purpose, six positive random numbers

are generated per rigid body to make up the translation vector and

the three rotations. Another six random numbers per rigid body

determine whether any of the components should be positive or

negative. One further random number is required that provides a

seed for the random number generation in the next cycle.

(3) The theoretical scattering of the new model is evaluated using

MolScat. The current Rg is stored as RgNow. If the user has specified

distance restraints, these are evaluated and a penalty of 0.1 is applied

to the MolScat-derived � value per violated restraint.

(4) If the � value improves compared with the previous cycle, a

clash analysis is performed on the current model if requested by the

user. If more than the tolerated number of clashes are observed, the

new model is discarded and the step counted as unproductive (‘dead

cycle’). Otherwise the model is kept and subjected to a new cycle. If

the � value does not improve compared with the previous cycle, the

move is accepted with a probability that is proportional to exp(�1/T),

where T is the current ‘temperature’ of the model (see below).

(5) If the number of unproductive cycles exceeds the user-set

number of dead cycles, the shift sizes are decreased to the new value

of coolingFactor � oldValue. At the same time, the number of

dead cycles is increased to 1.2 times the current value. If the miminum

shift size has been reached, or the number of unproductive cycles has

reached the maximum number of final cycles specified by the user, the

procedure will exit. Otherwise, a new cycle is started at step (2).

The algorithm accepts a bad move (�now � �previous) in step (4)

above with a probability

p ¼ toleranceFactor exp ð�d=TÞ: ð11Þ

The toleranceFactor is a user-provided variable (default value of

0.4) and d is calculated as

d ¼ �now � �previous þ jRgNow� RgStartj: ð12Þ

2.4. Availability

Both programs make use of and extend Java classes previously

developed in our laboratory (Hofmann & Wlodawer, 2002; Weer-

atunga et al., 2012). They are available as standalone compiled Java

applications from the Program Collection for Structural Biology and

Biophysical Chemistry (PCSB) project home page at http://www.

structuralchemistry.org/pcsb/. The MolScat API includes methods

that enable interfacing with other Java applications and may thus also

be useful to developers. The applications are freely available to

academic users. For download, users will be asked for their name,

institution and e-mail address. The source code is available from the

authors upon request.

3. Results

3.1. Specific consequences of the voxel concept

As a consequence of the allocation of electron density into voxels,

the radius of gyration Rg of the non-solvated (dry) model of lysozyme

is larger than that of the solvated model (Table 1). Owing to binning

of electrons into voxels of 27 Å3 volume, the centre of mass of the

binned electron density may be further from the centre of the

macromolecule than the actual atom to which the electrons belong.

This effect may be of particular importance at the periphery of a

macromolecule where there is a lower packing density of atoms, and

its impact on the overall electron-density distribution will be more

pronounced in smaller molecules. Accordingly, a comparatively large

Rg value is observed for the non-solvated model.

Clearly, by considering the excluded volume (Fprot) and envelope

contrast (Fenv), this effect is corrected for, and very sensible Rg values

are obtained for the solvated models. In the case of lysozyme, the

factor correcting for the excluded volume is close to 1 and, conco-

mitantly, the correction factor for the electron density of the solvent

layer is reduced to counteract these effects.

Conceptually, there is thus a caveat in the interpretation of Fprot

and Fenv. Although the definition of these parameters is clear, we feel

that these factors also help to correct for inadequacies in the

modelling procedure.

3.2. Benchmarking of MolScat

Four protein systems with published small-angle scattering data

have been used to compare the performance of MolScat with that of

other generally available programs. The results are listed in Table 1

and demonstrate that MolScat computes scattering intensities from

protein models similar to those obtained using other software.

Importantly, the quality of fit between the computed and experi-

computer programs

812 Hofmann and Whitten � Java tools for SAXS analysis of biomolecules J. Appl. Cryst. (2014). 47, 810–815

Table 1
Comparison of results obtained with different programs for fitting SAXS data.

All calculations were carried out on a Linux PC (Intel i7-2620M QuadCore, 7.7 GB
RAM; Fedora Core 16.x86_64) and considered the solvation model provided by each
program. CRYSOL (Svergun et al., 1995) was obtained from http://www.embl-hamburg.
de/biosaxs/crysol.html. FoXS and Sastbx are web services at http://modbase.compbio.
ucsf.edu/foxs/ and http://sastbx.als.lbl.gov/cgi-bin/index.html, respectively.

MolScat CRYSOL FoXS Sastbx intensity

Example 1: Lysozyme (Svergun et al., 1995)
Computation time (s) 1.6 0.45 – –
Goodness-of-fit � 0.52 0.45 0.45 0.45
Rg of dry model (Å) 16.3 14.0 – –
Rg of solvated model (Å) 15.4 15.0 14.0 –
Volume of dry model (Å3) 13 716 17 350 – –
Volume of solvated model (Å3) 13 063 17 410 – –
Contrast factors 1.05, 0.20 – 1.01, 0.59 –

Example 2: VILIP-1 dimer (Wang et al., 2011)
Computation time (s) 7.9 0.61 – –
Goodness-of-fit � 5.2 4.3 3.0 4.4
Rg of dry model (Å) 29.6 27.6 – –
Rg of solvated model (Å) 29.8 28.7 28.2 –
Volume of dry model (Å3) 40 500 52 000 –
Volume of solvated model (Å3) 67 500 53 190 – –
Contrast factors 0.60, 1.04 – 1.04, 3.09 –

Example 3: 14-3-3� dimer (Hu et al., 2012)
Computation time (s) 17 0.74 – –
Goodness-of-fit � 1.9 1.4 2.0 1.0
Rg of dry model (Å) 30.0 28.2 – –
Rg of solvated model (Å) 30.2 30.4 28.2 –
Volume of dry model (Å3) 50 463 63 090 – –
Volume of solvated model (Å3) 48 060 64 760 – –
Contrast factors 1.05, 1.62 – 1.05, 4.00 –

Example 4: Glucose isomerase (Whitten, unpublished data)
Computation time (s) 64 1.0 – –
Goodness-of-fit � 0.6 0.35 0.31 0.38
Rg of dry model (Å) 34.2 31.8 – –
Rg of solvated model (Å) 33.0 33.5 31.7 –
Volume of dry model (Å3) 170 019 213 100 – –
Volume of solvated model (Å3) 161 922 216 800 – –
Contrast factors 1.05, 0.2 – 1.05, 0.16 –

mental scattering intensities is highly similar for all algorithms; an

example is shown in Fig. 1. Among the tested algorithms, only

CRYSOL is a standalone program and it therefore provides the only

comparison for computing time. The four examples show that the

MolScat calculations are slower than those of CRYSOL, with an

exponential increase in computing time as the size of the protein

system increases.

The longer computing time required by MolScat may result partly

from the methodology chosen here. Furthermore, we have placed an

emphasis on the conceptual design, and some improvements may be

possible when optimizing the source code for speed. However, a

substantial contribution to computing time arises from the Java

programming language itself, which is known to be less time efficient

than languages such as Fortran or C (Amedro et al., 2008; Ashby,

2003).

3.3. Rigid-body fitting with SAFIR

For illustration, we have re-worked the rigid-body fitting of the

VILIP-1 homodimer published previously (Wang et al., 2011). VILIP-

1 belongs to the family of neuronal calcium sensor (NCS) proteins,

and GASBOR (Svergun et al., 2001) was used for ab initio shape

restoration from SAXS data obtained from VILIP-1 in the presence

of calcium and under reducing conditions. The shape obtained was

distinctly different from the dimer models of other NCS proteins,

suggesting that, although these proteins share a similar overall fold,

they may have different molecular mechanisms. The VILIP-1 dimer

model proposed in a previous modelling study (Li et al., 2011) was

used as the initial model and superimposed on the GASBOR shape in

SAFIR (Fig. 2a) using the in-built superposition algorithm based on

inertia axes. The model shows reasonable agreement with the SAXS

data collected at a protein concentration of 12 mg ml�1 (Fig. 2b). This

fit was evaluated using the MolScat implementation in SAFIR using

two mouse clicks. Manual adjustments of the model yielded varying

changes in the goodness-of-fit parameter � but no significant overall

improvement. Thus, the model was subjected to computational rigid-

body fitting by the Monte Carlo algorithm outlined above (Fig. 2c). In

less than 5 min of computation time, a dimer conformation close to

the proposed model but with a significantly improved fit to the SAXS

data was obtained (Fig. 2d). Distance restraints can be added before

starting the computational refinement but have not been used in this

example.

4. Conclusions

With SAFIR, we present a novel interactive modelling program that

is tailored for rigid-body modelling applications and low-resolution

structural data from SAXS. Similar to MASSHA (Konarev et al.,

2001), our software combines several features of low-resolution rigid-

body modelling with SAXS data into one application, and we have

put a strong emphasis on intuitive use. Through the built-in molecular

graphics capability provided by Jmol, model handling and inspection

are highly interactive and intuitive, and build on the experiences

users have accumulated from other common molecular graphics

programs such as O (Jones et al., 1991) and COOT (Emsley &

Cowtan, 2004). Manipulation of models is accessibly and conve-

niently done using the arrow keys on the number pad, omitting

intermittent steps to change from viewing to transformation mode.

The fit of the present model to the experimental data can be eval-

uated with a mouse click. Computational refinement of a model is

possible in the current version of the software by means of a Monte

Carlo procedure, which is a commonly chosen method for this type of

refinement (Meesters et al., 2010).

Within the concept of our Java PCSB project (Hofmann &

Wlodawer, 2002), it is one of our main goals to have an intuitive, easy-

to-use and portable application. We therefore had to implement an

algorithm to compute SAXS intensities from molecular models. This

computer programs

J. Appl. Cryst. (2014). 47, 810–815 Hofmann and Whitten � Java tools for SAXS analysis of biomolecules 813

Figure 1
Screenshot of a MolScat calculation fitting the lysozyme SAXS data provided by
CRYSOL (Svergun et al., 1995). (Top) The graphical user interface and parameters
used for the calculation. Alternatively, the program can be invoked with terminal
commands. (Middle) A plot of the fit of the model to the experimental data. This
window can be suppressed by the user if invoking the program from the terminal.
(Bottom) The pair distance distribution function of the model, calculated by the
algorithm outlined in the text, is plotted. The graphs can be saved as binary images
or ASCII data.

application, MolScat, is part of the SAFIR modelling program but can

also be used on its own.

The results generated by MolScat are in agreement with those of

other available programs; the main difference at this stage is the

longer computation time. For the frequently used approach of

carrying out one-off calculations, we do not consider the longer

computation time a significant problem, since even large protein

systems are still processed in well under 1 min. However, time is

certainly a more significant aspect in repeated executions of MolScat,

such as for example in the Monte Carlo refinement, a feature also

implemented in SAFIR. Given the computing power of modern

CPUs and the fact that the automated refinement is carried out only

for improvement of the pre-oriented model provided by the user, we

do not feel that the computing time has a major impact on the benefit

of this program for the user. However, in future versions of this

software we will address this issue and work towards improvement of

the calculation speed, e.g. by implementing lookup-table optimization

(Wilcox et al., 2011).

Additionally, future work on these programs will include imple-

mentation of neutron scattering in MolScat, as well as more

specialized molecular modelling options in SAFIR, such as symmetry

restraints, mixtures of oligomeric species, and generation and hand-

ling of different conformations.

AH and AEW invented and designed the algorithms, tested the

programs and wrote the manuscript. AH wrote the software and

manuals. Conflict of interest: none declared.

Research in the laboratory of AH is funded by the National Health

and Medical Research Council (grant Nos. 1002898 and 1044022) and

the Australian Research Council (grant Nos. LE120100071 and

DP140100599). AEW was supported by an NHMRC Peter Doherty

Fellowship (grant No. 569864). Parts of this research were under-

taken on the SAXS/WAXS beamline at the Australian Synchrotron,

Victoria, Australia.

References

Amedro, B., Bodnartchouk, V., Caromel, D., Delbé, C., Huet, F. & Taboada,
G. L. (2008). Current State of Java for HPC. Rapport Technique No.
0353. Institut National de Recherche en Informatique et en Automatique,
Sophia Antipolis, France. http://proactive.inria.fr/userfiles/file/papers/
ProActiveJavaStatusforHPC.pdf

Ashby, J. V. (2003). Comparison of C, Fortran and Java. STFC Rutherford
Appleton Laboratory, Didcot, UK. http://www.stfc.ac.uk/CSE/randd/arc/
25040.aspx

Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H.,
Shindyalow, I. N. & Bourne, P. E. (2000). Nucleic Acids Res. 28, 235–242.

Bloch, I., Maitre, H. & Minoux, M. (1993). Pattern Recognit. Image Anal. 3,
137–149.

Chacón, P., Morán, F., Dı́az, J. F., Pantos, E. & Andreu, J. M. (1998). Biophys. J.
74, 2760–2775.

Emsley, P. & Cowtan, K. (2004). Acta Cryst. D60, 2126–2132.
Grishaev, A., Wu, J., Trewhella, J. & Bax, A. (2005). J. Am. Chem. Soc. 127,

16621–16628.
Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P. & Witten, I. H.

(2009). SIGKDD Explorations, 11, 10–18.
Hofmann, A. & Wlodawer, A. (2002). Bioinformatics, 18, 209–210.
Hu, S. H., Whitten, A. E., King, G. J., Jones, A., Rowland, A. F., James, D. E. &

Martin, J. L. (2012). PLoS One, 7, e41731.
Humphrey, W., Dalke, A. & Schulten, K. (1996). J. Mol. Graphics, 14, 33–38.
Jones, T. A., Zou, J.-Y., Cowan, S. W. & Kjeldgaard, M. (1991). Acta Cryst.

A47, 110–119.
Konarev, P. V., Petoukhov, M. V. & Svergun, D. I. (2001). J. Appl. Cryst. 34,

527–532.
Kozin, M. B. & Svergun, D. I. (2001). J. Appl. Cryst. 34, 33–41.
Li, C., Pan, W., Braunewell, K. H. & Ames, J. B. (2011). J. Biol. Chem. 286,

6354–6366.

computer programs

814 Hofmann and Whitten � Java tools for SAXS analysis of biomolecules J. Appl. Cryst. (2014). 47, 810–815

Figure 2
Screenshots from a rigid-body fitting task using SAFIR. (a) The dimer model was
loaded, and individual molecules were automatically recognized from their chain
identifiers and coloured differently. Red indicates clashes identified by the clash
check (Check Model menu). Molecules can be transformed (translation/rotation)
separately or in groups according to the user’s choice (Molecules button in the tool
bar). The ab initio shape is shown as magenta spheres. (b) Experimental SAXS
data, shown as red dots. The fit of the current model in the Molecular Viewer panel
(blue line) can be evaluated by the embedded version of MolScat. (c)
Computational rigid-body fitting was carried out using the input provided in the
MC Ref panel. All parameter fields are populated with default values and can be
changed by the user. (d) A view of the final model obtained after 31 steps of Monte
Carlo refinement using the parameters shown in part (c).

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5640&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5640&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5640&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5640&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5640&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5640&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5640&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5640&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5640&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5640&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5640&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5640&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5640&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5640&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5640&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5640&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5640&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5640&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5640&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5640&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5640&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5640&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5640&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5640&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5640&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5640&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5640&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5640&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5640&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5640&bbid=BB15

Meesters, C., Pairet, B., Rabenhorst, A., Decker, H. & Jaenicke, E. (2010).
Comput. Biol. Chem. 34, 158–164.

Orthaber, D., Bergmann, A. & Glatter, O. (2000). J. Appl. Cryst. 33, 218–225.
Schneidman-Duhovny, D., Hammel, M. & Sali, A. (2010). Nucleic Acids Res.

38, W540–W544.
Svergun, D. I. (1999). Biophys. J. 76, 2879–2886.
Svergun, D., Barberato, C. & Koch, M. H. J. (1995). J. Appl. Cryst. 28, 768–773.
Svergun, D. I., Petoukhov, M. V. & Koch, M. H. (2001). Biophys. J. 80, 2946–

2953.
Svergun, D. I., Richard, S., Koch, M. H., Sayers, Z., Kuprin, S. & Zaccai, G.

(1998). Proc. Natl Acad. Sci. USA, 95, 2267–2272.

Tjioe, E. & Heller, W. T. (2007). J. Appl. Cryst. 40, 782–785.
Walther, D., Cohen, F. E. & Doniach, S. (2000). J. Appl. Cryst. 33, 350–363.
Wang, C. K., Simon, A., Jessen, C. M., Oliveira, C. L., Mack, L., Braunewell,

K. H., Ames, J. B., Pedersen, J. S. & Hofmann, A. (2011). PLoS One, 6,
e26793.

Weeratunga, S. K., Hu, N. J., Simon, A. & Hofmann, A. (2012). BMC
Bioinformatics, 13, 201.

Wilcox, C., Strout, M. M. & Bieman, J. M. (2011). Scientific Programming, 19,
213–229.

Wriggers, W. (2010). Biophys Rev. 2, 21–27.
Yang, S., Park, S., Makowski, L. & Roux, B. (2009). Biophys. J. 96, 4449–4463.

computer programs

J. Appl. Cryst. (2014). 47, 810–815 Hofmann and Whitten � Java tools for SAXS analysis of biomolecules 815

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5640&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5640&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5640&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5640&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5640&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5640&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5640&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5640&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5640&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5640&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5640&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5640&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5640&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5640&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5640&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5640&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5640&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5640&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5640&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5640&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5640&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=he5640&bbid=BB29

