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The quantification of the “measurement uncertainty”aspect of Heisenberg’s uncertainty principle—that is, the
study of trade-offs between accuracy and disturbance, or between accuracies in an approximate joint measurement
on two incompatible observables—has regained a lot of interest recently. Several approaches have been proposed
and debated. In this paper we consider Ozawa’s definitions for inaccuracies (as root-mean-square errors) in
approximate joint measurements, and study how these are constrained in different cases, whether one specifies
certain properties of the approximations—namely their standard deviations and/or their bias—or not. Extending
our previous work [C. Branciard, Proc. Natl. Acad. Sci. USA 110, 6742 (2013)], we derive error-trade-off
relations, which we prove to be tight for pure states. We show explicitly how all previously known relations for
Ozawa’s inaccuracies follow from ours. While our relations are in general not tight for mixed states, we show
how these can be strengthened and how tight relations can still be obtained in that case.
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I. INTRODUCTION

Heisenberg’s uncertainty principle [1] is undoubtedly one
of the most famous characteristics of quantum theory. It is not
only celebrated as a deep, fundamental feature of the quantum
world by physicists, but has also entered popular culture in
many (though sometimes improper) ways [2].

It is worth emphasizing, however, that the general term
“uncertainty principle”encompasses in fact different properties
of quantum theory. It says, on one hand, that a quantum system
cannot be prepared in such a way that a pair of incompatible—
i.e., noncommuting—observables are arbitrarily well defined
(“preparation uncertainty”). Another aspect is that the mea-
surement of one observable to a certain accuracy in general
disturbs the subsequent measurement of another incompatible
observable accordingly, or that one cannot in general jointly
measure two incompatible observables to a perfect accuracy
(“measurement uncertainty”). Interestingly, while the latter
measurement uncertainty aspect corresponds to Heisenberg’s
initial intuition [1], the best known—and historically the first
formally derived [3–5]—uncertainty relations quantify instead
the former preparation uncertainty aspect. This has led to
some confusion in their interpretation, which it is essential to
clarify.

Surprisingly little work has been done in the previous
century on the problem of quantifying the trade-off between
(in)accuracy and disturbance, or between (in)accuracies in
approximate joint measurements. The past two decades have
however witnessed a renewed interest in these questions, moti-
vated in particular by the development of quantum information
science and by its implications for our understanding of quan-
tum foundations. An important milestone was the derivation in
2003–2004 by Ozawa [6,7] and by Hall [8] of universally valid
“uncertainty relations” for measurement-disturbance scenarios
and for approximate joint measurements—or, as we will call
them in this paper, of error-disturbance and error-trade-off
relations. These came back in the spotlight in the past couple
of years as they were experimentally tested [9–15], and
strengthened [11,16].

This measurement uncertainty aspect of Heisenberg’s prin-
ciple has also recently sparked an active debate in the scientific
community [17–20], on the question whether Heisenberg’s
heuristic argument [1]—that the product of the inaccuracy εq

of the measurement of a particle’s position and the disturbance
ηp induced on its momentum is at least of the order of Planck’s
constant—is correct or not. Such a relation—precisely, εqηp �
�/2—has only been formally proven a few months ago
[17,20], while some authors still argue that this relation may
in fact not always be satisfied [18,20]. What is at stake in
this controversy is the rigorous definition to be given to the
inaccuracy and disturbance (in particular, whether these are
state dependent or not)—which Heisenberg was not clear
about—and more generally the proper way to quantify the
measurement uncertainty aspect of Heisenberg’s principle.
The large number of recent publications on this subject [9–31]
illustrates how topical these questions are, and suggests that
these are still far from being settled.

Agreeing on a framework and definitions is thus a necessary
starting point to derive and study error-trade-off relations. Here
we consider Ozawa’s (state-dependent) definitions [6,7] for the
inaccuracies in approximate joint measurements—for which
(in the case of error disturbance) the above relation εq ηp �
�/2 can indeed be violated—and extend our previous analysis
of Ref. [16] to characterize the allowed values of inaccuracies
in a number of different cases. The paper is structured as
follows. In Sec. II we introduce the general framework for
approximate joint measurements that we consider. Section III
presents the derivation of our error-trade-off relations, for cases
where certain properties of the approximations—namely, their
standard deviations and/or their bias with respect to the ideal
measurements—are assumed to take some given values; when
none of these properties are specified, we show that we obtain
the relations previously derived in [16]. In Sec. IV we give
an alternative, equivalent form for our relations. Section V,
completed by the Appendix, contains the proof that our error-
trade-off relations are tight for pure states (at least in certain
cases for our last two relations). In Sec. VI we show explicitly
how all previously derived (nontight) relations of Refs. [6–
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8,11] follow from ours. We finish in Sec. VII with some
considerations on the case of mixed states, and then conclude.

II. APPROXIMATE JOINT MEASUREMENTS
OF INCOMPATIBLE OBSERVABLES: NOTATIONS

AND DEFINITIONS

A. Two incompatible observables to be measured on a given
quantum state

In this paper we consider a quantum state |ψ〉 in some finite-
dimensional Hilbert space H together with two observables
(Hermitian operators) A and B acting on H, and we wish to
quantify how well a joint measurement of A and B on |ψ〉 can
be approximated.

The given observables A and B and the state |ψ〉 define the
standard deviations1 �A = 〈ψ |(A − 〈A〉)2|ψ〉1/2

and �B =
〈ψ |(B − 〈B〉)2|ψ〉1/2

, as well as the parameter

CAB = 1

2i
〈ψ |[A,B]|ψ〉, (1)

which depends on the commutator [A,B] = AB − BA and
quantifies the incompatibility of A and B—as we shall see,
when CAB �= 0 their perfect joint measurement on |ψ〉 is
impossible. With these notations, Robertson’s well-known un-
certainty relation [4] (which, again, quantifies the preparation
uncertainty aspect of the uncertainty principle and not its
measurement uncertainty aspect) writes

�A�B � |CAB |. (2)

We shall assume throughout the paper that2 �A,�B >

0. It will be convenient to define the reduced observables
Ã0 = [A − 〈A〉]/�A, B̃0 = [B − 〈B〉]/�B, such that 〈Ã0〉 =
〈B̃0〉 = 0 and �Ã0 = �B̃0 = 1, and the reduced parameter

C̃AB = CAB

�A�B
= Im〈Ã0B̃0〉 (3)

(where Im denotes an imaginary part). Note that Ã0|ψ〉 and
B̃0|ψ〉 are unit ket vectors, and hence |〈Ã0B̃0〉| � 1 and C̃AB =
Im〈Ã0B̃0〉 ∈ [−1,1]—as implied also by Robertson’s relation
above.

B. Approximate joint measurements

A general strategy for approximating the joint measurement
of A and B is to actually measure two compatible—i.e.,
commuting—observables A and B, which are taken to ap-
proximate A and B, respectively. In full generality these
can be measured on an extended Hilbert space, i.e., on the

1Here and throughout the paper, the notation 〈·〉 stands for
〈ψ | · |ψ〉 or 〈ψ,ξ | · |ψ,ξ〉, depending on the context (or Tr[·ρ],
Tr[·(ρ ⊗ |ξ〉〈ξ |)] in Sec. VII). Furthermore, for simplicity of notation,
A − 〈A〉 for instance stands for A − 〈A〉1H, where 1H is the identity
operator on H.

2If �A�B = 0 our problem becomes trivial, as one of the two
observables then always gives the same outcome for |ψ〉, and does
not need to be actually measured; a perfect joint “measurement” of
both observables on |ψ〉 can then be performed by simply outputting
the expected outcome for that observable, and measuring the other
one. Note that, in such a case, CAB = 0.

state |ψ,ξ 〉 = |ψ〉 ⊗ |ξ 〉 ∈ H ⊗ K, where |ξ 〉 is the state of an
ancillary system in some ancillary Hilbert space3 K. Following
Ozawa [6,7,32], we quantify here the inaccuracies in the
approximations of A and B by the root-mean-square errors

εA = 〈ψ,ξ |(A − A)2|ψ,ξ 〉1/2
, (4)

εB = 〈ψ,ξ |(B − B)2|ψ,ξ 〉1/2
, (5)

where for simplicity A and B are used as shorthand notations
for A ⊗ 1K and B ⊗ 1K, respectively.

The approximations A and B also define (together with |ξ 〉)
the standard deviations �A = 〈ψ,ξ |(A − 〈A〉)2|ψ,ξ 〉1/2

and
�B = 〈ψ,ξ |(B − 〈B〉)2|ψ,ξ 〉1/2

, and the (first moment) biases
δA = 〈A − A〉 and δB = 〈B − B〉. These quantities are related
through

ε2
A − δ2

A = �A2 + �A2 − 2 Re〈(A−〈A〉)(A−〈A〉)〉,
= �A2 + �A2 − 2�A Re〈Ã0A〉, (6)

ε2
B − δ2

B = �B2 + �B2 − 2 Re〈(B−〈B〉)(B−〈B〉)〉,
= �B2 + �B2 − 2�B Re〈B̃0B〉, (7)

where Re indicates a real part. Using the fact that (from
the Cauchy-Schwartz inequality) |〈(A−〈A〉)(A−〈A〉)〉| �
�A�A, and similarly for B andB, it follows in particular that4

(�A − �A)2 � ε2
A − δ2

A � (�A + �A)2, (8)

(�B − �B)2 � ε2
B − δ2

B � (�B + �B)2. (9)

Note that while the above framework is presented
for the scenario of approximate joint measurements, the
case of measurement disturbance—where an approximate
measurement of A disturbs a subsequent measurement of
B—can also be cast into the same framework [6,32]. In that
case the inaccuracy (root-mean-square error) εB is interpreted
as the disturbance ηB on B, with the same definition (5).
All the error-trade-off relations we shall derive, which
bound the possible values of (εA,εB), hence also hold as a
particular case for (εA,ηB) and can thus also be interpreted as
error-disturbance relations. An important difference between
the two scenarios, however, is that in the measurement-
disturbance case B is forced to have the same spectrum as
B; this may in general impose stronger constraints, leading to
stronger error-disturbance relations [16] (see Sec. III E).

C. Fixed versus variable parameters

As defined above, the parameters �A,�B, 〈A〉,〈B〉, and
C̃AB depend on the given state |ψ〉 and the given observables
A and B under consideration. These will be considered fixed
throughout the paper.

3Another way to present the general case is to consider a positive
operator valued measure (POVM) instead of projective measurements
A andB; see e.g. the supporting information of Ref. [16] for a detailed
treatment from this perspective.

4Noting that ε2
A−δ2

A = �[A−A]2 and ε2
B−δ2

B = �[B−B]2, Eqs. (8)
and (9) are in fact nothing but triangle inequalities for variances.
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On the other hand, the parameters �A,�B, δA,δB (or
equivalently 〈A〉,〈B〉), εA and εB depend on the particular
choice of approximation strategy—namely, onA andB. These
will be considered as variable parameters. Depending on the
situation under study, we shall consider cases where their
values are specified—e.g., the values of �A and �B are
specified in Sec. III B below, and the error-trade-off relation
derived there holds when the approximations indeed give the
specified values; similarly, δA and δB are assumed to be given in
Sec. III C—or we shall let them free—in which case these can
be optimized to minimize for instance the values of (εA,εB).

III. ERROR-TRADE-OFF RELATIONS

We derive in this section different error-trade-off relations
that restrict the allowed values of (εA,εB), as a function of
different parameters —namely, whether or not one may specify
the values of �A,�B and/or δA,δB—and whether or not
an additional assumption—the “same-spectrum assumption”;
see Sec. III E below—is imposed. All these relations will be
shown to follow from our first relation (12) below.

A. Error-trade-off relation for specified values
of �A,δA, �B, and δB

The first relation we derive holds for the case where the
standard deviations �A,�B and the biases δA,δB are specified.
We assume that �A,�B �= 0, and define

f�A,δA (εA) =
√

1 −
(

�A2 + �A2 − (
ε2
A − δ2

A
)

2�A�A

)2

, (10)

f�B,δB (εB) =
√

1 −
(

�B2 + �B2 − (
ε2
B − δ2

B
)

2�B�B

)2

. (11)

Note that Eqs. (8) and (9) ensure for instance that

|�A2+�A2−(ε2
A−δ2

A)
2�A�A | � 1, and that the above square roots are

real.
Our first error-trade-off relation states that for any given

values of �A > 0,δA,�B > 0, and δB (and whatever the
values of �A,�B and C̃AB , which—we recall—are fixed
parameters in our study once A,B and |ψ〉 are fixed), the
inaccuracies (εA,εB) are bound to satisfy

f�A,δA (εA)2 + f�B,δB (εB)2

+ 2
√

1 − C̃2
ABf�A,δA (εA)f�B,δB (εB) � C̃2

AB. (12)

The proof follows similar lines as the proofs of Ref. [16]. It
makes use of the following geometric Lemma, introduced and
proven previously in [16].

Lemma: Let â,b̂ be two unit vectors of a Euclidean space
E , and let us denote by χ = â · b̂ their scalar product. For
any two orthogonal unit vectors x̂ and ŷ of E , defining a⊥ =√

1 − (â · x̂)2 and b⊥ =
√

1 − (b̂ · ŷ)2 , one has

a2
⊥ + b2

⊥ + 2
√

1 − χ2a⊥b⊥ � χ2. (13)

[Note furthermore that a necessary condition for inequality
(13) to be saturated is that â, b̂, x̂, and ŷ are coplanar [16].]

Proof of Eq. (12). Assuming �A,�B > 0, let us define
Ã0 = [A − 〈A〉]/�A, B̃0 = [B − 〈B〉]/�B, and the (normal-

ized) ket vectors

|a〉 = Ã0|ψ,ξ 〉, |b〉 = B̃0|ψ,ξ 〉,
|x〉 = Ã0|ψ,ξ 〉, |y〉 = B̃0|ψ,ξ 〉

(where, as previously, Ã0 and B̃0 are used as shorthand
notations for Ã0 ⊗ 1K and B̃0 ⊗ 1K). By writing these vectors
in any orthonormal basis of H ⊗ K (e.g., the common
eigenbasis of A and B), one can define the following real
vectors:

â =
(

Re|a〉
Im|a〉

)
, b̂ =

(
Im|b〉

−Re|b〉
)

,

x̂ =
(

Re|x〉
Im|x〉

)
, ŷ =

(
Im|y〉

−Re|y〉
)

.

One then has

‖â‖2 = (Re|a〉)
 · (Re|a〉) + (Im|a〉)
 · (Im|a〉) = 〈a|a〉 = 1,

‖b̂‖2 = ‖x̂‖2 = ‖ŷ‖2 = 1,

â · b̂ = (Re|a〉)
 · (Im|b〉) − (Im|a〉)
 · (Re|b〉) = Im〈a|b〉
= Im〈Ã0B̃0〉 = C̃AB,

x̂ · ŷ = Im〈Ã0B̃0〉 = 1

2i

〈ψ,ξ |[A,B]|ψ,ξ 〉
�A�B = 0.

Hence the real vectors â,b̂,x̂,ŷ satisfy the assumptions of the
geometric Lemma above, with χ = C̃AB . Furthermore,

â · x̂ = (Re|a〉)
 · (Re|x〉) + (Im|a〉)
 · (Im|x〉) = Re〈a|x〉

= Re〈(A−〈A〉)(A−〈A〉)〉
�A�A = �A2+�A2−(ε2

A−δ2
A
)

2�A�A ,

where the last equality follows from Eq. (6), and thus

a⊥ =
√

1 − (â · x̂)2 = f�A,δA (εA).

Similarly, one finds that b⊥ = f�B,δB (εB). Equation (12)
then directly follows from inequality (13) of the Lemma. �

Relation (12) lower bounds the possible values of
(f�A,δA (εA),f�B,δB (εB)) for some specified values of �A,δA,
�B, and δB. Note that f�A,δA (εA) increases with εA for ε2

A �
�A2 + �A2 + δ2

A and decreases for ε2
A � �A2 + �A2 + δ2

A
[and similarly for f�B,δB (εB)]. Hence, relation (12) bounds
εA and εB from both below and above. Note furthermore
that due to (8) and (9), there are absolute lower and upper
bounds on εA and εB; for instance, if �A and δA are such that
(�A − �A)2 + δ2

A > 0, then whatever εB, εA cannot be zero.
In the case where �A = 0, one finds [e.g., from (8)] that

ε2
A = �A2 + δ2

A is fixed, and εB is then only5 bounded by
Eq. (9). The constraint on (εA,εB) thus writes

ε2
A = �A2 + δ2

A,

(�B − �B)2 + δ2
B � ε2

B � (�B + �B)2 + δ2
B. (14)

5Note that when �A = 0, A can be taken to be proportional
to the identity (it then does not actually need to be measured),
which commutes with any observable B; there is thus no additional
constraint on B.

022124-3



CYRIL BRANCIARD PHYSICAL REVIEW A 89, 022124 (2014)

Similarly, in the case where �B = 0,

ε2
B = �B2 + δ2

B

(�A − �A)2 + δ2
A � ε2

A � (�A + �A)2 + δ2
A. (15)

These constraints indeed correspond to the limits of the
constraint (12) when �A → 0 and �B → 0, respectively.

B. Error-trade-off relation for specified values of �A and �B
None of the previously derived error-trade-off relations [6–

8,11,16] involved the biases δA or δB explicitly. When these
parameters are not specified, one can optimize them and derive,
from (12), error-trade-off relations which do not include them,
as follows.

Note that, when δA and δA are left free, the only constraints
on εA and εB that follow from (8) and (9) are εA � |�A −
�A| and εB � |�B − �B| (which ensure in particular that
�A2+�A2−ε2

A
2�A�A � 1 and �B2+�B2−ε2

B
2�B�B � 1): εA and εB still have

an absolute lower bound, but are not upper bounded any more.
Using the fact that |�A2 + �A2 − (ε2

A − δ2
A)| �

max[�A2 + �A2 − ε2
A,0] � 0, it follows that for all

�A > 0, δA and εA satisfying (8),

f�A,δA (εA) � g�A(εA), with (16)

g�A(εA) =
√

1 − max

[
�A2 + �A2 − ε2

A
2�A�A ,0

]2

, (17)

and with equality in (16) for δ2
A = max[0,ε2

A − (�A2 +
�A2)]. Similarly, one can show that for all �B > 0, δB and
εB satisfying (9),

f�B,δB (εB) � g�B(εB), with (18)

g�B(εB) =
√

1 − max

[
�B2 + �B2 − ε2

B
2�B�B ,0

]2

, (19)

with equality in (18) for δ2
B = max[0,ε2

B − (�B2 + �B2)].
Using Eqs. (16) and (18), it follows from our previous

relation (12) that for any given values of �A > 0 and �B > 0,

g�A(εA)2 + g�B(εB)2

+2
√

1 − C̃2
ABg�A(εA)g�B(εB) � C̃2

AB. (20)

This relation lower bounds the possible values of
(g�A(εA),g�B(εB)), for some specified values of �A and
�B. Now, g�A(εA) and g�B(εB) only increase with εA and
εB. Hence the above relation also only bounds the allowed
values of (εA,εB) from below (with absolute lower bounds of
|�A − �A| and |�B − �B|); as emphasized above, these are
no longer bounded from above. This relation can be compared
to those of Refs. [8,11], which also involve the parameters �A
and �B (see Secs. VI B and VI C below).

In the case where �A = 0 or �B = 0, the constraint on
(εA,εB) is simply

ε2
A � �A2,

ε2
B � (�B − �B)2,

or
ε2
A � (�A − �A)2,

ε2
B � �B2,

(21)

which indeed correspond to the limits of the constraint (20)
when �A → 0 or �B → 0, respectively.

C. Error-trade-off relation for specified values of δA and δB

Instead of relaxing and letting the values of δA,δB free as
above, one may relax the values of �A,�B and optimize over
these to derive, from (12), error-trade-off relations which do
not include the latter. Note that when �A and �B are left free,
the only constraints on εA and εB that follow from (8) and (9)
are εA � δA and εB � δB; as before, εA and εB still have an
absolute lower bound, but are not upper bounded any more.

By looking for the maximum of f�A,δA (εA) as �A varies6

between |�A −
√

ε2
A − δ2

A| and �A +
√

ε2
A − δ2

A [so as to
satisfy (8)], while δA and εA are kept fixed, one can show that
for all �A > 0, δA and εA satisfying (8),

f�A,δA (εA) � hδA(εA), with (22)

hδA(εA) =
√

ε2
A − δ2

A

�A
, (23)

with equality in (22) if ε2
A − δ2

A � �A2 and �A =√
�A2 − (ε2

A − δ2
A). Note that contrary to f�A,δA (εA) and

g�A(εA), hδA(εA) is well defined when �A = 0, in which
case it takes the value 1 [as from (8), �A = 0 implies
ε2
A − δ2

A = �A2].
Similarly, one can show that for all �B > 0, δB and εB

satisfying (9),

f�B,δB (εB) � hδB (εB), with (24)

hδB (εB) =
√

ε2
B − δ2

B

�B
, (25)

with equality in (24) if ε2
B − δ2

B � �B2 and �B =√
�B2 − (ε2

B − δ2
B). Again, hδB (εB) is well defined when

�B = 0, in which case it cases the value 1.
Using Eqs. (22) and (24), it follows from our previous

relation (12) that for any given values of δA and δA,

hδA(εA)2 + hδB (εB)2

+ 2
√

1 − C̃2
ABhδA (εA)hδB (εB) � C̃2

AB. (26)

(Strictly speaking, this relation has so far been proven in
the case where �A,�B > 0; given the above remarks, when
�A = 0 or �B = 0 the relation also trivially holds.)

Relation (26) lower bounds the possible values of
(hδA(εA),hδB (εB)), for some specified values of δA and δB.

6Formally, one could also look for the maximum of f�A,δA (εA) as
�A varies and of f�B,δB (εB) as �B varies, and derive a similar relation
to (26), with �A and �B replaced by �A and �B in the definitions
of hδA (εA) and hδB (εB) (but not in the definition of C̃AB )—and a
similar relation to (29) as well, with ε̃A and ε̃B replaced by εA/�A
and εB/�B. However, as explained in Sec. II C, this is not in the spirit
of our approach to vary �A and �B, and the error-trade-off relation
thus obtained would in general not be tight.
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Now, as it was the case with g�A(εA) and g�B(εB), hδA (εA)
and hδB (εB) only increase with εA and εB. Hence the above
relation also only bounds the allowed values of (εA,εB) from
below (with absolute lower bounds δA and δB); as emphasized
above, these are again not bounded from above.

D. General error-trade-off relation for any values
of �A, δA, �B, or δB

From (26), one can now easily derive an error-trade-off
relation that involves neither �A, �B, nor δA, δB, as, e.g., that
of Ozawa [6].

It is indeed trivial to note that for all δA, εA(� δA), δB and
εB(� δB),

hδA(εA) � εA
�A

and hδB (εB) � εB
�B

, (27)

with equality for δA = 0 and δB = 0. Defining

ε̃A = εA
�A

and ε̃B = εB
�B

, (28)

it then follows from (26)7 that

ε̃2
A + ε̃2

B + 2
√

1 − C̃2
ABε̃Aε̃B � C̃2

AB, (29)

which is precisely the error-trade-off relation recently intro-
duced in Ref. [16],8 and experimentally tested in [14,15].
This relation lower bounds the possible values of (εA,εB)
as a function of the fixed parameters �A, �B, and C̃AB of
the problem, whatever the values of the (variable) parameters
�A, δA, �B, and δB.

Note that contrary to the previous cases, when �A, δA,
�B, and δB are free to take any values, there are no absolute
lower bounds on εA and εB, which can (individually) take
any non-negative value (there are no upper bounds either); for
instance, εA can always be zero if εB is large enough.

E. With binary, ±1-valued observables and the
same-spectrum assumption

Our previous relations (12), (20), (26), and (29) are valid
(and tight, as we will show in Sec. V and in the Appendix)
for any state |ψ〉 of any (finite-dimensional) Hilbert space, any
pair of observables A and B, and any commuting approximate
observables A and B—in particular, we did not assume that A
and B should have the same spectrum as A and B.

We now consider a particular case, where A and B are as-
sumed to be dichotomic, ±1-valued observables, and where the
approximations A and B are also constrained to be ±1 valued.
Let us recall that this same-spectrum assumption is a natural
one for B in a measurement-disturbance scenario9 [6,16]. As

7Note that (29) can also be proven to follow from (20), after showing
that (for �A,�B > 0) g�A(εA) � ε̃A and g�B(εB) � ε̃B .

8The proof of relation (29) given in [16] is based on a corollary of
the geometric Lemma of Sec. III A and, although similar, is somewhat
more direct than the present derivation. However, our approach here
allows us to explicitly show how all our relations follow from one
another.

9By symmetry we also impose the same-spectrum assumption on
A here; it is straightforward to adapt our study to cases where it is
imposed on B only.

mentioned before, this assumption further restricts the possible
approximation strategies, and hence the allowed values of
(εA,εB) [or of (εA,ηB) in a measurement-disturbance scenario]
[16]. We shall indeed derive below stronger error-trade-off (or
error-disturbance) relations for ±1-valued observables, when
the same-spectrum assumption is imposed.

Note that in the case considered here, where
A2 = A2 = B2 = B2 = 1H, one has �A2 = 1 − 〈A〉2,
�B2 = 1 − 〈B〉2, �A2 = 1 − 〈A〉2, �B2 = 1 − 〈B〉2 (with
|〈A〉|,|〈B〉|,|〈A〉|,|〈B〉| � 1), and Eqs. (8) and (9) imply

1 − 〈A〉〈A〉 − �A
√

1 − 〈A〉2

� ε2
A
/

2 � 1 − 〈A〉〈A〉 + �A
√

1 − 〈A〉2, (30)

1 − 〈B〉〈B〉 − �B
√

1 − 〈B〉2

� ε2
B
/

2 � 1 − 〈B〉〈B〉 + �B
√

1 − 〈B〉2. (31)

Moreover, the lower bounds above are further lower bounded
by zero (attained when 〈A〉 = 〈A〉 and 〈B〉 = 〈B〉), while the
upper bounds are further upper bounded by 2 (attained when
〈A〉 = −〈A〉 and 〈B〉 = −〈B〉)—which implies in particular
that there is here an absolute upper bound of 2 on εA and
εB. Note also that just like �A and �B, 〈A〉 and 〈B〉 are fixed
parameters of our problem; the variable parameters in Eqs. (30)
and (31), which depend on the particular approximationsA and
B, are 〈A〉, εA, 〈B〉, and εB (see the discussion in Sec. II C).

1. Relation for ±1-valued observables A, B, A, and B,
and for specified values of 〈A〉 and 〈B〉

Assuming �A,�B > 0—i.e., |〈A〉|,|〈B〉| < 1—one has

�A2 + �A2 − (
ε2
A − δ2

A
)

2�A�A = 1 − 〈A〉〈A〉 − ε2
A
/

2

�A
√

1 − 〈A〉2
, (32)

�B2 + �B2 − (
ε2
B − δ2

B
)

2�B�B = 1 − 〈B〉〈B〉 − ε2
B
/

2

�B
√

1 − 〈B〉2
, (33)

and f�A,δA (εA) = f〈A〉(εA), f�B,δB (εB) = f〈B〉(εB), with

f〈A〉(εA) =
√√√√1 −

(
1 − 〈A〉〈A〉 − ε2

A
/

2

�A
√

1 − 〈A〉2

)2

, (34)

f〈B〉(εB) =
√√√√1 −

(
1 − 〈B〉〈B〉 − ε2

B
/

2

�B
√

1 − 〈B〉2

)2

. (35)

[Note that Eqs. (30) and (31) ensure that the square roots above
are real.]

Thus our relation (12) implies here that when A and B are
±1-valued observables, and A and B are restricted to have the
same spectrum (±1) as A and B, the possible values of (εA,εB)
are bound to satisfy, for any specified values of |〈A〉|,|〈B〉|
< 1,

f〈A〉(εA)2 + f〈B〉(εB)2

+ 2
√

1 − C̃2
ABf〈A〉(εA)f〈B〉(εB) � C̃2

AB. (36)

This relation lower bounds the possible values of
(f〈A〉(εA),f〈B〉(εB)). As f〈A〉(εA) increases with εA for
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ε2
A/2 � 1 − 〈A〉〈A〉 and then decreases for ε2

A/2 � 1 −
〈A〉〈A〉 [and similarly for f〈B〉(εB)], the above relation bounds
εA and εB from both below and above—with absolute lower
and upper bounds given by (30) and (31).

In the case where 〈A〉 = ±1, ε2
A/2 = 1 ∓ 〈A〉 is fixed and

εB is then only bounded by Eq. (31). Similarly, in the case
where 〈B〉 = ±1, ε2

B/2 = 1 ∓ 〈B〉 is fixed and εA is only
bounded by Eq. (30). These constraints indeed correspond
to the limits of the constraint (36) when 〈A〉 → ±1 and
〈B〉 → ±1, respectively.

2. Relation for ±1-valued observables A, B, A, and B, valid for
any values of 〈A〉 and 〈B〉

As was done before, we can derive, from Eq. (36), an error-
trade-off relation that does not involve 〈A〉 and 〈B〉.

Optimizing over 〈A〉 (with −1 < 〈A〉 < 1), one can indeed
prove that

1 −
(

1 − 〈A〉〈A〉 − ε2
A
/

2

�A
√

1 − 〈A〉2

)2

� 1 − (1 − ε2
A/2)2

�A2
, (37)

so that for all 〈A〉 �= ±1 and εA satisfying (30),

f〈A〉(εA) � kA(εA), with (38)

kA(εA) =
√

1 − (
1 − ε2

A
/

2
)2

�A
, (39)

with equality in (38) if |〈A〉| < |1 − ε2
A/2| and 〈A〉 = 〈A〉

1−ε2
A/2

.

Contrary to f〈A〉(εA), kA(εA) is well defined for 〈A〉 = ±1, in
which case, as ε2

A/2 = 1 ∓ 〈A〉, it takes the value 1.
Similarly, one finds that for all 〈B〉 �= ±1 and εB satisfying

(31),

f〈B〉(εB) � kB(εB), with (40)

kB(εB) =
√

1 − (
1 − ε2

B
/

2
)2

�B
, (41)

with equality in (40) if |〈B〉| < |1 − ε2
B/2| and 〈B〉 = 〈B〉

1−ε2
B/2

.

Again, kB(εB) is also well defined for 〈B〉 = ±1, in which case
it takes the value 1.

Using Eqs. (38) and (40), it follows from our previous
relation (36) that when A and B are ±1-valued observables,
and A and B are restricted to have the same spectrum (±1) as
A and B, the following relation must be satisfied:

kA(εA)2 + kB(εB)2 + 2
√

1 − C̃2
ABkA(εA)kB(εB) � C̃2

AB

(42)

(which, strictly speaking, has so far been proven in the
case where |〈A〉|,|〈B〉| < 1, but also trivially holds for
|〈A〉|,|〈B〉| = 1). This relation lower bounds the possible
values of (kA(εA),kB(εB)). As kA(εA) increases with εA for
ε2
A/2 � 1 and then decreases [and similarly for kB(εB)],

the above relation bounds εA and εB from both below and
above—with a trivial absolute lower bound of zero, and an
absolute upper bound of 2 [see the discussion after Eqs. (30)
and (31)]. Note that Eq. (42) is strictly more restrictive than

relation (29), for which the same-spectrum assumption was
not imposed.

Relation (42) was introduced and experimentally tested in
[14], and generalizes a relation first introduced in Ref. [16]
for the particular case where 〈A〉 = 〈B〉 = 0; our approach
here allows us to prove it in a more general case, without this
restriction.

To finish this section, let us mention that the different
cases and assumptions considered in the derivation of all our
relations above do not need to be the same for A,A and B,B.
One can indeed derive “hybrid” relations involving for instance
(say) f�A,δA (εA) and hδB (εB), or where the same-spectrum
assumption is imposed on one observable only—which is
indeed relevant in the measurement-disturbance scenario; note,
e.g., that the relation involving ε̃A and kB(εB) has also been
considered and tested experimentally in Ref. [14].

IV. ALTERNATIVE FORM FOR OUR
ERROR-TRADE-OFF RELATIONS

Another, equivalent form for the error-trade-off relations
derived in the previous section can be given, which may be
convenient to use in certain cases. In this alternative form, the
parameter CAB (or C̃AB) related to the commutator of A and
B only appears in the right-hand side, as a lower bound—as
it is the case for instance in Robertson’s relation (2) [4], or
in the error-trade-off relations previously derived by Ozawa
[6,7], Hall [8], and Weston et al. [11] [Eqs. (89), (92), and (97)
in Sec. VI below].

Note first that all our above relations (12), (20), (26), (29),
(36), and (42) are of the general form

u2
A + u2

B + 2
√

1 − C̃2
ABuAuB � C̃2

AB, (43)

with uA,uB � 0 (and C̃2
AB ∈ [0,1]). As we show below, this

turns out to be equivalent to10

u2
A + u2

B � 1 or

u2
A + u2

B � 1 and (44)

uA

√
1 − u2

B + uB

√
1 − u2

A � |C̃AB |.
(Furthermore, the case where Eq. (43) is saturated is equivalent
to [u2

A + u2
B � 1 and uA

√
1 − u2

B + uB
√

1 − u2
A = |C̃AB |].)

Proof. Consider the following three cases.
(i) If u2

A + u2
B � 1, then both Eqs. (43) and (44) trivially

hold.
(ii) If C̃2

AB � u2
A + u2

B � 1, then Eq. (43) still trivially
holds; on the other hand, note that, for u2

A + u2
B � 1 (which

implies in particular that both u2
A � 1 and u2

B � 1), one has

10Note that one can similarly prove that (43) and (44) are also
equivalent to

u2
A + u2

B � C̃2
AB or

u2
A + u2

B � C̃2
AB and uA

√
1 − u2

B + uB

√
1 − u2

A � |C̃AB |

(and that the case of equality in (43) is also equivalent to [u2
A + u2

B �
C̃2

AB and uA
√

1 − u2
B + uB

√
1 − u2

A = |C̃AB |]).
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√
1 − u2

A
√

1 − u2
B � uAuB and hence

(
uA

√
1 − u2

B + uB

√
1 − u2

A
)2

= u2
A + u2

B + 2uAuB
(√

1 − u2
A

√
1 − u2

B − uAuB
)

� u2
A + u2

B � C̃2
AB.

Taking the square root leads to the last inequality in (44).
(iii) If u2

A + u2
B < C̃2

AB , then Eq. (43) is equivalent to

(
C̃2

AB − u2
A − u2

B
)2 − 4

(
1 − C̃2

AB

)
u2
Au2

B � 0,

which can be written as

[
C̃2

AB − (
uA

√
1 − u2

B − uB

√
1 − u2

A
)2]

× [C̃2
AB − (

uA

√
1 − u2

B + uB

√
1 − u2

A
)2] � 0.

Noting that

(
uA

√
1 − u2

B − uB

√
1 − u2

A
)2

= u2
A + u2

B − 2uAuB
(
uAuB +

√
1 − u2

A

√
1 − u2

B
)

� u2
A + u2

B < C̃2
AB,

we conclude from the previous equation that C2
AB �(

uA
√

1 − u2
B + uB

√
1 − u2

A )2, the square root of which gives
again the last inequality in (44).

Taken together, the study of the three cases above shows
that Eqs. (43) and (44) are indeed equivalent. [The equality
case in Eq. (43) can be analyzed along similar lines as
above.] �

The equivalence between Eqs. (43) and (44) allows one to
write all the error-trade-off relations of the previous section
in a different form. For instance, our general relation (29) is
equivalent to

ε̃2
A + ε̃2

B � 1 or

ε̃2
A + ε̃2

B � 1 and (45)

ε̃A

√
1 − ε̃2

B + ε̃B

√
1 − ε̃2

A � |C̃AB |.

Note that all the alternative relations thus obtained from
Eqs. (12), (20), (26), (29), (36), and (42) could also be derived
from one another as in the previous section, starting from an
alternative formulation of the geometric Lemma used in the
proof of Eq. (12)—obtained by replacing (13) by a relation of
the form of (44)—and using the fact that when u2

A + u2
B � 1,

uA
√

1 − u2
B + uB

√
1 − u2

A increases with both uA and uB.

V. TIGHTNESS OF OUR ERROR-TRADE-OFF RELATIONS

In this section we prove the tightness of the error-trade-off
relations of Sec. III [only in some particular cases for Eqs. (36)
and (42)]—i.e., we show that any values of (εA,εB) that saturate
these relations can be obtained, for some possible choice of
A and B. For simplicity we present here the proofs for the

case where11 |〈Ã0B̃0〉| = 1. For our first four relations, the
case where |〈Ã0B̃0〉| < 1 can be studied along similar lines;
as it involves more tedious calculations, we present it in the
Appendix.

As emphasized above all these relations are of the general
form (43) [or (44), equivalently]. Defining φ = arg〈Ã0B̃0〉 ∈
[−π,π ]—such that, in the case here where |〈Ã0B̃0〉| = 1,
〈Ã0B̃0〉 = eiφ , and C̃AB = Im〈Ã0B̃0〉 = sin φ—the values of
(uA,uB) that saturate the relation (43) can be parametrized by(

uA =
∣∣∣ sin

(ϕ + φ

2

)∣∣∣, uB =
∣∣∣ sin

(ϕ − φ

2

)∣∣∣), (46)

for a varying value of ϕ ∈ [−|φ|,|φ|] if cos φ � 0, or ϕ ∈
[|φ|,2π−|φ|] if cos φ � 0.

In order to show the tightness of our error-trade-off
relations, we will prove that the corresponding functions
(uA,uB) can indeed take these values. In the case where uA and
uB only increase with εA and εB, the corresponding relations
[Eqs. (20), (26), and (29)] only lower bound the values of
(εA,εB), and proving that the values of Eq. (46) can be reached
is sufficient to show that the lower bound is tight. On the other
hand, in the case where uA and uB increase and then decrease
with εA and εB, the corresponding relations [Eqs. (12), (36),
and (42)] both lower and upper bound the values of (εA,εB);
we will then verify that the desired values of (uA,uB) above
can be obtained from both a lower and a greater value of εA
and εB, so as to show the tightness of both the lower and the
upper bounds on (εA,εB).

A. Parametrization of A and B
We first introduce a particular choice12 for the approxima-

tions A and B. It will be sufficient here to use measurements
A and B acting on H only, without introducing any ancillary
system.

In the case where |〈Ã0B̃0〉| = 1, Ã0|ψ〉 and B̃0|ψ〉 are, up
to a phase, the same unit vector, orthogonal to |ψ〉. Let us
define

|v1〉 = |ψ〉, |v2〉 = eiφ/2Ã0|ψ〉 = e−iφ/2B̃0|ψ〉, (47)

so that {|v1〉,|v2〉} forms an orthonormal basis of (the two-
dimensional) span{|ψ〉,Ã0|ψ〉,B̃0|ψ〉}.

For a given ϕ ∈ [−|φ|,|φ|] if cos φ � 0 or ϕ ∈
[|φ|,2π−|φ|] if cos φ � 0, and for a parameter θ ∈ R such
that cos θ sin θ �= 0 we define, with the shorthand notations
cθ = cos θ and sθ = sin θ ,

|m1〉 = cθ |v1〉 + eiϕ/2sθ |v2〉, (48)

|m2〉 = sθ |v1〉 − eiϕ/2cθ |v2〉, (49)

so that {|m1〉,|m2〉} also forms an orthonormal basis of
span{|ψ〉,Ã0|ψ〉,B̃0|ψ〉}. If the dimension of H is larger than

11Recall that Ã0 = [A − 〈A〉]/�A, B̃0 = [B − 〈B〉]/�B, that
Ã0|ψ〉 and B̃0|ψ〉 are unit vectors, and hence that |〈Ã0B̃0〉| � 1 in
general. As noted in [16], |〈Ã0B̃0〉| = 1 always holds in particular for
the case of pure qubit states, where H = C2 is two dimensional.

12Our parametrization here is somewhat clearer, but equivalent to
that used in [16].
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2, we complete that basis with other vectors |mk�3〉 orthogonal
to |m1〉 and |m2〉 (which are hence orthogonal to |ψ〉).

The basis {|mk〉} is chosen to define the common eigenbasis
of A and B; denoting by αk and βk their eigenvalues, we thus
define

A =
∑

k

αk|mk〉〈mk|, B =
∑

k

βk|mk〉〈mk|. (50)

With these definitions, we get

�A2 = (α1 − α2)2c2
θ s

2
θ , �B2 = (β1 − β2)2c2

θ s
2
θ , (51)

δA = α1c
2
θ + α2s

2
θ − 〈A〉, δB = β1c

2
θ + β2s

2
θ − 〈B〉, (52)

and

Re〈Ã0A〉 =
∑

αkRe〈ψ |Ã0|mk〉〈mk|ψ〉

= (α1 − α2)cθ sθ cos
(ϕ + φ

2

)
, (53)

Re〈B̃0B〉 = (β1 − β2)cθ sθ cos
(ϕ − φ

2

)
, (54)

so that Eqs. (6) and (7) give

ε2
A − δ2

A = �A2 + �A2

− 2�A(α1 − α2)cθ sθ cos
(ϕ + φ

2

)
, (55)

ε2
B − δ2

B = �B2 + �B2

− 2�B(β1 − β2)cθ sθ cos
(ϕ − φ

2

)
. (56)

B. Tightness of relation (12)

Relation (12) bounds the possible values of (εA,εB) when
�A, δA, �B, and δB are specified. Let us define, for these
specified values and for some choice of τα = ±1 and τβ = ±1,
the eigenvalues of A and B (corresponding to the eigenstates
|mk〉 parametrized above) to be

α1 = 〈A〉 + δA + τα

sθ

cθ

�A, (57)

α2 = 〈A〉 + δA − τα

cθ

sθ

�A, (58)

β1 = 〈B〉 + δB + τβ

sθ

cθ

�B, (59)

β2 = 〈B〉 + δB − τβ

cθ

sθ

�B. (60)

With these definitions, A and B obtained as in (50) indeed give
the desired values of �A, δA, �B, and δB [see Eqs. (51) and
(52)].

From Eqs. (55) and (56) we then have, for �A,�B > 0,

�A2 + �A2 − (
ε2
A − δ2

A
)

2�A�A = τα cos
(ϕ + φ

2

)
, (61)

�B2 + �B2 − (
ε2
B − δ2

B
)

2�B�B = τβ cos
(ϕ − φ

2

)
(62)

(independent of θ ), and from the definitions (10) and (11) we
get, as in (46),

f�A,δA (εA) =
∣∣∣ sin

(ϕ + φ

2

)∣∣∣, (63)

f�B,δB (εB) =
∣∣∣ sin

(ϕ − φ

2

)∣∣∣, (64)

which saturate relation (12). From Eqs. (61) and (62) it
appears clearly that the choice of τα,τβ = ±1 allows one
to saturate either the lower (for τα = +sgn[cos( ϕ+φ

2 )], τβ =
+sgn[cos( ϕ−φ

2 )]) or the upper (for τα = −sgn[cos( ϕ+φ

2 )],
τβ = −sgn[cos( ϕ−φ

2 )]) bounds on εA and εB. This proves the
tightness of both the lower and upper bounds imposed by
relation (12), for any specified values of �A,�B > 0 and of
δA,δB ∈ R.

Note that in the case where �A = 0 (�B = 0), the choice
ϕ = φ (ϕ = −φ) in the parametrization of {|mk〉}, together
with the choice of eigenvalues given in (57)–(60), also allows
one to saturate the constraints of Eq. (14) [(15)].

C. Tightness of relation (20)

Relation (20) considers the case where �A and �B
are specified. Let us now define τα = sgn[cos( ϕ+φ

2 )], τβ =
sgn[cos( ϕ−φ

2 )] and, for the specified values of �A and �B,

α1 = 〈A〉 + τα

sθ

cθ

�A, α2 = 〈A〉 − τα

cθ

sθ

�A, (65)

β1 = 〈B〉 + τβ

sθ

cθ

�B, β2 = 〈B〉 − τβ

cθ

sθ

�B. (66)

That is, we just set δA and δB to zero (which is their
optimal value here) and τα,τβ to sgn[cos( ϕ±φ

2 )] in the previous
definitions (57)–(60). With these definitions, A and B indeed
give the desired values of �A and �B.

For this choice of eigenvalues, Eqs. (61) and (62) become,
in the case �A,�B > 0,

�A2 + �A2 − ε2
A

2�A�A =
∣∣∣ cos

(ϕ + φ

2

)∣∣∣, (67)

�B2 + �B2 − ε2
B

2�B�B =
∣∣∣ cos

(ϕ − φ

2

)∣∣∣ (68)

(again, independent of θ ), and from the definitions (17) and
(19) we get, again as in (46),

g�A(εA) =
∣∣∣∣ sin

(
ϕ + φ

2

)∣∣∣∣, g�B(εB) =
∣∣∣∣ sin

(
ϕ − φ

2

)∣∣∣∣,
(69)

which saturate relation (20). This proves the tightness of the
lower bound on (εA,εB) imposed by relation (20), for any
specified values of �A,�B > 0. [Recall that relation (20)
does not impose any upper bound on εA and εB.]

Note that in the case where �A = 0 or �B = 0, the choice
ϕ = φ or −φ, together with the definitions (65) and (66), also
allows one to saturate the constraints of Eq. (21).
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D. Tightness of relation (26)

Instead of specifying �A and �B, relation (26) considers
the case where δA and δB are specified. For these given values,
let us now choose

α1 = 〈A〉 + δA + �A
sθ

cθ

cos

(
ϕ + φ

2

)
, (70)

α2 = 〈A〉 + δA − �A
cθ

sθ

cos

(
ϕ + φ

2

)
, (71)

β1 = 〈B〉 + δB + �B
sθ

cθ

cos

(
ϕ − φ

2

)
, (72)

β2 = 〈B〉 + δB − �B
cθ

sθ

cos

(
ϕ − φ

2

)
. (73)

That is, we set �A = �A| cos( ϕ+φ

2 )|, �B = �B| cos( ϕ−φ

2 )|
(which are their optimal values) and τα = sgn[cos( ϕ+φ

2 )],τβ =
sgn[cos( ϕ−φ

2 )] in the definitions (57)–(60). With these defini-
tions, A and B indeed give the desired values of δA and δB.

Using Eqs. (55) and (56) we then find, for the above values,

ε2
A − δ2

A = �A2 sin2

(
ϕ + φ

2

)
, (74)

ε2
B − δ2

B = �B2 sin2

(
ϕ − φ

2

)
(75)

(independent of θ ), and from the definitions (23) and (25) we
get, again as in (46),

hδA(εA) =
∣∣∣∣ sin

(
ϕ + φ

2

)∣∣∣∣, hδB (εB) =
∣∣∣∣ sin

(
ϕ − φ

2

)∣∣∣∣,
(76)

which saturate relation (26). This proves the tightness of the
lower bound on (εA,εB) imposed by relation (26), for any
specified values of δA,δB. [Recall again that relation (26) does
not impose any upper bound on εA and εB.]

E. Tightness of relation (29)

When no values of �A, δA, �B, or δB are specified a priori,
let us define the eigenvalues

α1 = 〈A〉 + �A
sθ

cθ

cos

(
ϕ + φ

2

)
, (77)

α2 = 〈A〉 − �A
cθ

sθ

cos

(
ϕ + φ

2

)
, (78)

β1 = 〈B〉 + �B
sθ

cθ

cos

(
ϕ − φ

2

)
, (79)

β2 = 〈B〉 − �B
cθ

sθ

cos

(
ϕ − φ

2

)
. (80)

That is, we just set δA and δB to zero (which is again their
optimal value here) in the previous definitions (70) and (73).
Equations (74) and (75) then simply give

ε̃A = εA
�A

=
∣∣∣∣ sin

(
ϕ + φ

2

)∣∣∣∣, ε̃B = εB
�B

=
∣∣∣∣ sin

(
ϕ − φ

2

)∣∣∣∣
(81)

(independent of θ ), which saturate relation (29). This proves
the tightness of our general error-trade-off relation (29) (which
had already been proven in [16]).

Note that, in this case, the above-chosen values of αk and
βk [Eqs. (77)–(80)] are equal to

αk = 〈A〉 + �A Re
〈mk|Ã0|ψ〉

〈mk|ψ〉 = Re
〈mk|A|ψ〉
〈mk|ψ〉

and

βk = 〈B〉 + �B Re
〈mk|B̃0|ψ〉

〈mk|ψ〉 = Re
〈mk|B|ψ〉
〈mk|ψ〉 .

These correspond to the “weak values”of A and B in the prese-
lected state |ψ〉 and the postselected state |mk〉 [33], which are
indeed optimal to minimize, for a given projection eigenbasis
{|mk〉}, the root-mean-square errors εA,εB [8,16]. Furthermore,
these optimal choices for the approximate observables A and
B satisfy �A2 = �A2 − ε2

A and �B2 = �B2 − ε2
B, as noted

in Ref. [8].

F. Tightness of relations (36) and (42) for 〈A〉 = 〈B〉 = 0 and
〈A〉 = 〈B〉 = 0 (and |〈 Ã0 B̃0〉| = 1)

We now consider the case where A, B, A, and B are all ±1-
valued observables, which are the assumptions under which
relations (36) and (42) hold.

Note that our choice of eigenbasis {|mk〉} introduced
above allows for only two possible projection outcomes
when measuring |ψ〉: |m1〉 or |m2〉. As the corresponding
eigenvalues of A and B are assumed here to be ±1, this
forces the values of 〈A〉 and 〈B〉, with our choice of {|mk〉},
to satisfy either |〈A〉| = 1, |〈B〉| = 1, or |〈A〉| = |〈B〉| =
||〈m1|ψ〉|2 − |〈m2|ψ〉|2| = |c2

θ − s2
θ |. This restricts the cases

that our construction allows us to consider. In fact, we shall now
prove the tightness of relations (36) and (42) in even further
restricted cases, namely when 〈A〉 = 〈B〉 = 0 for relation (36),
and when 〈A〉 = 〈B〉 = 0 for relation (42).

Note that, as before, the proof here is presented for the case
|〈Ã0B̃0〉| = 1. Contrary to the previous relations however, we
do not provide in the Appendix a similar proof for the case
|〈Ã0B̃0〉| < 1, and leave that (together with the cases where
〈A〉,〈B〉 �= 0 or 〈A〉,〈B〉 �= 0) as an open problem.

1. Tightness of relation (36) for 〈A〉 = 〈B〉 = 0

Let us use the value θ = π
4 in the definition of our projection

eigenbasis {|mk〉} above, and let us define the eigenvalues of
A and B to be

α1 = −α2 = τα = ±1, β1 = −β2 = τβ = ±1. (82)

These give the desired average values 〈A〉 = 〈B〉 = 0 (and
�A = �B = 1). Using Eqs. (55) and (56) (with �A2 = 1 −
〈A〉2, �B2 = 1 − 〈B〉2, and cθ sθ = 1

2 ), we then find

ε2
A/2 = 1 − τα�A cos

(
ϕ + φ

2

)
, (83)

ε2
B/2 = 1 − τβ�B cos

(
ϕ − φ

2

)
, (84)
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and from Eqs. (34) and (35) we get, again as in (46),

f〈A〉=0(εA) =
√

1 −
(

1 − ε2
A/2

�A

)2

=
∣∣∣∣ sin

(
ϕ + φ

2

)∣∣∣∣, (85)

f〈B〉=0(εB) =
√

1 −
(

1 − ε2
B/2

�B

)2

=
∣∣∣∣ sin

(
ϕ − φ

2

)∣∣∣∣, (86)

which saturate relation (36). From Eqs. (83) and (84), it
appears clearly that the choice of τα,τβ = ±sgn[cos( ϕ±φ

2 )]
allows one to saturate either the corresponding lower or the
corresponding upper bounds on εA and εB. This proves the
tightness of relation (36), for the case where 〈A〉 = 〈B〉 = 0
and |〈Ã0B̃0〉| = 1. Proving its tightness in the general case,13 or
otherwise deriving a tighter relation, is left as an open problem.

2. Tightness of relation (42) for 〈A〉 = 〈B〉 = 0

Assuming now that 〈A〉 = 〈B〉 = 0, and hence �A =
�B = 1, the previous choice of αk and βk (i.e., of A and
B) gives, for the definitions of Eqs. (39) and (41) [and using
(83) and (84)],

kA,�A=1(εA) =
√

1 − (
1 − ε2

A
/

2
)2 =

∣∣∣∣ sin

(
ϕ + φ

2

)∣∣∣∣, (87)

kB,�B=1(εB) =
√

1 − (
1 − ε2

B
/

2
)2 =

∣∣∣∣ sin

(
ϕ − φ

2

)∣∣∣∣, (88)

which saturate relation (42). Again, the choice of τα,τβ =
±sgn[cos( ϕ±φ

2 )] allows one to saturate either the correspond-
ing lower or upper bounds on εA and εB. This proves the
tightness of our relation (42), for the case where 〈A〉 = 〈B〉 =
0 and |〈Ã0B̃0〉| = 1 (which had already been proven in [16]).
As before, proving its tightness in the general case [13], or
otherwise deriving a tighter relation, is left as an open problem.

VI. OZAWA’S [7], HALL’S [8], AND WESTON et al.’S [11]
ERROR-TRADE-OFF RELATIONS ALL FOLLOW FROM

OUR TIGHT RELATIONS

Ozawa [7], Hall [8], and Weston et al. [11] have previ-
ously also derived universally valid error-trade-off relations
that restrain the possible values of (εA,εB) for all possible
approximate joint measurements. We now review these and
show explicitly that they follow from the relations we derived
in Sec. III—which are thus stronger than these (nontight)
previous relations.

A. Ozawa’s relation [7]

Ozawa’s error-trade-off relation [7] (first derived in terms
of error-disturbance trade-offs [6]) states that

εAεB + �BεA + �AεB � |CAB |, (89)

13From the discussion above, this would require one to use a
different projection eigenbasis from {|mk〉}—one that is not restricted
to the two-dimensional span{|ψ〉,Ã0|ψ〉,B̃0|ψ〉}—and to introduce
in general an ancillary system (or equivalently to consider general
POVMs).

or equivalently (when �A�B > 0, with ε̃A = εA
�A

and ε̃B =
εB
�B

as before)

ε̃Aε̃B + ε̃A + ε̃B � |C̃AB |. (90)

We already showed in Ref. [16] that this relation follows
directly from our relation (29). This can also easily be verified
using the alternative (equivalent) form of Eq. (45):

if ε̃2
A + ε̃2

B � 1 :

ε̃Aε̃B + ε̃A + ε̃B � ε̃A + ε̃B �
√

ε2
A + ε̃2

B � 1 � |C̃AB |,
if ε̃2

A + ε̃2
B � 1 :

ε̃Aε̃B + ε̃A + ε̃B � ε̃A + ε̃B

� ε̃A

√
1 − ε̃2

B + ε̃B

√
1 − ε̃2

A � |C̃AB |.

(91)

As can be seen above (and as already noted in [16]),
Ozawa’s relation actually remains valid if one drops the first
product term ε̃Aε̃B. Furthermore, his relation (even without the
first product term) can only be saturated in the very specific
case where ε̃A = 0 or ε̃B = 0. On the contrary, as shown in the
previous section our relation (29) [or (45), equivalently] can
always be saturated, and is thus strictly stronger than Ozawa’s.

B. Hall’s relation [8]

Independently from Ozawa, Hall [8] derived the relation

εAεB + �BεA + �AεB � |CAB |. (92)

Although Hall’s relation looks quite similar to Ozawa’s, it is
in fact fundamentally different. Note indeed that instead of
the (fixed) standard deviations �A,�B of the observables
A and B, it involves the standard deviations �A,�B of the
approximations A and B. In particular, contrary to Ozawa’s
relation, one cannot drop the first product term εAεB in
Hall’s relation (when |CAB | > 0), as it is for instance always
possible to choose approximate observables A,B such that
�A = �B = 0, and hence �AεB + �BεA cannot be lower
bounded by any strictly positive term.

Because Hall’s relation involves the parameters �A,�B
that depend on the particular choice of A and B, it
cannot—contrary to Ozawa’s—be derived from (29). We
show below that it follows instead from our relation (20)
(which precisely also involves �A,�B). For that, let us
first show more generally that from any relation of the form
(43)—or (44), equivalently—with uA,uB � 1, it follows that,
for any X,Y � 0:√

u2
A+(√1 − u2

A−X
)2

√
u2
B+(√1 − u2

B−Y
)2

+ Y

√
u2
A+(√1 − u2

A−X
)2 + X

√
u2
B+(√1 − u2

B−Y
)2

� |C̃AB |. (93)

Proof. Similarly to Hall’s derivation [8], our proof is
based on the decomposition of a scalar product â · b̂ in the
form â · b̂ = (â−
x) · (b̂−
y) + â · 
y + 
x · b̂, where 
x,
y are two
orthogonal vectors (
x · 
y = 0), and on the application of the
Cauchy-Schwartz (CS) inequality to the three scalar products
of the decomposition. Let us indeed consider the following
two cases.
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(i) Assume first that u2
A + u2

B � 1. From the CS inequality,
we have(√

1 − u2
A − X

uA

)(
uB√

1 − u2
B − Y

)

�
√

u2
A+(√1 − u2

A−X
)2

√
u2
B+(√1 − u2

B−Y
)2

,(√
1 − u2

A − X

uA

)(
0
Y

)
� Y

√
u2
A+(√1 − u2

A−X
)2

,

(
X

0

)(
uB√

1 − u2
B − Y

)
� X

√
u2
B+(√1 − u2

B−Y
)2

.

By summing the right-hand side (RHS) of the three inequalities
above, we get the left-hand side (LHS) of Eq. (93). On the other
hand, the sum of the LHS of the three inequalities above gives(√

1 − u2
A

uA

)(
uB√

1 − u2
B

)
= uA

√
1 − u2

B + uB

√
1 − u2

A

which, by assumption [from Eq. (44), in the case where
u2
A + u2

B � 1], is lower bounded by |C̃AB |. Summing the three
inequalities above thus leads to Eq. (93).

(ii) Assume now that u2
A + u2

B � 1. Following similar
calculations as in the previous case, but replacing uB
by

√
1 − u2

A, leads to a similar inequality as Eq. (93),
where u2

B+(
√

1 − u2
B − Y)2 is replaced by 1 − u2

A+(uA−Y)2

and the RHS is 1 (� |C̃AB |). Now, one can easily
check that, when u2

A + u2
B � 1, u2

B+(
√

1 − u2
B − Y)2 � 1 −

u2
A+(uA−Y)2, which allows one to conclude that Eq. (93) still

holds. �
In the case where �A,�B > 0, relation (20) thus im-

plies Eq. (93) with uA = g�A(εA) and uB = g�B(εB); taking
X = �A

�A
and Y = �B

�B
, this leads, after simplification and

multiplication by �A�B, to

ε
(min)
A ε

(min)
B + �Bε

(min)
A + �Aε

(min)
B � |CAB |, (94)

with ε
(min)
A = min[εA,

√
�A2 + �A2] and ε

(min)
B =

min[εB,
√

�B2 + �B2]. Using εA � ε
(min)
A and εB � ε

(min)
B ,

this in turn implies Hall’s relation (92). In the case where
�A = 0, using Eq. (21, left) we directly find

εAεB + �BεA � �A
(|�B − �B| + �B

)
� �A�B � |CAB |, (95)

which gives again Hall’s relation (with �A = 0); the case
where �B = 0 is obtained similarly.

The independent use of three CS inequalities in the proof
above, which cannot in general all be saturated simultaneously,
explains the nonoptimality of Hall’s relation, as opposed to our
relation (20). Looking at the saturation conditions for the three
CS inequalities, one can see that Hall’s relation can only be
saturated if εA = 0 or εB = 0, or if �A�B = 0, εA = �A −
�A, εB = �B − �B, and A, B, and |ψ〉 saturate Robertson’s
relation (i.e., �A�B = |CAB |, or equivalently |C̃AB | = 1).

Note that other (nontight) inequalities can be derived from
our relations of Sec. III and by using Eq. (93), for different
values of X and Y. For instance, from Eq. (29)—more precisely,

from a similar (in fact, equivalent) relation to Eq. (29) where ε̃A
and ε̃B are replaced by ε̄A = min[ε̃A,1] and ε̄B = min[ε̃B,1]—
and with the choice X =

√
1 − ε̄2

A and Y =
√

1 − ε̄2
B, one

obtains

ε̄Aε̄B +
√

1 − ε̄2
B ε̄A +

√
1 − ε̄2

Aε̄B � |C̃AB |, (96)

which in turn implies Ozawa’s relation (89). The nonoptimality
of Ozawa’s relation—and in particular its first, unnecessary
product term—thus also appears to be due to the independent
use of three CS inequalities in its proof [6,7], which cannot in
general be saturated simultaneously.

C. Weston et al.’s relation [11]

A new error-trade-off relation was recently derived by
Weston et al. [11], which reads

�B + �B
2

εA + �A + �A
2

εB � |CAB |. (97)

We will show in a similar manner that this relation can be
derived from (29). Let us here first show more generally that
from any relation of the form (43)—or (44), equivalently—
with uA,uB � 1, it follows that, for any X,Y � 0,

1 + Y

2

√
u2
A+(√1 − u2

A−X
)2

+1 + X

2

√
u2
B+(√1 − u2

B−Y
)2 � |C̃AB |. (98)

Proof. The proof here uses a similar trick as the proof
of Eq. (93) above, using now (as in Weston et al.’s deriva-
tion [11]) the decomposition of a scalar product â · b̂ in
the form â · b̂ = 1

2 [(â−
x) · b̂ + â · (b̂−
y) + (â−
x) · 
y + 
x ·
(b̂−
y)], where 
x,
y are two orthogonal vectors (
x · 
y = 0), and
applying the CS inequality to the four scalar products of the
decomposition. We consider again the following two cases.

(i) Assume first that u2
A + u2

B � 1. From the CS inequality,
we have(√

1 − u2
A − X

uA

)(
uB√

1 − u2
B

)
�
√

u2
A+(√1 − u2

A−X
)2

,

(√
1 − u2

A
uA

)(
uB√

1 − u2
B − Y

)
�
√

u2
B+(√1 − u2

B−Y
)2

,

(
X

0

)(
uB√

1 − u2
B − Y

)
� X

√
u2
B+(√1 − u2

B−Y
)2

,

(√
1 − u2

A − X

uA

)(
0
Y

)
� Y

√
u2
A+(√1 − u2

A−X
)2

.

By summing the RHS of the four inequalities above and
dividing by 2, we get the LHS of Eq. (98). On the other hand,
the sum of the LHS of the four inequalities above, divided by
2, gives again(√

1 − u2
A

uA

)(
uB√

1 − u2
B

)
= uA

√
1 − u2

B + uB

√
1 − u2

A
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which, by assumption [from Eq. (44), in the case where
u2
A + u2

B � 1], is lower bounded by |C̃AB |. Summing the four
inequalities above thus leads to Eq. (98).

(ii) Assume now that u2
A + u2

B � 1. Following again similar
calculations as in the previous case, but replacing uB by√

1 − u2
A, leads to a similar inequality as Eq. (98), where

u2
B+(

√
1 − u2

B − Y)2 is replaced by 1 − u2
A+(uA−Y)2 and the

RHS is 1 (� |C̃AB |). As previously, using the fact that when
u2
A + u2

B � 1, u2
B+(

√
1 − u2

B − Y)2 � 1 − u2
A+(uA−Y)2 al-

lows one to conclude that Eq. (98) still holds. �
Similar to the previous subsection, in the case where

�A,�B > 0, relation (20) also implies Eq. (98) with uA =
g�A(εA) and uB = g�B(εB); taking again X = �A

�A
and Y =

�B
�B

, this leads, after simplification and multiplication by
�A�B, to

�B + �B
2

ε̄
(min)
A + �A + �A

2
ε̄

(min)
A � |CAB | (99)

(with again ε
(min)
A = min[εA,

√
�A2 + �A2] and ε

(min)
B =

min[εB,
√

�B2 + �B2]), which in turn implies Weston et al.’s
relation (97). In the case where �A = 0, Eq. (21, left) directly
implies

�B+�B
2

εA + �A

2
εB � �B+�B

2
�A + �A

2
|�B−�B|

� �A�B � |CAB |, (100)

which gives again Weston et al.’s relation (with �A = 0); the
case where �B = 0 is obtained similarly.

Once again, the independent use of four CS inequalities in
the proof above explains the nonoptimality of Weston et al.’s
relation, as opposed to our relation (20). As before, one can
check that Weston et al.’s relation can only be saturated if
εA = 0 or εB = 0, or if �A�B = 0, εA = �A − �A, εB =
�B − �B, and A, B, and |ψ〉 saturate Robertson’s relation.

Note again that one could also derive other (nontight)
inequalities from our relations of Sec. III, by using Eq. (98)
with different values of X and Y.

VII. CASE OF MIXED STATES

So far we only considered the case where the state |ψ〉 ∈ H
under study is pure. In this final section we extend our analysis
to mixed states and thus consider instead a density matrix
ρ ∈ L(H) [where L(H) is the space of linear operators acting
on the Hilbert space H], on which the joint measurement of
two (incompatible) observables A and B is to be approximated.

All the definitions introduced in Sec. II easily generalize;
for instance, we now have �A = Tr[(A − 〈A〉)2ρ]1/2, �B =
Tr[(B − 〈B〉)2ρ]1/2, CAB = 1

2i
Tr([A,B]ρ), and, still assum-

ing �A,�B > 0, C̃AB = CAB

�A�B
. Moreover, Ozawa’s frame-

work for approximate joint measurements also generalizes
easily: a joint measurement of A and B can be approximated
by the measurement of two compatible observables A and
B on the system ρ ⊗ |ξ 〉〈ξ | composed on the state ρ and
of an ancillary state |ξ 〉〈ξ | ∈ L(K). Ozawa’s inaccuracies

(root-mean-square errors) εA,εB are now given by

ε2
A = Tr[(A − A)2(ρ ⊗ |ξ 〉〈ξ |)], (101)

ε2
B = Tr[(B − B)2(ρ ⊗ |ξ 〉〈ξ |)] (102)

(where, again, A and B stand for simplicity for A ⊗ 1K and
B ⊗ 1K). Note in particular that the squared inaccuracies ε2

A
and ε2

B are linear in ρ. The definitions of �A, �B, δA, and δB
are also trivial to generalize.

It is straightforward to check that all error-trade-off rela-
tions derived in Sec. III still hold in the case of mixed states:
indeed, ρ ∈ L(H) can always be thought of as the partial trace
of a pure state |ψ〉 in some extended Hilbert space H ⊗ H′.
By extending the observables A, B, A, and B appropriately
in the form A′ = A ⊗ 1H′ , B ′ = B ⊗ 1H′ , A′ = A ⊗ 1H′ , and
B′ = B ⊗ 1H′ , we have (with obvious notations)

�A′ = �A, �B ′ = �B, C̃A′B ′ = C̃AB,

εA′ = εA, εB′ = εB, (103)

�A′ = �A, �B′ = �B, δA′ = δA, δB′ = δB.

Now, the relations of Sec. III, proven for pure states, neces-
sarily hold for the primed quantities above; as the nonprimed
quantities are the same, the relations also hold for the latter.

However, the main difference with the case of pure states is
that our relations are in general not tight for mixed states. The
reason why the proofs of Sec. V and of the Appendix fail here is
that these assumed that the approximate observables A and B
could access the whole Hilbert space containing the pure state
|ψ〉 (or, in fact, at least the whole span{|ψ〉,Ã0|ψ〉,B̃0|ψ〉}).
Now, if the mixed state ρ is the partial trace of a pure state |ψ〉 ∈
H ⊗ H′, and one can only access and measure the state ρ, the
possible approximate measurements A and B are restricted to
act only on H (and possibly on the ancillary space K), rather
than on H ⊗ H′. As the constructions for A and B used in
Sec. V and in the Appendix would not be restricted here to the
subspace H (but would act on the space H ⊗ H′ containing
the purification |ψ〉), these cannot in general be used in the
case of mixed states.

A. Simple example

Let us illustrate these considerations with the following
example. Consider the fully mixed qubit state ρ = 1H/2 =
1
2 (|0〉〈0| + |1〉〈1|) (with H = C2), and choose the two ob-
servables A and B to be the Pauli operators A = σx =
|1〉〈0| + |0〉〈1| and B = σy = i|1〉〈0| − i|0〉〈1|. For this state
and this pair of observables, we find (writing from now on the
dependency on the state explicitly)

�A(ρ) = �B(ρ) = 1, CAB(ρ) = 0, (104)

and hence our error-trade-off relation (29) writes

εA(ρ)2 + εB(ρ)2 + 2εA(ρ)εB(ρ) � 0, (105)

which is trivial and does not impose any restriction on the
possible values of (εA(ρ),εB(ρ)).

Note however that for the states |0〉 and |1〉, one still
gets �A(|0〉) = �A(|1〉) = �B(|0〉) = �B(|1〉) = 1, but now
CAB(|0〉) = −CAB(|1〉) = 1, and our relation (29) imposes that

εA(|0〉)2 + εB(|0〉)2 � 1, εA(|1〉)2 + εB(|1〉)2 � 1. (106)
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Now, by the linearity of ε2
A and ε2

B in the density matrix,
and from the decomposition ρ = 1

2 (|0〉〈0| + |1〉〈1|), we have

εA(ρ)2 = 1
2 [εA(|0〉)2 + εA(|1〉)2], (107)

εB(ρ)2 = 1
2

[
εB(|0〉)2 + εB(|1〉)2

]
, (108)

and by summing these relations we find, using (106),

εA(ρ)2 + εB(ρ)2 � 1. (109)

This tells us that the possible values of (εA(ρ),εB(ρ)) are in
fact restricted14—which our relation (29) failed to detect when
applied directly [as we first did above in Eq. (105)]. As a matter
of fact, the relation (109) is tight: taking, for instance, A =
cos ϕ(cos ϕσx + sin ϕσy) and B = sin ϕ(cos ϕσx + sin ϕσy),
for any ϕ ∈ R, gives εA(ρ)2 = sin2 ϕ and εB(ρ)2 = cos2 ϕ,
which saturate (109).

It is instructive to see in this example why the tightness of
the (then trivial) relation (29) for any purification of ρ does
not imply its tightness for the mixed state (partial trace) ρ. The
fully mixed state ρ = 1H/2 can be purified to a maximally
entangled state, say |�+〉 = 1√

2
(|00〉 + |11〉) ∈ H ⊗ H′, with

H′ = H = C2. As described above, the observables A = σx

and B = σy can be extended to A′ = σx ⊗ 1H′ and B ′ =
σy ⊗ 1H′ , to be measured on |�+〉. According to (29), and as in
(105), there is in general no restriction on (εA(|�+〉),εB(|�+〉))
if the approximations have access to the extended
Hilbert space; one can indeed get εA(|�+〉) = εB(|�+〉) =
0 by choosing, for instance, A = |�+〉〈�+| + |�+〉〈�+| +
|�−〉〈�−| and B = i(|�+〉〈�−| − |�−〉〈�+| + |�+〉〈�−| −
|�−〉〈�+|) [with |�±〉 = 1√

2
(|01〉 ± |10〉)]. However, the

values εA(|�+〉) = εB(|�+〉) = 0 cannot be obtained with any
observables A,B of the form AH⊗K ⊗ 1H′ ,BH⊗K ⊗ 1H′ (and
neither can any values such that ε2

A + ε2
B < 1)—as this would

otherwise violate the relation (109).

B. Strengthening our error-trade-off relations for mixed states

The previous example shows that although our error-trade-
off relations of Sec. III—e.g. (29)—are in general not tight
(and may even be trivial) for mixed states, one can still obtain
stronger relations by combining them in appropriate ways.

Consider, more generally, any decomposition ρ =∑
i pi |ψi〉〈ψi | (with pi � 0,

∑
i pi = 1) of an arbitrary mixed

state ρ. By linearity of ε2
A and ε2

B, one has εA(ρ)2 =∑
i piεA(|ψi〉)2 and εB(ρ)2 = ∑

i piεB(|ψi〉)2. Now, the val-
ues of each pair (εA(|ψi〉),εB(|ψi〉)) are restricted to satisfy
in particular the (tight) relation (29); let us denote the set of
possible values (εA(|ψi〉),εB(|ψi〉)) by SA,B(|ψi〉). This allows
us to state the following necessary condition that the values
of (εA(ρ),εB(ρ)) must satisfy, for any such decomposition

14This relation strengthens significantly one given in [27], where it is
claimed that no restrictions on (εA(ρ),εB(ρ)), for ρ = 1H/2, could be
obtained from previously known error-trade-off relations [including
(29)]. We show here that such restrictions can in fact be obtained,
indirectly.

of ρ,

∀i, ∃(ε(i)
A ,ε

(i)
B
) ∈ SA,B(|ψi〉),

s.t. εA(ρ)2 =
∑

i

pi

(
ε

(i)
A
)2

, εB(ρ)2 =
∑

i

pi

(
ε

(i)
B
)2

.

(110)

We leave open the problem of finding a systematic way
to translate this constraint into a simple relation, and to
systematically find the optimal decomposition that leads to
a tight relation for (εA(ρ),εB(ρ))—as we did above in the
particular case of the one-qubit fully mixed state.

To finish with, let us mention that the other error-trade-
off relations of Sec. III can also be strengthened for mixed
states, using similar ideas as above. However, that may in
general require one to solve even more tedious constrained
optimization problems.

VIII. CONCLUSION

We have derived in this paper a number of error-
trade-off relations—Eqs. (12), (20), (26), (29), (36), and
(42)—bounding Ozawa’s inaccuracies in the approximate
joint measurement of two incompatible observables A and
B, and bounding the inaccuracy and the disturbance in
a measurement-disturbance scenario. These relations are
adapted to different cases, where one may specify certain
properties of the approximations A and B. They were shown
to all follow from our first relation (12), which holds for
some specified values of the standard deviations �A, �B,
and of the biases δA, δB. As our relations are derived in the
general framework of Ozawa, they could be tested with the
same experimental setups as those used in Refs. [9–15].

We showed that our relations Eqs. (12), (20), (26), and (29)
are all tight for pure states, and so are the relations (36) and
(42) in some particular cases. In particular, they are stronger
than the previously known relations of Ozawa [6,7], Hall [8],
and Weston et al. [11], which could be explicitly derived from
our relations directly. Our study has allowed us to clarify the
difference between the similar-looking relations of Ozawa and
Hall, as well as with Weston et al.’s relation, and to pinpoint
precisely why their derivations are nonoptimal. The question
of the tightness of our relations for mixed states has also been
addressed; we have shown how to combine our (no longer
tight) relations and still obtain possibly tight constraints for
mixed states. The question of the tightness of error-trade-off
or error-disturbance relations is quite relevant indeed: tight
relations give not only negative results (by quantifying “what
cannot be done quantum mechanically”), but also positive
results (by specifying “what can be done”). In our proofs that
our relations are tight, we constructed explicit measurement
schemes allowing one to obtain any values of (εA,εB) that
saturate our relations.

Our work has been focused on Ozawa’s framework and
definitions for measurement inaccuracies. As mentioned in
the Introduction, however, other approaches have been (and
certainly will be) proposed to quantify the measurement
uncertainty aspect of Heisenberg’s uncertainty principle. In
the prospect of possible applications in quantum information
science, a promising direction of research is for instance
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the study of entropic relations, as recently considered in
Refs. [27,31]. It will be interesting to see if any of the
techniques used in this paper (e.g., the cascaded derivation
of error-trade-off relations from one another, the study of their
tightness) could be adapted and used in other contexts, where
another approach to quantifying Heisenberg’s uncertainty
principle is studied.
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APPENDIX: TIGHTNESS OF OUR ERROR-TRADE-OFF
RELATIONS (12), (20), (26), AND (29) FOR |〈 Ã0 B̃0〉| < 1

In this appendix we prove that our relations (12), (20), (26),
and (29) are tight when |〈Ã0B̃0〉| < 1, thus completing the
proof of Sec. V in which the case |〈Ã0B̃0〉| = 1 was considered.
The proof here follows very similar lines to that of the main
text, and just involves slightly more tedious calculations. For
simplicity we shall not repeat all the details of the proof, but
insist on what is different from Sec. V.

Let us again define φ = arg〈Ã0B̃0〉 ∈ [−π,π ], and let us
now also introduce r = |〈Ã0B̃0〉|, with 0 � r < 1 in the case
considered here, and φ′ = arcsin C̃AB ∈ ]−π

2 , π
2 [—such that

〈Ã0B̃0〉 = reiφ and C̃AB = Im〈Ã0B̃0〉 = r sin φ = sin φ′. The
values of (uA,uB) that saturate the general relation (43) [or
(44), equivalently] can then be parametrized by(

uA =
∣∣∣∣ sin

(
ϕ + φ′

2

)∣∣∣∣, uB =
∣∣∣∣ sin

(
ϕ − φ′

2

)∣∣∣∣
)

, (A1)

for a varying value of ϕ ∈ [−|φ′|,|φ′|]. As in Sec. V, in order
to show the tightness of our error-trade-off relations, we will
show that the corresponding functions (uA,uB) can indeed take
these values.

It will be convenient below to use the notations cφ(′) =
cos φ(′) and sφ(′) = sin φ(′) (such that rsφ = sφ′), and to define
q = cφ

cφ′ (note that cφ′ � |cφ| and cφ′ > 0, so that |q| � 1).

1. Parametrization of A and B
Let us first introduce a different parametrization15 for the

approximate observables A and B, acting on (the now three-
dimensional) span{|ψ〉,Ã0|ψ〉,B̃0|ψ〉}.

We first define

|v1〉 = |ψ〉, (A2)

|v2〉 = eiφ/2Ã0 + e−iφ/2B̃0√
2 + 2r

|ψ〉, (A3)

|v3〉 = eiφ/2Ã0 − e−iφ/2B̃0√
2 − 2r

|ψ〉, (A4)

15Note that the parametrization introduced in Sec. V cannot be used
in the case |〈Ã0B̃0〉| < 1, as the unit vectors Ã0|ψ〉 and B̃0|ψ〉 are no
longer the same (up to a phase). Our parametrization here is again
somewhat clearer, but equivalent to that used in [16].

so that {|v1〉,|v2〉,|v3〉} forms an orthonormal basis of
span{|ψ〉,Ã0|ψ〉,B̃0|ψ〉}. Note that Ã0|ψ〉 and B̃0|ψ〉 are then
given by

Ã0|ψ〉 = e−iφ/2

(√
1 + r

2
|v2〉 +

√
1 − r

2
|v3〉

)
, (A5)

B̃0|ψ〉 = eiφ/2

(√
1 + r

2
|v2〉 −

√
1 − r

2
|v3〉

)
. (A6)

For a given ϕ ∈ [−|φ′|,|φ′|], and for any three parameters
θ1,θ2,θ3 ∈ R such that cos θ1 sin θ1 cos θ2 sin θ2 �= 0, let us
define (with cj = cos θj and sj = sin θj for j = 1,2,3) the
complex parameters

γ1 =
√

1+q

2
c3e

iϕ/2 − i sgn(sφ)

√
1 − q

2
s3e

−iϕ/2, (A7)

γ2 =
√

1+q

2
s3e

−iϕ/2 − i sgn(sφ)

√
1 − q

2
c3e

iϕ/2, (A8)

such that |γ1|2 + |γ2|2 = 1, and

|m1〉 = c1|v1〉 − s1γ1|v2〉 − s1γ2|v3〉,
|m2〉 = s1c2|v1〉 + (c1c2γ1+s2γ

∗
2 )|v2〉 + (c1c2γ2−s2γ

∗
1 )|v3〉,

|m3〉 = s1s2|v1〉 + (c1s2γ1 − c2γ
∗
2 )|v2〉 + (c1s2γ2+c2γ

∗
1 )|v3〉

(A9)

(where γ ∗
j denotes the complex conjugate of γj ), so

that {|m1〉,|m2〉,|m3〉} also forms an orthonormal basis of
span{|ψ〉,Ã0|ψ〉,B̃0|ψ〉}. If the dimension of H is larger than
3, we complete that basis with other vectors |mk�4〉 orthogonal
to |m1〉, |m2〉, and |m3〉 (which are hence orthogonal to |ψ〉).

As in Sec. V, the basis {|mk〉} is chosen to be the common
eigenbasis of A and B, defined again through Eq. (50). With
this parametrization, we get

〈A〉 = α1c
2
1 + α2s

2
1c

2
2 + α3s

2
1s

2
2 , δA = 〈A〉 − 〈A〉,

�A2 = (α1 − 〈A〉)2c2
1 + (α2−〈A〉)2s2

1c
2
2 + (α3−〈A〉)2s2

1s
2
2 ,

(A10)

〈B〉 = β1c
2
1 + β2s

2
1c

2
2 + β3s

2
1s

2
2 , δB = 〈B〉 − 〈B〉,

�B2 = (β1 − 〈B〉)2c2
1 + (β2−〈B〉)2s2

1c
2
2 + (β3−〈B〉)2s2

1s
2
2 .

(A11)

2. Calculation of εA and εB

Defining

F± =
√

1 + q

2

√
1 ± r

2
cos

(
ϕ ± φ

2

)

± sgn(sφ)

√
1 − q

2

√
1 ∓ r

2
sin

(
ϕ ± φ

2

)
, (A12)

G± = ±
√

1 + q

2

√
1 ± r

2
cos

(
ϕ ∓ φ

2

)

− sgn(sφ)

√
1 − q

2

√
1 ∓ r

2
sin

(
ϕ ∓ φ

2

)
, (A13)
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we find, after some calculations,

Re〈ψ |Ã0|m1〉〈m1|ψ〉 = −c1s1(c3F++s3F−), (A14)

Re〈ψ |Ã0|m2〉〈m2|ψ〉 = s1c2
[
c1c2(c3F++s3F−)

+ s2(s3F+−c3F−)
]
, (A15)

Re〈ψ |Ã0|m3〉〈m3|ψ〉 = s1s2
[
c1s2(c3F++s3F−)

− c2(s3F+−c3F−)
]
, (A16)

and similarly for Re〈ψ |B̃0|mk〉〈mk|ψ〉, where F± are replaced
by G±.

Note further that

(c3F++s3F−)2 + (s3F+−c3F−)2

= F 2
+ + F 2

−

= 1

2
[1 + (qcφ +

√
1 − q2

√
1 − r2|sφ|) cos ϕ − rsφ sin ϕ]

= 1

2

⎡
⎣1 +

⎛
⎝ c2

φ

cφ′
+
√√√√c2

φ′−c2
φ

c2
φ′

√
s2
φ−s2

φ′

⎞
⎠ cos ϕ − sφ′ sin ϕ

⎤
⎦

= 1

2
(1 + cφ′ cos ϕ − sφ′ sin ϕ) = cos2

(
ϕ + φ′

2

)
, (A17)

and, similarly,

(c3G++s3G−)2 + (s3G+−c3G−)2 = cos2

(
ϕ − φ′

2

)
. (A18)

This implies that there exist two real parameters θa,θb

such that, with ca = cos θa, sa = sin θa, cb = cos θb, and sb =
sin θb,

c3F+ + s3F− = ca cos

(
ϕ + φ′

2

)
, (A19)

s3F+ − c3F− = sa cos

(
ϕ + φ′

2

)
, (A20)

c3G+ + s3G− = cb cos

(
ϕ − φ′

2

)
, (A21)

s3G+ − c3G− = sb cos

(
ϕ − φ′

2

)
. (A22)

Equations (6) and (7) (with Re〈Ã0A〉 =∑
αkRe〈ψ |Ã0|mk〉〈mk|ψ〉 and Re〈B̃0B〉 =∑
βkRe〈ψ |B̃0|mk〉〈mk|ψ〉), together with Eqs. (A14)–(A16),

then imply

ε2
A − δ2

A = �A2 + �A2 − 2�AXα cos

(
ϕ + φ′

2

)
, (A23)

ε2
B − δ2

B = �B2 + �B2 − 2�BYβ cos

(
ϕ − φ′

2

)
, (A24)

with

Xα = s1
[(−α1 + α2c

2
2 + α3s

2
2

)
c1ca + (α2 − α3)c2s2sa

]
,

Yβ = s1
[(−β1 + β2c

2
2 + β3s

2
2

)
c1cb + (β2 − β3)c2s2sb

]
.

(A25)

3. Tightness of relation (12)

We shall now only sketch the calculations that allow us to prove
the tightness of our relations (12), (20), (26), and (29), and refer
to Sec. V of the main text for more detailed explanations.

Relation (12) holds for some specified values of
�A, �B, δA, and δB. For these values and for some choice of
τα,τβ = ±1, we define the eigenvalues of A and B to be

α1 = 〈A〉 + δA − τα

s1ca

c1
�A, (A26)

α2 = 〈A〉 + δA + τα

c1c2ca + s2sa

s1c2
�A, (A27)

α3 = 〈A〉 + δA + τα

c1s2ca − c2sa

s1s2
�A, (A28)

β1 = 〈B〉 + δB − τβ

s1cb

c1
�B, (A29)

β2 = 〈B〉 + δB + τβ

c1c2cb + s2sb

s1c2
�B, (A30)

β3 = 〈B〉 + δB + τβ

c1s2cb − c2sb

s1s2
�B. (A31)

Note that these are defined such that A and B indeed give the
desired values of �A, �B, δA, δB [see (A10) and (A11)], and
furthermore satisfy

Xα = τα�A, Yβ = τβ�B. (A32)

Equations (A23) and (A24) then imply that Eqs. (61) and
(62) hold again for �A,�B > 0 (with φ replaced by φ′, and
independent of θ1,θ2,θ3), which, as in Sec. V B, leads to the
conclusion that relation (12) is tight. In the case where �A = 0
or �B = 0, the above choice of eigenvalues (A26)–(A31) also
allows one to saturate the constraints of Eq. (14) or (15).

4. Tightness of relation (20)

In order to prove the tightness of relation (20), which
holds for specified values of �A and �B, one can as in
Sec. V C simply set δA = δB = 0 and τα = sgn[cos( ϕ+φ′

2 )],

τβ = sgn[cos( ϕ−φ′
2 )] in the previous definitions (A26)–(A31).

These still give the desired values for �A and �B, and lead
now, for �A,�B > 0, to Eqs. (67) and (68) (with φ → φ′)—
which, as in Sec. V C, leads to the conclusion that relation
(20) is tight. In the case where �A = 0 or �B = 0, the given
choice of eigenvalues also allows one to saturate the constraints
of Eq. (21).

5. Tightness of relation (26)

To prove the tightness of relation (26), which holds for
specified values of δA and δB, one can now, as in Sec. V D,
set �A = �A| cos( ϕ+φ′

2 )|, �B = �B| cos( ϕ−φ′
2 )| and τα =

sgn[cos( ϕ+φ′
2 )], τβ = sgn[cos( ϕ−φ′

2 )] in the definitions (A26)–
(A31).

With these definitions, A and B indeed give the desired
values of δA and δB, and we get

Xα = �A cos

(
ϕ+φ′

2

)
, Yβ = �B cos

(
ϕ−φ′

2

)
, (A33)

so that Eqs. (A23) and (A24) imply that Eqs. (74) and (75)
hold again (with φ → φ′)—which, as in Sec. V D, leads to the
conclusion that relation (26) is tight.
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6. Tightness of relation (29)

To finally prove the tightness of relation (29), one can set
δA = δB = 0, �A = �A| cos( ϕ+φ′

2 )|, �B = �B| cos( ϕ−φ′
2 )|,

and τα = sgn[cos( ϕ+φ′
2 )], τβ = sgn[cos( ϕ−φ′

2 )] in the choice of

eigenvalues (A26)–(A31). Note that this amounts to defining
αk = Re 〈mk |A|ψ〉

〈mk |ψ〉 and βk = Re 〈mk |B|ψ〉
〈mk |ψ〉 , as already noted in

Sec. V D. We find that (81) still holds (with φ → φ′), which
proves the tightness of relation (29).
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