
Guest Editorial 1 

 2 

Understanding the virulence of Haemophilus parasuis 3 

 4 

 Haemophilus parasuis is the causative agent of a disease, Glässer’s disease, that was 5 

once regarded as a sporadic disease of young stressed pigs (Rapp-Gabrielson et al., 2006). 6 

However, there is no doubt that modern pig production systems have resulted in the 7 

emergence of this agent as a major cause of economic loss to pig industries around the world 8 

(Aragon et al., 2012). This emergence of a once sporadic disease has highlighted the need to 9 

understand the virulence mechanisms of this pathogen. A timely review by Drs Mar Costa-10 

Hurtado and Virginia Aragon of the Universitat Autònoma de Barcelona, published in this 11 

issue of The Veterinary Journal, provides a comprehensive overview of our current 12 

knowledge of the virulence factors of H. parasuis (Costa-Hurtado and Aragon, 2013). 13 

 14 

 While the review makes clear that there has been considerable research in the area, it 15 

is clear that progress towards a more complete understanding of the virulence mechanisms of 16 

this key pathogen has been limited by a number of issues: 1) a very difficult challenge model; 17 

2) the diversity of isolates present as both colonisers of the upper respiratory tract and in 18 

disease outbreaks; and 3) the range in virulence seen in ‘virulent’ H. parasuis isolates. The 19 

result of these limitations, as is clearly shown in the review by Costa-Hurtado and Aragon 20 

(2013), is that there are few factors that are clearly and definitely associated with virulence. 21 

 22 

 The ability to perform challenge trials in a realistic and practical setting is a key 23 

capacity. It is interesting to note that close relatives of H. parasuis, such as Avibacterium 24 

paragallinarum and Actinobacillus pleuropneumoniae, are organisms in which challenge 25 
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models are easy to perform, use an upper respiratory tract challenge and involve conventional 26 

naïve animals, as shown in studies from our group (Tumamao et al., 2004; Gong et al., 2013). 27 

In contrast, the models used to reproduce Glässer’s disease are difficult to use, involve 28 

unrealistic challenge methods that by-pass typical upper respiratory tract defences or use 29 

animals lacking a normal immune capacity. The models have included intra-peritoneal 30 

injection of specific-pathogen-free pigs (Kielstein and Rapp-Gabrielson, 1992), intranasal 31 

challenge of snatch farrowed colostrum deprived piglets (Aragon et al., 2010) or intra-tracheal 32 

challenge of snatch farrowed colostrum deprived piglets (Turni and Blackall, 2007). 33 

 34 

Falkow (1988) introduced the concept of ‘molecular Koch’s postulates’ (identifying a 35 

potential virulence-linked gene, knocking out that gene and then showing that the mutant has 36 

no or reduced virulence, while the restored mutant returns to full virulence), the application of 37 

which has provided significant insight into many pathogens (Falkow, 2004). With H. 38 

parasuis, studies seeking to utilise an approach such as the molecular Koch’s postulates to 39 

confirm the role of a virulence factor have a major problem: the difficulty performing 40 

pathogenicity trials. There is no doubt that this challenge is major reason why we have so 41 

little definitive knowledge on the virulence factors of H. parasuis. While some studies have 42 

elected to use a mouse model (presumably to overcome the difficulty and expense of the 43 

available pig models), this model is not particularly relevant. Morozumi et al. (1982) showed 44 

that H. parasuis can cause death but with few, if any, lesions in a mouse model. 45 

 46 

As noted in the review by Costa-Hurtado and Aragon (2013), the literature contains 47 

many studies comparing and contrasting ‘virulent’ and ‘non-virulent’ strains and isolates. 48 

Since pathogenicity screening is so difficult, these studies on potential virulence mechanisms 49 

often have to compare and contrast nasal isolates from herds/animals with no history of 50 



clinical Glässer’s disease (assumed to be non-virulent) and isolates obtained from normally 51 

sterile sites in disease pigs (assumed to be virulent); for example, the study on serum 52 

resistance by Cerdà-Cuéllar and Aragon (2008). While such comparative studies have 53 

advanced our understanding, there are clear limitations to such studies. Multiple 54 

genotypes/serovars of H. parasuis can be present in the upper respiratory tract of a pig (Turni 55 

and Blackall, 2010). In addition, multiple genotypes/serovars can be present in isolates 56 

obtained from diseased pigs within a farm (Oliveira et al., 2003). Clearly, under these 57 

circumstances, assigning isolates to ‘virulent’ and ‘non-virulent’ categories by site source and 58 

herd clinical history will result in misclassification of some isolates (in both categories). As 59 

an additional issue, the diverse genetic backgrounds of such collections of isolates means that 60 

the clear elegance possible in the classic molecular Koch’s postulates is missing in such group 61 

comparisons. 62 

 63 

A final issue that has made work on the virulence mechanisms of H. parasuis so 64 

challenging is the variation in virulence across ‘virulent’ isolates. A simple dichotomy, 65 

‘virulent’ and ‘non-virulent’ does not reflect the complexity of the situation seen in the field 66 

and in experimental infections. From the work of Kielstein and Rapp-Gabrielson (1992) 67 

onwards, it has been clear that there are degrees of virulence in ‘virulent’ H. parasuis. As an 68 

example, we examined two H. parasuis strains (H425 and HS1387) in a catch-farrow, 69 

colostrum deprived pig model (Turni and Blackall, 2007). While both strains were virulent, 70 

there were major differences in the outcomes; the H425 strain caused a disease that 71 

progressed so rapidly that all seven pigs had to be euthanased within 4 days. In contrast, 7/9 72 

pigs given HS1387 survived the experiment. While all seven pigs given strain H425 yielded 73 

H. parasuis from the brain, only 1/9 HS1387 infected pigs yielded H. parasuis from the brain. 74 

In contrast, the level of peritonitis in the HS1387 infected pigs was markedly more severe 75 



than that seen in the H425 infected pigs (Turni and Blackall, 2007). While there is no doubt 76 

that both strains examined in our study were ‘virulent’, the different disease expressions 77 

(essentially acute septicaemia as compared with severe peritonitis within a single pig 78 

population) clearly flag that there are major differences in the virulence mechanisms within 79 

‘virulent’ strains, as well as between ‘virulent’ and ‘non-virulent’ strains. 80 

 81 

Such variation in disease expression is also seen in field outbreaks. While the majority 82 

of outbreaks of Glässer’s disease involve polyserositis (Rapp-Gabrielson et al., 2006), there 83 

are field reports, such as that of Peet et al. (1983), of an acute septicaemic disease with 84 

minimal serosal inflammation. Clearly, the interpretation of differing disease expression seen 85 

in different field outbreaks involves the complicating, additional factors of host variation and 86 

farm management. However, the results of the experimental infections in studies such as that 87 

of Kielstein and Rapp-Gabrielson (1992) and our own work (Turni and Blackall, 2007) is 88 

quite clear: considerable diversity exists within the concept of ‘virulence’ as applied to H. 89 

parasuis. 90 

 91 

Given the above challenges, it is not at all surprising that, as noted by Costa-Hurtado 92 

and Aragon (2013), so little definitive knowledge exists on the virulence mechanisms of H. 93 

parasuis. An ability to reproduce the disease, with the use of colostrum-deprived piglets that 94 

have been either catch or snatch farrowed appearing to be the best current option, and an 95 

appreciation of the range in virulence within ‘virulent’ H. parasuis, will underpin further 96 

progress in this area. 97 

 98 

P.J. Blackall 99 
C. Turni 100 

 101 
Centre for Animal Science 102 



Queensland Alliance for Agriculture and Food Innovation 103 
The University of Queensland 104 

EcoSciences Precinct 105 
Dutton Park, 4102, Australia 106 

E-mail address: p.blackall@uq.ed.au 107 
 108 

References 109 

Aragon, V., Cerdà-Cuéllar, M., Fraile, L., Mombarg, M., Nofrarías, M., Olvera, A., Sibila, 110 
M., Solanes, D., Segalés, J., 2010. Correlation between clinico-pathological outcome 111 
and typing of Haemophilus parasuis field strains. Veterinary Microbiology 142, 387-112 
393. 113 

 114 
Aragon, V., Segales, J., Oliveira, S., 2012. Glässer’s disease. In: Zimmerman, J., Karriker, L., 115 

Ramirez, A., Schwartz, K., Stevenson, G. (Eds). Diseases of Swine. Wiley-116 
Blackwell, Ames, Iowa, USA, pp. 760-769. 117 

 118 
Cerdà-Cuéllar, M., Aragon, V., 2008. Serum-resistance in Haemophilus parasuis is associated 119 

with systemic disease in swine. The Veterinary Journal 175, 384-389. 120 
 121 
Costa-Hurtado, M., Aragon, V., 2013. Advances in the quest for virulence factors of 122 

Haemophilus parasuis. The Veterinary Journal doi: 10.1016/j.tvjl.2013.08.027. 123 
[Editor: Please insert volume and page number for this article, which is to be 124 
published in the same issue as this Guest Editorial.] 125 

 126 
Falkow, S., 1988. Molecular Koch's postulates applied to microbial pathogenicity. Reviews of 127 

Infectious Diseases 10, S274-S276. 128 
 129 
Falkow, S., 2004. Molecular Koch's postulates applied to bacterial pathogenicity - a personal 130 

recollection 15 years later. Nature Reviews Microbiology 2, 67-72. 131 
 132 
Gong, Y., Zhang, P., Sun, H., Wang, H., Zhu, W., He, Y., Shao, Q., Blackall, P.J., 2013. 133 

Safety and efficacy studies on trivalent inactivated vaccines against infectious 134 
coryza. Veterinary Immunology and Immunopathology doi: 135 
10.1016/j.vet.imm.2013.01.015 136 

 137 
Kielstein, P., Rapp-Gabrielson, V.J., 1992. Designation of 15 serovars of Haemophilus 138 

parasuis on the basis of immunodiffusion using heat-stable antigen extracts. Journal 139 
of Clinical Microbiology 30, 862-865. 140 

 141 
Morozumi, T., Hiramune, T., Kobayashi, K., 1982. Experimental infections of mice and 142 

guinea pigs with Haemophilus parasuis. National Institute for Animal Health 143 
Quarterly (Tokyo) 22, 23-31. 144 

 145 
Oliveira, S., Blackall, P.J., Pijoan, C., 2003. Characterization of the diversity of Haemophilus 146 

parasuis field isolates by use of serotyping and genotyping. American Journal of 147 
Veterinary Research 64, 435-442. 148 

 149 
Peet, R.L., Fry, J., LLoyd, J., Henderson, J., Curran, J., Moir, D., 1983. Haemophilus parasuis 150 

septicaemia in pigs. Australian Veterinary Journal 60, 187. 151 

mailto:p.blackall@uq.ed.au


 152 
Rapp-Gabrielson, V.J., Oliveira, S.R., Pijoan, C., 2006. Haemophilus parasuis. In: Straw, 153 

B.E., Zimmerman, J.J., D’Allaire, S, Taylor, D.J. (Eds). Diseases of Swine. 154 
Blackwell Publishing, Ames, Iowa, USA, pp. 681-690. 155 

 156 
Tumamao, J.Q., Bowles, R.E., van den Bosch, H., Klaasen, H.L., Fenwick, B.W., Storie, G.J., 157 

Blackall, P.J., 2004. Comparison of the efficacy of a subunit and a live streptomycin-158 
dependent porcine pleuropneumonia vaccine. Australian Veterinary Journal 82, 370-159 
374. 160 

 161 
Turni, C., Blackall, P.J., 2007. Comparison of sampling sites and detection methods for 162 

Haemophilus parasuis. Australian Veterinary Journal 85, 177-184. 163 
 164 
Turni, C., Blackall, P., 2010. Serovar profiling of Haemophilus parasuis on Australian farms 165 

by sampling live pigs. Australian Veterinary Journal 88, 255-259. 166 


	Guest Editorial
	Understanding the virulence of Haemophilus parasuis
	P.J. Blackall
	C. Turni
	E-mail address: p.blackall@uq.ed.au

