
1 
 

A relict pronival (protalus) rampart in the Tararua Range, 
North Island, New Zealand 
 

Martin S. Brook* and Jacob Williams 

 

Earth Sciences, Institute of Natural Resources, Massey University, Private Bag 11-222, Palmerston 
North, New Zealand 

*correspondence to: Moultrie Geology, 925 Nudgee Road, Banyo, Brisbane, Queensland 4014, 
Australia. E-mail: mbrook@moultrie.com.au 



2 
 

 

ABSTRACT 

Debris ridges in New Zealand are routinely assumed to be ‘moraines’ and used as key Southern 

Hemisphere paleoclimatic sites without detailed evaluation of ridge origin. Here we assess the 

origin of a debris ridge adjacent to Dundas Ridge in the Tararua Range, North Island, New 

Zealand, through measurements of ridge morphology and sedimentary properties. The ridge has 

a steep c. 35° distal slope (height 18 m), compared with the c. 19° proximal slope (height 6 m), 

and on all transects the distal slopes contain the coarsest material (median b-axis clast widths of 

0.18-0.25 m), compared to distal samples (0.34-0.37 m). Clast shape (C40 range 40-60%) and 

angularity (RA>65%) indicate typically angular and ‘slabby’ clasts, and along with the lack of 

fines, and the c. 40-m-distance between the ridge crest and the foot of the backwall, lead us to 

reject a glacial (moraine) origin for the ridge. The single ridge morphology precludes a protalus 

rock glacier origin, while the lack of a broad hillslope scar and debris apron beyond the ridge 

excludes a landslide origin. Instead, we interpret the ridge as a pronival (protalus) rampart 

formed by supranival debris supply—from the c. 200 m-high southeastern slopes of Dundas 

Ridge—across a snowbed. Re-distribution of snow by prevailing westerlies from Mt Dundas 

Ridge into the basin would have nourished the snowbed, which is likely to have formed during 

the interval 24-18 kyr BP, when a minor alpine-style glaciation affected sectors of the Tararua 

Range. This is the first pronival rampart detailed in New Zealand, raising the possibility that 

debris ridges of pronival origin may also be present elsewhere in New Zealand’s mountains.  
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INTRODUCTION 

A pronival rampart is a ridge or ramp of debris formed at the downslope margin of a snowbed or 

firn-field (Shakesby, 1997; Hedding 2011). Such features are also known as protalus ramparts 

(Ballantyne and Kirkbride, 1986), although Shakesby (1997) advocated the use of the term 

‘pronival’ (i.e. snow front) as this appropriately describes any firn-foot debris accumulations, 

regardless of slope position. Traditionally, pronival rampart formation has been attributed to the 

accumulation of clasts that have fallen from cliffs, and bounced, rolled or slid supranivally down 

a steep perennial firn-field, accumulating at the base as a rampart (White, 1981). Other workers 

have shown that a variety of additional mechanisms may contribute to rampart development, 

including supranival debris flows (Ono and Watanabe, 1986), wet-snow avalanches (Ballantyne, 

1987), snowcreep (Gardner et al., 1983) and bulldozing of unconsolidated sediments by basal 

sliding and firn creep (Shakesby et al., 1999). Indeed, Curry et al. (2001) tested four hypotheses 

for the origin of one particular debris ridge: (1) a wholly pronival (protalus) rampart; (2) glacial; 

(3) landslide; and (4) protalus rock glacier, all leading to subsequent pronival rampart 

development.  

Two basic models of rampart formation through supranival debris transport processes have been 

proposed. In the first model, Ballantyne and Kirkbride (1986) proposed that ramparts evolve via 

gradual and intermittent accumulation of rockfall debris on the downslope margin of a firn-field. 

The rampart crest migrates outwards away from the talus slope, with the distal slope formed at 

the angle of repose (34-38°) of the debris (Ballantyne and Kirkbride, 1986). In the second 

model, Hedding et al. (2007) proposed a retrogressive (upslope) model of rampart development 

under fluctuating, and possibly declining snowbed volumes. Coupled with a lack of data from 

actively-forming ramparts, this has led to uncertainty about interpreting the origin of relict forms 

(Gordon and Ballantyne, 2006), which have been confused with moraines, landslide deposits, 
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and protalus rock glaciers (Ballantyne, 1987). One example is the arcuate ridge of large tabular 

boulders at Baosbheinn, northern Scotland, which has previously been interpreted as a protalus 

rampart and a talus rock glacier (Sissons, 1976; Ballantyne, 1986), but recently reinterpreted as 

rockslide debris (Ballantyne and Stone, 2009).  

 In New Zealand, while unconsolidated debris ridges forming key Southern Hemisphere 

paleoclimatic sites are often dated with high precision (Barrows et al., 2007; Schaefer et al., 

2009; Kaplan et al., 2010), the exact process-origin of such features is rarely explored. Here, we 

investigate an unconsolidated debris ridge, which we hypothesise is a relict pronival rampart, in 

the Tararua Range on the North Island. The range was subjected to a minor alpine-style 

glaciation during the last glacial cycle, culminating in deglaciation around 18 kyr BP (Brook et 

al., 2008). In New Zealand, fragmentary moraine ridges, assumed to be formed at the limit of 

glacial advance, are the most widely used evidence for former glacier extents, and, by inference, 

Southern Hemisphere paleoclimate (Schaefer et al., 2009; Kaplan et al., 2010). Intriguingly, 

although a small number of pronival ramparts have been documented in the Southern 

Hemisphere (Valcárcel-Diaz et al., 2006; Hedding et al., 2007), none have hitherto been 

described in New Zealand. Interest is now emerging in determining the exact process-origin of 

unconsolidated debris ridges in New Zealand’s mountain zones (Tovar et al., 2008; McColl and 

Davies, 2011).  

Widespread periglacial activity, both relict and active, forms an important component of 

the landscape evolution on the South Island of New Zealand, especially in the Central Otago 

highlands and on the eastern side of the Southern Alps (Soons and Price, 1990; Augustinus, 

2002). In contrast, there is a paucity of documented relict and active periglacial landforms on the 

North Island. Cotton (1958) and Cotton and Te Punga (1955) identified solifluction deposits 

(angular, frost-shattered clasts in a silty matrix) on the higher slopes around the city of 

Wellington, thought to have formed during the Last Glacial Maximum (LGM).  Other deposits 
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postulated to be of relict periglacial (or possibly even permafrost) origin are colluvium-filled 

bedrock depressions (Stevens, 1957; Crozier et al., 1990), along with inactive fans along the 

coast to the north of Wellington, which Fleming (1970) reported as being of periglacial origin, 

formed during the LGM. Small solifluction lobes and terraces have been observed on the central 

volcanic peaks of the North Island by McArthur (1987), the only study to report active 

periglacial activity on the North Island. Allibone and Wilson (1997) and Brook (2009) reported 

the presence of an unconsolidated ridge on Stewart Island, but concluded it was of glacial origin 

on the basis of rounded clasts within a silty matrix.  Thus, given the abundance of cold-climate 

landforms, in New Zealand, it is surprising that pronival ramparts (active or relict) have never 

been reported from either the North or South Islands.  

Hence, given the often fragmentary nature of the glacial moraine record, and the 

emerging interest in New Zealand’s unconsolidated debris ridges as paleoclimatic proxies in the 

Southern Hemisphere (Kaplan et al., 2010), it is important and timely to determine the exact 

process-origin of debris-ridge deposits. The objectives of this paper are to analyse a ridge in the 

Tararua Range of the North Island according to ‘diagnostic’ morphological and 

sedimentological criteria suggested by Hedding et al. (2010). We measure and analyse clast 

shape, size and angularity, and ridge profiles and distances from the backwall. 

 

STUDY AREA 

The focus of this study is an unconsolidated debris ridge formed at 1220 m above sea level (asl) 

on the south-eastern side of Dundas Ridge (c. 1420 m) in the central Tararua Range (Figure 1). 

The Tararua Range (Figure 1) is a young, deeply entrenched mountain range, a result of major 

faulting and folding which began in the Pliocene (Pillans, 1986). In the vicinity of the study area 

the bedrock is composed of quartzofeldspathic metasediments of the Torlesse Terrane (Begg 

and Johnston, 2000). The debris ridge itself (40°43’06”S, 175°27’41”E) is located beneath 
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partially-vegetated mature rockfall talus slopes, between the peaks of Dundas (1499 m) to the 

southwest and Pukemoremore (1474 m) to the northeast (Figure 1).  

Present-day glacier activity on the North Island is limited to niche glaciers on the 

stratovolcanoes, Mt Ruapehu and Mt Taranaki (Figure 1A), with current equilibrium line 

altitudes (ELAs) of c. 2450 m and c. 2600, respectively (Richardson and Brook 2010; Brook et 

al., 2011). Mean annual air temperature in the study area is estimated to be c. 6.1°C, based on 

the temperature data from 1990 and 1991 from Mt Bruce, 13 km east of Mt Dundas at 305 m asl 

(National Institute for Water and Atmospheric Research, 2012), and a temperature lapse rate of 

6.5°C km-1. However, during the Last Glacial Maximum (LGM), a minor valley and cirque 

glaciation affected six catchments in the Tararua Range to the west and south of the study site 

(Brook and Brock, 2005), with a reconstructed equilibrium line altitude (ELA) of c. 1050 m 

(Brook et al., 2008). It would appear the ‘local’ LGM closely mirrored advances in the Southern 

Alps, with cosmogenic 10Be ages indicating that glaciation culminated at c. 18-24 ka (Brook et 

al., 2008). Though glacial activity during the Antarctic Cold Reversal (14.5-12.7 ka; Putnam et 

al., 2010) and Late Holocene (Schaefer et al., 2009) initiated glacier advances in the Southern 

Alps, the effects of post-LGM climate on cryogenic activity on the North Island are largely 

unknown. Although there are no meteorological stations in the central Tararua Range, the 

average annual rainfall has been estimated at c. 6200 mm on the peaks to the south of Dundas 

Ridge (Griffiths and McSaveney, 1983).   

 

METHODS 

To evaluate the morphology of the ridge, three longitudinal profiles were surveyed across the 

ridge using a laser rangefinder (Figure 3). Readings were taken at breaks of slope, with surveyed 

profiles used to calculate various dimensions following Ballantyne and Kirkbride (1986), 

including maximum downslope width (w), length (L), maximum height of the distal (h1) and 
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proximal (h2) slopes and maximum horizontal distance from the crest of the feature to the foot 

of the (former) talus slope (d). Assuming a regular decline in slope it was possible to estimate 

the maximum thickness of the deposit (z), and mean proximal and distal slope angles were also 

calculated (Table 1). The sedimentology of the ridge was investigated following the example of 

Ballantyne (1987) and Curry et al. (2001), whereby measurements of the b-axis of 50 clasts at 

four sites along each of the three transects were made.  

Following Benn and Ballantyne (1994), the lengths of the three orthogonal axes were 

measured for 10 sets of clasts (n = 50) in the size range 35-125 mm (a-axis) from the debris 

accumulation at the b-axis sample sites, and then compared with eight sets of clasts (n = 50) 

from the Park Valley moraine (Figure 1).  The latter appears to be either a small ice-stream 

interaction medial moraine or a lateral moraine, and includes striated, actively-transported clasts 

(Brook et al., 2008) of the same Torlesse Terrane quartzofeldspathic metasediments (Begg and 

Johnston, 2000).  From these data, the indices RA (% angular + very angular) and C40 (% of 

clasts with a c:a axis ratio of ≤0.4) were calculated for each sample of 50 clasts. Finally, using 

the morphological measurements in Table 1, a reconstruction of the former firn-field was made 

in order to evaluate whether the firn-field was at the transition point from (stationary) snow to 

(mobile) ice (Ballantyne and Benn, 1994).   

 

RESULTS 

Morphological data for the debris ridge are reported in Table 1. The ridge is c. 250 m long (L), 

and roughly arcuate in planform, with a minor downslope ‘bulge’ toward the centre (Figures 1 

and 2). The mean distance (d) from the centre of the ridge crest to the foot of the backwall is c. 

40 m, indicating sufficient space for snow accumulation. The width of the ridge (w) is c. 33 m, 

with the distal slope rising from the valley side below the ridge at a gradient of 35°, and the 
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proximal slope rising at an angle of c. 19° from the backing depression between the ridge and 

backwall (Figure 3). Maximum heights of the distal (h1) and proximal (h2) slopes of the ridge 

are c. 18 m and c. 6 m, respectively, and assuming a regular decline in slope under the ridge, it 

was possible to determine a maximum ridge thickness (z) of c. 9 m (Table 1). Given the height 

of the ridge, and distance to the backwall (40 m), following Ballantyne and Benn (1994), a 

snowslope angle (α) of ≥30º would suggest that the stationary firn-field would have been close 

to transition into a small glacier. Figure 3 illustrates the morphology of the three transects 

measured. The bulging and flattening of the ridge toward its centre, as seen in transect B, is the 

most striking feature.  

Although the debris ridge supports a partial vegetation cover developed locally in thin soil, the 

surface layers generally consist of openwork coarse clasts. Three clasts at the foot of the 

backwall exceed 2 m in diameter. Median clast widths (b-axis) for sites surveyed on the ridge 

indicate that on all transects the distal slopes contain the coarsest material (Figure 3). This is 

consistent with studies of actively-forming pronival ramparts (Ballantyne, 1987). Indeed, 

median clast widths vary from 0.18 to 0.25 m (range = 0.12 to 0.35 m) on proximal slopes, 

where they are well-sorted, to 0.34 to 0.37 m (range = 0.12 to 0.53 m) toward the distal side of 

the crest, where sorting is poor (Figure 3). On the distal slope of the ridge, clasts tend to increase 

in size downslope, up to 0.54 m for b-axes (Figure 3). The backing depression is partially 

infilled by a debris cone which emanates from a rockwall chute upslope (Figure 2A), and in situ 

bedrock is exposed as cliffed outcrops above most of the deposit (Figure 2B). In terms of clast 

shape and angularity (Figure 4), the eight sets of till samples from the Park Valley Moraine to 

the west are much more 'blocky' (C40 values range 16-26%) and more rounded (RA<21%) than 

the samples from the Dundas Ridge debris accumulation (C40 range 40-60%, RA>65%). While 

clasts from the Park Valley till are often striated (Brook et al., 2008), striae were not found on 

clasts from the debris accumulation. Given the similar lithology between the two sites, this 
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suggests that analysing the covariance of the RA and C40 indices, which is an established tool in 

discriminating the transport pathways of glaciogenic facies (Benn and Ballantyne, 1994), is 

useful in distinguishing between Park Valley morainic and Dundas Ridge debris-ridge deposits. 

 

DISCUSSION 

Several different explanations for slope-foot debris accumulations have been proposed, such as 

moraine ridges, pronival ramparts, protalus rock glaciers and rock slope failures (Shakesby, 

1997). According to the ‘diagnostic criteria’ for pronival ramparts (Table 2) adapted from 

Hedding et al. (2010), the contention that the Dundas Ridge feature is a pronival rampart is 

plausible, and the following discussion justifies why this is the probable mode of origin. At a 

simple level, comparison of the debris ridge with fossil and actively-forming pronival ramparts 

indicates that the debris ridge is most likely of pronival origin. Several lines of evidence favour 

this explanation. The mean d value of 40 m is within the range of c. 30-70 m defined by the 

model of Ballantyne and Benn (1994). Likewise, the d = 40 m is within the typical range of d 

values reported from 33 pronival ramparts from northern Europe, North America and Japan 

(Curry et al., 2001). Ballantyne and Benn (1994) modelled the threshold conditions under which 

a snowbank begins to move and becomes an incipient glacier. Their work indicates that when 

the distance between the rampart crest and talus foot upslope exceeds 30-70 m, significant 

movement of the snowbank may occur. Given the crest-backwall distance (40 m), realistic 

snowslopes of ≥30º indicate that the firn field may have been close to deforming, and the small 

‘bulge’ in the centre of the ridge may represent the resulting minor ‘bulldozing’. Alternatively, 

the ‘bulge’ may have formed due to localised deformation of the rampart associated with firn-

field ablation. However, a ‘true’ glacial origin for the ridge is unlikely as the ridge is outside 

mapped glaciated zones of the Tararua Range (Brook and Brock, 2005). Nevertheless, the ridge 

is at a similar elevation (c. 1160 m) to a Last Glacial Maximum (LGM) lateral moraine on the 
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margin of Park Valley c. 5 km to the west, but the spatial and topographic positioning of the 

Dundas debris ridge is unlike that of a lateral moraine. This is because the ridge is located on a 

valley-side bench above a sinuous, V-shaped fluvial valley. Although the ridge morphology may 

reflect a small terminal moraine, the high RA values (cf. Glasser et al., 2006), the openwork 

nature of the debris with a lack of sandy-silty matrix characteristic of glacial diamict (Benn and 

Evans, 2010), and the limited distance of the ridge crest to the backwall indicate it is not a 

moraine. 

 A protalus rock glacier origin for the ridge is more plausible given the clast angularity, 

but protalus rock glaciers tend to be multi-ridged (Curry et al., 2001) and terminate at much 

greater distances from the talus foot than the Dundas debris ridge. Moreover, protalus rock 

glaciers often have a ridge-and-furrow relief with a crenulated or scalloped planform of their 

outer margins (White, 1981). In contrast, the ridge is arcuate with a single crest, and together 

with the other factors outlined, this suggests a protalus rock glacier origin is inappropriate.  A 

rock-slope failure origin for the ridge also appears unlikely due to the lack of a whole-slope 

failure scar above the ridge, with only a minor (c. 40 m wide) recess in the southeastern slope of 

Dundas ridge indicative of a ‘failure scar’. Moreover, rock-slope failures tend to produce 

boulders that are much larger than adjacent talus accumulations (Curry et al., 2001), but the 

debris ridge material is similar in size to local talus slope clasts. Also, the 'rock-slope failure' 

hypothesis is further undermined by the moderate gradient of the rockwall (cf. Gordon and 

Ballantyne, 2006). The rampart has formed in a location with a southeasterly aspect, which 

would favour snow accumulation due to low insolation receipts. Furthermore, variability in 

snow accumulation on current New Zealand firn-fields is strongly influenced by atmospheric 

circulation, orography and redistribution of snow by westerly winds (Purdie et al., 2011), which 

would favour accumulation in southeast-facing basins. Indeed, wind deflation of snow from 
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snow banks on the summit of Dundas Ridge to the west would have helped nourish the firn-field 

behind the rampart.  

A pronival rampart origin of the debris ridge has implications for interpretations of 

debris ridges in New Zealand mountains, where pronival ramparts have not previously been 

identified. Indeed, fragmentary debris ridges forming ‘moraines’ are often used as key Southern 

Hemisphere paleoclimatic sites without detailed investigation of ridge sedimentology, or spatial 

and topographic positioning (Kaplan et al., 2010). Recent work has highlighted the presence of 

rock avalanche deposits in glaciated zones of the New Zealand Southern Alps (McColl and 

Davies, 2011), and it was recently proposed that supraglacial rock avalanche debris can 

dominate glacial sedimentation (Tovar et al., 2008). This may lead to formation of ‘moraines’ 

that are difficult to distinguish from their more conventionally-formed equivalents (Shulmeister 

et al., 2009), or rock glaciers (Kirkbride and Brazier, 1995). The implication is that without 

detailed analysis and application of ‘diagnostic criteria’ (Hedding et al., 2007), the process-

origins of debris ridges may be wrongly designated, leading to potentially erroneous 

paleoclimatic extrapolations.  

 

CONCLUSIONS 

The unconsolidated debris ridge on the southern side of Dundas Ridge, Tararua Range, has been 

investigated using ‘diagnostic criteria’ of debris-ridge morphology, spatial and topographic 

positioning, and sedimentology. Collectively, the openwork nature of constituent debris, angular 

clasts, single-crested ridge morphology and close proximity to the backwall are consistent with 

both relict and actively-forming pronival ramparts. Comparison with other studies shows that 

both rockslides and protalus rock glaciers tend to be multi-ridged and are found at greater 

distances from the backwall. Furthermore, the steep-sided, sinuous valley below the ridge has 
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not been glaciated during the Quaternary, and so a lateral moraine mode of origin is discounted. 

Hence, it is most likely that the debris ridge is a relict pronival rampart that formed close (c. 40 

m) to the base of the moderately steep, elevated backwall provided by Dundas Ridge, in a 

location with a southeasterly aspect that favoured snow accumulation due to low insolation 

receipts. The ‘bulging’ near the centre of the ridge may represent snow-push processes in 

addition to traditional supranival mechanisms, supporting the view that ramparts should be 

viewed as potentially a polygenetic product of a combination of one or more snowbed-related 

processes.  The rampart possibly formed during cold-climate conditions within the interval 24-

18 kyr BP, when a minor alpine-style glaciation affected valleys to the west and south.  

This study has implications for paleoclimatic analyses in New Zealand, as fragmentary debris 

ridges are routinely assumed to be ‘moraines’ and are used as key Southern Hemisphere 

paleoclimatic sites. This is often without any detailed investigation of ridge geomorphology and 

sedimentology, and recent work has actually reclassified some ‘moraines’ as rock avalanche 

deposits (McColl and Davies, 2011). The corollary is that the apparent paucity of pronival 

ramparts in New Zealand may be artificial, given the high rates of debris supply, and ice and 

snow cover variability during the Quaternary.  
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CAPTIONS 

Figure 1: (A) Location of the study area in the southern Tararua Range on the North Island of 

New Zealand; (B) Location of the Dundas debris ridge in relation to the Park Valley lateral 

moraine (asterisked) described in Brook et al. (2008), and inferred ice limits (black lines) from 

Adkin (1911); (C) The debris ridge on the southeastern slopes of Dundas Ridge, showing the 

location of transect A to C in Figure 3. Note that the transects shown in Figure 3 only represent 

the morphology of the debris ridges in relation to the lowermost section of the backwall. Dashed 

lines represent hiking tracks. 

Figure 2: (A) View of the roughly arcuate debris ridge from the northeast of the feature, arrows 

marking the lateral extent of the ridge; (B) Vegetated rockslopes above the northwestern end of 

the ridge, with the arrow marking Dundas Ridge, ~200 m above the debris ridge and marking 

the up-slope limit of the backwall; (C) Vegetated rockslopes above the southeastern end of the 

ridge, with large boulders (a-axis >1.2 m, arrowed) in the backing depression between the 

backwall and ridge crest. 

Figure 3 Boxplots of clast b-axis length (on left) measured at four points along transects A to C, 

showing representative ridge cross-sections and the lower sections of the backwall (on right). 

Note that the Dundas Ridge source area actually extends ~200 m above the debris-ridge crest. 

Approximate position of each transect is shown in Figure 1. The box plots summarise the b-axis 

distributions (n=50), with the vertical lines representing the range, and horizontal lines defining 

the upper quartile, median and lower quartiles.  

Figure 4 Plot of RA index (% of very angular or angular clasts) against C40 shape index (% of 

clasts with c:a axis rations ≤0.4) for 10 samples from the Dundas debris ridge and 8 samples 

from till in the glaciated Park Valley to the southeast.  
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Table 1 Dimensions and morphology of the Dundas debris ridge (see text for explanation of 

abbreviations). 

Table 2 Diagnostic criteria for distinguishing pronival (protalus) ramparts from other talus-foot 

landforms (adapted from Hedding et al., 2010). 
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Table 1 

 

Length 
(m) 

Width 
(m) 

h1 
(m) 

h2 
(m) 

z 
(m) 

d 
(m) 

Average slope (°) 
Proximal Distal 

250 33 18 6 9 40 19 35 
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Table 2 

Criteria Additional comments 
Glacial moraine 

Talus-foot location 
Glacial erosional forms 
Striated clasts 
Linear plan form 
Ridge crest to cliff-foot distance > c. 30-70 m 

Landslide 
Talus-foot location 
Hillslope scar 
Debris aprons beyond the feature 
Large masses of displaced hillside within or above the area of 
debris accumulation 

Protalus rock glacier 
Talus-foot location 
Greater in length (downslope) than in width (across-slope) 
Convex distal slope 
Meandering and closed depressions, downslope ridges and furrows, 
and transverse ridges and depressions 

Pronival (protalus) rampart 
Large ridge to backwall summit inclination 
Small ridge to backwall distance 
Ridge crest to cliff-foot distance < c. 30-70 m 
Restricted potential snow accumulation depth 
Length <300 m 
Openwork fabric with/without infilling fines 
Single ridge 
Ridge size increase with distance from cliff foot 
Backwall and ridge same lithology 

 
 
× 
× 
× 
 
 
 
 
× 
× 
 
 
 
× 
× 
× 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Arcuate, central bulge 
40 m 
 
 
 
Partial 
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Fig 3 
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Fig 4 


