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Abstract 

Today the Mining industry is being challenged to develop methodologies and 

technology to process the lower grade and mineralogically complex ore types 

using ore sorting. The potential of microwave driven selective heating as an 

excitation tool to underpin sorting is possibly not well known in the mining and 

mineral industries due to very few applications and lack of awareness of the 

potential users. This thesis investigates the conditions under which this 

process is technically effective and can be utilised. A detailed investigation 

was conducted to understand the reasons for selective heating of specific 

mineral phases and how infrared sensing can be used as an identification 

technique to discriminate certain particles from others. This thesis also 

quantifies the impact of other important factors on the sorting process 

including; particle shape and size, mineral composition and most importantly 

the textures of the mineral bearing particles which have a tendency to heat 

quickly when exposed to microwave energy. 

 

An extensive assembly of analytical techniques such as optical 

microscopy, high-resolution X-ray computed tomography and XL Scanning 

Electron Microscopy (used by the Mineral Liberation Analyser) were 

utilised to obtain a mineralogical characterisation of the tested ores. The 

choice of microwave applicators enabled heating to be carried out in 

multimode and single mode types of cavity. By engineering synthetic 

samples a more comprehensive investigation was carried out which enabled 

some focusing questions from the thesis hypothesis to be addressed. The 

synthetic samples were used to experimentally validate an adopted theoretical 

approach of investigating the influence of mineral texture upon selective 

heating.  

 

The supplied ore from the Bingham Canyon Mine, USA (operated by Rio 

Tinto’s Kennecott Utah Copper Corporation) was experimentally tested in two 

steps of investigations. The first step involved the approach of an “ideal”, 

theoretical sorter for which rock particles had to be destroyed (necessary to 

perform assaying analysis). The temperature threshold for economically 
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justifiable sorting was determined from a temperature difference and assayed 

metal content of heated particles. In the second step, samples were analysed 

by heating them in two applicators and the temperature threshold was 

determined as a function of mineral texture which caused selective heating as 

in contrast to assayed metal content. 

 

The results showed from the exposure of synthetic particles (with designed 

textures of microwave more responsive minerals) that it is advantageous to 

use both multimode and single mode cavities for better understanding of 

microwave heating of the ore. It was also shown that the texture of microwave 

responsive minerals has a significant effect on the formation of the 

temperature profiles which are used to evaluate selectivity and potential for 

the separation as opposed to only mineral composition of the ore particles. It 

was demonstrated that the types of ores studied in this work, will respond to 

microwave selective heating to the extent that infrared detection can be 

applied to perform selection between cold and hot particles defined by a set 

threshold. 
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1 Chapter 1 - Introduction 
_____________________________________________________________________ 
 
Over the centuries, ore sorting as a method of mineral recovery has always been 

present. However, due to its unique benefits greater focus is being applied by the 

mineral industry to develop methodologies and technologies to process lower grade 

and mineralogically complex ore types. The origin of ore recovery started with hand 

selection. At the present time, new developments in reliable sensor technologies have 

brought upgrades in ore sorting to be implemented in the mineral industry in both 

small and big steps. 

1.1 Overview 

The general aim of sorting can be defined in two ways. The first aim is concentration 

to produce one or more finished products, or pre-concentration to upgrade and 

produce a smaller bulk for further processing.  The second aim is scavenging or 

salvaging to make an acceptable feed from a low or marginal grade deposit. Either as 

a concentration, or salvage objective, sorting has numerous advantages because it 

gives a great deal of flexibility. Some of these opportunities come from: overall 

reduction of plant capital costs, reduction in operating costs as well as ore 

transportation cost, achieving higher overall economic metallurgical recovery, 

increasing the life time of a mine by increasing reserves to include in situ and 

stockpiled previously below the cut-off grade material, and reducing environmental 

impact (by generating less fines as the waste or rejection of wastes containing harmful 

components). In addition, a unique method for recovery of particular mineral or 



Chapter 1– Introduction 
_____________________________________________________________________ 

_____________________________________________________________________ 
 
2 

elimination of one mineral from another is presented when sorting is utilised as a 

major concentration technique. 

 

To achieve the best recovery-grade ratio, the liberation of the valuable components is 

the very important factor. It does not mean that the particles must be liberated 

completely before being introduced to the sorting machine but the economic liberation 

is needed to determine the reasonable amount of valuable components in the waste 

portion. The research in this thesis addresses the problem of processing ore which has 

potential for selective heating to find the natural best recovery-grade ratio which can 

be later incorporated in economic studies. 

 

The potential of microwave selective heating used for sorting is not well known in the 

mining and mineral industry due to very few applications and a lack of awareness of 

potential uses. This thesis investigates the conditions under which this process is 

technically effective and can be adapted for industrial use. A detailed investigation 

was conducted to understand the reasons for selective heating and how infrared 

sensing can be used as an identification technique to discriminate particles. It also 

examined important factors such as particle shape and size, mineral composition and 

most importantly textures of the minerals which have a tendency to heat quickly when 

exposed to microwave energy. 

 

An extensive group of analytical techniques such as: optical microscopy, high-

resolution X-ray computed tomography, and XL Scanning Electron Microscopy used 

by Mineral Liberation Analyser were utilised to obtain mineralogical 

characterisation of the tested ore.  The choice of microwave applicators enabled 

heating to be carried out in multimode and single mode types of electromagnetic 

field. By engineering synthetic samples, a more comprehensive investigation was 

enabled to address some focusing questions from thesis hypothesis. They were used to 

experimentally validate an adopted theoretical approach of investigating influence of 

mineral texture upon selective heating.  

 

The supplied ore from the Bingham Canyon Mine was experimentally tested in two 

steps. The first involved an approach of “ideal “ theoretical sorter for which rock 
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particles had to be destroyed, necessary to perform assaying analysis, and in the 

second step samples were analysed by heating them in two applicators. 

1.2 Research Hypothesis and Objectives 
 
The published literature about sorting has several common topics. It covers the 

material that needs to be sorted, a method for presentation or feeding, a method for 

particle examination followed by a method for comprehending obtained information, 

and finally a method for separating ore from waste. A comprehensive review of the 

published literature shows that no detailed study has been conducted to unveil the 

potential for mineral recovery of microwave treated copper bearing minerals, assisted 

with infrared detection. Therefore, the focusing questions of this thesis are as follows: 

 
• Is it possible to develop a method of characterising ores for microwave 

infrared sorting? 

• Do the composition and texture of minerals have a dominant effect on the 

potential to apply microwave infrared sorting? 

• Is it possible to identify an intrinsic non responsiveness of the ore to the 

heating by applying different approaches for microwave heating? 

 

Therefore, the main hypothesis which will be tested within this thesis is stated as 

follows: 

 

“The texture in addition to composition of minerals within ore particles, especially 

microwave absorbing minerals, has a significant effect on the creation of the 

temperature profiles which are used to evaluate selectivity and potential for the 

mineral sorting.” 

 
The research had the following objectives: 
 

• Detailed chemical and mineralogical characterization of selected two different 

types of ore. 

• Evaluation of the interaction of applied microwave energy with synthetic 

samples under controlled conditions to study selective heating in a controlled 

manner. 
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• Evaluation of the interaction of applied microwave energy with real ore 

particles under controlled conditions in order to determine temperature 

thresholds for sorting. 

• Define the correlation connection between the mineralogical characterisation 

of any ore and the observed selective heating to determine the best natural 

grade/recovery ratio for any particular sample. 

1.3 Thesis Outline 

Chapter 2: Literature Review 

This chapter aims to provide the reader with sufficient background to the study of 

mineral sorting. The literature review emphasises the sorting process using available 

sensors within the electromagnetic spectrum, indicating its advances and limitations. 

Some new sorting machines, which have been developed based on new detector 

technologies, are introduced and a summary of the operational processes is presented. 

Additionally the review provides an insight into previous experimental studies of 

microwave heating of minerals and studies for the implementation of microwave 

energy in the mineral industry. 

 

Chapter 3: Experimental Methodology 

This chapter discusses in general terms, the nature of volumetric microwave heating, 

materials interactions with microwaves, complex permittivity of minerals followed by 

physical properties of minerals. The favourable cases for microwave sorting are 

defined and explained. Furthermore, this chapter describes the experimental approach 

adopted to investigate the hypothesis of this thesis. Descriptions of the procedures for 

detailed experimental investigations, including procedure and techniques used for the 

mineralogical characterization of ores are given. 

 

Chapter 4: Study of Synthetic Samples and Particle Characterisation by Image 

Analysis 

This chapter presents the results of detailed study of synthetic samples which were 

used to experimentally validate the adopted theoretical approach of investigating the 

influence of mineral texture upon selective heating. A procedure to create synthetic 

samples is provided, followed by their bulk dielectric properties measurement. 
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Detailed descriptions of how these synthetic samples were tested in two different 

applicators are given and results commented. In addition, this chapter provides results 

from particle characterisation by image analysis on two ore types which were chosen 

for further experimental investigations to address the thesis hypothesis. 

 

Chapter 5: Study of the “LRO” Ore Type 

This chapter presents the results of experimental investigation for the first supplied 

ore type which was tested in two steps. The first step involved a detailed 

mineralogical characterization of ore, reproducibility study and discussion for the 

potential of microwave sorting, using temperature separation curves with pre-

concentration objective. The second step discussed separability using different 

responses of textural properties of rock particles from heating results after exposing 

them in two different applicators. Some particles were tested in great detail to further 

substantiate behaviour of selective heating; these results are also presented and 

discussed. 

 

Chapter 6: Study of the “QZ Ohio” Ore Type 

This chapter presents the results of experimental investigation for the second supplied 

ore type. As in the previous chapter, ore was tested in two steps with a scavenging or 

salvaging objective. Recovery of economically valuable metals was also investigated 

with controlled flotation testing which was performed on three groups made of cold, 

medium and hot ore particles after applying microwave energy. The separability using 

different responses of textural properties of rock particles from heating results after 

exposing them in two different applicators was used as well. It was implemented to 

find the best natural recovery-grade ratio which can be later provided and 

incorporated in economic studies. 

 

Chapter 7: Conclusions and Recommendations for Future Work 

This chapter presents a summary of the work, the main findings and conclusions 

drawn. The practical implications of the results on microwave assisted infrared sorting 

of copper bearing minerals are addressed. The chapter also presents the scope for 

some future work. 
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2 Chapter 2 - Literature Review  
Current Trends in Mineral Sorting and 
Use of Microwave Radiation in Mineral 
Processing  

_____________________________________________________________________ 

2.1 Current Trends and Improvements in Mineral Sorting  
 
In mineral processing there is always a need for concentration and separation. The 

sorting of an ore as a method of mineral concentration was probably practiced in the 

very first mining operation. Cohen (2000) and Kelly and Spottiswood (1995) defined 

these processes in a very similar way and they are all based upon utilizing differences 

in the physical properties of mixed solids. Physical separation methods normally 

produce concentrates of unaltered minerals that have retained their natural 

characteristics and crystal structures. It is possible to define them as follows: 

1. Radiation sorting, 

2. Gravity separation, 

3. Magnetic separation, 

4. Electrostatic separation, 

5. Separation based on surface phenomena. 

In recent years radiation sorting, compared to traditional pre-concentration processes, 

has developed most rapidly following the development of sensor technology. 

Radiation sorting depends, on differential responses to externally applied radiations 

Cohen (2000). Some processes utilize differential radiation emissions, with or without 

externally applied stimulus. Many types of radiation can be used for solid–solid 

separation, including visible, ultraviolet, and infrared light; X-rays, gamma-rays, and 

electron beams; ultrasound; and a range of radio frequencies. The method of 

separation relies on differential effects of transmission, absorption, reflection, 
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modulation, or emission. In the words of Kleine (2010), “sensor-based sorting is the 

only mineral processing technique where the separating force is separated from the 

property on which basis is sorted.” 

 

In the past three decades a significant amount of work has been undertaken for the 

experimental studies of microwave heating minerals and studies for the utilisation of 

microwave energy in the mineral industry. One of these studies started in Julius 

Kruttschnitt Mineral Research Centre at The University of Queensland in Australia to 

use microwave heating in conjunction with infrared sensors as a radiation sorting 

technology to detect particles which have copper bearing minerals. In order to 

evaluate this experimental approach one of the objectives was to investigate the 

influence of texture and composition of minerals, especially microwave absorbing 

minerals, and their effect on selective heating and potential for the mineral sorting. 

 

Table 2-1 shows an overview of available sensors within the electromagnetic 

spectrum which are used to detect material properties and groups of minerals for 

which they can be applied. Salter and Wyat (1991) in their overview commented that 

various combinations of discrimination techniques have been used in some sorting 

machines. According to Commodas Ultrasort (a part of TiTech) sensors and 

technologies marked with an asterisk are still under development and valuation. There 

is an apparent need to close these gaps and to validate these sensors on different ore 

types and make them more versatile. At this time, research is also focused on 

developing suitable methods to establish the sortability of ores. Information collected 

from these new methods for ore sorting will be more universal and economical than 

testing samples through sorting machines. 

 

With a very low ore grade a lot of mining operations are performed on low profit 

margins or being forced to be shut down in the near future as commented by Schodde 

(2010). Sensor based sorting provides alternative mineral recovery once the mining 

operations reach less profitable or more complex parts of the ore body.  
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Table 2-1 Available Sensors within the Electro Magnetic Spectrum which are used to detect 

material properties, sourced from Bergmann (2009). 

Radiation Waveleng
th [m] 

Sensor/ 
Technology 

Material Property Mineral 
Application 

Gamma Rays 10-10-10-12
 RM 

(Radiometric) 
Natural Gamma 
Radiation 

Uranium, 
Precious 
Metals 

X-Rays 10-9 - 10-10 XRT (X-ray 
transmission) 
 
XRF 

Atomic Density 
 
 
Visible Fluorescence 
under 
X-rays 

Base/Precious 
Metals 
Coal, 
Diamonds 
 
Diamonds 

Ultraviolet 
(UV) 

10-7 - 10-9 COL (CCD 
Colour 
Camera) 

Reflection, 
Brightness, 
Transparency 

Base/Precious 
Metals 
Ind. Minerals, 
Diamonds 
 

Visible (VIS) 10-5 - 10-7 PM 
(Photometric) 

Monochromatic 
Reflection/ 
Absorption 

Ind. Minerals, 
Diamonds 

Near 
Infrared 
(NIR) 

10-4 - 10-5 NIR (Near 
Infrared 
Spectrometry)
* 

Reflection, 
Absorption 

Base metals 
Industrial 
Minerals 

Infrared (IR) 10-1 - 10-4 IR (Infrared 
cam)* 

Heat conductivity, 
heat 
dissipation 

Base Metals 
Industrial 
Minerals 

Microwave 101 - 10-1 MW-IR 
(heating in 
conjunction 
with IR)* 

Sulphides & Metals 
heat 
faster than other 
minerals 

Base/Precious 
Metals 

Radio waves 103 - 101    
Alternating 
current (AC) 

104 - 103 EM (Electro- 
Magnetic 
sensor) 

Conductivity Base Metals 

 
 
The sensor based sorting technology ensures that only the valuable mineral fraction is 

retained for further processing and waste or barren material discarded. At the present 

time information which needs to be processed in real time can be processed very 

quickly due to the fast computer processors which are becoming more and more 

powerful. Sorters use a number of intelligent detection criteria to identify ore and 

mineral characteristics. Time to execute these sophisticated detection algorithms, 

achieve a process of separation and deploy ejection systems can be measured in 
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milliseconds. These short times are required to achieve large throughputs which are 

necessary for mining operations. Some of these sensors have been already tested in 

various studies. 

2.1.1 Radiometric 
 
Radiometric sorting of South African gold ores using uranium as a tracer has become 

practical and economical due to the introduction of microprocessors into the sorting 

machines. In the sorter the particles are presented individually to the X-ray counting 

system and mass determination system. Implementation of radiometric sorting for 

South African gold ores was proposed by The Canadian Department of Mines because 

they already had two commercial units installed at Bicroft Uranium and at 

Beaverlodge in Canada. They also had two units of this type fully operational in the 

uranium mine at Mary Kathleen in Queensland, Australia. Typical performance 

figures are given by Böhme (1983) in Table 2-2: 
Table 2-2 Performance figures manufactured by Gunson’s Sorters 

Throughput per machine up to 48 ton/h 
Average particle mass 70-95 g 
Mass rejection 61-67% 
Uranium recovery 91-94% 
Gold recovery 92-96% 
Reject grades 0.04 kg U3O8/ton 

 
This installation covered the screen fractions -65+25 mm and therefore “shape 

corrections” had to be applied. Screen fractions above +65mm were considered to be 

implemented in operation while fractions below 25mm were investigated to see 

whether they will be below economic limit for sorting. 

 

The disadvantage of this type of sorting is that it is volumetric sorting. It needs to 

determine mass of each particle and compute the grade of each particle from its 

radioactivity and mass. It is also not suitable for copper ore because of lack of 

radioactive elements. 

2.1.2 Dual energy X-ray transmission 
 
The X-ray transmission scanning method is used to inspect baggage content, at 

airports security points. Similar technology is implemented in mining as dual energy 
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X-ray transmission (DE-XRT) sorting. This technology and its combination with 

others are studied in more detail by Gaft et al. (2005).  

 

Ketelholdt and Bergman (2010) gave technical insight of the sorter pilot plant at 

Mintek, Randburg South Africa. They stated that DE-XRT is particularly suitable for 

dry coarse coal in the size range -120 mm +12 mm.  

 

The data is collected as digital imagery from an X-ray sensor system which works like 

a line-scan camera. The X-rays penetrate the material and are collected by the sensor 

system consisting of two channels, each capturing the image of the material in 

different X-ray energy levels. Within the imagery different shades of grey are used to 

correspond to the modulation of the amplitude within the sensor which detects the x-

ray attenuation through the particle. Atomic density of the material and its thickness 

influence x-ray attenuation. In data images different colour pixels are matched to 

corresponding atomic densities. This method can be accomplished almost regardless 

of the thickness of the material (Ketelhodt, L. & Bergmann 2010). 

 

Two tons of screen fractions -40+20 mm from the Witbank coalfields were tested to 

remove shale using a Commodas PRO Secondary XRT belt 1200 sorter, which can 

handle screen fractions -60mm +10mm at 40 to 50 t/h. A 55 kW compressor with an 

operating pressure of 8 bars was used to operate ejecting system. Combined results 

from three different size fractions showed that shale can be removed in 20.4% as 

waste from mass feed.  

 

The same system was used in Wedel, Germany. A half of tonne of lignite sample 

collected from various collieries in Texas, USA was tested to remove pyritic sulphides 

and associated mercury to produce clean power station lignite. Although the 

experimental results show that DE-XRT sorting can effectively remove and reduce 

pyritic sulphur in lignite, the optimal cut-off settings need to be determined to 

maximize the pyrite removal. 
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Similar technology was used by Kuliman (2006) and this work presents results on the 

efficiency of sorting using a variety of coal samples. Zinc and led ores also showed 

promising results and this detection is described by de Jong (2005). 

2.1.3 Near infrared 

Reflectance spectroscopy is used to detect mineral like talc, which is a problem for the 

flotation process. Continuous measurement of these properties are now possible with 

new near-infrared (NIR) systems mounted over-the-conveyor belt. Goetz et al. (2009) 

tested this system and developed predictive models for concentrations of swelling 

clays, kaolinite, muscovite and biotite. This is achieved with conveyor samples of 

copper ore using “QS-8000” over the conveyor system. The results were precise 

enough to be used for real-time, process decision making.  

 

The system “QS-8000” is capturing high quality reflectance spectra of materials 

moving on a belt. It is composed of: illumination, spectrometer and a switch gear box 

which includes an I/O card, power supplies, communications and thermal control. Its 

head illuminates an 18 cm diameter spot on the conveyor material. Problems with dust 

they resolved with build in air knife over the illumination head window. 

 

Measurements were made on 45 copper ore samples. The study showed that these 

minerals can be quantified, in particular swelling clays to ±0.5% using an on-line 

system that views ore moving down a conveyor. Now the metallurgical process, 

chemical and energy usage can be optimised by providing real-time analysis of 

mineral concentration and chemical properties, parameters associated with processes 

such as agglomeration and flotation may be determined continuously. 

 

RWTH Aachen University was involved in research project sponsored by Anglo 

American in 2008 to test near infrared spectroscopy (NIRS) and establish sorting 

potential for Skorpion mine. For this mine located in Namibia which has an annual 

production of 150 000 t/a of super high grade pure zinc there is economic potential to 

upgrade current sub economic material including the marginal dump (over 2 000 000 

tonnes), average grade of 2.5 per cent Zn by implementing near infrared spectroscopy. 

This opportunity came from zinc bearing minerals such as sauconite, hemimorphite, 

smithsonite, and hydrozincite, which display diagnostic responses in the near-infrared 
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spectrum. Ore bearing minerals can be identified through three major absorption 

features in the NIR.  The reflectance comes from OH and H2O molecular bonds.  Non 

zinc bearing clay minerals, calcite and impure quartz does not exhibit these 

characteristics which can be used to distinguish from economic minerals (Robben et 

al. 2010). 

 

In comparison with DE-XRT, near infrared spectroscopy is a surface measurement 

technology. Test work was conducted with PolySort (sorting system) build by TiTech 

which needed to be trained with pre classified samples. Statistical means were 

calculated for chosen groups and integrated in sorting algorithm.  

 

The samples were scanned perpendicular to the conveyer belt in a line. The 

wavelengths in the NIR were used to decide which rock type group the material 

belonged too.  For this test work the group which represents the gangue waste 

material was removed by compressed air activating air valves.  The classification 

result was improved by using a filter enhanced the scan point around the neighbour of 

the particle.  The software was configured to suppress ejection in a neighbourhood if 

ore material was detected, to receive a high recovery.  The PolySort was successful in 

identifying 77 precent of the right rock types.  With this identification rate it was able 

to recover 85 precent zinc ore of the 46.4 precent for the marginal dump material and 

a mass pull of 71.1 per cent for the pit samples (Robben et al. 2010). 

 

The results presented a link between zinc grades and spectral response in the wave 

length region from 2210 to 2345 μm. The research project demonstrated that use of 

near infrared spectroscopy for sorting zinc ore in Skorpion mine can work with further 

technology improvements. 

 

The Commonwealth Scientific and Industrial Research Organisation (CSIRO) was 

developing sensor technology for ore sorting and mineral characterisation using laser 

reflectance. Mid-infrared reflectance measurements using a DPSS Optical Parametric 

Oscillator (OPO) for on-line determination of mineralogy for ore sorting and 

characterisation was described by Death, Pollard and Rogers (2005). The visible 

spectrum (VIS) frequently does not provide sufficient contrast to reliably differentiate 
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ore from gangue. The monitoring of only discrete spectral bands can help improve 

contrast between ore and gangue. This can be done by either filtering reflected light or 

using a particularly bright source such as a laser. Two or more carefully selected 

discrete spectra can be monitored to determine the surface mineralogy of a particle. 

Talc was used as an example because the visible reflectance spectra of mineral talc 

are broad and vary considerably with the mineral source. This complicates 

development of a generic sorting technique for talc using colour only. However, the 

near infrared spectra of talc show much more structure, with the OH absorption bands 

around 1390µm of talc distinct from the associated gangue. This can be used to 

increase sorting efficiency and shows yet another sensor application in mid-infrared 

spectrum. 

2.1.4 Optical-Photometric 

Very successful photometric systems were developed from early 1970s for South 

African gold mines. Keys, Gordon and Peveret (1974) gave an overview of high-

throughput, multi-stream photometric sorting machine. 

 

The Photometric Sorter which separates rocks into two categories according to light-

reflectance properties was tested on Witwatersrand ore (which is normally referred to 

as reef). The “accept” category in the case of the Doornfontein machine, includes 

those rocks having higher reflectance properties, distinguishing them from 

surrounding darker matrix which is recognised by the machine as reef.  In the reject 

we also have either quartzite ranging from light green through olive green to nearly 

black or tuff. In this ore deposit gold is associated and occurs mainly with a lighter 

phase which is accepted by this ore sorting machine (Keys, Gordon & Peveret 1974). 

 

Sorting machine Model 13 was designed to handle rocks in size fractions -80+30mm 

at rates of 45 to 65 tonnes per hour depending on particle size. Particles were fed 

continuously to a conveyor belt with random distribution in such manner that there 

was evident space between particles. The conveyor belt was introduced to scanning 

zone where information for each particle concerning its size, light-reflectance pattern, 

and location on the belt was obtained. After the scanning zone an instant decision to 

accept or reject particle was made and air blast was applied by solenoid-operated 

valves to accepted rocks to separate them from the rest of the stream. For the same 



Chapter 2- Literature Review 
_____________________________________________________________________ 

_____________________________________________________________________ 
 

14 

model they listed operating requirements. Most of the requirements were regarding 

compressed air, electricity, air and water. It was determined that the amount of 

compressed air required is a function of the size of the rock being sorted.  For a 

typical case to blast one tonne of material it would require 35m3 of air.  For example 

to accept 28 precent with a feed rate of 20t/h the air requirement would be 

approximately 500m3/h, but it was also commented that requirements should be 

doubled to compensate for short term fluctuations in feed rate or percentage accepted.  

Electrical requirements for the sorting system were around 15kW including vibrating 

feeders.  This did not include any other electrical consumption. Clean water was listed 

as requirement to feed the wetting sprays over the secondary feeder which consumed 

15l/s. (Keys, Gordon & Peveret 1974) 

 

For the maintenance they pointed that half of the cost went to white sorter belts which 

needed to be replaced. The blast manifold was another item subject to wear. Its costs 

were reduced by removing sine sand which acted as a scouring agent and use of 

replaceable blast slot inserts fabricated from polyethylene. Laser tubes, mirror drum 

and circuit boards also needed to be replaced. 

 

The reef picking operation managed to accomplish 31 precent of the run-of-mine 

material was being sent to the storage dump.  Therefore the mill feed was upgraded 

from 10 g/t to some 14 g/t it also reduced tonnage by 53,000 t per month at 1.7 g/t of 

gold contained some 5 per cent of the gold in the run-of-mine material (Keys, Gordon 

& Peveret 1974). 

 

The opto-electronic ore sorting was implemented by Tanzanite One Mining Ltd to 

concentrate coloured gemstones. The summary of this optical sorting was given by 

Ketelhodt and Jacobs (2006). System met the production requirement for which it was 

developed, 80% purity with a 98% recovery rate was being accomplished. 

 

Crushing and screening process reduces material to -30mm size fraction before it is 

sent to dense media separation. Sinks are collected and screened on a triple deck 

Sweco washing screen, so that the feed for the sorting machines is in a size range ratio 
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of not more than 3:1. The washing of the feed material is very important as it removes 

all the dirt and dust off the particle and reviles their colour for optical sensors. 

 

Sorting then is performed by two MikroSort ConcSort BSX-063 machines using 0.6 

metre wide pan feeders. The first machine is used for larger size particles (-30 mm 

+12 mm) with a processing rate of 240kg/h. The second machine is used to 

simultaneously sort two different sizes. The first track is used for size of -12 mm +5 

mm with a rate of 210kg/h and then the second track is used for size -5 mm +2 mm 

with a rate of 150kg/h. The finer material was treated with hot air blow onto the 

feeder to reduce lumping of the feed material. It was discovered that the lumping of 

feeder material reduces the sorting efficiency in this size range. Larger material (+5 

mm) was fed and provided to the sorter in a drip-dried condition, as the moisture on 

the stones enhanced the natural colours of the ore (Ketelhodt, L & Jacobs 2006). 

 

The total power requirement for the sorting plant is approximately 60 kW, the belt 

speed of both sorters are set at 2,75 m/s and compressor station is set between 4.5 and 

7.4 bar. 

 

In sorting it is good practice to test existing systems for their performance which is 

usually done with tracers. This work was described by Kleine and Wotruba (2010) 

and carried out in the mine Tirisano in the Republic of South Africa. The optical 

sorting plant had two sections: the screen and the containerised optical sorter. Test 

work was done after two months of full reliable operation, which provided good work 

flow and enabled for test to be performed under real production conditions. The target 

of this test work is to analyse the effectiveness of an optical sorter under real 

production conditions. The sorting algorithm was adapted to achieve the highest 

possible recovery. 

 

To assess the efficiency of selecting diamonds, two sets of tracers were used during 

the test work. The main interest was to investigate possible losses within the smaller 

size ranges as discovered with the first test work. For the coarser particle size (- 25 + 

8 mm), a set of 30 quartz particle tracers in the size range - 9 + 7 mm were used. The 

finer particle size used a set of 50 quartz and glass particle tracers in the size range -4 
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+ 2mm. The increased amount of tracers in the smaller size fraction, were chosen to 

achieve better representativeness of results as greater losses were expected. All tracers 

were marked to avoid mistakes in identifying them in the process of sorting. (Kleine 

& Wotruba 2010) 

 

A test procedure was done with same settings of the sorter as for normal operations. 

Results showed that the tracers with size range - 9 + 7 mm were fully recovered 

through all throughputs while tracers with smaller size range - 4 + 2 mm had decline 

in recovery reaching 80%. The feed rates were from 5 t/h to 22 t/h, with 22 t/h being 

the maximum possible rate for the installed system. At 24 t/h dedusting system was 

not powerful enough to keep the detection area free of dust.  

 

The work with tracers confirmed that optical sorting on the base of transparency can 

adequately be used to recover diamonds. This opened possibility to detect low or non-

luminescent diamonds from XRF sorting tailings as well. After this evaluation the 

following feed rates were chosen: 

• The coarse fraction -25+8 mm feed rates was 20t/h providing a recovery of 99 

precent. 

• The finer fraction -8+2 mm feed rates was 17t/h providing a recovery of 88 

precent. 

This sorting process has been applied to sort alluvial recovery tailings in South Africa 

and with a future implementation on recovery tailings of a primary deposit in Lesotho 

(Kleine & Wotruba 2010). 

 

The disadvantage of this type of sorting is that it usually needs cleaning of the 

material to remove dirt and dust off the particles in order to revile their colour for the 

sensors. In addition there is not strong relation between copper grade and the colour of 

the minerals associated with copper mineralisation. 

2.1.5 Beat Frequency and Induction Balance 

At the beginning of 1980s, work of Nash and Schwaneke (1978) (cited in Sivamohan 

(1991)) used technique known as “beat frequency” or “induction balance” to sort 

copper bearing ore. 
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A laboratory unit used this induction balance technique which was developed by The 

Bureau of Mines, USA. The unit was tested on upper Michigan ore size (-2.5 to 

+1.3cm) and particles of sorted portions contained native copper or 80 precent copper.  

The sorting process rejected 80 precent of the original feed.  The same process for 

coarse fragments (-10 to +5 cm) resulted in higher copper recoveries, with about 60 

precent of the ore being rejected. The characteristic of the beat frequency technique is 

that it is using a high frequency alternating current to energise a detector.  When an 

ore fragment with a conducting material passes through the detector it reacts with the 

electrical field which changes the frequency.  Variation in frequency is used to 

identify highly conductive rock fragments.  The International Sorting Systems Corp 

(ISSC) tested this approach with beat frequency technique by developing a sorter.  

The system was tested with a goal to separate out the native copper bearing ore 

fragments.  Copper was recovered in 61 precent of the feed, which had 13 precent of 

conglomeritic type of native copper from Michigan ore.  Successful results were 

found only with sizes between -100 mm to +12 mm ore fragments.  In 1970 the ISSC 

installed a 100t/h sorting plant in Michigan to sort the material with a native copper 

content (Sivamohan & Forssberg 1991). 

 

2.1.6 Thermal Identification of Rocks by Microwave Heating 

Microwave heating is directly connected to the dielectric properties of materials 

which can give information about their heating capabilities. This interaction is 

accompanied with amplitude and phase shifts in the electromagnetic field which can 

be measured. Information gathered from microwave attenuation then can be used to 

affiliate certain characteristics of rocks and make a decision regarding their 

sortability.  

 

Another approach is microwave heating accompanied with infrared imaging of rocks 

during or immediately after microwave exposure. In infrared spectra heat flux became 

visible on the surface. This is a great advantage because heat flux is carrying 

information from the composition and overall volume of the particle which is then 

reflected on the surface. Temperature difference from the surface of rock particles is 

then used to calculate a threshold for sorting.  
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During the 1980s Slater, Nordin and Downing (1989) used microwaves to sort rocks 

on the principle of microwave attenuation for discriminating rocks. Their work is 

described and reviewed by Sivamohan (1991) who commented the following points: 

• Microwave sorting process for discriminating diamond containing kimberlite 

from gabbro was developed.  It was upgraded from a laboratory to a full scale 

prototype plant of 100t/h. 

• The full scale model used already existing radiometric sorters ‘Model 17’ by 

replacing the scintillation counter sensing system by the microwave 

attenuation system. 

• The transmitter used a frequency of 10.525 GHz and low power of 100mW. 

• The rock particle separation system which used compressed air in the ‘Model 

17’ was replaced with pulsed water ejectors.  

 

2.2 Summary  

For all sorters it is possible to identify five processes which are necessary for them to 

operate and these are: preparation, presentation, inspection, data analysis and 

separation. Their consecutive flow is described in Figure 2-1 presenting material flow 

in a full line and data flow in broken line. 
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Figure 2-1 Operational processes in ore sorting based upon Cohen (2000) and Salter and Wyatt 
(1991) 
Data analysis is the most important process because it is established on sorting 

algorithms which have to be robust enough to include all factors which influence 

sorting quality during a full scale sorting operations. The work and observations of 

Cheesman (2006) classifies these factors into two major groups. 

The first group is environmental and geological and involves: 

1. Mineral characteristics: 

a. Breakage characteristics 

b. Friability 

c. Weathering and oxidation 

2. Ore body (Dump) characteristics 

a. Interlocked and contact pieces 

b. Variation in feed composition (geological) and grade 

i. Rock types not classified by algorithm 

ii. Variation in percentage to be rejected 

c. Variation in fines content in feed 

d. Presence of foreign objects (tramp) in feed 

The second group refers to factors which came from design, equipment and plant 

operation: 

1. Feed preparation: 
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a. Foreign object, tramp removal 

b. Crushing: 

i.  Liberation 

ii. Size distribution 

c. Screening: 

i. Slimes and fine mud management 

ii. Screening efficiency 

2. Mechanical setup: 

a. Wear 

b. Valves  

c. Dust management 

d. Algorithm robustness 

i. Extremes in temperature 

ii. Feed variations 

iii. Double sided sorting 

e. Feed presentation and ejection: 

i. Rock condition: moisture, coatings and slimes 

ii. Breaking monolayer 

iii. Bouncing, spinning 

iv. Light quality 

From data obtained from full scale operational sorters it is feasible to set some 

guidelines for the processes in sensor based mineral sorting. For the process of 

ore/particle preparation it is possible to say that suitable liberation is required and that 

rejecting 30% of mass feed will be economically justifiable for most sorting 

operations Cohen (2000). Screening into a narrow feed size range which is 3:1 top to 

bottom will be acceptable for most of the sorting algorithms. It is also possible to say 

that the most common throughputs for sizes -120 mm + 60 mm are 85-100 t/h while 

for sizes -60 mm +30 mm on average treats 30-40 t/h. In the case of Tirisano mine in 

the Republic of South Africa work of Kleine and Wotruba (2010) feed rates were 

from 5 t/h to 22 t/h, for size rates -9 + 7 mm. 

The process of particle presentation usually involves vibrating belt feeders 

specifically designed conveyor belts (with channels or material properties) in 

conjunction with chutes or stabiliser wheels to provide closely positioned streams of 
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particles in one layer. Typical speeds for conveyor belts are from 2 to 6 m/s. An 

alternative to conveyor belts are systems which are designed to inspect and sort 

particles along a predefined falling trajectory. These systems are good for inspecting 

multiple sides of rock particles.  

 

Data analysis is directly connected to the process of inspection of the particles. It 

includes data feedback from particle preparation, particle presentation and 

incorporates all information from factors which influence sorting quality. The process 

of inspection is the most significant process for successful sorting and it is performed 

in real time. Performance of algorithms and inspection processes can be improved by 

testing systems with tracers or developing new sortability methods to set specific 

thresholds. Most identifiable problems come from signal to noise ratio, poor 

resolution or inadequate surface details identification. 

 

From the 1970s mechanical and hydraulic systems had been used for the separation 

process but none of them had better performance than water and air jets, ejecting 

particles from conveyor belts or from their predefined falling trajectories. For higher 

throughputs compressed air is technically a much better option. The ejector valves can 

respond in milliseconds and the time blast can be easily adjusted to correspond to 

chosen size fractions. Usual compressed air consumptions are between 5 to 35 m3 per 

tonne of feed, but capacity requirements should be double, to compensate for short 

term fluctuations in feed rate or percentage accepted. 

 

Giving guidelines for economic aspects is very challenging because for every ore type 

potentially there should be a discriminative technique which can be used for sorting 

with more or less success. Costs of actual testing, or testing under pilot plant 

conditions can be significantly reduced if suitable methods to establish the sortability 

of ores could be applied. So, there is a need for methodologies which can be used for 

testing lots of different ore types without major investments. These methods can give 

us insights into which ore types will have best response to specific sorting technology. 

The bottom line is, whether the pre concentration can produce enough profit after all 

long and short term costs are calculated. These costs can include installation costs, 

operating costs, spares and maintenance costs, labour and operator costs. 
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2.3 Experimental Studies of Microwave Heating Minerals and 

Studies for the Utilisation of Microwave Energy in Mineral 

Industry 

The interest in to the microwave heating of natural minerals started with research for 

the application of microwave energy in mineral industry. Early work in this field was 

focused on heating rates of selected groups of minerals exposing them to set power 

levels and set exposures times. This was a very basic and fast approach which could 

group minerals in three essential groups. These groups are: minerals which heats very 

rapidly, minerals which have good response to microwave heating and minerals which 

appear transparent or heat very slowly. This was also an indirect way of measuring 

dielectric properties. 

 

A descriptive study in this manner was performed by Chen et al. (1984) where he had 

exposed 40 minerals to microwave radiation at 2.45 GHz and various powers and 

gave descriptions of observed changes. This work located carbonates jarosite-type 

compounds, silicates, some sulphates, fergusonite, monazite, (low Fe) sphalerite, and 

stibnite in the group which did not heat well after exposing them to 5 min and 150 W 

of microwave power. The second group was mostly made of oxides and uranium 

minerals. Most of them did not go under changes and some of them like cassiterite, 

hematite and magnetite had very good heating response. The third group had 

sulphides, sulphosalts and arsenides which heated very rapidly and some of them 

fused during heating. For some of those minerals the heating response is given in 

Table 2-3. 

 
Table 2-3 Heating responses of various minerals after 3-5 min exposure time, sourced from 

(Chen et al. 1984) 

Mineral  Power (W)  Heating Response 
Arsenopyrite 80  Heats with some sparking 
Bornite 20  Heats readily 
Chalcopyrite 15  Heats readily with emission of sulphur fumes 
Galena 30  Heats readily with much arcing 
Pyrite 30  Heats readily with emission of sulphur fumes 
Pyrrhotite 50  Heats readily with arcing at high temperatures 
Sphalerite  >100  Does not heat 
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Research was continued by Walkiewicz et al. (1988). He expanded testing on more 

than one hundred compounds and nineteen minerals using a 2.45 GHz a commercial 

microwave oven and 1kW of microwave power. 

 

Both of these studies are important because results obtained showed that minerals of 

value will absorb microwaves whereas common host rock minerals are poor heaters. 

This valuable information guides us to microwave assisted sorting. It can be argued, at 

this point, that during crushing and sieving to a chosen size we can expect two sets of 

populations of particles. First population has three groups which all include minerals 

of value whether they are fully liberated, partially liberated, or still interlocked within 

host rock minerals. Second population will be rocks which are entirely composed 

gangue minerals. 

 
Table 2-4 Effect of microwave heating on the temperature of natural minerals, sourced from 

(Walkiewicz, Kazonich & McGill 1988) 

Mineral Chemical Composition Temperature(oC) Time (min) 
Albite NaAlSi3O8 69 7 
Arizonite Fe2O3*3TuO2 290 10 
Chalcocite Cu2S 746 7 
Chalcopyrite CuFeS2 920 1 
Chromite FeCr2O4 155 7 
Cinnabar HgS 144 8.5 
Galena PbS 956 7 
Hematite Fe2O3 182 7 
Magnetite Fe3O4 1258 2.75 
Marble CaCO3 74 4.25 
Molybdenite MoS2 192 7 
Orpiment As2S3 92 4.5 
Orthoclase KAlSi3O8 67 7 
Pyrite FeS2 1019 6.75 
Pyrrhotite Fe1-xS 686 1.75 
Quartz SiO2 79 7 
Sphalerite ZnS 88 7 
Tetrahedrite (Cu,Fe)12Sb4S13 151 7 
Zircon ZrSO4 52 7 

 
If microwave energy is applied to both populations of rock particles the temperature 

difference between them can be expected. This temperature difference can be quickly 

measured in infrared spectra from the surfaces of rock particles and used as a sensor 

based discriminative technique. It needs to be noted that for these studies minerals of 

value were associated with minerals which contain commercial metals such as copper, 
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molybdenum etc. This association cannot be used for the gemstones such as diamond, 

which can have a very low microwave loss, as seen in work of Slater, Nordin and 

Downing (1989).    

 

Patent by Djordjevic (2007) explored this detection method in more details. 

Considering that the host rock minerals have natural variations which can cause 

variation in temperature difference more detailed studies of dielectric properties 

which influence heating are required. This necessity to predict heating behaviour led 

to a second approach which was more difficult and involved measuring complex 

permittivity. 

 

In the past two decades interest in developing new approaches to reduce energy 

necessary for mineral liberation grew along with demand for industrial minerals and 

energy. Grinding mills and crushers are designed to use large amounts of energy in 

order to liberate minerals from the gangue which can be processed further for 

concentration. Demand for the energy becomes even more evident for processing of 

low grade ore which can require finer grinding to free valuable minerals. To improve 

efficiency of crushing and grinding it is possible to either make optimisation and 

improvements in existing technology or use new technology to treat ore where energy 

transfer is more efficient. 

 

Thermally assisted liberation caused by microwave volumetric and selective heating 

has been used to investigate reductions in ore strength. This can potentially reduce 

energy needs for comminution and liberation by initiating fracture along minerals, 

which have tendency to heat very rapidly when placed in strong electromagnetic 

fields, and gangue minerals. The potential of this technology lies in efficiency of 

energy transfer and selectivity of microwave heating. Ore treated in this manner 

would have reduced strength and therefore be more economic by decreasing costs for 

crushing and milling. 

 

The economic aspects of considerations for the commercial microwave processing of 

ores were presented by Bradshaw et al. (2007). It is concluded that there is a critical 

power density (~ 109 W/m3 for absorbing phase) below which microwaves will not 
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efficiently fracture an ore and that very high power densities combined with short 

residence times will be economic. For the pilot plant scale-ups it was concluded that 

using pulsing systems with detailed mineralogical investigation and expertise in 

mineral processing will give the most promising results. 

 

A very detailed study was done by Kingman et al (2000) on four different types of 

ore: Norwegian ilmenite ore, a refractory gold ore from Papua New Guinea, a 

sulphide ore from Portugal and an open pit carbonatite ore from South Africa. 

Microwave treated ore was tested to examine improvements in grinding. Tests were 

done using multimode oven with constant power and different time exposures. 

Changes in Bond Work Index (the energy input required to reduce the size of feed 

material from infinite size to a set size) were presented as a function of different time 

exposures. Best results were achieved with ilmenite and carbonatite ores which had 

several good absorbers surrounded with gangue material which did not heat very 

rapidly. A mineralogical investigation identified these minerals to be coarse grains of 

magnetite (excellent heater) and ilmenite (good heater) in a plagioclase (poor heater) 

as matrix. The refractory gold ore which contained finely disseminated pyrite grains 

in K-feldspar and quartz gangue did not show significant changes in the Bond Work 

Index. The study also concluded that small particles which are finely disseminated in 

discrete elements respond poorly to microwave treatment resulting with small 

reductions in required grinding energy. It was suggested that for effective microwave 

treatment, ores should have a consistent mineralogy and a good absorber of 

microwave radiation in a transparent gangue matrix. 

 

This work was continued by Vorster (2001) who used a similar approach on the 

massive copper and copper-zinc ore form Neves Corvo, Portugal and Mambula ore 

from South Africa. Samples of the ore approximately similar mass (0.5 kg) were 

treated with microwave energy at 2.6 kW and 2.45 GHz for different time durations. 

The samples were then grinded to approximately P80% passing the 53 μm sieve. The 

experimental results showed up to 70% reduction in the Bond Work Index for the 

samples treated for 90 seconds. The Mambula ore which had good heaters but a 

different matrix composition only showed a reduction in work index of 26% after 90s 

exposure at same power levels. 
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A study which involved both types of microwave cavities multimode and single mode 

was carried out by Cumbane (2003) on Palabora ore from South Africa and 

Zinkgruvan ore from Sweden. The study was complemented with measurements of 

dielectric properties for sulphides, oxides and silicates. These minerals were present in 

tested ore as well. The results showed that for Palabora ore exposed in a single mode 

cavity were higher electric fields were achieved, liberation of copper sulphides on 

coarse size was much better than for Zinkgruvan ore where sphalerite and galena 

finely dispersed in feldspar did not undergo to same effect. 

 

Palabora copper ore was also tested by Sahyoun (2004) in two different cavities. First 

was Panasonic II 2600 multimode microwave oven where three different power levels 

and time exposures were used. To enhance development of micro fractures all 

microwave treated samples were quenched in water and then dried overnight at a 

temperature of 65 oC. The second cavity was single mode, a rectangular industrial 

cavity excited at 2.45 GHz by a Sairem 15 kW microwave generator. This time 

exposure time was constant for 0.5 seconds and four different power levels were used 

to create the base line for testing. Tested sample in the first instance was purified of 

dolerite in order to see how sensitive the Palabora ore is to microwave treatment. In 

second sets of tests dolerite was present which represented a more realistic material in 

the plant. For the first oven the decrease in the comparative Bond Work Index from 

1306 kWh/t to 5.6 kWh/t was noted, with a slight increase for the longest time 

exposure. For the second oven the largest increase was for the first exposure time for 

the two different powers applied. It was reported that dolerite was not affected by 

microwave treatment. 

 

A low grade copper ore from Palabora was again subjected to microwave treatment 

where ore strength was tested using laboratory rod mill by Scott (2006). Although his 

study was based on energy inputs that do not make the process cost effective he also 

reported ore weakening after microwave treatment. 

 

A study by Kobusheshe (2010) involved experimental work to demonstrate the 

occurrence of microwave induced fracture in ores containing hydrated minerals and 
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examine the mechanisms under which it occurs. He also highlighted limitations of the 

microwave system used which was single mode cavity. Reflected power fluctuated 

and could not be easily maintained, because it was dependent on the packing density 

of the batch sample and the dielectric properties of the ore, all of which varied from 

one batch sample to another. The results presented that significant micro and macro 

fractures were observed in ores segments where good heaters of microwave energy 

were located, such as metal oxides and sulphides. It also appeared that damage was 

located in certain mineral phases where dehydration ore was undergoing. 

 

The influence of modulated microwave energy on copper ore breakage was 

investigated by the Author of this thesis. The work was published as a study relevant 

to the thesis but not forming part of it. This approach to power delivery was applied to 

ascertain whether the strength of porphyry copper ore, which originate from Rio 

Tinto’s Bingham Canyon mine operated by Rio Tinto’s Kennecott Utah Copper 

Corporation (marked by the mine as Low Recovery Ore - LRO), can be reduced with 

lower average modulated power levels then using continuous power. Changes in 

resistance to breakage of the treated and untreated ore were quantified by comparative 

drop weight tests. Mineralogical investigation for the ore was carried out with the 

Mineral Liberation Analyser (MLA) for the surface identification of minerals and X-

ray tomography for volumetric analysis. The comparative drop weight tests showed 

that material treated for 5 s at 5 kW of modulated power was weaker than untreated 

material. However, this degree of breakage which was achieved could be achieved 

with substantially less mechanical energy. It is very possible that using higher 

microwave power, better liberation results then using conventional methods can be 

achieved. 

 

In recent year’s work of Weert and Kondos (2007) and Weert et al. (2009) was 

focused in testing various sulphides ores in order to identify what kind of conditions 

would be beneficial for potential microwave/infrared sorting measuring their 

temperatures. Research work was supported by Barrick Gold Corp. Test work was 

conducted on five different ores, with the main focus to identify temperature 

thresholds for three groups: cold, medium and hot. The first two were tested using a 
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domestic microwave oven with 1.1 kW and afterwards assayed for molybdenum and 

sulphur. 

 

The ore type from Malmbjerg deposit located in Eastern Greenland was tested one 

rock at the time placing them in the middle of the microwave oven turntable. 

Temperatures were tested immediately after microwave exposure for 60s. Rocks 

which temperature reached up to 75oC were considered to be cold, medium group was 

between 75 oC and 135 oC and all rocks with temperatures above 135 oC were 

characterised as hot. The assaying results showed that the hot group indeed had a 

sixfold increase in the content of molybdenum. Sulphur presented a similar trend. 

 

For the second ore type which came from Spinifex Ridge in the East Pilbara region of 

W. Australia the testing procedure was changed. The rocks were much smaller, so 

three rocks were placed at the centre of the microwave oven. Rocks were heated for 

30s and maximum temperatures were from 29.2 oC to 180 oC. The assaying results 

showed lower molybdenum grades comparing to previous ore type with increased 

distribution in the hot group. This indicated that cut-off grade rocks can be 

transformed in much higher grade by sorting. 

 

For the next three ore types new type BP-110 of microwave oven was used 

(manufactured by Microwave Research and Applications). The cavity floor of the 

microwave oven was mapped using a 25-point grid which was used to place rocks in 

predefined positions in the volume of the multimode cavity. Rocks for two ore types 

were heated up for 30s. 

 

The ore from Mineral Park, Arizona, USA had two samples called “fresh ore” and 

“leached ore”. After testing both samples they were divided in three groups with two 

thresholds 50 oC and 100 oC. Rocks from each of these groups were crushed, riffled 

and assayed. Final results revealed that there is minor segregation of molybdenum and 

copper in all three groups. Molybdenum appears more evenly divided in Mineral Park 

ore, making upgrading by MW/IR sorting less promising. 
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A Canadian sample from Mount Polley was tested in the same manner as the ore from 

the USA with the only difference being that the rock particles were smaller in size. 

Assaying was performed for copper, silver, gold, iron, molybdenum and sulphur. For 

this sample, microwave infrared sorting responded most likely to chalcopyrite because 

iron content did not follow the sulphur content to suggest pyrite. Gold and silver 

distributions in three groups followed the copper contents. Maximum temperatures for 

this ore sample were from 30 oC to 150 oC. 

 

 The last ore type tested came from Mexico and was provided by Castle Gold from 

Canada. Sorting testing was performed on 100 rock fragments and microwave 

exposure time was changed to 20s. For this sample, copper and gold contents were 

concentrated up to 5 and 6 times which made group “hot” very economic for further 

processing. 

 

Work of Weert and his colleagues is important because it identifies the necessity to 

establish suitable methods to test the sortability of ores using microwave/infrared 

detection.  On the other hand this work lacked consistency in testing. Samples were 

tested under different conditions and there were no clear comments regarding 

influences of mineral textures, chosen time for the exposure or microwave power 

applied. 

2.4 Summary 

All these studies are very important because they support the concept of selective 

heating and provide good starting positions which can be used for study of the 

microwave assisted infrared sorting. The following conclusions can be made from 

reviewed literature. 

 

The investigation of mineralogical composition and textures can help to design and 

optimise a process for discrimination. Applied powers for microwave sorting can be 

significantly lower considering that some particles had an excellent response to 

heating even with non-economic power levels for microwave liberation. Breakage is 

most effective when high microwave power is applied for a short time which causes 

differential stress between mineral phases. For the same load lower power and longer 
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time will also produce localised heating which can be used to identify particles which 

have possible content for sorting. The design of the cavity is important because all 

microwave systems have existing feedback between load and microwave generator 

which needs to be tuned in order to deliver maximum energy transfer. The way in 

which the material is presented to the electric field also plays an important role. This 

refers to whether the particles are exposed to electric field in packed layers, in one 

layer with spacing between them or presented individually without the influence of 

other particles and their overall bulk properties. There is an upper limit to the particle 

size, related to the penetration depth and exposure time required for heating. Systems 

can be redesigned to obtain more information during particle presentation to detectors 

and microwave exposure. For microwave heating and sorting there is a strong need 

for standardisation and determination of dielectric properties of minerals. 
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3 Chapter 3- Theory of Microwave 
Heating and Experimental Methodology 

_____________________________________________________________________ 

3.1 Introduction 

The main aim of this chapter is to provide an overview of the nature of volumetric 

microwave heating, materials interactions with microwaves, complex permittivity of 

minerals, followed by physical properties of minerals. An insight into these topics will 

provide a theoretical approach to closer define favourable cases for microwave 

sorting. In detail the microwave processing systems will be discussed including a 

design of a travelling wave applicator, specifically designed for this study. 

Furthermore, this chapter describes the experimental approach adopted to investigate 

the hypothesis of this thesis. Descriptions will be presented for the procedures for 

detailed experimental investigations, including procedure and techniques used for the 

mineralogical characterization of ores. 

3.2 Electrical Volumetric Heating 

Conventional heating is processed through heat transfer that can be defined as the 

transfer of energy across a system boundary caused solely by a temperature 

difference, most commonly comprised of conduction, convection and radiation or 

their combinations (Thomas 1999). A simple example would be a heating object 

enclosed in the oven and surrounded by heating elements. For this case, energy is 

transferred with gradual heat flow from a heating source to a heating object. Physical 

properties of material such as specific heating capacity, thermal conductivity, density 

and initial temperature will govern the heating rate. During the process of heating, on 
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the surface of the heating objects, corners and edges will have higher temperatures 

then inside of the object as they are longer exposed to a heat flux. 

 

The electrical volumetric heating provides some advantages over conventional 

heating, like: quick start up and stopping, reduction in processing times, material 

selective heating and rapid heating rates. These advantages come from interaction of 

electromagnetic energy with dielectric materials. Meredith (1998) comments that by 

electrical means, volumetric heating is possible where in all the infinitesimal elements 

constituting the volume of a load are each heated individually, ideally at substantially 

the same rate. The heat energy injected into the material is transferred through the 

surface electromagnetically, and does not flow as a heat flux, as in conventional 

heating. 

 

According to the authors Metaxas & Meredith (1983), Feher (2009) and Schubert & 

Regier (2005) heating by electromagnetic energy occurs at molecular or atomic level 

and is due to a combination of: electronic polarisation, atomic polarisation, dipolar 

polarisation and interfacial polarisation. Any dielectric material can be heated to some 

extent by electrical volumetric heating provided that it is neither a perfect electrical 

conductor nor a perfect insulator (Meredith 1998). The dielectric materials can be 

characterised through physical properties such as conductivity and dielectric constant 

(which will be introduced later in more detail). 

 
Figure 3-1 Dielectric dispersion for various types of polarisation, after (Dyer 2001) 

Figure 3-1 illustrates the dispersion of a dielectric constant and conductivity that may 

be observed in materials in the frequency range 103 Hz to 1015 Hz. For some materials 

at certain frequencies a particular type of electronic polarisation may become more 
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dominant than others, which will be mostly defined by physical properties of that 

material.  

 

It can be considered that conversion of microwave energy into heat, a process that 

involves interaction between microwave fields and the conductivity or dielectric 

properties of the material. Considering that electromagnetic field has electric and 

magnetic component same analogy can be applied to magnetic component. The 

complex permittivity is a measure of the ability of a dielectric to absorb and to store 

electrical potential energy. The real component or the real permittivity ( 'ε ) 

characterize the penetration of microwaves into the material, and the loss factor ( ''ε ) 

indicate the material's ability to store the energy.  

 

“Since, with most dielectric measuring techniques, it is difficult to separate the losses 

due to conduction from those due to polarisation, all form of losses can be grouped 

together, thus defining an effective loss factor ''
effε  given by: 

( ) ( ) ( ) ( ) ( ) ωεσωεωεωεωεωε oMWaedeff ++++= ''''''''''   (3-1) 

where the subscripts d, e, a and MW refer to dipolar, electronic, atomic and Maxwell-

Wagner respectively.” As remarked by authors Metaxas & Meredith (1983). 

 

For the ore particles it is also important mentioning depolarisation factors. They can 

be taken into consideration both from the macroscopic level (caused by the different 

shapes of the ore particles) and the microscopic level (the geometries of the various 

mineral phases present). The electric field within a dielectric particle will be lower 

than the applied field by depolarisation, caused by the generation of polarisation 

charges at any boundary between different dielectric media whose surface is 

perpendicular to the applied field. The net field inside the sample is thus reduced, 

while the field outside the sample remains the same.  

 

In the general case the ratio of the electric field inside the workload to that in the 

surroundings lays in the range 1 and 1/ε’; generally and in practice it is a variable 

function of position within the workload. For the special case of sphere embedded in 
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otherwise uniform electric field (in air), the internal (E2) and external (E1) fields are 

related by: 1'2 2
3 EE
ε+

=     (3-2) 

as interpreted by Meredith (1998) and sourced from Stratton (1941). 

 

When depolarisation factors are large, the electric field inside the sample could be 

reduced to zero. The sample is then completely shielded from effects of the 

microwaves. To avoid this, surface charges must be reduced. This could be 

accomplished by placing the tested sample parallel to the electric field. A lot of 

mathematical approximations can be found in literature for depolarisation factors of 

regular shapes however, yet for material such as ore particles where are large 

variability of textures and shapes of particles it would be beneficial to obtain these 

approximations empirically. The best empirical approach to identify and approximate 

these depolarisation factors is out of the scope of this experimental research. 

 

The microwave radiation is the term associated with any electromagnetic radiation in 

the microwave frequency range of 300 MHz–300 GHz. International convention 

dictates that microwave ovens (and other industrial, scientific and medical microwave 

applications) operate at specific frequencies. The most preferred frequency for 

microwave ovens is 2.45 GHz which came as a compromise for the heating of water-

containing foodstuffs; there has to be significant dielectric loss but at the same time 

the electric field has to penetrate the sample. At this frequency the electric field 

swings the orientation of water molecules 109 times every second, creating an intense 

heat that can escalate very quickly (depending on the volume of the load) (Lew et al. 

2002). 

3.2.1 Calculation of Power 
 
Energy [J] is usually defined as a capacity to do work and it can be stored in many 

ways. However, power [J/s=W] is the time rate of dissipation of energy. As Meredith 

(1998) has remarked: “In principle, with volumetric heating the average temperature 

of the workload continues to rise as long as power is applied, irrespective of the 

temperatures of oven walls or the air inside the oven”. 
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 In the work of Metaxas & Meredith (1983) the following calculation for the average 

power which refers to the power density inside the material can be found: 

( )dVEEP
V

av ∫ ⋅= *
0

''

2
1 εωε   (3-3) 

In special cases, where the electric field can be assumed constant, attains the more 

familiar form, using EE ⋅* =E2  

VEP rmsav
2

0
'' εωε=    (3-4) 

Substituting 0ε =8.854 10-12 [F/m] yields with fπω 2=  

VfEP rmsav
2''1010556.0 ε−⋅=   (3-5) 

where:  

P = Power [W] 

f = Applied Frequency [Hz] 

rmsE = Electrical field strength inside the mineral [V/m] 

*E , E= Conjugate electrical field strength, electrical field strength [V/m] 

0ε = 8.854×10−12 Permittivity of free space [F/m] 

''
effε = Effective loss factor [F/m] 

V=Volume [m3]. 

For a material which exhibits magnetic losses the power density equation takes the 

form: 

VHVEP rmseffrmseffav
2

0
''2

0
'' μωμεωε +=  (3-6) 

  
where:  

rmsH = Electrical field strength inside the mineral [V/m] 

0μ = Permeability of free space [Tm/A] 

''
effμ = Effective magnetic loss factor [Tm/A]. 

For this study it is considered that the content of ferromagnetic minerals is much 

lower compared to all others rock forming minerals. For the minerals which exhibit 

small ferromagnetic properties, the effect was also minimised where possible, by 

experimental design to expose rock particles to electric field component of the 

electromagnetic waves and minimise the influence of the magnetic component. The 

average power which refers to the power density inside the material comes from both 
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electric and magnetic losses. To which extent the ratio between magnetic and electric 

component are driving the average power density within the mineral phases is beyond 

the research of this thesis work. 

3.2.2 Calculation of Temperature Rise for Microwave Heating of 
Materials 

If the energy balance for the load is placed the following energy distribution can be 

seen: 

 

[Energy transferred from the electromagnetic field] = [Energy absorbed in the 

material] + [Energy lost in surrounding medium from the material] + [Energy lost by 

radiation from the material] 

 

From energy balance it can be seen that heating and cooling are occurring 

simultaneously which leads to transient thermal calculations to determine heating 

rates. Transient thermal calculations are mathematically very complex and usually 

numerical modelling is applied. However, it is still possible to calculate approximate 

heating rates if some assumptions are made. To calculate energy lost by radiation 

energy calculation from Stefan-Boltzmann Law can be applied which states: “The 

radiation energy per unit time from a blackbody is proportional to the fourth power of 

the absolute temperature” (Thomas 1999). It can be expressed as  

q = ε σ T4 A    (3-7) 

where: 

q = heat transfer per unit time [W] 

σ = 5.6703 10-8 [W/m2K4] - The Stefan-Boltzmann Constant 

T = absolute temperature in Kelvin [K] 

A = area of the emitting body [m2] 

ε = emissivity of the object (ε = 1 for a black body). 

A very simplified form can be given as a conduction equation: 

QT
t
TC p +∇=
∂
∂ 2λρ     (3-8) 

where, Cp =specific heat is given in [J/kgK] and λ= thermal conductivity [W/mK]. 

This simplistic form has to be extended with terms for convection in order to get an 

accurate numerical solution. For the given system where material is placed on the 
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surface which does not conduct heat well and it is surrounded with stagnant air, it can 

be stated that the energy lost is minimised and most of the energy is absorbed by the 

material. 

The power required to raise the temperature of material from T0 [oC] to T [oC] with a 

mass of m [kg] in defined time frame t is given by equation:  

( )
t

TTmc
t

Q
P ph 0−

==    (3-9)  

Substituting P, using Equation 3-4, in Equation 3-9 derives the form of Equation 3-10: 

( )
⎥
⎦

⎤
⎢
⎣

⎡⋅
=

− −

s
C

C
fE

t
TT

p

rms
02,,10

0 10556.0
ρ

ε
   (3-10) 

Where: 

ρ = is the density of the material in [kg/m3]  

Cp =specific heat is given in [J/kgoC].  
''ε = Loss Factor [F/m] 

A similar approach is used by Metaxas & Meredith (1983). From Equation 3-10 it can 

be observed that the temperature rate is dependent upon frequency “f” and ( 2,,
rmsEε ) 

which is usually a function of the temperature, due to the variation of the loss factor 

with temperature. Density and specific heat also have a large influence particularly 

when heterogeneous materials like real rock particles are involved.  

3.3 Materials Interaction with Microwaves 

Generally the materials can be grouped according their interaction with microwaves in 

three groups: 

• Conductors: materials have loosely bound electrons (one or two) in the outer 

(valence) shell that can move easily under the influence of a voltage to form 

current. Conductors include elemental metals such as copper, gold, silver or 

aluminium. They are used to conduct microwaves through coaxial cables or 

waveguides. 

• Insulators: behave almost transparent to microwaves. Insulators include glass, 

plastic, rubber, silicon dioxide, silicon nitride and very commonly used 

Teflon®. 

• Absorbers: are lossy materials or dielectrics which absorb microwaves.  
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This grouping is done after Chen et al. (1984) and Church et al. (1988). For this study 

in very broad definition it is considered that most common forming rock minerals 

belong to the insulators group which behaves “almost” transparent to microwaves, 

while minerals of interest belong to absorbers group. 

3.3.1 The Penetration Depth of Microwave Energy into Materials 

It is useful to define penetration depth, taking into account that materials are grouped 

according to whether the microwaves penetrate the material or not.  

The penetration depth is defined as the distance from the surface of the material at 

which the power drops to 1−e , (e ≈  2.718, Euler's number) from its value at the 

surface. It is given as: 

 
α2
1

=PD   [m]  (3-11) 

Where α is the attenuation factor which is a real part of propagation factor for the 

electric field (von Hippel 1954). It can also be expressed as: 

⎥
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=
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"1'22

2

ε
εεπf

cDP  (3-12) 

With c being the speed of light in free space (c = 3 x 108 m/s). The penetration depth 

of microwaves into a material is therefore inversely proportional to the frequency. 

Shorter-wave electromagnetic waves have less penetration than longer waves. Also, 

electromagnetic waves do not penetrate deeply into moist materials where both the 

dielectric constants and loss factors are moderately high. This does not mean that 

there is no heating beyond penetration depth. It means that more than 60% of heat will 

be dissipated in the layer of material between surface and penetration depth (Meredith 

1998). 

 

Penetration depth is an important concept which is often used to consider whether an 

electromagnetic field at a certain frequency can provide relatively good penetration 

into the material. For quick assessment it can be used with frequency bands presented 

in Table 3-1. 
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Table 3-1 Typical frequencies used and their approximate band designations, after Pozar (1997) 

Typical frequencies and their usage  Approximate band designations 
AM broadcast band 535-1605 kHz L-band 1-2 GHz 
Short wave radio 3-30 MHz S-band 2-4 GHz 
FM broadcast band 88-108 MHz C-band 4-8 GHz 
VHF TV (2-4) 54-72 MHz X-band 8-12 GHz 
VHF TV (5-6) 76-88 MHz Ku-band 12-18 GHz 
UHF TV (7-13) 174-216 MHz K-band 18-26 GHz 
UHF TV (14-831 470-890 MHz Ka-band 26-40 GHz 
Microwave ovens 0.915 and 2.45 GHz U-band 40-60 GHz 

For low loss dielectrics ( ) 1'/'' <<εε  and the penetration depth approximates, with an 

error up to 10%, to: 

( )
"

2/1'
0

2
'

πε
ελ

=PD   (3-13) 

Harrison’s (1997) work compared the depth of penetration for the two commonly 

used frequencies for microwave heating at 915 MHz and 2.45 GHz. The measurement 

of dielectric properties was undertaken for selected minerals using an open ended 

coaxial line sensor and compared with available literature results. Values were 

calculated using Equation 3-13. The depth of penetration in common rock forming 

minerals is large when compared to the depth of penetration in ore minerals. For 

example at 2.45 GHz the depth of penetration for quartz and feldspar is measured in 

meters, whereas the depth of penetration for chalcopyrite and pyrite is measured in 

millimetres and centimetres, as seen in Table 3-2. 
Table 3-2 Variation of penetration depth for various minerals at two microwave frequencies after 

Harrison (1997) 

Mineral Depth of 
Penetration at 
915 MHz 
(From 
Literature) 
[m] 

Depth of 
Penetration at 
915 MHz 
(Measured) 
[m] 

Depth of 
Penetration at 
2.45 GHz 
(From 
Literature) 
[m]

Depth of 
Penetration at 
2.45 GHz 
(Measured) 
[m] 

Quartz - 3.97 3.27 5.86 
Feldspar 2.28 - 1.06 - 
Hematite 0.15 0.29 0.07 0.21 
Ilmenite 0.06 0.63 0.01 0.31 
Chalcopyrite 0.06 0.70 0.05 0.33 
Pyrites 0.09 0.21 - 0.11 
Magnetite 0.32 0.26 - 0.06 
Galena 0.10 0.92 0.09 0.84 
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Considering that 60% of heat is dissipated in the layer between surface and 

penetration depth and taking into account large differences in compared values it can 

be seen why for this study, common rock forming minerals are considered to be 

“almost” transparent to microwaves. 

3.3.2 Influence of Particle Size on Heating Rate during 
Microwave Heating 

Earlier studies of Jelinek et al. (1949), Walkiewicz et al. (1988) and Salsman et al. 

(1996) have determined that particle size has an effect on the heating rate of a material 

and how it reacts with microwaves. When testing bulk properties of materials porosity 

of material changes with particle size. This influences bulk density of material which 

impacts heating rate as seen in Equation 3-10. 
 

The earliest work performed on the dielectric heating of granular materials was 

undertaken by Jelinek et al. (1949). They tested granular alumina and sand. The 

heating rate of granular alumina increased linearly with an increase in particle size. 

The heating rates of sand were also found to increase with an increase in particle size. 

This was in agreement with electromagnetic theory which suggests that larger 

particles are heated more rapidly than smaller particle size. Opposite results were 

reported by Walkiewicz et al. (1988). They reported on the effect of particle size on 

heating properties of graphite. It was found that finer size graphite heats better with 

microwave radiation than the larger sizes.  

 

Salsman et al. (1996) theoretically modelled and experimentally demonstrated the 

heating rate of sulphide ores to be directly proportional to the mass and volume of 

high loss material. A peak tensile stress in the host rock, caused by heat stress 

between mineral phases, increased with increasing particle sizes. It was also shown 

that the heating rate was directly proportional to the grain size of the sulphide ores. 

Following this study Kingman et al. (2000), also reported the effect of mineralogy and 

grain size on microwave assisted grinding. According to these results, ores which 

contained minerals in small particles which were finely disseminated in discrete 

elements responded poorly to microwave treatment in terms of reductions in required 

grinding energy. 
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In literature opposing results can be sourced. The cause for opposing results can be 

found in the absence of standardised sample preparation and testing. In some studies 

different frequencies were used as well as different temperature measuring techniques. 

Experimental results and research by Harrison (1997) corrected for this when various 

minerals and their relationship with sizes were studied. To standardise the results, 50g 

representative samples of a mineral were exposed in the same glass container and 

placed in the same position in the 650W microwave oven at 2.45 GHz. The minerals 

have been sieved, where possible, into five different particle size ranges. The results 

indicate the effect of particle size on the heating rates of minerals could be divided 

into 3 behavioural patterns: 

• Group A - An increase in particle size causes a decrease in heating rates 

• Group B - No discernible change in heating rate 

• Group C - An increase in particle size causes an increase in heating rates 

Figure 3-2 to Figure 3-4 present some of the minerals which are good representatives 

of their groups. 

 
Figure 3-2 Heating rates for 
50g of representative samples 
of Pyrrhotite and their five 
different particle sizes, after 
Harrison (1997). Belongs to 
Group A. 

 
Figure 3-3 Heating rates for 
50g of representative samples 
of Chalcopyrite and their five 
different particle sizes, after 
Harrison (1997). Belongs to 
Group B. 

 
Figure 3-4 Heating rates for 
50g of representative samples 
of Cassiterite and their five 
different particle sizes, after 
Harrison (1997). Belongs to 
Group C. 

 
Table 3-3 shows results of the heating rates with particle size variation for some 

selected rock forming minerals. It is also commented whether the heating effect 

decreases while particle size increases. While some minerals show no difference like 
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chalcopyrite, pyrites or calcite some minerals have a slight tendency toward “group 

A” like quartz or feldspar. 
Table 3-3 Results of Heating Rate with Particle Size Variation, after Harrison (1997). 

Mineral Type As Particle Size Increases, Does The 
Heating Effect Decrease? 

Class of Particle 
Size Effect 

Calcite No difference B 
Sphalerite No, the reverse C 
Mica Yes, very slightly A 
Quartz Yes, very slightly A 
Feldspar Yes, very slightly A 
Fluorspar Yes, very slightly A 
Batytes Yes, very slightly A 
Wolframite No, the reverse C 
Dolomite No difference B 
Gypsum No, the reverse C 
Bauxite No difference B 
Cassiterite No, the reverse C 
Hematite Yes A 
Ilmenite No difference B 
Chalcopyrite No difference B 
Pyrites No difference B 
Pyrrhotite Yes A 
Chalcocite Yes A 
Magnetite Yes A 
Bornite Yes A 
Galena Yes A 
 

It is important to emphasize that this separation in groups was carried out for pure 

minerals and not a combination of minerals. Heating rates of combined minerals with 

different textures and structures, which can be found in real rock particles, may result 

with completely different results. This will be explained in more details later on. 

 

In literature some authors have found that hematite is a good absorber of microwave 

energy like Chen et al. (1984) and Walkiewicz et al. (1988) while others like Wright 

et al. (1989) reported the opposite. Harrison (1997) reported slight temperature change 

when exposed to microwaves. Although, they all used a similar approach by testing 

for heating rate in a domestic microwave oven these observed differences to 

microwave heating may be related to preparation of the samples or to purity of the 

mineral.  
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3.4 Complex Permittivity of Minerals 

Permittivity is a physical property relating the ability of a material to propagate an 

electromagnetic field. The permittivity is a measure of how an electric field affects, 

and is affected by, a dielectric medium. In the frequency domain, the complex 

permittivity ε = ε’ − iε’’ of a material can be expressed through real part and complex 

part defined with imaginary unit (i). The real part ε’ is defined as the dielectric 

constant and represents stored energy when the material is exposed to an electric field. 

It has to be noted that it is conveniently termed dielectric constant but it is not 

considering that it is frequency and temperature dependant. Only for the free space 

dielectric constant can be taken as a constant which is εo=8.854 x 10-12 [F/m]. The 

dielectric loss factor ε’’, which is the imaginary part, influences energy absorption and 

attenuation. More detailed definitions can be found in works of Metaxas (1983), 

Schubert and Regier (2005), and Feher (2009). 

 

The complex permittivity of minerals varies over a wide range even within a 

homogeneous material; there is variation at different temperatures and frequencies. 

The problem becomes less complicated if the measurements are set to certain 

frequencies which are usually 915 MHz and 2.45 GHz set for industrial applications. 

These industrial frequencies can have slightly varied values due to different countries 

and regions. 

 

There are two techniques which were used over the years to measure complex 

permittivity of minerals. The resonant cavity perturbation method is a reliable and 

simple technique to determine the complex permittivity of dielectric materials in the 

GHz range, and it has been widely used. The second technique is coaxial line method 

or open-ended coaxial line technique (Czichos, Saito & Smith 2006). 

 

The open-ended coaxial line technique was used in experimental work to study 

heating effects by Harrison (1997) and the work was undertaken at The National 

Physical Laboratory at Teddington in Middlesex, UK. Measurements were performed 

over the frequency range of 0.1-6 GHz. Table 3-4 shows the variation of dielectric 

constant and loss factor for minerals is presented. The values are given for the room 
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temperature and there was no information about extrapolation to a solid density 

considering that the powder samples were tested. 

 

From Harrison’s work it can be seen that quartz, which is common as gangue mineral, 

has much lower values for dielectric properties compared to chalcopyrite and pyrites. 

The value for the loss factor is much lower which to a great extent influences the 

conversion of electromagnetic energy into thermal energy. This shows that the heating 

rate for quartz will be much slower than for chalcopyrite or pyrites which is in 

agreement with the observed heating rates from various research studies. 
Table 3-4 Values are given for the two industrial frequencies at 2.45GHz and 915MIHz data 

obtained from (Harrison 1997) 

Minerals Dielectric 
constant 
(ε’) at 
915MHz 

Loss 
factor at 
(ε’’) 
915MHz

Loss 
tangent 
at 
915MHz

Dielectric 
constant 
(ε’) at 
2.45GHz 

Loss 
factor 
(ε’’) at 
2.45GHz 

Loss 
tangent 
at 
2.45GHz

Quartz 2.32 0.04 0.017 2.26 0.01 0.018 
Ilmenite 4 0.33 0.083 3.75 0.24 0.088 
Chalcopyrite 5 0.33 0.066 4.75 0.26 0.069 
Hematite 5.2 0.8 0.154 4.9 0.4 0.163 
Galena  7 0.3 0.043 6.75 0.12 0.044 
Pyrites 9 1.5 0.167 8.25 1 0.182 
Magnetite 13.5 1.5 0.111 14.5 2.5 0.103 
 
The resonant cavity perturbation method was used by Cumbane (2003) which allowed 

him to investigate behaviour of dielectric properties with temperature change at set 

frequency of 2.216 GHz which was one of three resonant frequencies. Results are 

given in Table 3-5. All minerals were softly compressed powders and from most 

abundant groups of minerals. From silicates he used quartz and orthoclase (member of 

feldspar group) which were taken as common gangue minerals. From the metal oxides 

he used hematite, magnetite, ilmenite and cassiterite. And the last group used was 

sulphides with pyrite, chalcopyrite, galena, sphalerite, and chalcocite. Results 

revealed that gangue minerals had minimal alterations in their dielectric properties 

with temperature change. The largest alterations were reported for sulphides followed 

by oxides.  

 

Recent studies and measurements by Geoffrey Genn (2012) obtained data from cavity 

perturbation measurements using the 'C1' cavity at the University of Nottingham. The 

Landau-Lifshitz-Looyenga mixture equation (Landau & Lifshitz 1960) was used to 
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calculate the dielectric properties of the solid phase from powder data. When powder 

samples are prepared, measured dielectric properties are actually for the mixture of air 

and mineral under testing. Air influence can be reduced by compacting the sample as 

much as possible. With lightly compacted powders it is recommended to extrapolate 

data up to the solid phase. More details can be found in work of Arai, Binner & Cross 

(1995). 
Table 3-5 Cumbane (2003) measurements not extrapolated to solid density at the room temp. 

Minerals Dielectric constant 
(ε’) at 2.21GHz 

Loss factor (ε’’) 
at 2.21GHz 

Loss tangent at 
2.21GHz 

Sulphides    
Pyrite 7.55 0.85 0.113 
Chalcopyrite 7.95 0.38 0.048 
Galena 6.65 0.15 0.023 
Sphalerite 3.5 0.12 0.034 
Chalcocite 8.6 0.55 0.064 
Oxides    
Cassiterite 5.216 0.25 0.048 
Hematite 4.399 0.18 0.041 
Ilmenite 9.201 0.78 0.085 
Magnetite 4.463 0.15 0.034 
Wolframite 4.924 0.11 0.022 
Silicates    
Quartz 2.65 0.03 0.011 
Orthoclase 1.86 0.01 0.005 

 

Table 3-6 Genn measurements extrapolated to solid density at the room temperature 

Minerals Dielectric 
constant 
(ε’) at 
912MHz 

Loss 
factor at 
(ε’’) 
912MHz 

Loss 
tangent 
at 
912MHz 

Dielectric 
constant 
(ε’) at 
2.468GHz

Loss 
factor 
(ε’’) at 
2.468GHz 

Loss 
tangent 
at 
2.468GHz

Pyrite 27.58±4.14 6.69±0.67 0.243 25.75±3.86 4.70±0.47 0.183 
Chalcopyrite 21.76±3.26 1.71±0.17 0.079 22.36±3.35 1.65±0.16 0.074 
Garnet  11.00±1.65 0.01±0.05 0.001 11.64±1.75 0.02±0.01 0.002 
Mica 6.18±0.93 0.07±0.01 0.011 6.32±0.95 0.07±0.01 0.011 
Molybdenite 13.68±2.05 1.34±0.13 0.098 12.71±1.91 1.46±0.15 0.115 
Quartz 4.45±0.67 0.01±0.05 0.002 4.64±0.70 0.02±0.01 0.004 
 
The ratio of the real and imaginary parts of permittivity represents another important 

parameter, the tangent of loss angle (tan δ= ε”/ ε’). Considering that imaginary and 

real parts can have different trends with frequency and temperature change, this is a 

good approach to combine them in to one parameter. Tangent of loss angle then can 

be compared for chosen groups of minerals at specific values, for example one of the 

industrial frequencies and the room temperature. 



Chapter 3- Experimental Methodology 
_____________________________________________________________________ 

_____________________________________________________________________ 
 

46 

 
Table 3-7 shows the ratios for loss tangent between very absorbing minerals and 

Quartz at 2.45 GHz or very closely to 2.45 GHz and the room temperature. It can be 

observed that chosen minerals will have a tendency to heat five to ten times faster 

than quartz. This effect becomes even more evident when values are extrapolated to 

solid density. 
Table 3-7 Compared ratios for loss tangent between very absorbing minerals and Quartz as very 

common gangue mineral in three different studies.  

Study by Loss tangent ratio 
Pyrite / Quartz 

Loss tangent ratio 
Chalcopyrite / Quartz 

Loss tangent ratio 
Magnetite / Quartz 

Harrison 
(1997) 

10.11 3.83 5.72 

Cumbane 
(2003) 

10.27 4.36 3.09 

Genn 
(2009) 

45.75 18.5 - 

 

The study by Harrison (1997) which measured dielectric properties with frequency 

change and another study by Cumbane (2003) followed by a study of Genn (2012) 

which investigated dielectric properties with temperature change clearly place 

complex permittivity as one of guiding factors in the volumetric heating and 

determines heating rates. The higher the ratio for loss tangent between the mineral of 

interest and the gangue minerals, the higher selective heating will be and good 

conditions for selective heating. 

3.5 Physical Properties of Minerals 

3.5.1 Thermal conductivity of rocks and minerals 

From Equation 3-14 it can be seen that the energy which is lost through conduction 

can be expressed as: 

 TQ 2∇= λ   (3-14) 

In this case temperature diffusion is defined in all directions. Conduction takes place 

when a temperature gradient exists in a solid medium. Conductive heat flow occurs in 

the direction of decreasing temperature because higher temperature equates to higher 

molecular energy or more molecular movement. Thermal conductivity for many rocks 

is, to a good approximation, isotropic, particularly for volcanic and plutonic rocks. In 

contrast to this, thermal conductivity of many sedimentary and metamorphic rocks is 
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strongly anisotropic, and lateral heat flow will be significant. Therefore information 

on anisotropy is often needed, requiring laboratory measurements in different 

directions (Clauser & Huenges 1995). Temperature measurements are usually 

performed along one direction. Under steady state conditions and when the heat 

transfer is dependent only on the temperature gradient, thermal conductivity is defined 

as: The quantity of heat (q) transmitted through a unit thickness (L) in a direction 

normal to a surface of unit area (A) due to a unit of temperature gradient (ΔT). The 

form of Equation 3-14 becomes the following: 

i
ii x

Tq
∂
∂
⋅= λ   (3-15) 

which becomes even more simplified for the case of conduction through a one layer 

of block, 

L
TAq Δ⋅⋅

=
λ   (3-16) 

where, 

L= thickness of the block [m] 

A= surface area defined for heat conduction [m2]. 

Thermal conductivity is a function of mineral orientation, porosity, moisture content 

and density. The work of Schon (1995) defines these factors in more details. Figure 

3-5 shows thermal conductivity for selected rocks. It can be seen how different these 

ranges can be with a sandstone and quartzite extending to the highest values of 

thermal conductivity within the selected group of minerals. 

 
Figure 3-5 The thermal conductivity for various types of rocks with main influences. Sourced 
from (Schon 1995) 
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Because silicates constitute by far the largest fraction of the earth’s crust and mantle, 

it is suitable to have understanding in values for thermal conduction in metamorphic 

rocks, subdivided according to quartz content followed secondly by the largest 

fraction of plutonic rocks, subdivided according to feldspar content. 

 
Figure 3-6 Thermal conductivity of metamorphic rocks, subdivided according to quartz content. 
Sourced from (Clauser & Huenges 1995). 
 
In Figure 3-6 thermal conductivity of metamorphic rocks is given.  

• Histogram for high quartz content is made up of data from quartzite. 

• Histogram for low quartz content are from quartz-mica schist, gneisses, 

marble, serpentinite, talc, serpentinized peridotite, homfels, eclogite, albitite, 

leptite, schist, slate, phyllite, amphibolite, mylonite and greenstone (Clauser & 

Huenges 1995). 

 

 
Figure 3-7 Thermal conductivity of plutonic rocks, subdivided according to feldspar content. 
Sourced from (Clauser & Huenges 1995). 
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In Figure 3-6 thermal conductivity of plutonic rocks can be seen.  

• Histogram for high feldspar content is composed of data from: syenite 

(including alkali and nepheline syenite), granosyenite, syenite porphyry, and 

anorthosite.  

• Histogram for lower feldspar content are from granite (including alkali granite, 

plagiogranite, granodiorite, tonalite, quartz monzonite), quartz- and quartz-

feldspar-porphyry, diorite (including monzonite), gabbro (including quartz and 

olivine gabbro), porphyrite dykes (lamporphyre, diabase, quartz dolerite), and 

ultramafic rocks (pyroxenite, peridotite, lherzolite, hypersthenite, bronzitite, 

dunite, olivinite, homblendite, cumberlandite) (Clauser & Huenges 1995). 

 

For a more precise calculation thermal conductivity is required on elevated 

temperatures, while in literature usually data at room temperatures can be found. 

Early research of Birch and Clark (1940) confirmed that thermal conductivity is 

decreasing with increasing temperatures. Sass et al. (1992) suggested empirical 

relations between thermal conductivity and temperature which involved value 

measured at room temperature. This relation was derived from experimental measured 

data from previous study done by Birch and Clark (1940). 
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Clauser (1995) also commented that Sass’s equation yields useful estimates of the 

temperature dependence of thermal conductivity for crystalline rocks, independent of 

mineralogy for the temperature range of 0-250oC. 
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Table 3-8 Thermal conductivity for some selected minerals. Directions of anisotropy in table are 

specified in two ways: (1) by the mineral’s optical axes a-, b-, or c- (100, 010, 001), (2) by the 

thermal conductivity components normal or parallel to the direction of maximum thermal 

conductivity 

Sourced from Clauser & 
Huenges (1995) 

Sourced from Horai 
& Baldridge (1972) 

Mineral 

Measurement 
temperature 
[◦C], State 

Thermal 
conductivity 
[W/mK] 

Thermal 
conductivity 
[W/mK] Ambient 
conditions 

Andradite - - 3.09 
Anhydrite 25-35, a: 50.36±0.27 4.76 
Apatite 35, a: 1.27±0.02 1.38±0.01 

33,║ 3.14 Biotite 
32,┴ 0.52±0.01 

2.02±0.32 

30,┴ 3.16 Calcite 
30,║ 3.63 

3.59 

Chalcopyrite - - 8.20 
Chlorite 30, a: 3.06±1.18 5.15±0.77 
Chromite 35, a: 2.19±0.15 2.52 

31,║ 3.10 
32,┴ 2.93 

Epidote 

31,║ 2.50±0.02 

2.83±0.21 

Galena 35, a: 2.76±0.18 2.28 
Grossularite ? 5.32 5.48±0.21 
Gypsum ? 1.30 - 
Hematite 30, a: 12.42±1.74 11.28 

25-100,┴ 7.32±0.57 
25-100,║ 7.86 ±0.17 

Magnesite 

34-35, a: 8.18 ±1.20 

5.84 

Magnetite 22-33, a: 4.61±0.42 5.10 
30,║ 3.89 Muscovite 
32-45,┴ 0.62±0.11 

2.28±0.07 

Pyrite 35, a: 23.15±2.00 19.21 
30,┴ 6.15 α Quartz 
30,║ 10.17 

7.69 

32,┴ 2.41± 0.10 
?,║ 2.76 ±0.03 

Serpentine 

30-34, a: 2.61 ±0.38 

3.53±1.28 

Sphalerite - - 12.72 
Spinel 35-70, a: 12.14±1.23 9.48 

29-34, ║ 10.69 ±1.35 
30, ┴ 1.76  

Talc 

30, a: 2.97 

6.10±0.90 

In Table 3-8 thermal conductivity for some selected minerals can be found. The 

values are sourced from two studies. The values from Horai & Baldridge (1972) are 

for powders so the information about anisotropy of tested minerals was lost. The 
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study of Clauser & Huenges (1995) took anisotropy into consideration and provided 

information about the state of measurement along with temperatures.  

3.5.2 Specific Heat Capacity of Minerals 

Knowledge of the specific heat capacity is very important if we want to calculate the 

heating rate of rock particles. Specific heat capacity [J/kg K] is defined as the amount 

of heat required to raise the temperature of the unit mass [1 kg] of a substance by a 

unit temperature increase [1 K] (Thomas 1999). Values are generally determined with 

experiment, which involves in most cases calorimeter. In engineering calculations, 

when a system exchanges a certain amount of heat within the process, we use average 

specific heat, which stands for ratio between heat, which was exchanged, and finite 

temperature difference. It can be defined by Equation 3-19. 
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Specific heat capacity is related to the thermal conductivity λ and the thermal 

diffusivity κ by the Equation 3-20: 

ρ
λκ
pc

=    (3-20) 

where ρ is density. It is also temperature dependent. A detailed study of specific heat 

capacities and their temperature dependence, on more than 150 various minerals, was 

done by Waples & Waples (2004). They defined heat capacity with approximation to 

be uniform in all directions or isotropic. In this respect, it contrasts strongly with 

thermal conductivity, which may be highly anisotropic. 

 

It is important to establish a standard reference temperature in order to compare heat 

capacities of the various minerals. Table 3-9 shows measured specific heat capacities 

along their values for 20oC as the reference temperature. In their study all minerals 

were included to create a histogram showing distribution of measured specific heat 

capacities which can be seen in Figure 3-8.  

 

It can be seen from this work that the great majority of the specific heat capacities of 

minerals at 20oC are between about 600 and 900 J/kg/K, with a strong preference for 

values at 800 J/kg/K as seen in Figure 3-8. The mean value for all the inorganic 

minerals in their database is 660 J/kg/K, with a standard deviation of 235 J/kg/K.  
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Table 3-9 Measured Specific Heat Capacities for Chosen Various Classes of Minerals, and the 

Temperatures at Which the Measurements Were Made. Sourced from (Waples & Waples 2004) 

Mineral Density 
(g/cm3) 

Measurement 
temperature 
(◦C) 

Cp (J/kg/K) at 
measurement 
temperature 

Cp (J/kg/K) 
at 20oC 

Adularia 2.59 20 685 685 
Anatase 3.84 25 820 811 
Andradite 3.86 0 750 785 
Anhydrite 2.9 20 585 585 
Apatite 3.225 20 700 700 
Arcanite 2.66 20 715 715 
Biotite 3 20 770 770 
Bromyrite 6.477 20 180 180 
Brucite 2.38 35 1300 1260 
Calcite 2.745 20 815 815 
Cassiterite 6.95 20 375 375 
Chalcocite 5.65 20 510 510 
Chalcopyrite 4.2 20 534 534 
Chlorite 2.8 20 600 600 
Chromite 4.9 20 690 690 
Dolomite 2.84 20 870 870 
Epidote 3.4 20 780 780 
Epsomite 1.677 32 1510 1472 
Galena  7.55 20 210 210 
Grossularite 3.594 127 713 593 
Gypsum 2.32 20 1070 1070 
Hematite 5.15 20 620 620 
Kaolinite 2.65 0 930 974 
Kieserite 2.571 9 1000 1025 
Lime 3.45 20 750 750 
Magnesite 2.975 20 880 880 
Magnetite 5.175 20 586 586 
Microcline 2.58 20 700 700 
Molybdenite 4.65 20 574 574 
Muscovite 2.85 20 760 760 
Nepheline 2.6 20 800 800 
Oligoclase 2.64 20 837 837 
Olivine 3.4 0 550 576 
Orthoclase 2.6 20 628 628 
Pyrite 5.05 20 510 510 
Quartz 2.648 20 740 740 
Serpentine 2.55 20 650 650 
Sphalerite 4 0 450 471 
Spinel 3.6 20 820 820 
Talc 2.8 20 750 750 
Thenardite 2.664 25 971 960 
Vermiculite 2.78 20 770 770 
Wollastonite 2.845 0 695 728 
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Figure 3-8 Histogram showing distribution of measured specific heat capacities of minerals 
corrected to 20oC. Values on x-axis refer to maximum value in group. After (Waples & Waples 
2004) 
 

Waples and Waples (2004) commented more about generic values for some groups. 

The lowest values generally occur in compounds that contain one or more heavy-

metal atoms (especially sulphides, silver halides, tungstates, and some oxides and 

carbonates), whereas the highest values are for minerals such as epsomite, brucite, and 

gypsum, which are either hydroxides or contain significant amounts of water of 

crystallization. This is why the span from 180 J/kg/K for bromyrite (AgBr) to a very 

high value of 1485 J/kg/K for epsomite can be seen. Most importantly they observed 

that various types of silicates have specific heat capacities which cluster near the 

middle of the range. 

 

Many measurements on different temperatures using a calorimeter confirmed 

temperature dependence of specific heat capacity. It increases as the temperature 

increases. This effect has to be included when heating rates are calculated; otherwise 

it can produce values which can be very different when compared with experimental 

results. A good equation was developed by Waples & Waples (2004) as third-order 

polynomial equation with correlation coefficient r2 = 0.93 for non-porous rocks. 
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071600172.01013.21095.8 26310 +⋅+⋅−⋅= −− TTTC pnT   (3-21) 

Specific heat capacity in Equation 3-21 is given as normalised value, where CpnT 

=[J/kgK] and T=[K]. Normalization was carried out by dividing all reported specific 

heat capacities in their study by value for the same rock at 200oC. It can be adapted to 

calculate the specific heat capacity of any mineral or nonporous rock in any units at 

any temperature T2 if the value on temperature T1 was measured. It is obtained in two 

steps: 

1. First, Equation 3-21 is applied at both temperatures to obtain normalised 

values  

2. These normalised values are then applied in Equation 3-22 to calculate value 

of specific heat capacity at temperature T2. 

1

12
2

pnT

pTpnT
pT C

CC
C

⋅
=   [J/kgK] (3-22) 

3.6 Defining Favourable Cases for Microwave Sorting 
 

Eventually in microwave assisted infrared sorting everything comes to a measurement 

of surface temperature. The temperature profiles on rock particles are based on the 

relationship between minerals and temperature, that is, on the thermal state of 

minerals and the changes that take place in minerals depending on temperature. 

Temperature is one of the parameters which affect almost all physical and chemical 

properties of minerals; it defines kinetics of material systems and the state 

equilibrium. The thermodynamic states of minerals during and after heating are 

determined by two closely connected processes:  

• The mechanism of heat transfer considered as a transient thermal state 

• The thermo kinetic processes which determine the variations of the physical 

and chemical properties of the minerals investigated.  

These two thermal processes will determine all the aspects of the heating temperature 

profiles from the time volumetric heating starts, until the system reaches the state 

equilibrium  

 

In a well defined material system which constitutes the object of heating and 

microwave apparatus, heating rates and temperatures profiles will also depend on the 



Chapter 3- Experimental Methodology 
_____________________________________________________________________ 

_____________________________________________________________________ 
 

55 

way in which thermal energy is fed to the system. This can be continuous or pulsed 

microwave exposure. 

 

A system of rock particles can be raised to the desired temperature by heating. The 

desired level of energy needed to produce temperature profiles which can be used to 

create discrimination criteria will be determined by particle size, mineral composition 

and texture of the rock particles. The process by which heat is transferred depends on 

a difference of temperature existing between parts which have higher heating rates 

and ones with much slower heating rates. This creates temperature gradient; heat will 

spontaneously pass from the warmer to the colder parts of the body. Thermal energy 

will propagate in rock particles by conduction and from the surface by convection and 

radiation. 

 
During thermal conduction heat is transferred gradually from one molecule to the next 

within a body, without any apparent displacement of substance. Warmer molecules in 

minerals carrying out faster motions hit against contiguous colder molecules passing 

them some of their kinetic energy, therefore making colder molecules become warmer 

and warmer molecules colder. For rock particles heat transferred to another body will 

be a function of contact surface between rock particle and the body. The contact 

surface is dependent upon particle’s shape and form. For more angular shapes contact 

surface can be very small, while for flaky shapes can be larger. 

 

By thermal convection, heat is transferred in a surrounding fluid (in this case air). The 

amount of heat transferred depends on the flow regime around rock particles. If the 

equipment for microwave exposure is designed to realise designed throughputs and at 

the same time prevent forced heat convection we can approximate that the heat loss 

will be insignificant to affect overall temperature difference which we can measure 

very fast with non-contact measuring techniques. For more details about the influence 

of coefficient of heat transfer see Appendix B. 

 

By thermal radiation, heat is transferred as radiant energy, in the form of 

electromagnetic waves which are partly or wholly changed into heat on meeting a 

body in their path. It usually belongs to electromagnetic waves with higher frequency 

like infrared and near infrared. This is energy which can be measured quickly, in real 
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time by infrared camera, and used to calculate temperature differences of rock 

particles. The temperature difference calculated from before and after volumetric 

heating can then be compared with set temperature threshold. 

 

One, two or even all three mechanisms may operate in any heat transfer, depending on 

the nature and state of minerals subjected to a temperature change by volumetric 

heating. In microwave assisted infrared sorting, heat transfer by conduction is 

predominant. In conventional heating the body is usually surrounded with a heating 

source (object of heating placed in the oven) and it gets hot progressively from the 

outside towards the inside. This means that the temperature varies more quickly in 

points nearer to the surfaces than in points placed deeper inside the body.  

 

In volumetric heating of rock particle heat is generated within the body with different 

heating rates. Although the whole volume of rock particle is exposed to microwave 

energy, different heating rates originate from heterogeneity of mineral types. Minerals 

with higher values of dielectric loss tangents will have the largest heating rates 

consequently making them as the main sources of heating. This defines selective 

heating which means that the body will be heated from the inside towards the outside, 

and it significantly influence the type and the intensity of the temperature profiles that 

can be measured on the surface. Depending on particle’s size, certain time will be 

necessary for the heat transfer to take place within the whole mass of the particle’s 

body. Figure 3-9 shows this effect of selective heating for the ore particle which was 

exposed to 1 kW of microwave power for 5 seconds. The heating of the particle and 

the cooling effect was recorded with an IR camera with 25 frames per second. 

 
Figure 3-9 Selective heating followed by equilibrium state caused by cooling. Frames are 

extracted in time intervals of 6 s. 

(6 s) (12 s) (0 s) (18 s) (24 s) 

(30 s) (36 s) (42 s) (48 s) (54 s) 
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In a range of measured temperatures, the surfaces of equal temperature form 

isothermal surface. The temperature variation between them can be either larger or 

smaller depending of temperature gradient. This temperature gradient can be defined 

between two incremental isothermal surfaces. The limit of the ratio between the 

temperatures difference ΔT and the distance Δn between two surfaces, when Δn tends 

towards zero, as defined in Equation 3-23: 

⎥⎦
⎤

⎢⎣
⎡
Δ
Δ

=
→Δ n

TTgrad
n 0
lim   (3-23) 

Figure 3-10 shows formation of isothermal surfaces during heating on the visible 

surface of rock particle, governed by the temperature gradient from inside the volume 

of the particle. Isothermal surfaces with different temperatures are correlated to a 

corresponding specific colour. Colour palette covers temperature span between 25 and 

50 oC. 

 
Figure 3-10 Forming of isothermal surfaces during heating on the visible surface of rock particle 
 
The temperature profile can be defined as temperature distribution in all points of the 

system in a certain time frame. Whether the temperature profile is independent of time 

or changes within it, heat is transferred in a steady or unsteady manner. In the steady 

mode, heat remains constant at any point of the system. Heat entering the body comes 

out wholly through the surface of the whole body. In the unsteady mode, heat is 

accumulated in the system.  
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The temperature profile can be indirectly studied measuring maximum or mean 

temperatures on the surface of rock particles with time. 

 

 
Figure 3-11 Maximum temperature (in red) and mean temperature (in blue) for the rock particle 
heated for 5 seconds and showed in Figure 3-9 and Figure 3-10. 
 
To study temperature profile of particle shown in Figure 3-9 and Figure 3-10 

maximum temperature was calculated from the pixel with the highest temperature on 

the visible rock surface, while mean temperature was calculated as average value of 

all temperatures of pixels which compose visible rock surface. Figure 3-11 clearly 

shows the section of positive heat accumulation which is defined with a very steep 

increase for maximum temperature and an increase of mean temperature. After this 

section when maximum temperature reaches its absolute maximum it starts to 

decrease rapidly defining heat loss. Mean temperature continues to increase only 

slightly, this is caused by reduced temperature gradients, which confirms that heat is 

coming from the inside of the volume towards the outside. The following section 

exhibits almost constant values for both temperatures with the tendency to merge after 

a long enough time reaching a state of equilibrium. 

 

These heating profiles will depend upon multiple mineral properties which can 

influence each other; a quick overview can be seen in Figure 3-12. 

(8) (16) (24) (32) (40) (48) (56) (seconds) 
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Figure 3-12 Properties of minerals which have to be taken into consideration for microwave 
sorting 
 
In order to achieve microwave assisted infrared sorting it can be seen that mineral 

properties such as thermal conductivity, specific heat capacity and dielectric 

properties have to be balanced in the right way by texture and composition. The 

easiest way to define favourable cases is to define rock particles as two-component 

systems consisting of matrix or common rock forming minerals and minerals of our 

interest. A favourable case is defined when a mineral of interest responds very well to 

microwave heating in poorly responsive matrix, creating good conditions for selective 

heating. Parkhomenko (1967) commented that: “In addition to the rocks which lack 

any orderly arrangement of mineral grains, there are many rocks in which the grains 

exhibit some preferred orientation. This orientation of grains constitutes the texture of 

a rock”. It is assumed that most common grain inclusions can be described through 

four following textures which can be seen in Figure 3-13. 

 

 
Figure 3-13 Most common grain inclusions can be described through four following textures 
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1. Banded texture. The rock is assumed to consist of a matrix and parallel or 

nearly parallel, closely sized platy inclusions composed of pure mineral of our 

interest. 

2. Rod-like texture. The rock is assumed to consist of a matrix and oriented 

closely sized rod-like inclusions composed of a mineral of our interest. These 

inclusions can also be connected to resemble more vein-like texture. 

3. A rock texture consisting of a matrix and a variety of closely sized inclusions 

having shapes that can be described as flaky, more or less elongated or platy, 

composed of a mineral of our interest. 

4. Granular texture. The rock is assumed to consist of a matrix and randomly 

oriented closely sized blocky inclusions, convex or concave grains, composed 

of pure mineral of our interest. 

Position and size of this grain inclusion is important. Temperature profiles will be 

different, if these inclusions are dispersed throughout the volume or located closely to 

each other in the one part of the volume, previous studies like Harrison’s (1997) have 

correlated heating rates with minerals sizes. The slowest heating rate is expected when 

grains are deeply embedded in the middle of the rock matrix. Closer to the matrix 

surface larger temperature gradients will be able to be measured. These temperature 

gradients are at the same time influenced by thermal conductivity of the matrix or 

effective thermal conductivity. If the matrix is composed of two well represented 

minerals, then simplified mixing rules to obtain effective thermal conductivity can be 

applied.  

 

If more generic values from previous studies are used to provide an overview it can be 

seen that all ore types, which have copper bearing sulphides (or sulphides) and a 

matrix made of quartzite, will be excellent candidates for microwave assisted infrared 

sorting. It is important that for the best discrimination results, minerals of economic 

interest are in the relatively transparent matrix with at least five to ten times lower 

values of dielectric properties which will then influence even greater differences in 

heating rates. 
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Figure 3-14 Generic values which can be used as a good guidance 
 
Figure 3-14 shows more generic values which can be used as a good guidance for 

deciding favourable cases. Although, the boundaries have been located it has to be 

noted that for in situ rock fragments all these factors can be enhanced or compensated 

by texture and composition of the mineral phases involved. 

3.7 Multimode Domestic Microwave Oven 
 
There is a growing interest in the use of microwave domestic ovens in scientific 

research, which is due to a number of advantages associated with its exploitation. 

More importantly it is cost effective and simplistic in exposing materials to 

microwave energy. The microwave multimode oven is finding an extensive use for 

processing materials and it has been applied to a range of diverse areas such as: the 

testing of organic, inorganic and mineral powders, ceramics, drying materials, 

treatment of coal, preparing catalysts, and polymer materials. Some of these studies 

were focused on using domestic ovens because of future implementation of tested 

materials in food processing, for which microwave domestic ovens were optimised 

and designed. Other studies were focused purely by testing feasibility of processing 

materials by microwave energy. In both cases they were used because the 

investigation of the interaction between the material and multimode distribution of 

strength of electric field can be utilised. 

 

The analytical solutions predicting field patterns just by analytical modal analysis can 

become potentially challenging when used in three dimensions. For this reason 
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modern finite element method (FEM) or finite difference time domain method 

(FDTD) are used to solve problems in three dimensions. In order to visualise 

electromagnetic field and multiple modes a simple model of domestic oven is defined. 

The microwave oven is a metallic box connected to a 500 W, 2.45 GHz microwave 

source via a rectangular waveguide operating in the TE10 mode. Figure 3-15 shows a 

3-D visual solution of electromagnetic field pattern for vertical cross section of a 

multi-mode applicator with a spherical object placed as load on the rotating tray. This 

solution is achieved using High Frequency Structural Simulator (HFSS-Part of 

ANSYS simulation software). The geometry and material properties were sourced 

from model documentation for microwave oven tutorial for Multiphysics-COMSOL 

(COMSOL Multiphysics (formerly FEMLAB) is a finite element analysis, solver and 

simulation software). In the model, microwaves are supplied from the generator via 

waveguide into the cavity. The waves undergo multiple reflections from the walls. 

The reflected waves interfere with incoming waves and, in doing so; establish a 

distribution of electrical field strengths within the internal volume that correspond too 

many different stable modes of propagation. These multimodes include the volume of 

load as well. This is why it is defined as a multi- mode applicator. 

 

 
Figure 3-15 Multiple modes spread out through all volume of the applicator cavity solution 
achieved through HFSS 
 
For multimode applicators including domestic microwave ovens dielectric properties 

of a load are important although size and location of the load will have an important 
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influence as well. In agreement with electromagnetic theory and volumetric heating 

better power transfers are achievable if the loads have larger volumes. This is 

supported by the fact that the electric field strength within the load will become the 

most dominant factor determining heating rate as seen in Equation 3-10. If the volume 

of the load is larger it means that it can accommodate more modes, particularly if the 

spatial distance between modes is very small. It can be stated that the average field 

strength will be higher and will eventually increase the heating rate of the load. 

 

The spatial distribution of field strength is unknown because it is a direct function of 

reflection of electromagnetic waves from the walls of the cavity as well as from the 

load. The reflection of microwaves depends on multiple factors. For example: shape 

and dimensions of cavity, moving parts in the cavity, position of the waveguide entry, 

volume and asymmetry of the load. This is why in some studies, where interaction of 

known field strength with material is required, domestic microwave ovens are not a 

good solution. 

 

Necessity to compare performance of microwave ovens exists and this is why since 

1990 most microwave oven manufacturers have adopted a single standard for 

measuring the power output for microwave ovens. Standard IEC (2010) involves a 

borosilicate glass dish filled with 1 kg of water at 10 oC. The dish is placed at the 

centre of the base of the oven and the time required to heat the water to 20 oC is 

determined. Since the amount of heat required to raise the temperature of the water by 

10 oC is known, the average power [W] delivered by the oven to the load can be 

calculated (Schubert & Regier 2005). 

 
Some of the results from the previous studies, performed for the food industry, are 

taken into consideration as guidance in using domestic microwave oven to test ore 

particles. In the work of James et al. (1994) five different types of microwave ovens 

were studied to investigate reduction in power output with reduction of the load’s 

volume. Standard IEC procedure was followed and the water load from 1.0 kg to 0.25 

kg was reduced. For the similar size cavity with the glass turntable in the centre 

reduction in power output was 11.1%.  
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Another study of Burfoot et al. (1990) involved 102 individual ovens from 70 

different models to look at variability between and within models and the effect of 

oven features on reheating performance. Repeatability within the ovens was tested by 

using mashed potato as a very homogenous load and every test was repeated five 

times with each oven. Reheating in 63 of the 102 ovens was easily repeatable with 

standard deviations of approximately 2 oC or less. Nine ovens produced standard 

deviations greater than 4 oC, and in four of these, standard deviations were greater 

than 6 oC. 

 

It has to be emphasised that work of James et al. (1994) compared oven types and did 

not try to map the field distribution within an oven by moving a water load around it 

and recording the rate of rise of temperature. Results of that experiment apply only to 

water and it can be expected that once different material is placed in the cavity the 

field distribution will be changed completely. As guidance, it can be stated that it is 

better for heterogeneous material such as ore particles, to be heated in batches than as 

individual particles. This will increase the volume of the load. Effect can be enhanced 

by spreading the particles around on the turn table which will allow them to have 

greater chance of passing through multiple modes. From the study of Burfoot et al. 

(1990) it can be concluded that the majority of microwave ovens are capable for 

repeatable testing with standard deviations of approximately 2 oC or less on 

homogenous material like mashed potatoes, but for the heterogeneous material like 

ore particles separate repeatability study is needed. 

3.8 Modes, Fields Patterns and Energy distribution in 
Multimode cavity 

 
Mehdizadeh (2009) provided very simple way to a phenomenological explanation of 

multimode cavity operation through modes designation. He has designated letters to 

the modes. In Figure 3-16 (A) the resonant frequencies of modes A–P for an empty 

cavity are shown. In this designation, a mode designated by a letter could be an 

indexed mode of rectangular cavity, or a specific resonant mode of a cavity with more 

complex shape. The microwave source has a fixed centre frequency (for a domestic 

microwave oven that is 2.45 GHz) and a finite bandwidth of Δfs (usually 40–100 

MHz) which include modes D and E of the empty cavity.  
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Figure 3-16 A phenomenological explanation of multimode cavity operation through modes 
designation after Mehdizadeh (2009). 
 
As a result, it means that modes D and E are now operating, or active modes. Since 

there is no dielectric load, some of the power from the microwave source is dissipated 

on the walls of the cavity in the form of surface currents, and the rest is reflected. In 

Figure 3-16 (B) a lossy dielectric load is inserted into the cavity. A reduction of the Q 

factor (Q factor is more defined in Chapter 4 section 4.4) for each mode due to the 

increase in cavity loss is causing modes to be widened in the frequency band. The 

original modes D and E are no longer within the bandwidth of the microwave source. 

The introduction of the dielectric load has pushed those modes down in frequency. 

Instead of modes D and E, modes J, K, L, and M are either fully or partially within the 

bandwidth of the source, and have become active. This example demonstrates that 

modes K and L are strongly coupled, while modes J and M are weakly coupled, which 

means that their fields are not as strong. This is the reason for the robustness of 

microwave heating with multimode cavities. Even if the load changes, there is an 

abundance of other modes, few of which are always within the bandwidth of the 

source. With the existence of strongly coupled modes field patterns will appear. 

Another explanation can be given through optical beam model. 
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Figure 3-17 Schematic of an optical beam model for the operation of a multimode cavity after 
Mehdizadeh (2009) 
 

Earlier study of James et al. (1994) indicated that it was easier to couple energy 

transfer into larger volumes of homogenous material. If the optical beam model is 

used to explain interactions of microwaves with the placed load in the cavity as 

showed in Figure 3-17 it can be seen that the incident beam has multiple reflections 

from the cavity walls including the reflection from the surface of the placed load.  

Some of that incident wave will be absorbed into homogenous material and some 

transmitted. How much energy will be absorbed depends of material properties, 

shape, and volume and penetration depth. By placing load’s volume into the cavity 

remaining volume of the cavity is reduced and left to accommodate creation of 

multimodes. The possible shapes of these modes will be influenced by the remaining 

cavity space and modified boundary conditions from the surface of the load. To 

achieve more uniform heating rotation of the load is performed. This introduction of 

mechanical movement improves heating by stirring the fields caused by continuous 

modification of the boundary conditions for incident beam. If the volume of the load 

from Figure 3-17 is divided into smaller volumes and distributed in more than one 

place in the cavity it can be stated that potential for modification of the boundary 

conditions for incident beam will be even greater as shown in Figure 3-18. Riegert 

performed experimental and modelling work to visualise field patterns created in 

multimode cavity without a dielectric load (sourced from Mehdizadeh (2009)). 
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Figure 3-18 Modification of the boundary conditions for incident beam by distributing volume in 

smaller fragments 

Figure 3-19 shows an example of the capability of FEM methods to predict the 

heating behaviour of the microwave multimode cavities. A resistive sheet composed 

of a carbon-loaded polymer, which had a sheet resistivity of 400Ω/sq was placed 5 cm 

above the bottom of a rectangular multimode cavity with the dimensions of 35 cm 

width, 30 cm length, and 25 cm height. This location is usually used to position glass 

rotating tray in domestic microwave ovens. The cavity was fed with a 2.45 GHz 

microwaves and a low power of 100 W. A layer of thermal fax paper was placed 

above the resistive sheet, and the structure was sandwiched between two thin layers of 

glass to ensure intimate contact between the resistive sheet and the thermal paper. As 

the resistive sheet was heated, the pattern of electric field nodes was shown as dark 

areas in Figure 3-19 A). The experimental setting with all its features was solved in 3-

D with the COMSOL package. The results of the modelling (white spots with higher 

E field intensity), as shown in Figure 3-19 B), correspond extremely well with the 

location of the electric field nodes (dark hot spots) on the thermal fax paper. 
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Figure 3-19 Sourced from Mehdizadeh (2009), experimental and modelling work of Riegert 

 
a) Pattern of field nodes created on the thermal 

paper for the 31.5x22.4mm particle size. Tested 

ore type: QZ Ohio.  

 
b) Pattern of field nodes created on the thermal 

paper for the 45x37.5mm particle size. Tested 

ore type: QZ Ohio. 

Figure 3-20 Pattern of field nodes created after 12 s of exposure time to 1.2 kW of applied power 

 

Model “Sharp” 380-J was used for experimental studies in this thesis. This model has 

a glass rotating tray and the position of the wave guide is on the right side of the 

cavity. A quick experiment was derived to visualise field patterns in this domestic 

oven using one of the supplied ore as dielectric load. Two different rock sizes were 

used as shown in Figure 3-20. 

 

Thermal paper with chemical which has microwave active composition (manufactured 

by Atlanta Chemical Engineering L.L.C.) was placed on the glass rotating tray. Rock 

particles were symmetrically arranged and placed on concave glass dishes to minimise 

contact between thermal paper and surface of the particles. The particles were then 

heated up for 12 s using 1.2 kW of applied power. Throughout exposures glass tray 
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rotated load for full 360 degrees. As expected, the thermal paper showed the existence 

of multiple field nodes in the plane which corresponds to the surface of the rotating 

glass tray. The field patterns and the energy distribution were different because the 

load was different.  

 

Consequently it can be stated that it is better if material such as ore particles is heated 

in batches. This will increase the volume of the load. The effect can be enhanced by 

spreading the particles around on the turn table which will allow them to have even 

greater chance of passing through multiple modes. During the exposures there will 

always be modes which are strongly coupled with the load. Additionally this means 

that the particle made of a less responsive mineral will a have higher possibility for a 

better energy transfer within the same batch of material. 

3.9 Different Applicators Made From WR340 Waveguide 
 
Even simple waveguides can be used as applicators. Simulation software HFSS was 

used to investigate electromagnetic field in the WR 340 waveguide equipped with a 

vertical opening for the load insertion and a choice for three different endings. All 

three endings were chosen to demonstrate different behaviours of electric field. At the 

same time this would define the type of applicator. The geometry of the models was 

cut in the half to provide better presentation of the modelling results. 

3.9.1 Theoretical Applicator with the Perfectly Matched Layer 
(PML) 

A perfectly matched layer (PML) is an artificial absorbing layer for wave equations, 

commonly used to shorten computational regions in numerical methods to simulate 

problems with open boundaries. The main characteristic of a PML (which 

distinguishes it from an ordinary absorbing material) is that it is designed so that wave 

is incident upon the PML from a non-PML medium do not reflect at the interface. 

This property allows the PML to strongly absorb outgoing waves from the interior of 

a computational region without reflecting them back into the interior. It is used in the 

FDTD and FEM methods. As it can be seen from Figure 3-21 by changing the phase 

component of the wave, amplitude component will move from the generator toward 

PML with its constant value. This means that the E-field will be very uniform within 
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the waveguide. This type of E-field uniformity is experimentally very challenging to 

achieve due to reflections from inserted load, especially if the properties of the load 

are not constant. 

Phase 0 deg Phase 60 deg 

Phase 120 deg Phase 170 deg 
Figure 3-21 Theoretical Applicator with the Perfectly Matched Layer. E-Field scale: max 2.2*104 

V/m min 1.0 V/m 

3.9.2 Applicator with the Standing Wave Pattern  
 

Waveguide with a short circuit at the end establish a standing wave within the 

waveguide configuration. Fixed position short circuits can be found with waveguide 

applicators designed for a specific process or material where the position of the short 

has been optimized for maximum power coupling.  

 

A movable short circuit is preferred so that the short position can be optimized for 

each case, typically for locating high electric fields where the load can be heated. 

Figure 3-22 indicates that by changing the phase component, intensity of the 
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amplitude component will change. If the load is inserted through vertical opening in 

the middle of the waveguide (for the given model) it will be exposed to a maximum of 

E- field only by moving sort circuit in z-direction to match the phase component of 

the standing wave. 

Phase 0 deg Phase 60 deg 

Phase 120 deg 
Phase 170 deg 

Figure 3-22 Applicator with the Standing Wave Pattern. E-Field scale: max 1.0*104 V/m min 1.0 

V/m 

3.9.3 Travelling Wave Applicator - Experimental Setting with the 
Dummy Load 

By Metaxas (1983) applicators in which power is mostly absorbed by the workload 

with the residue being dissipated in an absorbing terminating load are described as 

travelling wave applicators. A wide variety of waveguide terminations are available 

for a variety of applications. For the industrial microwave heating systems most 

commonly are used dummy loads for the maximum absorption and short circuits for 

maximum reflection of minimum absorption. Dummy loads can be grouped into two 

main categories, dry loads and wet loads. The dry loads are preferred for applications 

where standing waves must be minimized such as with travelling wave applicators. 
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By definition, wet loads are designed to absorb microwave power directly into a high 

loss fluid medium, such as water. Wet loads are quite adequate and often used in 

isolator configurations. 

 

Figure 3-23 shows propagation of microwaves through rectangular waveguide which 

is terminated with a dummy load for a maximum absorption. This experimental 

setting is used to expose thin dielectric continuous material which passes in y-

direction in the middle of the rectangular waveguide where E-field is the strongest. 

The microwave power enters the waveguide section and exits toward a load at the 

other end of the section. The E-field intensity profile in the cross-section of the 

waveguide (in the x – y plane) has a sine function shape for single mode. 

 
Figure 3-23 Propagation of microwaves through travelling wave applicators. After Mehdizadeh 
(2009) 
 
As Mehdizadeh (2009) explains: “If the load and source are impedance matched, 

which means there are no standing waves, the E-field would be uniform in the 

longitudinal z-direction. In cases where there is a mismatch, a standing-wave pattern 

will be formed where the maximum E-field varies along the z-direction, and the ratio 

of maximum to minimum field will depend on the mismatch level”. 

 

A new model was created (see Figure 3-24) to describe experimental setting with 

isolator configuration. The experimental setting was equipped with a dummy load 

made of quartz tube with a constant flow of distilled water used to absorb microwave 

energy. This configuration shows that the standing wave will be created. It also shows 
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that the highest intensity of the E-field is around the tube with the water when the 

phase component of the whole system is matched. In Figure 3-24 as expected, a very 

high concentration of E-field can be seen around a dummy load (for the phase 

component of 60 deg). This model did not include any load between source of the 

microwaves and the dummy load. 

 
Phase 0 deg 

 
Phase 60 deg 

Phase 120 deg Phase 170 deg 
Figure 3-24 Experimental Setting with the Dummy Load. E-Field scale: max 1.2*105 V/m min 1.0 

V/m 

3.9.4 E field and Volumetric Loss Display  

The next step to investigate was to model E-field changes when heterogeneous load is 

inserted into a previously described model of the experimental setting with isolator 

configuration and shown in Figure 3-24.  

 

The heterogeneous load was created as a two-component and geometrically simplified 

rock particle. Matrix of the rock particle was in the shape of cylinder and made of 

quartz (as common gangue mineral and almost no responsive to microwave heating), 
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while second component was chalcopyrite in the shape of cubic grains (as common 

copper bearing mineral and very responsive to microwave heating).  

 
Figure 3-25 E field in the applicator and load 

Figure 3-25 shows E-field in the travelling wave applicator loaded with simplified 

rock particle made of quartz and chalcopyrite.  

 
Figure 3-26 E field in the matrix made of quartz 
The highest intensities for the E-field can be found in labelled positions number one 

and three. The position number one shows very strong intensity induced by water load 

while position number three shows interaction of one of the nods with a rock particle. 

It can be seen that the shape of the node has changed from sine function shape by 

interacting with the load. 

 

Higher values of the E-field can be found on the top and the bottom, or on the edges 

of the quartz cylinder. Figure 3-26 shows an E-field inside the volume of the load. 
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Intensity of the field is gradually decreasing from the periphery of the quartz cylinder 

toward the centre due to the partial absorption of the quartz material, only to start 

rising in the centre where grains of chalcopyrite (as more absorbing material) are 

located.  

 

With known electrical field strength inside the mineral it was possible to calculate 

volumetric loss which could be also calculated by applying Equation 3-5. From the 

Figure 3-27 it can be seen that the volumetric loss is the highest on the edges of the 

cube grains, which is in agreement with volumetric heating and this chosen geometry 

for the grains. It can also be seen that the volumetric loss is not the same for every 

grain due to their different locations within the matrix material.  

 

 
Figure 3-27 Volumetric loss for chalcopyrite cubic grains embedded in quartz matrix 
 

3.9.5 Thermal Paper Pattern 
 
To test the prediction of FEM modelling using HFSS software a synthetic sample of 

plaster was casted with embedded chalcopyrite grains (Figure 3-28 shows X-ray 

radiogram of the sample). Before testing the sample was dried for a day in the 

convective oven at 70 oC to remove any remaining water content. Plaster was chosen 

because it would provide similar conditions from the modelling regarding microwave 

energy absorption, which was a highly responsive mineral such as chalcopyrite 
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surrounded with less responsive matrix. It also enabled to cast a matrix in cylindrical 

shape which was used in the model. 

 

The goal was to achieve validation of the anticipated microwave energy pattern, 

which is necessary for obtaining the desired uniform heat release within the irradiated 

material. This validation represented a predicted distribution of the microwave energy 

in the processing cavity for the specific application. A simple test with thermal paper 

offered precisely that - simple visual proof of microwave energy patterns. 

 

Thermal paper was made by painting cardboard with chemical which has microwave 

active composition (MWAC manufactured by Atlanta Chemical Engineering L.L.C.).  

 
Figure 3-28 Synthetic plaster sample with 

chalcopyrite grains size -4.75+3.35 

 

 
Figure 3-29 TWA applicator with dummy water 

load 

Figure 3-29 shows experimental apparatus used with numbers indicating the locations 

of the nodes predicted by modelling. On the left side there is a dummy load with 

plastic tubes providing the constant water flow through quartz cylinder. This section 

continues on the right with a vertical opening long enough to prevent any wave 

propagation and wide enough to insert testing samples into the applicator. 

 

Three stripes of prepared thermal paper were used. Two were cut to match the width 

of the WR 340 waveguide and obtain full coverage of the bottom surface in the 

waveguide. The third one was narrower and positioned from the beginning of the 

dummy load, under the quartz tube and passing through vertical opening. 
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Patterns were obtained in two exposures. The first for the empty applicator and the 

second for the applicator loaded with plaster sample. Exposure time in both cases was 

10s using 0.6 kW applied power. In Figure 3-30 patterns from both exposures can be 

seen. First on the top is from the loaded applicator and the second, covering the longer 

section is from the empty applicator.  By comparing results from modelling (see 

Figure 3-25) first four nods can be easily identified on the thermal paper. The first 

node is distorted from its sinusoidal shape and it looks more like a stripe due to the 

influence of quartz tube with water. The second node is detected and it has retained its 

sinusoidal shape. The mark of the third shows that it has been twisted out of its 

normal shape which can be explained by a sudden change in the geometry of the 

applicator which has changed its boundary conditions by the vertical opening. At the 

end node four can be identified followed by node five with similar intensity. 

 

 
Figure 3-30 Thermal paper patterns from both exposures 

 
Figure 3-31 shows in more detail the pattern from second exposure with synthetic 

plaster sample placed on the same spot as it was during microwave heating. 
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Figure 3-31 Thermal paper pattern 

To avoid contact between plaster sample and thermal paper, small paper ring was 

placed between them with a height of 5 mm during exposure. It can be seen that 

intensity of the E-field created at the place of the load was much higher compared to 

the neighbouring node.  

3.9.6 Summary 

The information of E-field and material interactions is important to the design of the 

microwave applicator, because the dielectric properties of the tested material will 

become a part of the applicator’s functioning. This is a unique feature which has to be 

taken with a great importance. The modelling software can help to a large extent in 

predicting field patterns and assessing different heating scenarios (good results 

achieved with homogenous material such as some types of food), but for a treatment 

of heterogeneous materials such as rock fragments, best results can be achieved 

combining them with experimental testing. 
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3.10 Travelling Wave Applicator 
 
Processing equipment needs to be designed precisely around an application and 

requires proper planning for optimised operation. Furthermore there is an 

experimental requirement to design an applicator which can test particles 

continuously from the same batch tested in a domestic microwave oven. To do so it 

was decided that a travelling wave applicator designed as a state machine will be the 

best option to conduct the experiment and collect the necessary data. The state 

machines are used in applications where distinguishable states exist. Each state can 

lead to one or multiple states, and can also end the process flow. State Machine 

architecture can be used to implement complex decision-making algorithms 

represented by state diagrams or flow charts (Lab View 2011). 

 

Domestic microwave ovens are also designed as a state machine. Figure 3-32 

describes a very simple state machine which is applied in most domestic microwave 

ovens to perform operation of heating. It can be seen that initial state starts with the 

input from a user by setting the time for operation. For this state machine constant 

power is assumed to simplify a number of states. Once operation is enabled it can be 

interrupted by opening the door (for example to stir the content or change the load 

position) or by timed operation. When the time set by timer is timed out, cooking is 

complete and the idle state is taken. 

 
Figure 3-32 Flowchart for the state machine used in most of domestic microwave ovens 
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It should be mentioned that the state machines are used in applications where different 

states exist. To initiate change from one state to another user input needs to be given 

or in-state calculation to determine which state will be next. It is good to have 

“initialize” state, followed by a default state where many different actions can be 

performed. Each state can end the process flow, and can also lead to one or multiple 

states. The actions performed can depend on previous and current inputs as well as 

states. Shutdown or idle state can then be used to perform clean up actions which 

place the state machine ready for the next employment.  

 

A travelling wave applicator for which schematic can be seen in Figure 3-33 and 

applicator itself in Figure 3-34 was constructed from a standard rectangular WR340 

waveguide components arranged in such a way that the target load passes through in 

the point between water load at one end, and a microwave source from the other end. 

The components used to build applicator came from different manufactures (Sairem, 

Festo, Ocean Controls...). Author of this thesis used these components to assemble 

applicator and build universal controlling platform by Lab View (refer to Appendix A 

for more details). As microwaves pass along the waveguide they are absorbed by the 

load according to the dielectric properties and size of the load. A water load is 

attached to the end of the waveguide to absorb any microwave energy that is not 

absorbed by the load. It is also there to establish constant power delivery through 

waveguide which is delivered when steady state is reached. A steady state is reached 

by using an automatic tuner, which matches the impedance of the overall system with 

the impedance of the microwave generator. 

 
Figure 3-33 Schematics of design for the travelling wave applicator 
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Figure 3-34 Travelling wave applicator designed and constructed to perform experiment 

The travelling wave applicator based system was automated to collect data and to 

reduce any possible errors which could be caused by repetitive tasks exposing large 

amounts of particles while testing. Automation was designed using a state machine 

whose main purpose was to provide the same conditions for microwave exposure to 

every particle during testing. Figure 3-35 shows states which were used in this 

experiment to have continuous flow of particles through the travelling wave 

applicator. 

 
Figure 3-35 State Machine used in the experiment 
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• “Home or initial state” was used to set parameters for sample testing. These 

parameters involve: the amount of power used, time of exposure, two 

thresholds in temperatures and region of interest for temperature calculation. 

The first temperature threshold is for sorting particles into cold and hot groups 

according to their reached temperatures during exposures. The second 

temperature threshold is to cool the background i.e. particle holder made of 

Teflon® used to remove particles from an applicator. It was usually set to 

match the room temperature during testing. Region of interest is a surface 

from which mean and maximum temperatures are calculated using infrared 

camera. 

• “Particle holder to waveguide” state prepared the applicator to accept 

incoming particles for testing. A batch of numbered particles is fed into the 

waveguide by two serial connected feeders. The speed of vibrations on the 

feeder closer to the cavity is higher to provide better separation of closely 

positioned particles. At the same time the infrared detector is enabled and 

ready to create a signal for a passing object which interrupts or completely 

breaks the infrared beam. 

• “Start vibratory feeder” state was enabled by the particle holder being inside 

the applicator. The state machine stays in this state if the Boolean signal is 

“False”. This means that the particle has not still passed through the guiding 

funnel with infrared detector, and into the particle holder. Once the particle 

passes interrupting the beam, condition to move to another state is met. 

• “Expose particle to microwave energy” is state for which timing was defined 

in an “Initial state” at the beginning. This is the most important state in the 

experiment because in this state rock particles are interacting with 

electromagnetic energy and simultaneously data is collected, processed and 

stored in real time. Interaction of the particles with microwaves can be 

described by negative feedback which is conditioned by the type of applicator 

and automatic tuner used to control the system. A feedback system, in general 

engineering terms, is a system whose output is fed back to the input. 

Depending on the output, input is adjusted to reach a steady-state. When 

feedback acts in response to an event/external influence, it can influence the 
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input by negative feedback which can be seen in Figure 3-36. Negative 

feedback is also known as a self-correcting feedback, which tends to reduce 

the input signal that caused the disturbance in the system. Calculated 

temperatures from a region of interest are compared with these set thresholds 

and an input for a new state is created. 

 
 

Figure 3-36 Negative feedback applied to travelling wave applicator 
 

• When the exposed time has elapsed the particle holder is assuming a new 

position where particles can be flushed by compressed air to a bin reserved for 

cold or hot group. Inputs from the previous state whether the surface 

temperature of the particle has reached values higher or below set threshold 

will perform actual physical separation into the cold or hot group. 

• After flushing the particle, a new average temperature of background is 

calculated and compared with room temperature. If there is any residual heat, 

the particle holder is cooled down by forced convection using compressed air. 

If there is no residual heat the state machine will loop until all particles from 

one batch testing are exposed to microwaves. Looping can be stopped by user 

command at any time. This will place the state machine in a home state. 

 

All of these states will produce repeatable testing for very complex material like rock 

particles. It will minimise the possibility for error and allow real time data collection 

during heating. Detailed descriptions of hardware and software used to build and 

control this travelling wave applicator as a state machine can be found in Appendix A. 
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3.11 Experimental Methodology 

The overall aim of developed experimental methodology was to investigate possibility 

of sorting ore with microwave pre-treatment followed by the infrared measurement of 

temperature. Two different copper ore types were supplied from Bingham Canyon 

Mine operated by Rio Tinto’s Kennecott Utah Copper Corporation. The sorting 

criterion was based upon temperature threshold determined by mineral content which 

needs to be recovered from the concentrated material. The remaining material was 

considered to be the waste, with mineral contents below economic value for the 

recovery. Selected ore types were tested in two closely related experimental steps. 

Both steps of experimental investigations involved testing on representative sample 

groups. Figure 3-37 illustrates test work procedure. 

 

 
Figure 3-37 Diagram of test work procedure adopted to address the hypothesis 

 

For the better understanding of interactions between microwave radiation and 

mineralogy of real ore particles synthetic samples were created. Because dielectric 
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properties of the tested materials become a part of the applicator’s functioning the 

interactions of E-field and material was studied in two microwave applicators which 

had two different E-field distributions. The first was multimode domestic oven and 

the second travelling wave applicator. Results and observations from synthetic ore 

particles were then implemented in the second step of experimental investigation.  

 
• The first step involved testing ore for reproducibility and separability using 

multi-mode excitation in a domestic microwave oven. The particle 

classification was done through assaying for copper, iron and molybdenum. 

After microwave exposure the obtained data from assaying was used along 

with measured temperature difference to create separation curves. The 

separation curves were created by plotting sorted measured temperature 

increase versus cumulative mass and assayed metals mass. This step also 

involved additional testing such as testing on a larger population and flotation 

testing which were performed for a chosen ore type. 

 

• The second step involved testing representative groups of particles in two 

microwave applicators. Temperature increases were then compared from both 

applicators, correlation with particle texture and composition was investigated.  

 

Three measuring techniques were used to complete an investigation about ore types 

and their interaction with microwave energy. They were: 

• High-resolution X-ray computed tomography 

• Mineral Liberation Analyser 

• Automated Mineral Identification by Optical Microscopy 

Their implementations in these experimental studies are illustrated in following 

sections. 

3.11.1 High-resolution X-ray computed tomography (HRXCT) 

After extensive usage for medical research, high-resolution X-ray computed 

tomography (HRXCT) gave very promising results used by the mineral industry to 

study texture and structure of different ore types. Information which is obtained is of 

great importance for geological and metallurgical studies, especially for ones which 
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involve optimisation of metallurgical processes and liberation of specific mineral 

phases. 

As Kyle et al. (2008) describes, “The HRXCT produces two-dimensional images 

(“slices”) that reveal the interior of an object as if it had been sliced open along the 

image plane for viewing. By acquiring a contiguous set of slices, a volumetric map of 

a sample can be obtained, allowing three-dimensional inspection and measurement of 

features of interest. HRXCT images reflect differences in X-ray attenuation that arise 

principally from differences in density and atomic number within the object”.  

 

Information is most commonly saved in a form of digital radiograms which are used 

to build a volumetric map of a sample. Mathematical algorithms are used to merge all 

two dimensional information in correct order and form new three dimensional 

information. Physics and mathematics of computed tomography are summarised by 

Smith (1990) who described three novel reconstruction methods and later Stock 

(1999) who not only provided algorithms he also provided some guidance on how it 

can be potentially used to study: inorganic matrix composites, transport in porous 

media, calcified tissue and fatigue crack closure. 

 

To perform HRXCT, a Micro-CT SkyScan 1172 was used which can supply X-ray 

energy from an X-ray tube with adjustable power. For most rock particles the current 

applied was between 50 to 100 µA and the voltage delivered between 70 and 100 kV 

adjusting them to maximise power. Another parameter used, was “exposure time” 

which was between 1.7 s to 5 s. Exposure time was determined by the operator 

combining them with voltage and current parameters to obtain the best results for 

scanning and reconstruction. 

 

Figure 3-38 shows the interior of SkyScan 1172 micro tomograph with a platform to 

hold sample for scanning in the middle. Platform can rotate 360 degrees in very fine 

steps for precise scanning.  
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Figure 3-38 Rock particle is exposed to energy of X-rays 
 
Detectors which collect attenuated X-rays after they pass through rock particles are 

located behind filters as seen in the image Figure 3-38. For all rock particles scanning 

an aluminium-copper filter was used to improve image quality by hardening the X-ray 

beam after passing through the rock particles. This effect is caused by a 

polychromatic beam. Work of Ketcham and Carlson (2001) describes that “lower-

energy X-rays are attenuated more readily than higher-energy X-rays, a polychromatic 

beam passing through an object preferentially loses the lower energy parts of its 

spectrum. The end result is a beam that, though diminished in overall intensity, has a 

higher average energy than the incident beam.” 

 

By the same authors, beam hardening is also associated with ring artefacts. In 

reconstructed data full or partial circles centred on the rotational axis are present. 

They are caused by shifts in output from individual detectors or sets of detectors, 

which cause the corresponding ray or rays in each view to have anomalous values; the 

position of a ring corresponds to the area of greatest overlap of these rays during 

reconstruction. 

 

Micro-CT SkyScan 1172 was designed for medical research and belongs to a group of 

medical CT systems which usually use a limited dose of relatively low energy. For 

these systems it is common to have energy of X-rays lower than 125 keV (Ketcham & 

Carlson 2001). 

 

Scanned images reflect changes in density so phases of materials with higher density 

will clearly be distinguishable from the phases with lower density. In HXCT linear 
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attenuation coefficients are used to identify and group selected phases according their 

densities. In researches of Tsuchiyama et al. (2000) and Denison et al. (1997) we can 

find linear attenuation coefficients for most common minerals along with their 

corresponding densities calculated for three different X-ray energies. Tsuchiyama 

used 100 keV and Denison used 70 and 80 keV.  

 

Both studies reported values for linear attenuation coefficients between 0.4 and 1.0 

cm-1 for most common rock forming minerals, including quartz. In both studies 

exceptions were magnetite and almandine, and others were fayalite, ilmenite and 

siderite. 

 

In the study of Grasberg porphyry Cu-Au ores (in Papua, Indonesia), Kyle et al. 

(2008) used HXCT to distinguish gold, metallic sulphides and oxide minerals from a 

typical rock forming matrix e.g. quartz. He calculated linear attenuation coefficients 

for common porphyry–skarn metallic minerals multiplying the mass attenuation 

coefficient by mass density. This data can be used to predict the ability to differentiate 

minerals with HRXCT. The values shown here are based on end-member 

compositions and densities and were calculated using the XCOM Photon Cross-

Sections Database (NIST 2010). In Figure 3-39 we can see that for X-ray energy up to 

100 keV, linear attenuation coefficient for quartz is below 1 cm-1 which corresponds 

with earlier findings. Above quartz there is group of metallic minerals with much 

higher linear attenuation coefficients. This means that it becomes easy to distinguish 

between rock forming minerals and minerals of interest which are metallic oxide and 

sulphide minerals. 
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Figure 3-39 Linear attenuation coefficients as a function of X-ray energy for dominant Grasberg 
Cu–Au porphyry metallic minerals compared to quartz as a typical rock-forming mineral. After 
Kyle et al. (2008) 
 
Figure 3-40 shows that attenuation coefficient spectra for many metallic oxide and 

sulphide minerals common to porphyry–skarn ore systems are similar. Because of 

their similar mass densities (4.2 to 5.2 g/cm3), these minerals are more difficult to 

differentiate.  From these studies it can be seen that Micro-CT SkyScan 1172 can be 

used to investigate texture and structure of mineral phases with higher density in the 

matrix of most common rock forming minerals.  

 
Figure 3-40 Linear attenuation coefficients as a function of X-ray energy for common porphyry–
skarn sulphide and oxide minerals. After Kyle et al. (2008) 
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For this study high-resolution X-ray computed tomography is used to obtain 

information about texture and structure of minerals with higher densities, which are 

associated with minerals that have a tendency to heat more. This information is then 

used to explain certain behaviour of particles during microwave exposures and also 

used to describe and predict heating patterns which we can observe during and after 

heating. 

 

During this study tomography was applied in the following manners; 

• Some particles were fully scanned with a very fine rotating step in order to 

produce better reconstructed results, so that the volumetric content of particles 

can be investigated in more detail. 

• For some particles digital radiograms were taken in larger rotating steps to 

illustrate the position of minerals of interest from different angles. 

• Most samples were scanned in situ, while samples which were also tested by 

optical microscopy were scanned in epoxy resin. 

 

Figure 3-41 shows half of a rock particle in epoxy resin on the sample holder 

previously prepared for MLA or optical microscopy testing. The resin appears to be 

transparent and does not show up in reconstructed data if the right sets of settings are 

chosen.  
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Figure 3-41 Half of rock particle in epoxy resin. Small image at the bottom displays cylindrical 
shape of epoxy resin which cannot be seen in digital radiogram 
 

3.11.2 Mineral Liberation Analyser 

Mineral Liberation Analyser (MLA) belongs to automated mineralogy systems which 

have found applications in many mineral processing investigations. Developed by 

JKMRC of the University of Queensland it is designed to collect and analyse 

hundreds of thousands of measurement points, collect data for processing and provide 

statistically reliable information. 

“Mineral Liberation Analyser at JKMRC comprises a standard Philips Analytical 

XL Scanning Electron Microscope (SEM) combined with a mineral liberation 

analysis software package and special sample preparation technique. The software 

package offers automated multiple sample measurement, batch and interactive 

data processing, and user-controlled presentation of mineral liberation data.” (Gu 

et al. 1998) 

To realise the fully developed study of in situ rock particles MLA is used along 

HRXCT to identify groups of minerals. Considering that high-resolution X-ray 

computed tomography is used to provide information about the quantity of mineral 
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phases and their distribution within the volume of rock particles, it is complemented 

with two dimensional MLA analyses to identify those groups of minerals.  

 

To obtain information about mineral liberation for processing plants, usually 

representative sample is collected in the form of fine particles. Sample is set in an 

epoxy resin in a round mould to form a hardened block, and a cross section of which 

is polished, is coated with carbon before presented to the MLA system. For this study 

similar procedure was followed with a difference, where rock particles were cut in 

half and then placed in resin with chosen plane for analysis. For some particles, which 

were analysed in situ, plain was created during polishing procedure. Focus of this 

sample preparation was to create large surfaces to identify as much minerals as 

possible in one plain. Information collected from surface analysis is considered to be 

statistically reliable to divide minerals in two groups. First is common rock forming 

minerals and second is metal rich microwave absorbing minerals. 

 

 
Figure 3-42 MLA area x-ray analysis of a composite particle; after segmentation, 5 grains are 
delineated and one x-ray spectrum is collected to provide their mineral identity. Sourced from 
(Gu, Ying 2003) 
 
Figure 3-42 shows analysis of composite particle. Back-scattered electron (BSE) 

signals from SEM are used to create sample images where background is usually very 

black due to epoxy resin material and all other phases are presented with different 
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degrees of brightness according to the average atomic number of the mineral phase 

present. More details can be found in work of Gu (1998). 

There are four basic steps involved in MLA data processing and presentation; they are 

illustrated by Gu (2003). 

• Particle extraction: identification of each likely particle by discrimination 

against the background 

• Particle de-agglomeration: identification of the particles that are two or more 

separate particles that are touching each other. Avery specialized procedure 

has been developed for particle de-agglomeration both automatically and 

interactively 

• Mineral grain segmentation: identification of mineral phases within each 

particle and creation of coloured mineral maps. The MLA system uses a 

sophisticated morphological method for automatic segmentation. 

• Data extraction: creation of a standard database containing quantitative 

description of each particle section and mineral grains within. 

Following these steps MLA analysis is able to provide necessary information to 

identify minerals which individual behaviour or group characteristic can studied.  

3.11.3 Automated Mineral Identification by Optical 
Microscopy 

Automated mineral identification by optical microscopy for this study was used along 

high-resolution X-ray computed tomography and scanning by mineral liberation 

analyser to identify minerals. The MLA provides very detail identification of minerals 

phases because by analysing hundreds of thousands of measurement points for which 

this procedure takes a lot of time. Optical microscope images are produced ordinarily 

and much faster to create two dimensional large mineral maps. Modern optical 

analysis and some advances were summarised by Berry et al. (2008) and multispectral 

imaging of ore minerals in optical microscopy by Pirard (2004). 

 

Identification of minerals was focused primly to recognize two sulphides; 

chalcopyrite and pyrite. These two minerals belong to the group of minerals of our 

interest. Chalcopyrite and pyrite have high density comparing to common rock 

forming minerals and belong to group which heats readily when exposed to 
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microwave energy. They also belong to non-opaque minerals which can be much 

easier identified from others. Technique for recognition used multiple rules and 

object-oriented classification using three transmitted light image layers.  

 

Figure 3-43 shows a Leica DM 6000© microscope with a high precision stage suitable 

for direct tiling of image frames and good registration of multiple image layers which 

was used to perform automated optical mineral identification. 

 
Figure 3-43 Leica DM6000© microscope 
 

Currently, up to four images are recorded by this type of microscope: transmitted light 

plane polarised, transmitted light crossed polars, reflected light and transmitted light 

crossed polars with a tint plate. All image analysis was carried out using eCognition® 

Developer Version 8.  
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Figure 3-44 Reflectance for the opaque minerals which was used for identification of Pyrite and 
Chalcopyrite Hartner (2011) 
Study of Hartner (2011) explains this procedure in more detail.  Figure 3-44 shows 

Reflectance for the opaque minerals which was used for identification of pyrite and 

chalcopyrite and used by Hartner. The four images were read directly in 12 greyscale 

bands. Objects based on homogeneity across all bands were produced by 

segmentation algorithm. These objects were then classified using a complex set of 

rules (Process Tree) that are based on image brightness in all 12 bands. Opaque and 

non-opaque minerals were classified in the same sample. Similar approach was used 

in previous study by Berry et al. (2008). 

 

Figure 3-45 shows two sulphides; chalcopyrite and pyrite which were detected using 

reflectance and segmentation. Chalcopyrite is in turquoise blue and pyrite in yellow 

colour. These same minerals can be identified in the right side of X-ray radiogram 

(see Figure 3-46) by presenting their distribution within the volume of the tested 

particle.  
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Figure 3-45 Minerals identified after applying 
algorithm 
 

 
Figure 3-46 X-ray radiogram for particle No. 3 
Set No. 7 
 

3.12 Summary 

In this chapter, an overview of microwave heating in theory and experimental 

methodology were presented. It should be noted that not all types of ore are good 

candidates for microwave assisted infrared sorting. From literature available studies 

were reviewed to obtain dielectric and physical properties of minerals in order to 

place boundaries which can be used as first step of assessment whether the chosen ore 

type has potential for microwave assisted infrared sorting.  

 

Microwave processing systems were discussed considering that the tested ore will 

become a part of the applicator’s functioning. Information presented was focused on 

two types of applicators: domestic microwave oven as multimode cavity and 

travelling wave applicator as single mode waveguide. Each of them is capable of 

producing specific type of E-field which can be used to treat ore particles.  

 

Finally, experimental methodology was presented with three measuring techniques 

which were used to complete an investigation about ore types and their interaction 

with microwave energy. 
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4 Chapter 4-Study of Synthetic Samples 
_____________________________________________________________________ 
 

4.1 Introduction 

The previous chapter provided an insight into basic physical properties of minerals, 

which have to be taken into account prior to exposing rock particles to 

electromagnetic energy and observing their thermal patterns with IR detector.  This 

chapter will present the results of a detailed study of synthetic samples which were 

used to experimentally validate adopted theoretical approach of investigating 

influence of mineral texture upon selective heating. Procedure how to create synthetic 

samples (with predefined shape and form) will be provided, followed by measurement 

of their bulk dielectric properties. Testing procedure in two different applicators will 

be provided and results commented. In addition, this chapter also provides results 

from particle characterisation by image analysis on two ore types which were chosen 

for further experimental investigations. 

4.2 Experimental objective  

This study was conducted to investigate the behaviour of synthetic samples, which 

were created as simplified ore particles, and their interaction with microwaves, using 

two different applicators. For this laboratory testing, the first applicator was a 

domestic microwave oven used as a multimode cavity. The second was a travelling 

wave applicator, which was specially designed to test each particle individually, as a 

single mode waveguide. The objective was to compare surface temperatures after 

exposing synthetic samples in groups and individually (using the best case scenario 
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for the absorption of microwave energy) and observe differences between mineral 

containing and barren particles. 

4.3 Creating Poly (methyl methacrylate) PMMA and quartz 

mixture samples with embedded pyrite grains 

Synthetic samples had to be made from two phases. The first was a microwave 

absorbing phase, usually a mineral of interest, and the second phase was a matrix a 

much less absorbing phase. For the design of synthetic samples it was necessary to 

know the electromagnetic and thermal properties of materials and ideally properties 

should be within the boundaries recommended in Chapter 3, section 3.6: 

1. Electro-magnetic properties 

• Dielectric constant : between 1 and 10  

• Dielectric loss factor : between 0.01 and 0.0001  

2. Thermal properties 

• Thermal conductivity: between  3 and 7 [W/mK] 

• Specific heat capacity: between  600 and 900 [J/kgC] 

 

Table 4-1 shows the electro-magnetic and thermal material properties of the materials 

chosen to manufacture synthetic samples. The values were obtained from literature or 

measured. 

 

From an earlier study by Harrison (1997) which investigated the influence of grain 

size on the heating rates of minerals, pyrite was described as a mineral for which there 

were no increasing heating rate with increased grain size. Pyrite is a very common 

sulphide mineral and it occurs in a wide variety of geological conditions. It is also 

associated with sulphides of copper and other minerals. As a sulphide mineral it is 

also ascribed to a group that has a good response to microwave heating, according to 

most studies which we can find in literature.  

 

For all the above reasons it was decided that pyrite is a good mineral to use as a 

heating source, or mineral of interest in synthetic samples. Using the same amounts of 

pyrite different textures can be created which will not be affected so much by grain 

size. For those textures different temperature profiles can be seen and investigated. 
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Table 4-1 Material properties obtained from literature or their measured values 
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To create a relatively transparent matrix for microwave heating, quartz was chosen as 

the base mineral. Quartz belongs to silicates and it is one of the most represented 

minerals in the earth’s crust. It was decided that dried quartz sand could be pulverised 

and then used to create a desirable matrix. 

 

The next step would be to add the right amount of adhesive compound to hold the 

material together, in this case poly (methyl methacrylate) (PMMA). This adhesive 

compound is a transparent thermoplastic, often used as a light or shatter-resistant 

alternative to glass. It is sometimes called acrylic glass. By chemical terms, it is the 

synthetic polymer of methyl methacrylate. PMMA was chosen because it can easily 

bind together pulverised quartz sand with pyrite grains and provide mechanical 

properties to synthetic samples which can match real rock particles. It also allows the 

creation of different textures, embedding grains of minerals before hardening. Figure 

4-1 shows the materials used and prepared for dielectric probe measurement.  

 

The simple mass ratio rule was applied in designing synthetic samples. From Table 

4-1 it can be seen that PMMA has excellent properties in relation to microwave 

heating. Bearing in mind that it is used as an adhesive which binds together pulverised 

sand, it’s very low value of dielectric loss factor is within the desired range. The 

specific heat capacity is higher than for common gangue minerals and the thermal 

conductivity is lower. The effect of these two properties can be corrected by searching 

for the minimum possible ratio of quartz sand and adhesive. This had to be 

empirically determined. 

 
Figure 4-1 Pulverised sand, (on the left) 
PMMA cylinder and pyrite (on the right). The 
sand and pyrite were pressed into the tablets 
and prepared for dielectric probe 
measurement  
 

 
Figure 4-2 PMMA material used to create 
synthetic particle samples 
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Initial experiments were carried out to determine the minimum ratio of PMMA and 

pulverised quartz sand.  Eleven sets of adhesive and quartz sand were prepared having 

mass portions with ranges from five precent to fifteen precent of PMMA adhesive. It 

was determined that the minimum mass portion, which can be used without 

compromising mechanical properties of synthetic samples, and creating mineral 

texture was ten precent. 

 

Poly (methyl methacrylate) with commercial name LECOSET™ 100 (Acrylic), a mix 

1 part liquid with 2 parts powder, was used and it can be seen in Figure 4-2. The time 

for air curing was 10 to 12 minutes. The chemical reaction between a powder 

component and a liquid component of PMMA is exothermal. Because of the nature of 

the chemical reaction all components were cooled down below 20 oC, especially 

liquid monomer in order to slow down the reaction. 

 

The shape of the cube mould was created out of Teflon®, which was chosen to reduce 

the possibility of the matrix sticking to the walls, and its resistance to chemically react 

with PMMA. Figure 4-3 shows the mould with its front side, which can be taken out 

to easily remove the sample after the setting time. 

 

 
Figure 4-3 Teflon mould with cubical shape in the middle used to create synthetic samples 
 
A cooled water bath was prepared before mixing all components. It was used to cool 

down glass and plastic containers used during mixing. After measuring the quartz 

powder the whole content was placed in a glass container in the water bath. The right 

amount of liquid LECOSET™ monomer was added using a syringe to the powder 

component starting the chemical reaction in the disposable plastic container. A glass 

laboratory stick was used to rapidly mix the liquid and powder components. After five 



Chapter 4- Study of Synthetic Samples 
_____________________________________________________________________ 

_____________________________________________________________________ 
 

102 

seconds of rapid mixing viscous PMMA was poured from the disposable plastic 

container on the surface of the quartz powder. To increase the contact surface PMMA 

was poured in circular motions. Mixing was continued in the glass container first with 

a glass stick and then with fingers using protective gloves. Process mixing was 

stopped when the adhesive had been well distributed within the whole mass of the 

quartz sand. 

 

For the synthetic particles, without mineral grains, the freshly made matrix material 

was placed directly into the mould applying compression from the top. For the 

synthetic particles, with mineral grains, the matrix was placed in layers into the 

mould. This approach allowed placing the mineral grains with tweezers in the 

desirable position within the volume of the matrix. Figure 4-4 shows all synthetic 

samples created. To flatten the top and bottom of the cubes, a polishing rotating disc 

was used to remove all roughness from the surface. 

 

 
Figure 4-4 Cubes made of Quartz sand, PMMA and pyrite grains 
 
After the preparation of the synthetic particles they were labelled. To assure that the 

order of the tracers or particles, with designed structure of minerals is random, three 

numbers from one to eleven were chosen. This was done using Matlabs’ random 

function, which generated numbers three, five and nine. Those numbers were then 

dedicated to the tracers. It was also decided that the increasing sequence of numbers 

should be followed with increasing grain sizes used in synthetic samples. Position 

three was given to the cube with the smallest grain size, while position nine was given 

to the cube with the largest grain size. 
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Using the described procedure, synthetic particles as simplified ore particles, with the 

constant shape and form, were created with an average measured mass of 

16.91±0.59g. For the synthetic particles with created texture or tracers more details 

can be found in Table 4-2. 
Table 4-2 Mass of tracers and mass of pyrite used with the grain sizes 

Sample label Mass of 
particle, g 

Mass of pyrite 
grains, g 

Mass % 
of pyrite 

Grain size, 
mm 

Cube No. 3 17.8 3.59 20.2 -4.75+3.35 
Cube No. 5 17.3 3.56 20.6 -6.70+4.75 
Cube No. 9 17.53 3.51 20.0 -9.50+6.70 

4.4 Tomography of the cubes (Synthetic particles) 
 

For the assessment of synthetic particles, X-ray Cone Beam Tomography was used to 

present created texture and point to possible localised heating areas. Digital x-ray 

radiograms allow us to visualise and measure proximity of embedded minerals to the 

surface of the minerals. The distance of heating minerals will be reflected on the 

heating patterns on the surface of the synthetic particles which will be possible to 

measure using an infrared cameras previously explained in Chapter 3, section 3.6. 

4.4.1 Empty Cube containing matrix material only 
 

Figure 4-5 and Figure 4-6 show x-ray radiograms of a synthetic cube created entirely 

of pulverised quartz sand and PMMA used as adhesive. There are no additional 

minerals and the created texture is very uniform in all directions.  

 
Figure 4-5 Empty cube, matrix only. Position of cube: 0 degree according the position of X-ray 
source 
 

This particular cube was later labelled as “Cube No. 7” and it was used in other 

testing along with the cubes which had microwave absorbing mineral. 
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For all others cubes and including this one, made in the same manner it can be stated 

that they present barren rock particles. They represent particles made of common rock 

forming minerals which have low dielectric properties and have a tendency to heat 

less when exposed to applied microwave energy.  

 
Figure 4-6 Empty cube, matrix only. Position of cube: 45 degree according the position of X-ray 
source 

4.4.2 Cube No. 3 

Figure 4-7 to Figure 4-9 we show x-ray radiograms of the particle labelled “Cube No. 

3” containing eight grains of pyrite with one in every corner of the cube.  This 

particular texture has a symmetrical structure of the mineral grains which will respond 

very quickly to microwave heating. This is mostly due to the proximity of the mineral 

grains to the surface of the cubes. Every grain will become a source of heating, which 

will start to form four points with consecutive radial isothermal surfaces on the 

surface of the cube. Heat will spread radially from the source because created 

temperature gradient will pass through the matrix, with homogenous properties.  

 

Because of the symmetrical structure it should be easy to see a very prompt response 

to microwave heating from any of the six surfaces on the cube which will fall in front 

of the infrared detector. 

 

Figure 4-10 shows the reconstruction of the one horizontal plane, indicated in a green 

horizontal line in Figure 4-7.  This plane displays the locations of the first four pyrite 

grains i.e. heating sources. The density change within the synthetic sample was 

studied using a red profile line which was placed across from one side to another 

passing through mineral grains three and four. After removing air as the base line (it is 

now under the horizontal dotted line in Figure 4-11) a considerable leap in density can 

be seen when passing through pyrite. Following the rest of the profile it can be stated 
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that these grains are embedded in homogenous material and that there will not be a 

preferential direction for the heat to follow. 

 
Figure 4-7 Position of Cube 3: 0 degree 
according the position of X-ray source 
 

 
Figure 4-8 Position of Cube 3: 90 degree 
according the position of X-ray source 
 

 
Figure 4-9 Position of Cube 3: 115 degree 
according the position of X-ray source  

Figure 4-10 Horizontal plane of the Cube 3 
reconstructed and indicated in green colour   

 

 
Figure 4-11 X-ray attenuation coefficient change indicating density change in reconstructed 
horizontal plane indicated in red colour in Figure 4-10  
 
Figure 4-12 shows the designed structure from multiple views in reconstructed X, Y 

and Z planes for the “Cube No. 3”. 
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Figure 4-12 Reconstructed x, y and z planes locating positions of the four embedded pyrite 
minerals in the cube. In the top right image x-plane is in the blue colour, y-plane in green and z-
plane in red colour 

4.4.3 Cube No. 5 

The “Cube No. 5” and its structure with three grains of pyrite can be seen in x-ray 

radiograms in Figure 4-13, Figure 4-14 and Figure 4-15. It should be noticed that 

larger grain size were used. For this particular texture a semi symmetrical structure 

was chosen. Three grains were arranged in triangular shape along the one of the larger 

diagonals connecting opposing corners of the cube. This structure will have three 

sides of the cube which will be directly affected by the grain proximity to the surface. 

On those surfaces it will be easy to identify points with the highest localised heating. 

The remaining three surfaces will have heating patterns which are produced by the 

collective effect of all three grains, working as one heating source. Figure 4-16 shows 

one of the horizontal planes reconstructed with two of the three grains. The proximity 

of those grains to the surface can also be seen. Figure 4-17 shows the density change 

from the reconstructed plane. It can be seen that the density change is very similar to 

“Cube No. 3”. This is predominantly because mineral grains come from the same 

larger mineral crystal of pyrite as in “Cube No. 3” and the matrix was prepared 

according to the same procedure. 
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Figure 4-18 shows a designed structure from multiple views in reconstructed X, Y and 
Z planes. 
 

Figure 4-13 Position of Cube 5: 0 degree 
according the position of X-ray source 
 

 
Figure 4-14 Position of Cube 5: 90 degree 
according the position of X-ray source 
 

Figure 4-15 Position of Cube 5: 180 degree 
according the position of X-ray source 
 Figure 4-16  Figure 4-13 First two grains of 

pyrite and their positions in common plane for 
the Cube 5. 

 

 
Figure 4-17 X-ray attenuation coefficient change indicating density change in reconstructed 
horizontal plane indicated in red colour in Figure 4-16 
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Figure 4-18 Reconstructed x, y and z planes locating positions of the three embedded pyrite 
minerals in the cube. In the top right image x-plane is in the blue colour, y-plane in green and z-
plane in red colour 
 

4.4.4 Cube No. 9 

The “Cube No. 9” had a very simple structure as presented in x-ray radiograms from 

Figure 4-19 to Figure 4-21. The whole mineral grain, which acts as a heating source, 

was deeply embedded in the middle of the matrix.  

 

This was the most symmetrical structure which will result in very similar isothermal 

surfaces. Whichever of the six sides of the cube is presented to the infrared thermal 

camera, the highest temperature will be in the middle of the surface. Considering that 

the heat is coming from the one source it will spread radially towards the surface of 

the cube. Homogenous bulk properties of the matrix will cause the temperature 

gradient to be equal in all directions without any specific directional preferences. This 

will create isothermal surfaces which will have concentric spherical shapes. The heat 

front will reach the centre of the cube sides first while the corners of the cube will be 

reached last, taking into consideration that they are the furthers from the heating 

source. 
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Figure 4-19 Position of cube Cube 9 : 0 degree 
according the position of X-ray source 

 
Figure 4-20 Position of cube Cube 9 : 90 degree 
according the position of X-ray source 
 

 
Figure 4-21 Position of cube Cube 9 : 180 
degree according the position of X-ray source  

Figure 4-22 Horizontal plane reconstructed and 
indicated in green colour in Figure 4-19.  

 

 
Figure 4-23 Reconstructed x, y and z planes locating position of the one embedded pyrite mineral 
in the cube. In the top right image x-plane is in the blue colour, y-plane in green and z-plane in 
red colour 
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Figure 4-22 shows one of the planes reconstructed to locate the mineral grain, while 

Figure 4-23 shows the designed structure from multiple views in reconstructed X, Y 

and Z planes. 

4.5 Measuring Bulk Dielectric Properties of Synthetic 

Particles Using Resonant Cavity Technique 

The experimental objective was to measure bulk dielectric properties of synthetic 

particles as they would be used in actual testing. For this reason three randomly 

chosen (random choice determined by Matlab function) synthetic particles without 

pyrite texture and three used as tracers were measured.  

 

The Resonant Cavity Method uses a resonant cavity for the sample holder, and a 

network analyser to measure the resonant frequency and the Q of the cavity when it’s 

both empty and has the sample in it. From this, permittivity can be calculated 

(Czichos et al. 2006). 

 
Figure 4-24 Scattering parameter S2l measured for an empty cavity and for cavity with a 

specimen inserted after Czichos et al. (2006) 

The cavity is connected to a network analyser by using suitable adapters and cables. 

The resonance is indicated by a sharp increase in the magnitude of the S21 parameter, 

with a peak value at the resonant frequency. The resonant cavity method is a two port 

measurement therefore, the S21 parameter presents forward transmission (insertion) 

gain with the output port terminated in a matched load. When the dielectric specimen 

is inserted into the empty cavity the resonant frequency decreases from fc to fs while 

the bandwidth Δf at half power (3 dB), below the S21 peak, increases from Δfc to Δfs 

as it is shown in Figure 3-21. A shift in resonant frequency is related to the specimen 

dielectric constant, while the larger bandwidth corresponds to a smaller quality factor 
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Q, due to dielectric loss. Then the dielectric constant can be calculated by using 

Equation 4-1 and dielectric loss factor using Equation 4-2. 
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Where : 

fc = Resonant Frequency of Empty Cavity 

fs = Resonant Frequency of Filled Cavity 

Qc = Q of Empty Cavity 

Qs = Q of Filled Cavity 

Vc = Volume of Empty Cavity 

Vs = Volume of Sample. 

 

Resonant cavities are usually made from closed sections of waveguide or high-

permittivity dielectric material. Electric and magnetic energy is stored in the cavity 

and the only losses are due to finite conductivity of cavity walls and dielectric losses 

of material filling the cavity (Pozar 1997). The quality factor or “Q” is used to 

estimate different power loss mechanisms within the resonant cavities. By Metaxas & 

Meredith (1983) it can be estimated as:  

cycleper lost energy 
storedenergy 2π=Q   (4-3) 

although it can be decomposed into three parts as seen in Equation 4-4. 

extdc QQQQ
1111

++=   (4-4) 

The first is Qc, resulting from the power loss in the walls which have finite 

conductivity; the second is Qd, resulting from the power loss in the lossy dielectric 

material filling the cavity: 

s

c
d V

VQ
4tan

1
⋅

δ
≈   (4-5) 

and Qext, resulting from power loss through unclosed surfaces (holes) of the cavity 

geometry (Pozar 1997). If the Qc and Qext are minimised through the choice of 

material and design of the resonant cavity then quality factor becomes a function of 
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the lossy dielectric material filling the cavity, as seen in Equation 4-5.  For this reason 

in resonant cavities Q-factor can be used to calculate dielectric properties of materials 

at resonant frequencies. 

4.5.1 Validation of the Cavity with the Material of Known 
Dielectric Properties and Testing Synthetic Particles 

The ASTM 2520 standard covers resonant cavity technique in more details and this 

standard was used as a guide for measuring dielectric properties of synthetic cubes. It 

provides three measurement techniques. Test method “A” is for specimens precisely 

formed to the inside dimension of a waveguide. Test method “B” is for specimens of 

specified geometry that occupy a very small portion of the space inside a resonant 

cavity. Finally, test method “C” uses a resonant cavity with fewer restrictions on 

specimen size, geometry and placement, and this method was used as guidance. 

 
Figure 4-25 The resonant cavity from outside 

Figure 4-25 shows the apparatus used, which in reality is a short section of WR340 

waveguide with an opening in the middle to insert the testing sample and two metallic 

plates used to convert waveguide into the resonant cavity. The metallic plate on each 

end had an iris hole to feed energy in and out of the cavity as it can be seen in red 

circle in Figure 4-26. 

 
Figure 4-26 Cavity from inside, with iris hole in red circle 
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Considering that the synthetic particles were comprised from high and low loss 

materials, a less sensitive cavity (operating in TE101 mode with dimensions 

x=a=4.3cm, z=b=8.6cm and y=69cm) was used for which Q-factor was still above 

2000 as recommended by ASTM 2520 standard.  

 

Measurements and calculations were obtained through Agilent software “85071E 

option 300” (from the same manufacturer of the network analyser used in the 

measurement) which had all necessary calculations from the ASTM 2520 standard. 

To evaluate the cavity, initial testing and calibration were performed on a material of 

known properties from literature and measured by a different measuring technique. 

The PMMA previously casted into cylindrical shape with dimensions: 30 mm in 

diameter and 15 mm in height (see Figure 4-1) was placed on the thin piece of paper 

on the bottom of the cavity in the middle of the resonant cavity. Table 4-3 shows 

mean values from four measurements which are in good agreement with other sourced 

values. 
Table 4-3 Measured values for PMMA used to test performance of the cavity 

Property PMMA Source 
1. 2.321±0.0157 at 2.45 

GHz and 23oC  
2. 2.0458±0.021 at 21 oC 

and 2.475 GHz 

1. measured by 
dielectric probe kit 

2. resonant cavity 

Dielectric 
constant ε’ 

< 3.0 at 2.45 GHz and 23oC (Yussuf et al. 2007) 
1. 0.016±0.0025 at 2.45 GHz 

and 23oC 
2. 0.0136±0.003 at 21 oC and 

2.475 GHz 

1. measured by 
dielectric probe kit 

2. resonant cavity 

Dielectric loss 
factor ε’’ 

< 0.1 at 2.45 GHz and 23oC (Yussuf et al. 2007) 
 

The chosen synthetic particles were tested in two positions in regards to the length of 

the resonant cavity. The first was parallel and the second was under angle of 45 

degrees as shown in Figure 4-27. 

 

 Because of depolarisation effect these two positions were investigated. Measurements 

were repeated three times and depolarisation effect was examined on macroscopic 

level caused by the different positions (not by different shapes) of the synthetic ore 

particles.  
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Figure 4-27 Two positions chosen to perform measurements 

The aim of rotating the particles was to investigate whether the difference between 

two types of created particles was equally distinguishable. Table 4-4 and Table 4-5 

show the results from the measurements and they can be commented by observing 

loss tangent (defined in Chapter 3) which can be used as a parameter to describe 

responsiveness of the material to electromagnetic field. 

 
Table 4-4 Measurement was performed on 21 oC at 2.475 GHz for parallel position in regards to 

the length of the resonant cavity 

    Numbers up 
Num. of 
sample 

Sample 
name 

Dielectrics 
constant  

Dielectric loss Loss 
tangent 

1 Cube 7 2.571± 0.0017 0.0114±0.00050 0.0044 
2 Cube 4 2.601± 0.0040 0.0135±0.00040 0.0052 
3 Cube 11 2.627± 0.0031 0.0115±0.00040 0.0044 
4 Cube 3 2.779± 0.0087 0.0243±0.00026 0.0088 
5 Cube 5 2.631± 0.0105 0.0222±0.00060 0.0084 
6 Cube 9 2.693± 0.0042 0.0191±0.00072 0.0071 
 
Table 4-5 Measurement was performed on 21 oC at 2.475 GHz rotated for 45 degrees as seen in 

Figure 4-27 

    Rotated for the 45 deg 
Num. of 
sample 

Sample 
name 

Dielectrics 
constant  

Dielectric loss Loss 
tangent 

1 Cube 7 2.630± 0.0794 0.0122±0.00062 0.0046 
2 Cube 4 2.575± 0.0036 0.0132±0.00035 0.0051 
3 Cube 11 2.533± 0.0061 0.0105±0.00036 0.0041 
4 Cube 3 2.631± 0.0044 0.0198±0.00052 0.0075 
5 Cube 5 2.572± 0.0069 0.0202±0.00053 0.0078 
6 Cube 9 2.681± 0.0026 0.0196±0.00030 0.0073 
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Figure 4-28 Loss tangent for synthetic regular shape samples with mineral texture and used as 
tracers were higher compared with a non pyrite bearing particles 
 

It can be seen that the group of particles used as tracers had much greater values of 

loss tangent when compared with a non pyrite bearing particles. This trend can also be 

seen when the measurements were repeated with rotated positions of the samples (as 

seen in Figure 4-28). 

4.5.2 Conclusions 

This method, as any other, has its limitations, however, it met the objectives and it has 

been proven effective in the characterization of many ceramic and organic material 

systems for which ASTM 2520 standard is frequently used. The following 

conclusions can be made: 

• The resonant cavity used, proved to be suitable to measure bulk properties of 

synthetic rock particles. 

• The difference in bulk dielectric properties between synthetic particles 

characterised as tracers and particles without pyrite mineral was easily 

measured along with the presence of depolarisation effect.  
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4.6 Test Procedure: 

4.6.1 Exposing Synthetic Particles to Multimode 
Electromagnetic Field in Domestic Microwave Oven 

Figure 4-29 shows a domestic microwave oven used for this experiment manufactured 

by SHARP. It is a “Carousel” Model 380-J capable of delivering 1200 Watts of 

microwave power to the load. The interior of the oven along with internal cavity 

dimensions is shown in Figure 4-30. The turning mechanism is in the middle of the 

oven and the waveguide port is on the right side. 

 
Figure 4-29 Domestic microwave oven used in 
this experiment 

 
Figure 4-30 Interior of domestic oven. Turning 
mechanism is in the middle of the oven and the 
waveguide port is on the right side. 
 

The glass microwave tray, which can be seen in Figure 4-31, was separated into 

eleven sections for eleven synthetic particles. Those same particles were then 

distributed along the edges of rotating tray in order to cover the larger area of the tray. 

This was done to ensure that particles have a greater chance of passing through the 

multiple modes if the spatial distance between the modes is larger than the chosen 

particle size. During repeatable exposures, particles were positioned in numbered 

order clockwise. This is represented with a red arrow in Figure 4-31. Once allocated 

on the edge of the tray they did not have any preferred position. 
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Figure 4-31 Fixed position in red and free position in blue 

 
In industrial conditions the real rock particles (when they take their most stable 

position) can be measured for their temperature profiles on the conveyor belt from the 

top surface, while the temperature profiles from the bottom stay hidden. To complete 

the temperature profile it would be beneficial to have information from both the top 

and bottom surfaces. This is why synthetic particles were tested first with their labels 

or numbers up and then a second time with their numbers rotated down. With this 

arrangement, exposure to the microwave energy was repeated four times. Two times 

with the numbers “up” and two times with the numbers “down”. 

 

Before the microwave exposure, an infrared captured image of the synthetic particles 

was taken using an infrared camera manufactured by CEDIP (see Figure 4-32). This 

camera is capable of detecting electromagnetic waves with the wave length between 

2-5µm or in infrared spectrum. A tray with synthetic particles was then placed in the 

oven and exposed to the 1200 W of applied microwave power. Time for the exposure 

was 12 seconds. This time was chosen because the glass tray makes a full rotation 

within the oven. During this time all particles rotated with the tray and assumed their 

starting positions after exposure. 
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Figure 4-32 Temperatures before exposure 

An infrared camera was positioned very closely to the microwave oven on the 

distance from which the images of the tray with the particles could be easily captured. 

 
Figure 4-33 Temperatures after exposure 

Figure 4-33 shows the thermal infrared image taken five seconds after the exposure. 

This time was necessary to take the tray from the oven and position it in front of the 

infrared camera for image capturing. After every exposure synthetic particles were 
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cooled down to room temperature. Forced convection was used by placing them on 

the mesh surface which had an air fan below. All data was collected and then analysed 

with provided software for the infrared camera. 

4.6.2 Exposing Synthetic Particles to Electromagnetic Field in 
the Travelling Wave Applicator  

For this experimental set-up a travelling wave applicator was used. All synthetic 

particles were placed in a numbered sequence on the vibratory feeder which can be 

seen in Figure 4-34 on the right side. Particles were fed one by one into the applicator. 

The generator was set for 1200 W with an exposure time of 12 seconds. All these 

settings were adjusted using a graphic user interface prior to initialising the testing 

sequence. The infrared camera was positioned perpendicular to the travelling wave 

applicator to reduce reading temperatures errors from the surfaces of synthetic 

particles (see Figure 4-34). 

 
Figure 4-34 Feeding and inspection part of the travelling wave applicator  

For repeatable testing it was important to guide particles to the narrow particle holder 

which was done using a guiding funnel. Figure 4-35 shows the guiding funnel placed 

over the particle holder. 
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Figure 4-35 Guiding funnel with the infrared detector 

From Figure 4-36 to Figure 4-38 the positions of the cubes during testing are shown. 

The region of interest is labelled in every figure with No.1 and it is in a circular shape, 

highlighted in bold blue colour.  

 

By comparing positions from three consecutive exposures it can be seen that particles 

free fall from the feeder influenced the final position within the region of interest. 

This free fall also made a random choice of one of the six sides of the cube, which 

would then be presented to the infrared camera. 

 
Figure 4-36 First exposure in 
TWA 

 
Figure 4-37 Second exposure 
in TWA 

 
Figure 4-38 Third exposure in 
TWA 

Exposures were repeated three times. During all exposures infrared images were 

captured in real time allowing detailed data analysis of the temperature profiles for 

every synthetic particle.  

4.7 Results and Discussion  

All collected data was analysed by software “Altair” supplied by infrared camera 

manufacturer Cedip. By placing a boundary around the perimeter of particles a two 
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dimensional visible surface was selected from the background. From these surfaces 

software was used to calculate temperatures. Two temperatures were calculated from 

each particle. The first was the maximum temperature taken from a pixel with the 

highest measured temperature within the selected surface. The second was the mean 

temperature calculated as a mean value from all temperatures from all the pixels 

within the selected surface. To compare experimental data, temperature difference for 

maximum and mean temperatures were calculated from data before and after 

microwave exposure. Following abbreviations were taken to represent data. 

• For each exposure: 

T max= maximum temperature on the surface of the particle 

T mean = mean temperature on the surface of the particle 

ΔT max = temperature difference for the maximum temperature on the surface of the 

particle calculated from data before microwave exposure and after microwave 

exposure 

ΔT mean = temperature difference for the mean temperature on the surface of the 

particle calculated from data before microwave exposure and after microwave 

exposure 

• From repeated exposures: 

average ΔT max = mean value for ΔT max from repeated exposures 

average ΔT mean = mean value for ΔT mean from repeated exposures 

 

Figure 4-39 shows average ΔT max and average ΔT mean from repeated testing. It 

can be seen that particles, which were used as tracers (on the graph particles with 

numbers 3, 5 and 9), have higher temperatures than the rest of the particles, which 

were made just from the matrix material. The displayed data shows that the highest 

standard deviation was calculated for the tracer “Cube No.5”. This high standard 

deviation was caused by presenting different sides of the synthetic particle to the 

infrared camera. The first exposure with numbers “up” had the side which was 

furthest from mineral grains and had a cumulative influence of all three grains which 

resulted with lower values for ΔT max and ΔT mean. The second exposure with 

numbers “down” had the side which was much closer to the one of the grains which 

resulted with increased values for ΔT max and ΔT mean. 
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Figure 4-39 Mean values for the temperature differences from repeated exposures with their 

standard deviations from the multimode oven testing 

Tracers “Cube No.3” and “Cube No.9” had much lower standard deviations due to 

their more symmetrical texture. The lowest average ΔT max from tracers was 

calculated for the “Cube No.9” caused by the grain which was deeply embedded 

inside the matrix. Average ΔT max was still above the other synthetic particles 

without any mineral grains. 

 

Figure 4-40 shows the data for the best case scenario from the multimode oven 

exposure. For every particle the maximum value from all repeated exposures was 

chosen for the average ΔT max and average ΔT mean.  

 

The best case scenario was defined as the case when the highest energy transfer was 

reached in all repeated microwave exposures and measured from the surface closest to 

the heating minerals. In other words, the particle was coupled at that time to receive 

the best power transfer during exposure while also having the most favourable 

orientation to the surface for the infrared temperature measurement. 
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Figure 4-40 The best case scenario for the multimode oven exposure 
 
By analysing data from the microwave exposures in the travelling wave applicator it 

was straightforward to detect and identify some of the predicted heating patterns on 

the surface of the synthetic samples from their predefined locations of mineral grains. 

Figure 4-41 shows four noticeable hot spots caused by produced texture with pyrite.  

 
Figure 4-41 The temperature 
profile for the “Cube No.3” 

Figure 4-42 The temperature 
profile for the “Cube No.5” 

Figure 4-43 The temperature 
profile for the “Cube No.9” 

 

The temperature profile for the “Cube No.5” can be seen in Figure 4-42 for one of the 

sides closer to the mineral grain, while the temperature profile for the “Cube No.9” 

can be seen in Figure 4-43. 

 

For these experimental tests infrared images were collected with 25 frames per second 

in real time. The region of interest was set to cover the whole surface of the particle 

holder placed in the middle of the applicator. The region of interest (ROI) was 

introduced as a quick insight in temperature profile for each particle in real time 
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during testing. Considering that the position of the particle was influenced by free fall, 

this was the approach to introduce a constant surface for the analysis. In one of the 

exposures T max of ROI was influenced by the residual heat from the previously 

tested particle, as it can be seen in Figure 4-44. In the final data analysis for every 

particle tested, errors caused by residual heat were removed by placing new ROI in 

the shape of square around the surface of particle. 

 
Figure 4-44 For every particle tested, errors caused by residual heat were removed by placing 
new ROI only on the surface of particle 
 
Figure 4-45 to Figure 4-47 show the change of T max and T mean for the placed 

region of interest in three repeated exposures. These temperatures were calculated and 

plotted in time. All eleven temperature peaks indicating each particle exposure to 

microwave energy in time can be seen and identified. It is very simple to notice that 

the particles which were used as tracers have much higher peaks than all the others. 

These temperature peaks can be identified in positions three, five and nine. 
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Figure 4-45 First exposure: Maximum and mean temperatures recorded in real time in ROI 
during first exposure testing. 
 

 
Figure 4-46 Second exposure: Maximum and mean temperatures recorded in real time in ROI 
during second exposure testing. 



Chapter 4- Study of Synthetic Samples 
_____________________________________________________________________ 

_____________________________________________________________________ 
 

126 

 

 
Figure 4-47 Third exposure: Maximum and mean temperatures recorded in real time in ROI 
during third exposure testing. 
 
Figure 4-48 indicates mean values for the temperature differences from repeated 

exposures with their standard deviations from the travelling wave applicator testing. 
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Figure 4-48 Mean values for the temperature differences from repeated exposures with their 
standard deviations from the TWA testing 
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Figure 4-49 The best case scenario for the TWA exposure 

Figure 4-49 shows the data from the travelling wave applicator testing. The best case 

scenario was used to obtain data. 

 
 Figure 4-50 Maximum values from all measurements and both systems for average surface 
temperatures calculated from ROI for synthetic samples 
 
By comparing data from both exposures, presented in  Figure 4-50, it can be stated 

that synthetic particles with created mineral texture had noticeably higher maximum 

and mean temperature differences. They were compared with the rest of the particles 

which were created to resemble barren rock particles. It can also be seen that the 
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temperature difference is strongly dependable upon texture of the heating mineral 

phases and their proximity to the surface of the particle.  

 

From these two exposures the temperature threshold which is defined by bulk 

properties of barren synthetic particles can be determined. This temperature threshold 

can be considered as a base line for the surface temperature variability caused by the 

matrix material (because the best case scenario was defined and used). By analysing 

all particles in Figure 4-50, particle number ten can be identified with the highest 

temperature change for the matrix material. If slightly higher temperature is chosen 

for selection threshold (indicated with horizontal red line) it will exclude all particles 

except particles with numbers three, five and nine. The particles which reach higher 

temperatures indicate presents of the mineral phases within the matrix material as 

additional heating source. 

 

A barren synthetic particle had better heating response when it was heated up in the 

group with other particles which increased overall volume of the load during 

multimode exposure. This effect is explained in more detail in Chapter 3 section 3.9. 

During individual testing with TWA which was designed to respond to reflected 

power from introduced external influence, in this case synthetic particle, absence of 

heating mineral phase caused lower heating response. Throughout same testing, 

synthetic particle which had a responsive mineral phase was able to absorb more 

power. This was caused by higher reflected power from the same synthetic particle, 

which was used by the TWA to achieve better coupling for the power transfer during 

their testing. Eventually this resulted in much higher heating temperature difference, 

compared to multimode oven exposure, which can be used as a strong indicator of the 

present mineral texture.  

4.8 Summary 

Based on testing synthetic samples following results and observations can be 

summarised: 

• PMMA proved to be good choice of adhesive which allowed testing particles 

with designed experimental equipment without mechanical damages. This was 

necessary to achieve repeatable testing. 



Chapter 4- Study of Synthetic Samples 
_____________________________________________________________________ 

_____________________________________________________________________ 
 

129 

• Tracers were recognisable in both types of microwave heating experiments, 

which was previously indicated by testing particles for their dielectric 

properties using resonant cavity method. 

• By using two different types of applicators for created synthetic samples they 

have become a functioning part of those applicators in two different ways. It 

has enabled either for barren particles or tracers to have better interaction with 

electric field. Combined results have provided more accurate selection of 

temperature threshold defined for bulk properties of matrix material and 

identification of tracers. 

4.9 Particle Characterisation by Image Analysis 

4.9.1 Necessity for particle characterisation 
 
One of the challenges with infrared detection is that information is calculated from 

two-dimensional space. Real information is actually in three-dimensional space. The 

images of the particles seen in a camera are projected areas which dimensions depend 

on a particle’s orientation when they are placed or fallen on the flat surface. The 

particles in their most stable orientation tend to present their maximum area to the 

camera lens, so it can be stated that the projected area of a particle is orientation 

dependent. 

 

Temperature profiles are created by minerals which are heated by microwaves and the 

heat is spread by conduction throughout the volume of the particle. The temperatures 

that can be observed on the surface are a reflection of the texture of the microwave 

absorbing minerals; their proximity to the surface, the homogeneity of the matrix, and 

the shape of surface of the matrix. 

 

When synthetic samples were tested they were created to have same shape and 

proportion to avoid any additional factors which could influence the temperature 

profiles under the investigation. With real rock particles, (for a chosen testing size) 

shape and proportions will vary within the boundaries given for that specific size. In 

some cases specific shape or proportion can be dominant, which can influence 

temperature profiles. For the real ore particles from different ore types shape factors 

can be used to investigate whether they have a preference to a specific shape or 
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proportion for which temperature profiles should be corrected. If two different ore 

types demonstrate similar distribution in shapes and proportions for the chosen 

particle size, then it can be stated that the temperature profiles will be mostly 

dominated by their mineral texture and composition. 

4.9.2 Particle shapes 

The word 'shape' in common usage refers to two distinct characteristics of particles, 

form and proportion. The form refers to the degree to which a particle approaches a 

definite form, such as a cube, tetrahedron or sphere, and the latter by the relative 

proportions of the particle which distinguish one cuboids, tetrahedron or spheroid 

from another of the same class (Allen 1997).  

Figure 4-51 shows forms and proportions of different particles. Macroscopically, 

shape may be derived using shape coefficients or shape factors. 

 

 
Figure 4-51 Forms and proportions after Allen (1997) 
 
For ore tested, -22.4+19.0 mm sieve diameters were used to select the size for 

experimental testing and texture investigation. In this case the particle diameter was 

defined through the sieve diameter which is defined as the width of the minimum 

square aperture through which the particle will pass. 

 
 
Figure 4-52 Woven wire sieves presents square aperture after Allen (1997) 
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Woven wire sieves in Figure 4-52 presents a square aperture to the material being 

sized. In this case it is defined as the projected area diameter of the particle in its 

plane of greatest stability, π/4Ad A =  where dA is the diameter of a circle with an 

area equal to that of the projected area of the particle, A. 

Particles can be described by using one of the diameters described in Table 4-6. The 

differences between these dimensions increase as the particle diverges in shape from a 

sphere. For two-dimensional images the proximity of the image to the outline of a 

circle is defined by circularity where: 

( )
( )outline  particle of area  projectionor   sectional-cross4

outline  particle ofperimeter 2

π
=yCircularit  

 
Figure 4-53 Maximum horizontal chord CH, Maximum vertical chord CV, Horizontal Feret FH, 
Vertical Feret FV, Maximum length ML after Allen (1997) 
 
Figure 4-53 shows different measured parameters by quantitative image analysis 

which can be used to calculate shape factors 
Table 4-6 Definitions of some diameters after Allen (1997) 

da Diameter of a circle having the same projected area as the particle in stable 
orientation 

dp Diameter of a circle having the same projected area as the particle in 
random orientation mean value of dp= ds for convex particles 

dc Diameter of a circle having the same perimeter as the projected outline of 
the particle 

dA Width of the minimum square aperture through which the particle will pass 
dF The distance between pairs of parallel tangents to the projected outline of 

the particle in some fixed direction 
dM Cord length, parallel to some fixed direction, which divides the particle 

projected outline into two equal areas 
 

4.10 Image analysis for QZ Ohio and LRO 
 
Lab View Vision Assistant was used to write the algorithm which is used to perform 

analysis and gather necessary data. Each step in this algorithm is described in 

Appendix C. Figure 4-54 and Figure 4-55 show the original images used for analysis. 
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They present two ore types and all 88 particles used for the second step of 

experimental investigations. The objective was to compare shape factors such as: 

perimeter, Waddel disc diameter, elongation factor, Heywood circularity factor and 

visible area of particles.  

 

 
Figure 4-54 The original image for QZ-Ohio size -22.4+19.0 mm  
 

 
Figure 4-55 The original image for LRO size -22.4+19.0 mm  
 

4.11 Calculating mean shape factors for size -22.4+19.0 mm 

4.11.1 Perimeter 

The perimeter is defined as the length of the outer boundary of the particle. Because 

the boundary is comprised of discrete pixels, the Vision Assistant subsamples the 
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boundary points to approximate a smoother, more accurate perimeter. The perimeter 

is calculated in mm. 
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Figure 4-56 Histogram describing Perimeter Calibrated for size -22.4+19.0 mm QZ Ohio 
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Figure 4-57 Histogram describing Perimeter Calibrated for size -22.4+19.0 mm LRO 

4.11.2 Waddel Disk Diameter 

Diameter of a disk with the same area as the particle in mm. It is defined as  

π
areaparticle _2
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Figure 4-58 Histogram for Waddel Disk Diameter Calibrated for size -22.4+19.0 mm QZ Ohio 
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Figure 4-59 Histogram for Waddel Disk Diameter Calibrated for size -22.4+19.0 mm LRO 

4.11.3 Elongation Factor 

Max Feret Diameter divided by Equivalent Rectangle Short Side (Feret). The more 

elongated the shape of a particle, the higher its elongation factor. 
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Figure 4-60 Histogram for Elongation Factor Calibrated for size -22.4+19.0 mm QZ Ohio 
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Figure 4-61 Histogram for Elongation Factor Calibrated for size -22.4+19.0 mm LRO 
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4.11.4 Heywood Circularity Factor 

Perimeter divided by the circumference of a circle with the same area. The closer the 

shape of a particle is to a disk, the closer the Heywood circularity factor to 1. 
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Figure 4-62 Histogram for Heywood circularity factor for size -22.4+19.0 mm QZ Ohio 
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Figure 4-63 Histogram for Heywood circularity factor for size -22.4+19.0 mm LRO 

4.11.5 Area 
Area of the particle calculated in mm3 
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Figure 4-64 Histogram for Area for size -22.4+19.0 mm QZ Ohio 
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Figure 4-65 Histogram for Area for size -22.4+19.0 mm LRO 

4.12  Summary from particle image analysis 

Comparing shape factors for the same size -22.4+19.0 mm for two different ore types 

QZ Ohio and Low Recovery Ore (LRO) the following can be stated: 

• LRO ore is slightly larger than QZ Ohio, although they have a very similar 

distribution between the smallest and the largest particle within analysed 

particles. Derived from comparing: perimeter, Waddel disc diameter, and 

visible area of the particle 

• QZ Ohio has particles which are slightly elongated compared to LRO 

particles. Derived from comparing: elongation factor and Heywood circularity 

factor. 

In general, if the distribution in all shape factors for these two ore types is compared 

for chosen size -22.4+19.0 mm it can be stated that there is no significant difference 

in shapes and proportions between them. This means that during microwave heating 

none of the shapes and proportions will influence the temperature profiles to a great 

extent and that all the difference in heating between them will be influenced by their 

differences in mineral composition and texture of the minerals they are made of. 
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5 Chapter 5-Study of LRO Ore Type 
_____________________________________________________________________ 
 

5.1 Introduction 

This chapter covers the experimental evaluation of Low Recovery Ore (LRO) for 

microwave assisted infrared sorting. It was the first, from two ore types, supplied by 

Bingham Canyon Mine operated by Rio Tinto’s Kennecott Utah Copper Corporation. 

The term, “Low Recovery” refers to the poor recovery of valuable minerals during the 

mineral concentration process. The LRO was considered to be a “skarn” ore because 

it contains substantial quantities of common garnet in various forms.  

 

To inquire into basic controlling factors which influence behaviour and creation of 

temperature profiles, selected particles will be subjected to detail analysis using MLA, 

X-ray CBT and Optical Microscopy (procedures are covered in more detail in Chapter 

3).  

 

The aim of experimental investigations is to detect rock fragments with minerals 

which interact strongly with microwave energy with two objectives. The first 

objective is to evaluate potential for sorting using temperature difference after 

microwave heating and assayed metals grades (with emphasis on copper grade). The 

second objective is to evaluate potential for sorting determined from mineral textures 

as in contrast to assayed metal content. In Chapter 4 the exposure of synthetic 

particles with known textures (of microwave more responsive minerals) showed that it 
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is advantageous to use both multimode and single mode cavities for better 

understanding of microwave heating of the ore.  

5.2 Overview of the Test Work Procedure and Obtaining 

Representative Samples  

The investigation was carried out in two separate steps. Figure 5-1 shows diagram of 

preparing the representative sample and the test work procedure. 

 

 
Figure 5-1 Preparation of the sample for the detailed test work which was carried out in several 
experimental investigations 
 
The first step provides very wide overview and characterisation of the ore tested 

through three connected experimental investigations. Each experimental investigation 

had specific objective and according to them the number of particles was increased. 

This also allowed a very deductive flow of information throughout them. 

 
• The first step was divided into three experimental investigations: 

The first experimental investigation was to identify the mineralogical composition of 

the tested ore with Mineral Liberation Analyser. The objective was to provide an 

insight into the mineralogical and textural properties which can be correlated to 
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selective heating processes in an applied microwave field. The particles were 

carefully examined for any distinct features in texture to ensure that the ore particles 

selected for MLA examination represented visually most frequent textural features of 

the bulk ore. 

 

The second experimental investigation had the objective of testing -22.4 + 19.0 mm 

size fraction of the QZ Ohio ore for reproducibility and separability using multimode 

excitation in a domestic microwave oven. Sixty-six particles were tested up to six 

times in different orientations. The mass of each particle was measured before it was 

pulverised and assayed for copper, iron and molybdenum. Separation graphs which 

use curves for particle and metal mass as a function of temperature change were 

created to discuss separability. 

 

Finally, the third experimental investigation had an objective to investigate 

experimentally simulated (on laboratory scale) the sorting process on the larger 

population of ore particles. Eighteen sets (189 ore particles) were randomly chosen for 

multimode microwave exposure. It was decided to expose them only once as they 

would be exposed in a real microwave apparatus during the sorting process and then 

perform an assay analysis (of chosen metals) for each ore particle. 

 

• The second step was performed in single experimental investigation 

The -22.4 + 19.0 mm size fraction was tested for its textural interaction with an 

electromagnetic field created in two different microwave applicators. Particles were 

subjected to individual heating and batch microwave heating in sets. The data 

collected was used with the objective of creating two temperature curves and enabling 

discussion of natural separability as a function of mineral texture which causes 

selective heating. 

 

The Low Recovery Ore was received in 200 l steel drums as a representative sample. 

The material in the drums was not washed or treated in any other way; it was just 

selected as a representative sample and divided into four drums for shipment. The ore 

was spread out on a floor and left to dry under room temperature for a day. In order to 

obtain representative sample below 90 mm in size some of the larger lumps between 
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100 mm and 200 mm were handpicked and crushed. Figure 5-2 shows the Gilson 

Testing Screen used to screen material into fractions. Screening time was set for ten 

minutes. 

 
Figure 5-2 The Gilson Testing Screen used to 
screen material into fractions.  
 

  
Figure 5-3 Rotary Sample Divider 
 

90x75mm
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Figure 5-4 Distribution of the material throughout size fractions for the LRO  
 
Figure 5-4 shows distribution of mass through twelve different size fractions after 

screening. The particle size distribution data is given in Appendix I. By taking into 

consideration the possible wanted throughputs, energy necessary to achieve separation 

and natural properties of rock particles as very heterogeneous material, the size 

fraction -22+19 mm was selected for the detailed test work. The mineral liberation 

was taken as the first guide to select this size. Kelly & Spottiswood (1995) pointed 

that the crushing is operation employed to fracture mineral aggregates, and thus 

induce or increase liberation of minerals. Reducing size also allows easier 

identification of locked and middling particles by applying sorting technique. On the 

other hand, size has to be adequate in order to remove as much as possible of the 

waste minerals for the lowest processing costs. This process favours retaining larger 

size of particles. The second guide came from the air consumption, which is the most 
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common medium used for the physical process of separation during sorting. This 

particle size is typically closer to the lower economic size limit for industrial sorting 

using compressed air. 

 

A rotary sample divider shown in Figure 5-3 was then used to obtain a homogeneous 

mixture of the retained ore type by splitting the bulk ore into twelve fractions. 

Obtained fractions had approximately 2 kg of material. A quarter of initial material 

was combined by randomly selecting three bags. New combined material was then 

divided using a smaller hand splitter into bags with approximately 150 g of ore 

material. For the batch exposure in the microwave multimode domestic oven, it was 

necessary to obtain eleven particles for testing. For this particular reason, the number 

of particles in each bag was counted. The bags which already had eleven particles 

were placed on the side, while bags which had less than eleven particles were 

combined with bags which had more than eleven particles. To assure random 

selection of the bags Matlab random function was used. After counting eleven 

particles in each bag final number of forty one sets was created. Every particle in the 

set was labelled with the number of the position in multimode cavity and the number 

of set to which it belongs. The labels enabled easy identification of ore particles 

during testing and were also used to provide order during “numbers up” and “numbers 

down” exposures. 

 

5.3 Mineralogical Characterisation of LRO-MLA Results 

5.4 Results 

The type of the ore tested originates from the Bingham Canyon Mine deposit which is 

generally described as a porphyry copper ore. It also contains large skarn copper 

deposits. As Robb (2005) explains: The word "skarn" is an old Swedish term that 

originally referred to the very hard rocks composed dominantly of calc-silicate 

minerals (i.e. Ca-rich garnet, pyroxene, amphibole, and epidote) that identify the 

rather unusual alteration assemblages associated with magnetite and chalcopyrite 

deposits in that country. It is now widely used to refer to the metasomatic replacement 

of carbonate rocks (limestone and dolomite) by calc-silicate mineral assemblages 

during either contact or regional metamorphic processes. Mineral deposits associated 
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with skarn assemblages are referred to as skarn deposits, and are typically the 

product of contact metamorphism and metasomatism associated with intrusion of 

granite into carbonate rocks. 

 

Tested ore was named Low Recovery Ore (LRO) which is considered to be a “skarn” 

ore because it contains substantial quantities of common garnet in various forms. This 

garnet was identified with a high content of andradite (calcium iron garnet) which is a 

strong indicator of skarn mineralisation. 

 

Randomly selected -13.2 + 9.5 mm particles were carefully examined for any distinct 

features in texture to ensure that the ore particles selected for MLA examination 

represented visually most frequent textural features of the bulk ore. Eight specimens 

were examined for this ore type as high polished sections prepared for accurate MLA 

system measurement. 

 

The Chapter 3, section 3.6 covered and pointed to importance of mineralogy, texture 

and structure which influence the magnitude of microwave selective heating by 

producing heating profiles. The following data was processed from the MLA to 

provide an insight into the mineralogical and textural features which can be correlated 

to observed heating effects: 

 

• The identity of minerals present in each section examined  

• The mineral abundance by surface percentage of each mineral phase  

• The grain size distribution of microwave absorbent mineral grains  

• The spatial distribution of each mineral phase  

• The variation of the above in all the eight specimens which were examined  

 

There were 23 minerals which were identified from MLA scans from all polished 

sections. They are presented in following table: 
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Table 5-1 Expected average heating rates as per test conditions described by: a) Harrison (1997) 

b) Walkiewicz et al. (1988) c) McGill et al.(1988) d) Chen et al. (1984) e) Weert et al. (2011) f) 

Vorster (2001) g) Kobusheshe (2010) h) Genn (2012) 

 Mineral Chemical formula Heating rate, oC/s 
1 Amphibole RSi4O11 R=Mg,Fe,Ca,Na,Li,Ti -- 
2 Apatite Ca5(PO4)3(F,Cl,OH) Poor heater f 
3 Arsenopyrite FeAsS 5.83e 
4 Biotite K(Mg,Fe)3(AlSi3O10)(F,OH)2 Unknown (but contains 

–OH)g 
5 Bornite Cu5FeS4 11.32a  

Heats readily d 
6 Calcite CaCO3 0.6c 
7 Chalcocite Cu2S 1.8b 

1.43e 
8 Chalcopyrite CuFeS2 1.000a 

15.3b 

2.85e 
9 Chlorite RClO2 R=Na,Mg -- 
10 Feldspar KAlSi3O8 – NaAlSi3O8 – 

CaAl2Si2O8 
0.111a 

0.2b 
11 Galena PbS 2.388a 

2.3b 

3.51e 
12 Garnet * X3Y2(SiO4)3 X=Ca,Mg,Fe Y=Al,Fe,Cr Poor heater-

medium heater h 
13 Ilmenite FeTiO3 A medium heating 

mineral a 
14 Magnetite Fe3O4 2.111a 

7.6b 
15 Molybdenite MoS2 0.4b 

1.10e 
16 Olivine (Mg, Fe)2SiO4 -- 
17 Pyrite FeS2 1.000a 

2.5b 

2.29e 
18 Pyroxene XY(Si,Al)2O6 X=Ca,Na,Fe 

Y=Cr,Al,Mg,Ti 
Poor heater f 

19 Quartz SiO2 0.083a 

0.2b 
0.1c 

20 Rutile TiO2 0.75a 
21 Talc Mg3Si4O10(OH)2 -- 
22 Tennantite Cu12As4S13 Difficult to heat when 

cold d 
23 Titanite CaTiSiO5 -- 
 

* For the Garnet estimation was made for the expected heating rate from the dielectric 
properties measured at 2.47 GHz by Genn (2012) and given in  
Table 3-6. 
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For easier representation some of the minerals were grouped together, so the 

following grouping was undertaken: 

 

1 Copper Sulphides: Bornite, Chalcopyrite, Chalcocite, Tennantite 

2 Other Sulphides: Pyrite, Arsenopyrite 

3 Quartz 

4 Feldspar 

5 Garnet  

6 Magnetite 

7 Other Forming Minerals: Amphibole, Apatite, Biotite, Calcite, Chlorite, Galena, 

Ilmenite, Molybdenite, Olivine, Pyroxene, Rutile, Talc, Titanite and Other Minerals 

 
First two groups represent sulphides which have a tendency to respond very well to 

microwave heating. The first group represented was copper bearing minerals also 

defined as minerals of interest. The second group was other sulphides, defined as 

pyrite and arsenopyrite. Quartz and feldspar as common forming rock minerals were 

not grouped. Garnet and magnetite were also not grouped as minerals whose high 

content can influence temperature profiles of rock particles. Garnet because of the 

source of the ore tested and magnetite as responsive oxide which can heat along with 

sulphides. The last group represent all others rock forming minerals. Their content 

varies with a scanned surface of the particles. In some cases amount of those minerals 

can be found with significant surface percentage, while in other cases they are found 

in small trace or not detected at all.  

 

The following figures from Figure 5-5 to Figure 5-12 will be discussed to present the 

surface minerals in the eight specimens examined. The full results of all minerals 

identified in each measured section, which includes the abundance of each mineral or 

mineral group by surface percentage, are presented in tables and can be found in 

Appendix F.  

 

The “responsiveness” to microwave heating is based on literature from previous work 

such as microwave heating studies carried out by: Harrison (1997), Walkiewicz et al. 

(1988), McGill et al.(1988), Chen et al. (1984), Weert et al. (2011), Vorster (2001) 

and  Kobusheshe (2010). 
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Figure 5-5 Particle No. 1, chosen for the MLA analysis, LRO 

Figure 5-5 shows a strong presence of sulphide minerals in the particle No. 1. Various 

grain sizes from 100 μm up to 2 mm (scale bar estimation) are finely dispersed 

throughout the whole surface. Copper sulphides are interlocked with pyrite in most 

cases, although they can be found interlocked with garnet, feldspar and amphibole. 

 
Figure 5-6 Particle No. 2, chosen for the MLA analysis, LRO 

Particle No. 2 presented in Figure 5-6 shows pyrite and garnet to be the most 

dominant minerals with very similar grain sizes and spatial distribution. Grain sizes 

vary from 500 μm to 3 mm (scale bar estimation) and they are connected by calcite. 

The chalcopyrite is dominant copper sulphide and it is in most cases interlocked with 

pyrite and calcite, while grain sizes lower than 200 μm can be found in larger grains 

of garnet. 

.  
Figure 5-7 Particle No. 3, chosen for the MLA analysis, LRO 
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The most dominant mineral in particle No. 3 is garnet covering about 60% of the 

surface as we can see in Figure 5-7. Chalcopyrite is mostly associated with pyrite for 

larger grains above 500 μm. The smaller grains can be found embedded in biotite and 

amphibole or in garnet. 

 
Figure 5-8 Particle No. 4, chosen for the MLA analysis, LRO 

Figure 5-8 displays amphibole with calcite, garnet and quartz which make the 

relatively transparent matrix for the particle No. 4. Although, quartz and garnet form a 

distinguishable section, garnet can also be found disseminated throughout the large 

surface of amphibole. In this specimen copper bearing sulphides are present in higher 

content than other sulphides. They can be identified as tiny seams spread out in 

different directions with grain sizes around 200 μm. 

 
Figure 5-9 Particle No. 5, chosen for the MLA analysis, LRO 

Particle No. 5 shows a very high content of garnet as composing mineral for the 

matrix. Other composing minerals are quartz and calcite which are disseminated in the 

garnet as we can see in Figure 5-9. Quartz is present in much larger grains compared 

to calcite. A small content of sulphides is detected in the shape of grains around 200 

μm in size and mostly embedded in the calcite. 
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Figure 5-10 Particle No. 6, chosen for the MLA analysis, LRO 

Figure 5-10 shows the distribution of mineral phases in particle No. 6. Quartz is the 

most dominant mineral phase with over 70% while all the other minerals are 

dispersed. Grain sizes of all the other minerals are very similar and with relatively 

equal space distribution between them within the quartz. Zones with higher 

concentration of garnet, amphibole and calcite are present and not larger than 2 mm in 

diameter. Pyrite is present with the highest content and almost evenly dispersed in 

quartz matrix. 

 
Figure 5-11 Particle No. 7, chosen for the MLA analysis, LRO  

In Figure 5-11 it can be seen that for particle No. 7 major gangue minerals such as 

feldspar, quartz and biotite, (which are more transparent to microwave energy) form 

almost 96% of the surface. Chalcopyrite is present in small grains with the spatial 

distribution between grains from 0.5 to 1 mm. 
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Figure 5-12 Particle No. 8, chosen for the MLA analysis, LRO 
 
Figure 5-12 shows mineral phases for the particle No. 8. It is made of high content of 

well dispersed fine grains of pyrite within the quartz and calcite matrix. In some parts 

the spatial distribution between grains has tendency to decrease making possible to 

identify those regions where grains almost merge together. 

5.5 Summary 

As might be expected, the particles show substantial variation. However, the presence 

of the garnet is a strong indicator of skarn ore. The results of the ore modal 

mineralogy summarised through MLA investigation shows that the LRO ore contains 

significant amounts of good absorbers of microwave energy such as pyrite and 

chalcopyrite. The major gangue minerals which are relatively transparent to 

microwave energy are quartz, feldspar and calcite with varying content of garnet, 

amphibole and biotite. 

5.6 Microwave Heating and Temperature Characterisation 

Procedure 

Temperature data for the particles in each set was collected using the following 

procedure. The microwave tray was demarcated into eleven regions. All of the 

fragments from the set were placed along the circular periphery of the microwave tray 

in one of the demarcated regions shown in Figure 5-13 a). Before exposure to 

microwaves, an infrared image of the ore particles was taken using an IR camera with 

internal cooling system. An IR image before microwave heating was taken to obtain 

initial temperatures which were usually around room temperature. Figure 5-13 b) 

shows one of these initial images taken during experimental work.  
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The infrared camera (manufactured by CEDIP) was mounted on a specially designed 

camera stand enabling capture of the infrared images directly above the microwave 

tray. At the same time the camera stand provided constant distance between the 

camera lens and the glass tray which was taken as one of the settings in supplied 

software for the camera.  

 

Each batch of ore particles was then heated using 2.45 GHz microwaves in a 

multimode microwave oven. After heating for 12 seconds, or for the one rotation 

respectively of the microwave tray, the tray was taken out and a video recording of 

the tray was started using the CEDIP camera. The overall recording time was 40 

seconds after the end of microwave heating. Two time points were chosen to collect 

data. The first time point was 5 second after microwave exposure. One of the images 

taken in first time point with clearly distinguishable “hot” and “cold” particles can be 

seen in Figure 5-13 c). The second time point was 35 seconds later. 

 

 
a) rock fragments 
positions b) [scale min-max: 26oC-29 oC] c) [scale min-max: 25oC-75 oC] 
Figure 5-13 a) The microwave tray was demarcated into eleven regions. b) IR recording before 
microwave exposure. c) IR recording 5 sec after the end of microwave heating 
 
The images of each particle before microwave exposure, 5 sec after the end of 

microwave heating and at the end of recording time were analysed using software 

supplied with the camera to determine: 

 

• change in average temperature during heating period and after 5 seconds 

(Delta T1) 

• change in average temperature during heating period and after the end of 

recording time of 40 seconds (Delta T2) 

• change in maximum temperature during heating period and after 5 seconds 

(Delta Max T). 
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The temperature for each particle was calculated by applying a region of interest 

around the perimeter of the particle. The region of interest enabled separation of 

visible surface of the particle from the background and calculation of the maximum 

and mean temperature on the surface of the particle. 

5.7 Reproducibility of -22.4 +19.0 mm Particle Selection 

The objective was to investigate the reproducibility and validity on a sub-sample for 

the -22+19 mm size fraction and to identify the amount of variability in results due to 

the process (as opposed to the particle variability). Six sets were selected at random 

and subjected to the following procedure. 

 

Each set was subjected to the microwave heating and temperature characterisation 

procedure six times. The particles and microwave glass tray were allowed sufficient 

time to cool between each run of the heating procedure. A computer random number 

generator program was used to randomly match particle numbers to one of the 

numbered regions on the microwave tray and this determined the initial placement of 

the particles for each run. In addition, particles were placed with their number facing 

up for half the runs and down for the other half. This process aimed to duplicate the 

random orientation of particles on the belt of a sorting machine. 

 

In Figure 5-14 and Figure 5-15 results calculated from sets No. 1 and No. 6 are shown 

while the results for remaining sets can be found in Appendix G. The temperature 

change for each particle was calculated by following the earlier described procedure 

in section 5.6 and values for Delta T1, Delta T2 and Delta Max T are plotted 

including their standard deviations.  

 

The degree of heating is quite reproducible for “cold” particles but less so for “hot” 

particles. For example, in the set No. 1 particles No. 3 and No. 4 are identifiable as 

“cold”. The term “cold” was used because of their slight temperature change which 

was up to 10 oC. Some of the particles exhibited much higher temperature change 

even up to 60 oC and they were characterised as “hot” as it can be seen in Figure 5-14. 

This behaviour is expected if the particle’s texture or in other words the physical 

arrangements of the minerals which interact with microwaves are strong controlling 
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factors in the degree of heating. The target of the pre-concentration process is to 

identify and reject barren or “cold” particles. 
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Figure 5-14 Reproducibility temperature change graph for the eleven -22+19 mm particles in set 
No. 1 for LRO where each particle was tested 6 times in different orientations 
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Figure 5-15 Reproducibility temperature change graph for the eleven -22+19 mm particles in set 
No. 6 for LRO where each particle was tested 6 times in different orientations 
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In each set tested, it can be seen that “cold” particles were clearly distinguishable with 

a much smaller standard deviation. In general, the temperature change would be most 

likely reproducible if the standard deviation from all six exposures had a very small 

value, regardless of a particle being characterised as “cold” or “hot”. The 

reproducibility can be easily investigated by plotting the values of standard deviations 

with a population, as it can be seen in Figure 5-16. 

 
Figure 5-16 Plotted σ -standard deviation vs. population to assess the reproducibility 
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Figure 5-17 Standard deviation from the reproducibility study for the LRO Ore type 
 
Figure 5-17 shows standard deviation from the reproducibility study for the LRO ore 

type with the population presented through cumulative mass percentage. If it is 

decided that standard deviation up to 5 oC is acceptable to describe the reproducible 

process it can be observed that standard deviation for Delta Max and Delta T1 
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corresponds to 30 % of mass of the all particles. It also can be noticed that 

reproducibility increases significantly for the standard deviation of Delta T2, up to 65 

% of mass of all particles.  

 

The increase in reproducibility for the temperature change Delta T2 can be explained 

through the time for which the ore particle had an opportunity to reach temperature 

equilibrium. As explained in Chapter 3 section 3.6 with selective heating a certain 

time (depending on the size of the particle) will be necessary for the heat transfer to 

take place within the whole mass of the particle. In this case, after 35 seconds ore 

particles had already reached a certain level of temperature equilibrium which reduced 

the variability in surface temperature change. 

5.8 Summary 

The analysis shows that substantial variation in mineral phases and their distribution, 

which was also detected by mineralogical characterisation in section 5.3, had reflected 

on the standard deviation in the reproducibility study. With the exposures repeated six 

times data clearly shows that the frequency of smaller standard deviations for the 

“cold” particles is much higher compared to “hot” ones. This suggests that they can be 

more easily identified and selected. For defined standard deviation up to 5 oC it can be 

stated that approximately a third of the particles had a very reproducible temperature 

change for the first time point. For the longer time point (Delta T2) this number of 

particles was more than doubled. 

5.9 Potential for Sorting Using Temperature Difference After 
Microwave Heating and Copper Grade of Low Recovery 
Ore Particles 

5.9.1 Temperature Separation Curves 

Determining thresholds for separation is one of the most important challenges in 

sorting and the pre-concentration process. Although the physical process of separation 

is more of an engineering problem (depending of desired throughputs), setting the 

right thresholds which will divide the feed into the concentrate and the gangue 

minerals requires more systematic study. To investigate the potential of setting the 

right thresholds, separation curves were created. They present mass and metal rejected 

as a function of temperature change.  
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All the rock particles for the reproducibility study were measured to determine their 

mass and then sent for assaying to quantify the content of copper, iron and 

molybdenum. The particles were pulverised and sent for independent assaying 

analysis by AMMTEC Laboratory based in Perth, AU. The copper content was 

determined by mixed acid digest followed by ICP (Induction Coupled Plasma) and 

finished with AAS (Atomic Absorption Spectroscopy). 

 

 It was found that for the majority of rock particles the content of molybdenum was 

below 10 ppm. Despite the fact that some of the particles had a higher content of 

molybdenum, minerals with molybdenum for this particular ore type were taken as 

contributing factors and not as leading factors in the process of selective heating. 

 

For these separation curves the temperature threshold will change depending on the 

time chosen to execute physical separation and whether it is decided to sort by 

average or maximum temperature change. The separation curves were sorted by 

temperature change for Delta T2, Delta T1 and Delta Max.  
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Figure 5-18 Separation curves from reproducibility study six sets sorted by Delta MAX for LRO 
ore type 
Figure 5-18 shows separation curves sorted by temperature change for Delta Max. 

Cumulative copper and iron recovery curves are compared to cumulative mass to 

determine temperature change which will define the loss of metal with the mass being 



Chapter 5- Study of LRO Ore Type 
_____________________________________________________________________ 

_____________________________________________________________________ 
 

155 

rejected. The separation curves for Delta T2, Delta T1 are given in Appendix G while 

separation curve for Delta Max (see Figure 5-18) is presented this section since it 

gave the best separation results. 
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Figure 5-19 Non-linear deviation between the Cumulative Mass % and the Cumulative Copper 
Recovery % for Delta MAX for LRO ore type. 
 
To choose the best operating point, non-linear deviation between the cumulative 

copper recovery % and cumulative mass % for Delta Max is presented in Figure 5-19. 

For this particular ore type the target of the pre-concentration process is to identify 

and reject barren “cold” particles. According to Cohen (2000) “Rejection of 25 – 30% 

of the feed mass is usually a minimum requirement for sorting to be economically 

justifiable”. Choosing to reject 30% of mass treated following temperature threshold 

can be placed: for the Delta MAX with 30% of mass having standard deviation up to 

5 oC temperature change of 20 oC will reject 30% mass with an approximately 18% 

loss of overall copper. 

 

The cumulative iron recovery follows mass recovery very closely and about 45% 

starts to separate. The separation indicates that in the remaining 55% of the mass 

tested, which corresponds mostly to the hotter particles, the content of iron is 

increasing. In this case the increased content of iron cannot be correlated only with the 

presence of a copper bearing minerals. The results for iron content were obtained 
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from pulverised samples, therefore; they represent overall content of iron whether it 

comes from sulphides (for example: pyrite, arsenopyrite and chalcopyrite) or oxides 

(for example: magnetite). 

5.10 Temperature Separation Curves for the Larger Population 

To investigate further, it was decided to experimentally simulate the sorting process 

on the larger population of ore particles. Eighteen new sets (189 ore particles) were 

randomly chosen for multimode microwave exposure. It was decided to expose them 

only once as they would be exposed in a microwave apparatus during the sorting 

process. 

 

The particles have been sorted into the order of each measured temperature increase 

and then plotted for the cumulative mass of copper, iron and total mass against 

temperature increase (after obtaining assaying results). The separation curves were 

sorted by temperature change for Delta T2, Delta T1 and Delta Max. 
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Figure 5-20 Separation curve for LRO (larger population) -22+19 mm size fraction based on 
Delta Max T  
The separation curves for Delta T2, Delta T1 are given in Appendix G while 

separation curve for Delta Max (see Figure 5-20) is presented this section since it 

gave the best separation results. To choose the best operating point, non-linear 
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deviation between the cumulative copper recovery % and cumulative mass % for 

Delta Max is presented in Figure 5-21. 
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Figure 5-21 Non-linear deviation between the Cumulative Mass % and the Cumulative Copper 
Recovery % for Delta Max T for LRO ore type (larger population) 
 

Keeping the same goal as in the reproducibility study to reject 30% of mass treated 

following temperature thresholds can be determined: for the Delta MAX temperature 

change of 16 oC will reject 30% mass with nearly 16% loss of overall copper. 

 

Higher content of iron is located in the second half of the mass treated. With the 

content of molybdenum similar results were discovered to the reproducibility study. 

For the majority of rock particles content of molybdenum was below 10 ppm.  

 

5.11 Summary 

A laboratory method was used to investigate the pre concentration potential of Low 

Recovery Ore. The separation strategy was developed as the most suitable method to 

illustrate the level of separability by exposing rock particles to microwave heating and 

obtaining copper content by assaying. Every ore sorter can be described through a 

performance curve. This information describes the best separation which can be 
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achieved with a particular ore sorting machine. The difference between separation by 

separation curves and sorter performance curve which comes from inherent 

inefficiency of the sorter has to be acknowledged. For example, in the second testing 

of eighteen sets of material, particles were heated only one time (as they would be in 

real sorting machine) and the infrared measurements were taken only from the clearly 

seen top surfaces of the particles. This limitation will lead to a certain level of 

inefficiency in operation of the sorter. 

 

For these laboratory tests, the theoretical separator with temperature information from 

two sides of the particle, which could detect copper content with similar precision to 

an assaying test, was used. The separation curves indicate that Low Recovery Ore 

material was reasonably responsive to this strategy in spite of the extremely high 

variation in the content of the minerals which interacted with microwaves.  

 

For a minimum requirement of 30% mass rejected, temperature change for Delta 

MAX gave the most promising separation conditions to carry out pre concentration in 

both laboratory tests. As the particles cool down the efficiency of sorting by selective 

heating was reduced and the temperature thresholds needed to be reduced to retain the 

predetermined percentage of rejected mass, as it is shown in Table 5-2. 
Table 5-2 Identified thresholds to reject 30% of mass tested 

Reproducibility study Delta MAX Delta T1 Delta T2 
Temperature threshold, oC 20 15 12 
Loss of overall copper, % 18 20 22 
The Larger Population study    
Temperature threshold, oC 16 13 12 
Loss of overall copper, % 16 18 20 
 
For Delta MAX and Delta T1 temperature thresholds, in the larger population study, 

were lower. This can be partially explained by inefficiency in operation of the sorter 

and partially by standard deviation from the reproducibility study. When particles are 

presented to an IR camera for temperature measurement with only one side, there will 

always be a number of particles for which that particular side is an unfavourable side 

for measurement. The information about the number of those particles can be 

quantified by implementing a stochastic model. From the reproducibility study it can 

be noted that for Delta T2 (where reproducibility was much higher, with 65% of mass 

having standard deviation up to 5 oC) temperature thresholds are the same. The 
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differences in values for temperature thresholds for Delta MAX and Delta T1 in the 

larger population study are still within the standard deviation of 5 oC which was 

chosen to describe the reproducible process. 

 

For the real sorting machines, the difference in temperature thresholds from a 

theoretical sorting machine can be reduced by examining heated particles in free fall 

with two IR cameras. The side with the higher temperature change should be 

compared with an arranged temperature threshold. 

5.12 Test Procedure for the Experimental Investigation Using 

Two Types of Microwave Applicators - Second Step 

In Chapter 4 the exposure of synthetic particles with designed shapes and textures of 

microwave more responsive minerals showed that it is advantageous to use both 

multimode and single mode waveguide for better understanding of microwave 

interaction with ore particles. In the second step of investigation samples will be 

analysed with less destroying techniques such as x-ray tomography and optical 

microscopy. The first step of investigation ended with destroying samples, necessary 

to perform assaying analysis. The particles will be tested in microwave oven and in 

TWA which has ability to obtain data in real time from placed ROI, which was used 

to quickly estimate heating behaviour of tested particles within the each set tested. 

5.13 Overview of the Test Procedure 

The representative sub sample was prepared for -22.4 + 19.0 mm size fraction. The 

eight new sets containing eleven particles were randomly chosen from the remaining 

seventeen sets in this particular size fraction. The detailed procedure of the ore 

screening and obtaining a representative sample is presented in section 5.2 of this 

chapter. The particles were tested for textural interaction with an electromagnetic field 

created in two different microwave applicators. They were subjected to the individual 

and to the batch microwave heating. The data collected from the particle’s 

temperature profiles were combined to create two temperature curves and analyse 

separability. 

 



Chapter 5- Study of LRO Ore Type 
_____________________________________________________________________ 

_____________________________________________________________________ 
 

160 

The results of the ore modal mineralogy summarised through MLA examination for 

the first experimental study revealed that the Low Recovery Ore contains significant 

amounts of good absorbers of microwave energy such as pyrite and chalcopyrite. This 

indicated that the test can be carried out with much less energy required. The power 

applied in the second experimental procedure was half of the power applied in the 

first experimental procedure. 

 

After microwave exposures, fifteen randomly chosen particles were analysed by high-

resolution X-ray computed tomography which was used to obtain information about 

texture and structure of minerals with higher densities. These minerals were 

associated with minerals which have a tendency to heat more.  

 
 
Figure 5-22 Particles randomly chosen for more detail analysis with less destructive techniques 

such as x-ray tomography and optical microscopy LRO 

Five randomly chosen particles were studied in great detail by combining automated 

mineral identification by optical microscopy along with the high-resolution X-ray 

computed tomography to identify sulphide minerals. Surfaces for optical microscopy 

were prepared by cutting particles in half or removing the top part of the whole 

particle with the aim to primary identifies pyrite and chalcopyrite. Figure 5-22 shows 

locations of rock particles selected within tested sets and applied technique. 
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5.14 Exposing “LRO” Particles to Multimode Electromagnetic 

Field in Microwave Oven 

The batch microwave heating was carried out with the same microwave oven used in 

the first step of experimental investigation. The glass microwave tray was separated 

into eleven sections for eleven ore particles. Particles were then distributed along the 

edges of the rotating tray in order to cover the larger area of the tray. This was done to 

ensure that particles have a greater chance of passing through the multiple modes. 

During repeated exposures particles were positioned in numbered order, ascending 

and clockwise. Once allocated on the edge of the tray they did not have any preferred 

orientation.  

 

Each batch of ore particles were then heated four times alternating their sides with 

labels placing numbers “up” and numbers “down” in front of infrared camera. Before 

placing the tray in the oven the infrared snapshot was taken to obtain initial 

temperatures of the ore particles. Applied power of 600 W was used and after heating 

for 12 seconds (for the one rotation respectively of the microwave tray) the tray was 

taken out. The infrared snapshot of the tray was taken after 5 seconds using the 

CEDIP infrared camera. 

5.15 Exposing “LRO” Particles to Electromagnetic Field in the 

Travelling Wave Applicator  

The individual microwave heating of ore particles was done by the travelling wave 

applicator. Detailed description of TWA is given in Chapter 3 section 3.10. All rock 

particles were placed in a numbered sequence from one to eleven on the vibratory 

feeder which can be seen in Figure 5-23 on the left side. Particles were fed one by one 

into the applicator. The generator was set for 600 W with an exposure time of 12 

seconds. 
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Figure 5-23 TWA used to test Low Recovery Ore  
 
The infrared images were collected with 25 frames per second (in real time) during 

testing. The region of interest was set to cover up the complete surface of the particle 

holder (circular shape) placed in the middle of the applicator. The region of interest 

was introduced as a quick insight in temperature profile for each particle in real time 

during testing. These temperatures were calculated and plotted in time.  

5.16 Experimental Results from Testing Rock Particles in Two 

Applicators 

To compare experimental data, temperature difference for maximum and mean 

temperatures were calculated from the data before and after microwave exposure. 

Following abbreviations are taken to represent data: 

• ΔT max = temperature difference for the maximum temperature on the surface 

of the particle calculated from data before microwave exposure and after 

microwave exposure 

• ΔT mean = temperature difference for the mean temperature on the surface of 

the particle calculated from data before microwave exposure and after 

microwave exposure 

• average ΔT max = mean value for ΔT max calculated from repeated exposures 

• average ΔT mean = mean value for ΔT mean calculated from repeated 

exposures 
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Results from the TWA exposures are presented as a surface temperature change with 

the time. The surface temperature change was calculated from region of interest in a 

shape of the circle (set to cover the whole area of the particle holder). The graphs 

form three repeated exposures provide a good insight into which particles are highly 

responsive and which were not so responsive.  Finally, every particle temperature 

change was calculated by placing a new region of interest corresponding to the visible 

perimeter of the particle. These new values are compared with the values from 

multimode exposures as average values from repeated testing. Temperature 

differences are presented in one common graph for every particle within the set. 

 
Five randomly chosen particles were studied in great detail to identify sulphide 

minerals by combining high-resolution X-ray computed tomography and automated 

mineral identification by optical microscopy. IR images were studied during heating 

to identify selective heating and locate responsive minerals. The appropriate planes 

for optical microscopy were determined by cutting these particles in half in the 

locations where selective heating took place. The identification was focused primarily 

to recognize two sulphides; chalcopyrite and pyrite. 

 

To present reconstructed data from the tomography analysis, visualisation software 

DataViewer ver. 1.4.4 (licensed by SkyScan) was used to view a stack of images in 

2D/3D at their original range and resolution. This process enabled the texture to be 

seen from three different views: 

• transaxial view (in the red colour, in x-y plane), 

• coronal view (in the green colour, x-z plane), 

• sagittal view (in the blue colour, z-y plane). 

For every particle tested top left image is used to display coronal view of the selected 

reconstructed plane. The largest bottom left image is used to see transaxial view 

which is also chosen to correspond to surface analysis performed by optical 

microscope. In the top right corner the image of all three chosen planes through the 

particle can be seen, while the bottom left image is used to display sagittal view. 

5.16.1 Set No. 1: 

Figure 5-24 shows the temperature change from the region of interest placed to 

promptly obtain heating rate from every particle exposed to microwave heating in real 
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time (time is given in 25 frames per second). Data for the first and the second 

exposure are provided in the Appendix H. On the given graph in Figure 5-24 the top 

line represents maximum temperature, while the bottom one represents the mean 

temperature calculated from the visible surface of the particle including the 

background confined within the ROI. The analysis shows that the change for both 

temperatures exhibit almost a spike shape, which is produced by a rise in temperature 

during microwave heating, as well as sudden decrease in temperature after finished 

microwave exposure, followed by particle ejection from the holder. 

 
Figure 5-24 Third exposure, timing graph for the set No. 1 

From this set particles with No. 1 and No. 9 were selected for analysis with CBT. 

Figure 5-25 shows x-ray radiogram of particle No. 1 presenting only low density 

minerals (associated with quartz, biotite and feldspar) which caused a slight increase 

in temperature change. In Figure 5-26 x-ray radiogram for particle No. 9 clearly 

reveals the presence of high density minerals (associated with magnetite, pyrite and 

chalcopyrite). These minerals have responded well to microwave heating causing a 

steeper increase for mean temperature and a very sharp increase of maximum 

temperature reaching over 60 oC. The X-ray radiograms which exhibit texture and 

structure of these particles under different angle are given in Appendix H for this 

chapter. 
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Figure 5-25 X-ray radiogram for particle No. 1 
set No. 1 

 

 
Figure 5-26 X-ray radiogram for particle No. 9 
set No. 1 
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Figure 5-27 Results for the LRO from multimode cavity and travelling wave applicator testing 

for the set No. 1 

Data from all repeated exposures in multimode domestic oven and TWA are 

compared and presented in Figure 5-27. The data was calculated from new ROI 

placed to overlap with perimeter around visible surface of particles. As the timing 

graph of temperature profiles indicate the poorest heating response was for the 

particle No. 5 which in both types of applicators reached less than 10 oC (for all 

temperature changes) followed by particle No. 1. These particles can be considered as 

barren or less responsive. The rest of the particles exhibited a much higher increase in 

temperature change, indicating the presence of higher contents of microwave 

absorbing phases.  
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In this set, particle No. 6 was chosen for a more detailed study. IR images were 

examined from TWA testing (the right image in Figure 5-28) with a goal to pinpoint 

locations on the surface of the particle where temperature has increased significantly, 

indicating the presence of more responsive minerals. From the Figure 5-28 it can be 

seen that the particle No. 6 can be classified as “hot” or very responsive. Considering 

that there was more than one hot location (from IR image), it was decided to cut the 

particle in half and polish the right side of the particle and arrange the larger surface 

for the optical microscopy analysis. Following the preparation for optical microscopy 

the same half of the particle was analysed by high-resolution X-ray computed 

tomography.  

 

The reconstructed data from the tomography analysis is presented in Figure 5-29. The 

largest bottom left image is used to see transaxial view which is also chosen to 

correspond to surface analysis performed by optical microscope. The coronal view (in 

the top left corner) and the sagittal view (in the bottom right corner) show that there is 

a presence of disseminated structures of minerals with higher densities. 

 

The transaxial view shows mineral grains which belong to a plane situated very close 

to the polished top surface. If the locations of the grains were compared with results 

from optical microscopy (the left image in Figure 5-28) a great deal of grains were 

identified as chalcopyrite, while the rest of the minerals could be associated with 

minerals with higher densities such as pyrite, bornite, tennantite or chlorite. All 

obtained results show a significant presence of heating phases and clearly explain the 

temperature profile of this particle and why it can be considered as “hot”. 
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 • Scale min-max: 20 oC-80 oC 
• From third exposure at the end of 12 s 

since the beginning of the heating 
 

Figure 5-28 Optical mineral identification and IR temperature profile for particle No. 6 from the 
set No.1 
 

 
Figure 5-29 X-ray computed tomography analysis for particle No. 6 from the set No.1 
 



Chapter 5- Study of LRO Ore Type 
_____________________________________________________________________ 

_____________________________________________________________________ 
 

168 

5.16.2 Set No. 2: 

After testing set No. 2, temperature profiles revealed that the majority of particles 

reached a very high increase in max temperature. For some of the particles maximum 

temperature had reached a maximum threshold of the IR camera (115 oC). The 

threshold can be identified as a flattened top of the peak (constant temperature in 

time) in Figure 5-30. With a close examination of the mean temperatures it can be 

seen that the particles No. 7 and No. 10 can be identified as coldest within the group. 

Results from the third exposure, are shown in Figure 5-30, displaying temperature 

change from the circular ROI. 

 
Figure 5-30 Third exposure, timing graph for the set No. 2 
 

 
Figure 5-31 X-ray radiogram for particle No. 
3 set No. 2 

 
Figure 5-32 X-ray radiogram for particle 
No. 11 set No. 2 

 
Figure 5-31 and Figure 5-32 show textural differences between particle No. 3 and 

particle No. 11. The X-ray radiograms which exhibit texture and structure of these 

particles under a different angle are given in Appendix H. The first particle is made of 

low density minerals with an embedded vein like shape of higher density minerals, 
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while the second particle presence of higher density minerals can be identified in 

disseminated grains. 
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Figure 5-33 Results for the LRO from multimode cavity and travelling wave applicator testing 

for the set No. 2 

By combining information from x-ray radiograms with calculated data from repeated 

testing showed in Figure 5-33, it is simple to associate good heating responses with 

particle No. 3 and particle No. 11. 

5.16.3 Set No. 3: 
Temperature profiles from ROI for the set No. 3 are given Figure 5-34. Particles with 

No. 1, 4, 5, 6 and 11 can be easily identified as not so responsive or “cold”.  

 
Figure 5-34 Third exposure, timing graph for the set No. 3 
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The presented data for the repeated exposures in Figure 5-35 shows that the remaining 

particles had responded well to microwave heating and can be considered as “hot”. 

The particles No. 3 and 10 exhibited much higher temperature change during 

multimode cavity exposures in comparison to TWA testing. Two scenarios can be 

given to explain the behaviour of these particles which are still in agreement with the 

“best case scenario” defined in Chapter 4, section 4.7. The first is derived from 

experimental testing conditions. Considering that repeated multimode testing was 

done prior TWA testing, these particular particles had already responded well to 

heating which might cause alteration of some physical properties of very responsive 

minerals. This change then consequently influenced less responsive coupling in TWA 

and eventually lower temperature change. The second is derived from properties of 

the particles such as shape and form. Experimental equipment for TWA was designed 

to feed particles one by one with a free fall into the particle holder placed in the 

middle of the WR 340 waveguide. For some particles, shape would create preference 

of specific visible surface which was unfavourable to completely detect heating 

profiles when they fell from the feeder and assumed their most stable positions.  
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Figure 5-35 Results for the LRO from multimode cavity and travelling wave applicator testing 

for the Set No. 3 

Two particles were chosen for more detailed analysis. These are particle No. 5 and 

particle No. 8. IR image during heating for the particle No. 5 demonstrated the results 
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of more uniform heating during repeated exposures, although one half of the particle 

had higher temperature gradients then the other (as seen in the right image in Figure 

5-36). The particle was cut in the middle and the chosen half was polished and 

prepared for optical microscope analysis (results are given the left image in Figure 

5-36). The results from x-ray computed tomography shows a presence of embedded 

minerals of higher density which are scattered within the matrix of lower density. 

There are some areas of matrix with a higher density which also contributed to no 

uniform heat distribution through matrix. When the transaxial view in Figure 5-37 

was analysed along with optical results it demonstrated that embedded minerals are 

identified as grains of very responsive chalcopyrite. With the location of the grains 

and their size (they can be estimated from scale bar) this particle can be now clearly 

identified as barren particle. 

 

For the particle No. 11 which was also analysed in great detail, the IR image revealed 

a spot on the surface of the particle with a much higher temperature gradient 

identifying the presence of microwave responsive minerals. This spot can be seen in 

the right image of the Figure 5-38. The particle was cut in the middle and the chosen 

half was polished and prepared for further analysis. The coronal and sagittal view 

after computed tomographic reconstruction (shown in Figure 5-39) displayed a 

presence of a very large vein like structure embedded in the middle of the particle. It 

also showed that this structure was mostly surrounded with matrix material with a 

higher density. A part of that structure was exposed to optical microscopy 

identification which identified chalcopyrite as a dominant mineral with very small 

inclusions of pyrite.  

 
 
 
 
 



Chapter 5- Study of LRO Ore Type 
_____________________________________________________________________ 

_____________________________________________________________________ 
 

172 

 
 

• Scale min-max: 25oC-40 oC 
• From third exposure at the end of 12 s 

since the beginning of the heating 

Figure 5-36 Optical mineral identification and IR temperature profile for particle No. 5 from the 
set No.3 

 
Figure 5-37 X-ray computed tomography analysis for particle No. 5 from the set No.3 
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• Scale min-max: 20oC-100 oC 
• From third exposure at the end of 12 s 

since the beginning of the heating 

Figure 5-38 Optical mineral identification and IR temperature profile for particle No. 8 from the 
set No.3 
 

 
Figure 5-39 X-ray computed tomography analysis for particle No. 8 from the set No.3 
 

5.16.4 Set No. 4: 
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Figure 5-40 First exposure, timing graph for the set No. 4 

Figure 5-40 shows quickly obtained heating rates from particles within the ROI 

exposed to microwave heating in real time. For this particular set, three particles were 

randomly chosen for analysis using a SkyScan 1172 Cone Beam X-ray micro-

tomograph. 

 

By acquiring x-ray radiograms which are given in Figure 5-41, Figure 5-42 and 

Figure 5-43 shows that particles No. 10 and 11 have presence of mineral structure 

which is absent in the particle No. 3. 
 

 
Figure 5-41 X-ray radiogram 
for particle No. 3 set No. 4 

 
Figure 5-42 X-ray radiogram 
for particle No. 10 set No. 4 

 
Figure 5-43 X-ray radiogram 
for particle No. 11 set No. 4 

 
The absence of higher density mineral structure inside particle No. 3 caused a small 

temperature difference as shown in Figure 5-44.  Two of the better responding 

particles had higher temperature changes in multimode cavity exposures compared to 

TWA exposures. These particles are No. 8 and 11 (explanation for these results is 

provided in the description of the Set No. 4). 
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Figure 5-44 Results for the LRO from multimode cavity and travelling wave applicator testing 
for the Set No. 4 
 

5.16.5 Set No. 5: 

Individual testing of all eleven rock particles in the TWA and their heating response 

for the set No. 5 can be assessed with a temperature graph presented in Figure 5-45. 

 
Figure 5-45 Third exposure, timing graph for the set No. 5 
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Figure 5-46 X-ray radiogram for particle 
No. 3 set No. 5 

 
Figure 5-47 X-ray radiogram for particle 
No. 6 set No. 5 

 

Similarly as in the previous set, two randomly chosen particles were x-ray scanned to 

produce their radiograms which can provide information about presence and 

distribution of mineral phases without destroying rock particles. 

 

Figure 5-46 shows a presence of dispersed minerals with higher densities, although 

variation in the matrix minerals can be noticed as well in particle No.3. The x-ray 

radiogram for particle No.6 displayed a presence of minerals with higher density 

located in a thin layer (see top part of the Figure 5-47) and less variation in the matrix 

minerals. 
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Figure 5-48 Results for the LRO from multimode cavity and travelling wave applicator testing 
for the set No. 5 
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By analysing data from the Figure 5-48, particles No. 3 and 6 can be identified as 

“hot” within this tested set of rocks particles. 

5.16.6 Set No. 6: 

Within the tested set No. 6 it can be seen that more than half of the particles can be 

considered as “cold” with a slight increase in temperature change (observing timing 

graph for the maximum temperature in Figure 5-49).  

 
Figure 5-49 Third exposure, timing graph the set No. 6 

By examining textural features from the randomly chosen particle, x-ray radiogram 

(displayed in Figure 5-50), shows that the particle No. 10 consists of dispersed grains 

of high density minerals similar in size and with approximately even spatial 

distribution.  

 
Figure 5-50 X-ray radiogram for particle No. 10 set No. 6 

Exploring calculated mean values which are given in Figure 5-51 it can be seen that 

repeated heating confirmed that majority of exposed particles had lower temperature 

changes which indicated lower contents of responsive minerals. 
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Figure 5-51 Results for the LRO from multimode cavity and travelling wave applicator testing 
for the set No. 6 
 
Particle No. 4 was analysed in more detail. Figure 5-52 shows the infrared image on 

the right which presents only a slight and very even increase of the surface 

temperature. With no observed localised heating it was decided to cut the particle in 

two pieces and prepare one half for further examination. After polishing one section 

and using optical microscopy, small mineral grains of chalcopyrite were identified 

with the larger grain in the middle. The same larger grain was identified with 

tomography analysis (see transaxial view in Figure 5-53), tomography data also 

revealed that by examining coronal view (in the top left corner) and the sagittal view 

(in the bottom right corner) the depth of that grain was not very big and that it was 

mostly localised in a very thin layer close to the plane were the particle was cut. Other 

smaller grains were very well dispersed with a large distance between them. The 

analysis shows why the low content of minerals and their distribution did not create 

any localised heating and why this particle can be considered as less responsive. 
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• Scale min-max: 25oC-40 oC 
• From third exposure at the end of 12 s since 

the beginning of the heating 

Figure 5-52 Optical mineral identification and IR temperature profile for particle No. 4 from the 
set No.6 
 

 
Figure 5-53 X-ray computed tomography analysis for particle No. 4 from the set No.6 
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5.16.7 Set No. 7: 

During the repetitive testing of the set No. 7 all timing graphs showed a presence of 

responsive particles to microwave heating. Figure 5-54 shows the locations of the 

peaks of maximum and mean temperature from the ROI from the third exposure 

(remaining timing graphs are provided in the Appendix H). 

 
Figure 5-54 Third exposure, timing graph for the set No. 7 

Four particles from this set were analysed in more details. Three were analysed just by 

CBT while for the fourth more information was obtained through optical microscopy. 

Figure 5-55, Figure 5-56 and Figure 5-57 show X-ray radiograms and demonstrates 

that particles No. 2 and 9 have a presence of mineral structure with higher densities 

which is absent in the particle No. 10 when compared. 

Figure 5-55 X-ray 
radiogram for particle No. 
2 set No. 7 

Figure 5-56 X-ray radiogram for 
particle No. 9 set No. 7 

Figure 5-57 X-ray radiogram 
for particle No. 10 set No. 7 

 
From the calculated mean values which can be seen in Figure 5-58, particles with No. 

1, 6 and 10 showed a temperature difference less than 10 oC and they could be 

separated as “cold” particles. X-ray radiogram for particle No. 10 confirmed the 
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absence of minerals with higher densities which were associated with microwave 

strong absorbing minerals. 
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Figure 5-58 Results for the LRO from multimode cavity and travelling wave applicator testing 

for the set No. 7  

The obtained infrared image from heating for particle No. 3 showed a very 

concentrated hot spot close to the edge of the particle (as seen in the right image in 

Figure 5-59). The particle was cut in the middle and the chosen half which had 

localised heating was polished and prepared for optical microscope analysis (results 

are given the left image in Figure 5-59). It can be seen that both pyrite and 

chalcopyrite were identified with pyrite being more abundant. The transaxial view 

(from x-ray computed tomography presented in Figure 5-60) shows that the detected 

structure which can be correlated to chalcopyrite and pyrite in a large portion was 

located at the surface of the particle which created a good detectable response. CBT 

data also shows that there are two dominant minerals with different densities from 

which the matrix material was composed. 
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• Scale min-max: 20oC-100 oC 
• From third exposure at the end of 12 s 

since the beginning of the heating 

Figure 5-59 Optical mineral identification and IR temperature profile for particle No. 4 from the 
set No.6 
 

 
Figure 5-60 X-ray computed tomography analysis for particle No. 3 from the set No.7 
 



Chapter 5- Study of LRO Ore Type 
_____________________________________________________________________ 

_____________________________________________________________________ 
 

183 

5.16.8 Set No. 8: 
The timing graph for the last set tested is shown in Figure 5-61.  The circular ROI 

placed to quickly assess temperature change on the timing graph had identified 

particle No. 1 as the most non responsive heated particle from set No.8.  

 

 
Figure 5-61 Third exposure, timing graph for the set No. 8 
 

 
Figure 5-62 X-ray radiogram for 
particle No. 1 set No. 8 

 
Figure 5-63 X-ray radiogram for 
particle No. 5 set No. 8 

 

The X-ray radiogram for the particle No. 1 (see Figure 5-62) shows a very uniform 

matrix of the particle, without any minerals of higher densities. By examining textural 

features, displayed in Figure 5-63, it can be seen that particle No. 5 consists of a 

matrix with the presence of mineral structures with higher densities throughout the 

volume of the particle. Following their mean temperatures after repeated microwave 

testing in Figure 5-64 it is easy to associate particle No.2 with less responsive and 

particle No. 5 with more responsive ore particles. 
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Figure 5-64 Results for the LRO from multimode cavity and travelling wave applicator testing 
for the set No. 8  

5.17  Reduction in Power Applied for the Second Experimental 

Investigation 

The results of the ore mineralogy obtained through MLA examination for the first 

experimental study, presented that the Low Recovery Ore contains significant 

amounts of good absorbers of microwave energy, such as pyrite and chalcopyrite. 

This indicated that the test can be carried out with much less energy required. The 

power applied in the second experimental procedure was reduced from 1.2 kW to the 

600 W. 

 

In Figure 5-65 it can be seen that the temperature change (ΔT mean) for the 

population which was chosen for the second step of experimental testing is below the 

temperature curves created from the first step of experimental testing. Temperature 

curves for the population of 88 and 198 particles were created from ΔT mean 

calculated from the first exposure with the labels up, while the temperature curve for 

the population of 66 particles was created from average ΔT mean from the six 

repeated exposures. Reduction in power applied clearly contributed to lower 

temperature changes.  
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Taking into consideration that all particles had to be tested in two applicators by using 

reduced applied power, the chance of overheating some of the very responsive 

particles would also be reduced.  
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Figure 5-65 Temperature change for the three populations of LRO particles treated with two 
different applied powers 
 

5.18  Determining a Temperature Threshold for Barren or 

“Cold” Ore Particles 

The results from every set tested, showed that “cold” particles were clearly 

distinguishable with a lesser temperature change. The term “cold” was used to 

describe barren ore particles which did not have a high content of very responsive 

mineral phases to microwave heating. A comparable outcome was achieved through 

experimental testing with synthetic samples presented in Chapter 4. The synthetic 

particles with created and well defined mineral texture had noticeably higher 

maximum and mean temperature differences compared to the rest of the particles 

which were created to resemble barren rock particles. From the results obtained it can 

be seen that the temperature difference is strongly dependent upon the texture of the 

heating mineral phases and the proximity of the heated phase to the surface of the 

particle.  
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To determine the temperature threshold for the “cold” ore particles the best case 

scenario was used. This case was defined for the highest energy transfer reached in all 

repeated microwave exposures and the ΔT mean measured from the surface closest to 

the heating minerals. In other words, the particle was coupled at that time to receive 

the best power transfer during exposure while also having the most favourable 

orientation of the surface for the infrared temperature measurement. Maximum 

temperature from all repeated exposures for ΔT mean was calculated and plotted 

against cumulative mass. This was carried out for both applicators as displayed in 

Figure 5-66. 
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Figure 5-66 Temperature threshold for the “Cold” ore particles from the LRO 
 
The barren ore particles were heated much more during multimode exposures. The 

better heating response was achieved when the ore particles were heated up in the 

group which increased overall volume of the load. During individual testing of the 

particles with the TWA, which was designed to respond to reflected power from 

introduced external influence, the absence of heating mineral phase caused lower 

heating response.  

 

The ore particles which had a responsive mineral phase were able to absorb more of 

applied power. This was caused by higher reflected power from the same ore 

particles, which was used by the TWA to achieve better coupling with automatic 



Chapter 5- Study of LRO Ore Type 
_____________________________________________________________________ 

_____________________________________________________________________ 
 

187 

tuning. Eventually this resulted in a much higher heating temperature difference 

which was used as a strong indication of present mineral texture. 

 

From these two exposures the temperature threshold which is defined by bulk 

properties of barren ore particles can be determined as seen in Figure 5-67. It can be 

considered as a base line for the surface temperature variability caused by the matrix 

material. The particles which reach higher temperatures indicate the presence of 

mineral phases within the matrix material as an additional heating source. 

 

 
Figure 5-67 Determining temperature threshold for the “cold” ore particles 
 
For this particular ore type the target of the pre-concentration process is to identify 

and reject barren “cold” particles. To achieve that, a minimum of 30% of the feed 

mass will have to be rejected to be economically justifiable. The temperature 

threshold was obtained as a highest temperature change closest to the predetermined 

mass percentage for the sorting in a multimode oven. In Figure 5-67 , ΔT2 represents 

this threshold and for the value of ΔT2=6.90oC, 31.2% of the feed mass that can be 

rejected. For the same percentage temperature threshold using TWA, will be 

ΔT3=11.26 oC.  

 

The temperature threshold ΔT1 has to be calculated only from the particles which were 

cold during testing in both types of microwave applicators. For this laboratory testing 

identification of “cold” particles was achieved sorting particles within ΔT2 threshold 
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by their max ΔT mean. Data before sorting and after sorting can be found in Appendix 

H. The overlapping “cold” particles in both types of cavities are shown in Table 5-3:  

 
Set number Multimode 

cavity  
(particle No.) 

TWA 
(particle No.) 

Number of 
overlapping 
particles 

1 1 1, 5, 10 1 
2 7, 9, 10 7, 10 2 
3 4, 5, 6, 7 6, 5, 11 3 
4 1, 5, 6, 7 1, 2, 5 2 
5 4, 8, 10 4, 10 2 
6 1, 4, 6, 8, 11 1, 2, 4, 8, 11 4 
7 1, 6, 10 1, 4, 6, 10 3 
8 1, 2, 7, 11 1, 4, 6, 10 1 
Overall No. of 
the particles in 
30% of mass 

27 25 18 

% overlapping 
from the group 

66.67 72.00  

Table 5-3 Overlapping barren “cold” particles in both types of cavities  

 
By implementing percentage for the overlapping cold particles from the multimode 

cavity on the 31.2% of the feed mass, new experimental value for the temperature 

threshold can be determined ΔT1=4.90oC for the 20.80% of the feed mass. 

5.19 Summary 

The results confirmed that majority of tested particles (about 80%) exhibited a 

significant increase in temperature change, which is in agreement with experimental 

results from the first step of experimental investigations. The results of controlled 

laboratory testing on the same eight sets of rocks demonstrated that combining 

temperature curves from microwave exposure in two applicators can be used to set 

threshold for less responsive particles which can be removed by the pre-concentration 

process. 

5.20 General Summary for Low Recovery Ore (LRO) 

To address the aims and objectives from the beginning of this chapter, which was to 

detect rock fragments with minerals which interact with microwaves, Low Recovery 

Ore was tested in two steps. The first step involved mineralogical characterisation, 

reproducibility and separability testing followed by testing of the larger particle 
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population. The major findings from the first step of investigation can be summarised 

as follows: 

 

The results of the ore mineralogical characterisation, presented through MLA 

investigation shows that the Low Recovery Ore contains the presence of good 

absorbers of microwave energy such as pyrite and chalcopyrite. The copper sulphides 

are interlocked with pyrite in most cases, although they can be found interlocked with 

garnet, feldspar and amphibole. The size of mineral grains (mostly chalcopyrite and 

pyrite) varies to a great extent from 50 µm to 3 mm (scale bar estimation).  

 

The substantial variation in mineral phases and their distribution had reflected on the 

standard deviation in the reproducibility study. With the exposures repeated six times 

data clearly shows that the frequency of smaller standard deviations for the “cold” 

particles is much higher compared to “hot” particles. This suggests that they can be 

more easily identified and selected. For defined standard deviation up to 5 oC it can be 

stated that approximately third of the particles had a very reproducible temperature 

change for the first time point or Delta T1. For the longer time point (Delta T2) this 

number of particles was more than 65%. 

 

To investigate the potential of setting the right thresholds, separation curves were 

created. They present mass and metal rejected as a function of temperature change. 

For a minimum requirement of 30% mass rejected, temperature change for Delta 

MAX gave the most promising separation conditions to carry out pre concentration in 

both laboratory tests. From the reproducibility study with the temperature threshold 

Delta MAX of 20 oC it is possible to reject 30% of mass tested with a loss of overall 

copper of 18 %. The same 30% of ore mass can be rejected from larger population 

testing by using temperature threshold Delta MAX of 20 oC with the 16 % of overall 

copper loss. The differences between thresholds for Delta MAX are still within the 

standard deviation of 5 oC which was chosen to describe the reproducible process. If 

the temperature threshold Delta T2 is chosen it would have the same value of 12 oC 

with increased overall copper loss of 20 % and more from both studies. 
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In the second step of the investigation the data collected was used to discuss natural 

separability as a function of mineral texture which causes selective heating (as in 

contrast to assayed metal content). The results of controlled laboratory testing in the 

first step of investigations demonstrated a large number of very responsive ore 

particles which indicated that applied power can be reduced for the second step of 

experimental investigations. By combining temperature curves from microwave 

exposure in two applicators temperature threshold for pre-concentration process can 

be determined without destroying rock particles. The 20.80% of the feed mass can be 

rejected having absence of mineral texture which causes selective heating by setting 

the temperature threshold to ΔT1=4.90oC. 
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6 Chapter 6-Study of QZ Ohio Ore Type 
_____________________________________________________________________ 

6.1 Introduction 

The main aim of this chapter is to investigate sortability of quartzite copper ore from 

Bingham Canyon Mine operated by Rio Tinto’s Kennecott Utah Copper Corporation 

using microwave heating in combination with an IR detector.  

 

The goal is to detect rock fragments with minerals, which interact strongly with 

microwaves. The obtained ore sample was received as quartzite ore with the 

description name “QZ OHIO”. A description of the ore, test work procedure and 

techniques used to carry out several experimental investigations will be described 

here.  

 

To provide some insight into the underlying control factors for sortability, selected 

particles have been subjected to detailed microanalysis using the JK Mineral 

Liberation Analyser (MLA), a SkyScan 1172 Cone Beam X-ray micro-tomograph 

(CBT) and Leica DM 6000 Optical Microscope. The detailed descriptions of how they 

were utilised are given in Chapter 3 section 3.12. 

6.2 Overview of the Test Work Procedure and Obtaining 

Representative Samples  

Figure 6-1 shows size distribution within the bulk sample received from the Bingham 

Canyon Mine site in USA. The particle size distribution data is given in Appendix I. 
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Figure 6-1 Distribution of the material throughout size fractions for the QZ Ohio 
 
The investigation was carried out in two separate steps as shown in Figure 6-2. 
 

The first step was divided into three experimental investigations: 

 

The first experimental investigation involved the selection of particles for MLA 

examination. Particles were carefully examined for any distinct characteristics in 

texture, to ensure that they represented visually the most frequent textural features of 

the bulk ore. The objective was to provide an insight into the mineralogical and 

textural properties which can be correlated to selective heating processes in an applied 

microwave field. 

 

The second experimental investigation had the objective of testing -22.4 + 19.0 mm 

size fraction of the QZ Ohio ore for reproducibility and separability using multimode 

excitation in a domestic microwave oven. Sixty-six particles were tested up to six 

times in different orientations. The mass of each particle was measured before it was 

pulverised and assayed for copper, iron and molybdenum. Separation graphs which 

use curves for particle and metal mass as a function of temperature change were 

created to discuss separability. 

 

Finally the third experimental investigation had an objective to further investigate: if 

“QZ Ohio” ore type was amenable to sorting, whether the copper content (and content 

molybdenum as other metal of commercial interest) will follow the distribution within 
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sorted groups. The flotation response was investigated under controlled conditions in 

hot, medium and cold group formed after microwave/IR sorting. 

 

The second step was performed in single experimental investigation:  

 

The -22.4 + 19.0 mm size fraction was tested for its textural interaction with an 

electromagnetic field created in two different microwave applicators. Particles were 

subjected to batch microwave heating in sets and individual heating. The data 

collected was used with the objective of creating two temperature curves and enabling 

discussion of natural separability as a function of mineral texture which causes 

selective heating. 

 

 
Figure 6-2 Preparation of the sample for the detailed test work which was carried out in several 
experimental investigations 
 
The QZ Ohio ore was received in 200 l steel drums as a representative sample. The 

material in the drums was not washed or treated in any other way; it was just selected 
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as a representative sample and divided into six drums for shipment. The ore was 

spread out on a floor and left to dry under room temperature for a day. The Gilson 

Testing Screen was used to screen material into fractions and the screening time was 

set for ten minutes. 

 

The -22+19 mm fraction was selected for the detailed test work. The mineral 

liberation was taken as the first guide to select this size. Kelly & Spottiswood (1995) 

stated that the crushing is operation employed to fracture mineral aggregates, and thus 

induce or increase liberation of the minerals. Reducing size also allows easier 

identification of locked and middling particles by applying a sorting technique. On the 

other hand, ore particle size has to be adequate in order to remove as much as possible 

of the waste minerals for the lowest processing costs. This process favours retaining 

larger size of particles.  

 

The second guide came from the air consumption, which is the most common medium 

used for the physical process of separation during sorting. This particle size is 

typically closer to the lower economic size limit for industrial sorting using 

compressed air. 

 

To start the sample preparation cone and quarter method was used to reduce the initial 

sample (Lowrie & Society for Mining 2002). The sample was piled into a cone shape 

with a flattened top, and the cone divided into quarters. Two opposite quarters were 

omitted from further preparation. A rotary sample divider was then used to obtain a 

homogeneous mixture of the retained two quarters by splitting the bulk ore into 

twelve fractions. Obtained fractions had approximately 2.2 kg of material. A third of 

initial material was combined by randomly selecting four bags. New combined 

material was then divided using a smaller hand splitter into the bags with 

approximately 150 g of ore material. For the batch exposure in the microwave 

multimode domestic oven, it was necessary to obtain eleven particles for testing. For 

this particular reason, the number of particles in each bag was counted. The bags 

which already had eleven particles were placed on the side, while bags which had less 

than eleven particles were combined with bags which had more than eleven particles. 

To assure random selection of the bags Matlab’s random function was used. Every 
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particle in the bag was labelled with the number for the position in multimode cavity 

and the number of bag to which it belongs. The labels enabled easy identification of 

ore particles during testing and were also used to provide order during “numbers up” 

and “numbers down” microwave exposures. 

6.3 Mineralogical Characterisation of OZ Ohio Ore - MLA 

Results 

The ore tested originates from the Bingham Canyon Mine operated by Rio Tinto’s 

Kennecott Utah Copper Corporation deposit which is described as a porphyry copper 

ore. 

 

The tested ore was named “QZ OHIO” which is considered to be a quartzite ore with 

the bulk copper content around 0.25% which is below current Bingham Canyon Mine 

economic percentage to be treated as ore. It is of great interest if this ore type can be 

upgraded through sorting technology (up to 0.35% of copper content) and then treated 

as economic ore. 

 

Randomly selected (using Matlab software) -13.2 + 9.5 mm particles, were carefully 

examined for any distinct features in texture to ensure that the ore particles selected 

for MLA examination represented visually the most frequent textural features of the 

bulk ore. Six specimens were examined for this ore type as high polished sections 

prepared for accurate MLA system measurement. 

 

It was stated earlier (in Chapter three Section 3.6) that mineralogy, texture and 

structure, influence the magnitude of microwave selective heating creating heating 

profiles. The following data was processed from the MLA to enable an insight into the 

mineralogical and textural features which can be correlated to observed heating 

effects: 

• The identity of minerals present in each section examined  

• The mineral abundance by surface percentage of each mineral phase  

• The grain size distribution of microwave absorbent mineral grains  

• The spatial distribution of each mineral phase  

• The variation of the above in all the eight specimens which were examined  
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There were 22 minerals which were identified from MLA scans from all polished 

sections. They are presented in following list: 
Table 6-1 Expected average heating rates as per test conditions described by: a) Harrison (1997) 

b) Walkiewicz et al. (1988) c) McGill et al.(1988) d) Chen et al. (1984) e) Weert et al. (2011) f) 

Vorster (2001) g) Kobusheshe (2010) h) Genn (2012) 

 Mineral Chemical formula Heating rate, oC/s 
1 Amphibole RSi4O11 R=Mg,Fe,Ca,Na,Li,Ti -- 
2 Apatite Ca5(PO4)3(F,Cl,OH) Poor heater f 
3 Arsenopyrite FeAsS 5.83e 
4 Biotite K(Mg,Fe)3(AlSi3O10)(F,OH)2 Unknown (but contains 

–OH) g 
5 Bornite Cu5FeS4 11.32a  

Heats readily d 
6 Calcite CaCO3 0.6c 
7 Chalcocite Cu2S 1.8b 

1.43e 
8 Chalcopyrite CuFeS2 1.000a 

15.3b 

2.85e 
9 Chlorite RClO2 R=Na,Mg -- 
10 Feldspar KAlSi3O8 – NaAlSi3O8 – 

CaAl2Si2O8 
0.111a 

0.2b 
11 Galena PbS 2.388a 

2.3b 

3.51e 
12 Garnet * X3Y2(SiO4)3 X=Ca,Mg,Fe Y=Al,Fe,Cr Poor heater-

medium heater h 
13 Magnetite Fe3O4 2.111a 

7.6b 
14 Molybdenite MoS2 0.4b 

1.10e 
15 Olivine (Mg, Fe)2SiO4 -- 
16 Pyrite FeS2 1.000a 

2.5b 

2.29e 
17 Pyroxene XY(Si,Al)2O6 X=Ca,Na,Fe 

Y=Cr,Al,Mg,Ti 
Poor heater f 

18 Quartz SiO2 0.083a 

0.2b 
0.1c 

19 Rutile TiO2 0.75a 
20 Talc Mg3Si4O10(OH)2 -- 
21 Tennantite Cu12As4S13 Difficult to heat when 

cold d 
22 Titanite CaTiSiO5 -- 
 

* For the Garnet estimation was made for the expected heating rate from the dielectric 
properties measured at 2.47 GHz by Genn (2012) and given in Table 3-6. 
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For easier representation some of the minerals were grouped together, so the 

following grouping was undertaken: 

1 Copper Sulphides: Bornite, Chalcopyrite, Chalcocite, Tennantite 

2 Other Sulphides: Pyrite, Arsenopyrite 

3 Quartz 

4 Feldspar 

5 Garnet  

6 Magnetite 

7 Other Forming Minerals: Amphibole, Apatite, Biotite, Calcite, Chlorite, Galena, 

Molybdenite, Olivine, Pyroxene, Rutile, Talc, Titanite and Other Minerals 

 

The first two groups represent sulphides which have a tendency to respond very well 

to microwave heating. The first group represented was copper bearing minerals also 

defined as minerals of our interest. The second group was other sulphides, defined as 

pyrite and arsenopyrite. Quartz and feldspar as common forming rock minerals were 

not grouped. Garnet and magnetite were also not grouped as minerals whose high 

content can influence temperature profiles of rock particles. Garnet because of its 

tendency to heat and magnetite as responsive oxide which can heat along with 

sulphides. The last group represent all other rock forming minerals. Their content 

varies with a scanned surface of the particles. In some cases the amount of those 

minerals can be found with significant surface percentage, while in other cases they 

are found in small trace or not detected at all.  

 

The following figures (from Figure 6-3 to Figure 6-8) will be discussed to present the 

surface minerals in the six particles examined. The full results of all minerals 

identified in each measured section, which includes the abundance of each mineral or 

mineral group by surface percentage, are presented in tables and can be found in 

Appendix J.  

 

The “responsiveness” to microwave heating is based on literature from previous work 

such as microwave heating studies carried out by: Harrison (1997), Walkiewicz et al. 

(1988), McGill et al.(1988), Chen et al. (1984), Weert et al. (2011) and Vorster 

(2001). 
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Figure 6-3 Particle one, chosen for the MLA analysis, QZ Ohio 

 
 

In Figure 6-3 it can be seen that gangue minerals such as quartz and biotite, (which 

are more transparent to microwave energy then chalcopyrite or pyrite) form almost 

98% of the surface. Chalcopyrite is present in small grains with the grains dimensions 

from 50 to 400 µm (estimation from scale bar). 

 
Figure 6-4 Particle two chosen for the MLA analysis, QZ Ohio 

 
 

Figure 6-4 shows mineral phases for the particle two, and indicates that quartz and 

biotite (refer to Appendix J for more detailed information about surface % of other 

forming minerals) are the most dominant matrix minerals. The smaller grain size of 

copper sulphides is present with diameters between 50 and 100 µm (scale bar 

estimation). 

 
Figure 6-5 Particle three chosen for the MLA analysis, QZ Ohio 
Particle three, compared to the previous two has grains of the copper sulphides with 

similar dimensions but much lower content is detected. As shown in Figure 6-5 

Quartz is still the most dominant matrix forming mineral. 
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Figure 6-6 Particle four chosen for the MLA analysis, QZ Ohio 
Particle four, represented in Figure 6-6 revealed a high absence of copper sulphides as 

major heating phases. Magnetite is present within the quartz and feldspar matrix and 

in disseminated grains with dimensions between from 50 to 150 µm (scale bar 

estimation). 

 
Figure 6-7 Particle five chosen for the MLA analysis, QZ Ohio 
A high presence of copper sulphides clustered in two areas, seen at the top and bottom 

of Figure 6-7, show some grain sizes larger than 200 µm.  In the rest of the 

surrounding quartz and feldspar matrix, much smaller and disseminated grains can be 

spotted.  

 
Figure 6-8 Particle six chosen for the MLA analysis, QZ Ohio 
Figure 6-8 shows particle six which has the largest amount of biotite that is almost 

evenly dispersed throughout the quartz. Magnetite and sulphides are present in grains 

not larger than 50 µm. 
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6.4 Summary 

Observing and analysing all surfaces from chosen particles it can be seen that they 

exhibit substantial similarity in their mineralogy. The results of the ore modal 

mineralogy summarised through MLA investigation show that the QZ Ohio ore 

contains presence of good absorbers of microwave energy such as magnetite, pyrite 

and chalcopyrite. These minerals are usually dispersed within the matrix made of very 

large content of quartz interlocked with biotite, feldspar and sometimes chlorite. The 

presence of mineral grains (mostly chalcopyrite and pyrite) larger than 200 µm is 

detected. In some tested samples clustered grain forms of chalcopyrite are present in 

several different locations. 

6.5 Microwave Heating and Temperature Characterisation 

Procedure 

The second experimental investigation tested the -22.4 + 19.0 mm size fraction of the 

QZ Ohio ore for reproducibility and separability using multimode excitation in a 

domestic multimode microwave oven. The established procedure which was used to 

test reproducibility for “LRO” ore type was repeated. The procedure is described in 

more detail in Chapter 5. Here, only the brief summary of the procedure will be given.  

 

All heating was carried out using a “Sharp” domestic microwave oven Model 380-J. 

After screening, the mass of each rock particle in the -22+19 mm size fraction was 

measured and the particles were randomly grouped into sets, with approximately 

constant mass in each set.  Each set contained 11 particles prepared for batch 

microwave heating.   

 

A randomly chosen (with Matlab software) sub-set of six sets was subjected to 

“reproducibility tests”.  All particles which were subjected to microwave testing were 

uniquely identified by a number on the particle and their set number.   

 

Temperature data was collected before and after microwave exposure for the particles 

in each set. The microwave tray was demarcated into eleven regions. All of the 

particles from the set were placed along the circular periphery of the microwave tray 

in one of the demarcated regions. Before microwave heating, an infrared image of the 
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particles was taken using a “CEDIP “IR- camera. This camera records images in the 

2-5 µm infrared spectrums. Each group of samples are then heated using 2.45 GHz 

multi-mode microwave oven with applied power of 1.2 kW. After heating for 12 

seconds, or for the one rotation respectively of the microwave tray, the tray was taken 

out and a video recording of the tray was initiated using the software supplied with 

infrared camera. Recording continued until 40 seconds after the end of microwave 

heating to enable the thermal bloom to develop and a steady state to be reached. 

 

The images of each particle before microwave heating, 5 seconds after the end of 

microwave heating and 40 seconds after the end of microwave heating were analysed 

using software supplied with the camera to determine: 

 

• change in average temperature during heating period and after 5 seconds 

(Delta T1) 

• change in average temperature during heating period and after the end of 

recording time (Delta T2) 

• change in maximum temperature during heating period and after 5 seconds 

(Delta Max T). 

 

Temperature for every particle was calculated, by applying a region of interest around 

the perimeter of the particle. The region of interest enabled separation of the visible 

surface of the particle from the background and to calculate the maximum and mean 

temperature on the surface of the particle. 

 

6.6 Reproducibility Testing for QZ Ohio Ore Type 

The aim was to investigate the validity and reproducibility on a sub sample for the -

22+19 mm size fraction and to identify the amount of variability in the results due to 

the procedure (as opposed to the particle variability). Six sets or sets were selected at 

random and subjected to the detailed testing. 

 

Each set was subjected to the microwave heating and temperature characterisation 

procedure six times.  Particles were allowed sufficient time to cool between each run 

of the procedure. During repeatable testing particles were placed with their number 
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facing up for half the runs and down for the other half.  This process aimed to 

duplicate the random orientation of particles on the belt of a theoretical sorting 

machine. In addition, a computer program was used to generate random numbers 

which matched particle numbers to one of the numbered regions on the microwave 

tray and this determined the initial placement of the particles for each run.   

 

The results from the reproducibility study will be commented by discussing data from 

sets three and four which are presented in Figure 6-9 and Figure 6-10. The graphs for 

four other sets of the -22+19 mm size fraction are provided in Appendix K for this 

chapter.  It can be seen that set three had one very responsive particle which reached 

almost six times higher the average surface temperature, compared to the rest of the 

particles. Standard deviation is found to be the largest for the maximum surface 

temperature, followed by the average temperature after 5 seconds and finally reducing 

to a smallest value for an average temperature after 40 seconds. The described trend is 

present for most particles in all tested sets. 

 

The data for the set four shows very uniform values of surface temperatures with an 

average temperature after 5 seconds below 2oC and maximum temperature above 2.5 

oC. Only particle eleven reached nearly double the values of temperatures compared 

to all the others particles. This set of particles can be used as a good example of set 

with a majority of “cold” particles taking into the consideration their poor response to 

microwave heating. 

 

As shown in Figure 5-16, the degree of heating is highly reproducible if the standard 

deviation has a small and constant value throughout its population (presented in blue 

horizontal line for theoretical case). This performance is expected if the particle’s 

orientation and texture i.e. the physical arrangement of the minerals which interact 

with microwaves are strong controlling factors in the degree of heating.  The QZ Ohio 

ore is well disseminated and has much lower concentrations of microwave reactive 

minerals than the skarn ore type (LRO) previously tested and presented in the earlier 

chapter. As might be expected, the variation even in the higher grade particles is much 

less.  
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Figure 6-9 Reproducibility temperature change graph for the eleven -22+19 mm particles in set 
three where each particle was tested 6 times in different orientations 
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Figure 6-10 Reproducibility temperature change graph for the eleven -22+19 mm particles in set 
four where each particle was tested 6 times in different orientations 
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Figure 6-11 Plotted σ -standard deviation vs. population to assess the reproducibility 
 
In Figure 6-12 the standard deviation can be seen from the reproducibility study for 

the QZ Ohio ore type with the population presented through cumulative mass 

percentage. The values from particles are very constant and small which resulted in 

formation of almost straight horizontal line (just as for theoretical ideal case) 

demonstrating that the reproducibility for this particular ore type is very high.   

0

1

2

3

4

5

6

7

0 10 20 30 40 50 60 70 80 90 100

Cumulative mass %

St
an

da
rd

 d
ev

ia
tio

n 
σ

Std Dev Delta T1
Std Dev Delta T2
Std Dev Delta Max T

 
Figure 6-12 Plotted σ -standard deviation vs. population to assess the reproducibility for the QZ 

Ohio Ore type 

If it is decided that standard deviation up to 0.5 oC is acceptable to describe the 

reproducible process it can be observed that the 70 % of mass of the all particles and 

their standard deviation for Delta T1, Delta T2 and Delta Max T will be defined as 

very reproducible.  
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6.7 Summary 

It is clearly presented that the existence of very uniform and very transparent matrix, 

which was tested in this case of QZ Ohio ore type, had an effect by increasing 

repeatability. Particles which had responsive minerals were easily reheated and 

reached similar temperatures which caused smaller values for standard deviation and 

at the same time contributed to the repeatability of microwave heating of the overall 

population. 

6.8 Potential for Sorting Using Temperature Difference After 
Microwave Heating and Copper Grade of QZ Ohio Ore 
Particles 

6.8.1 Temperature Separation Curves 
 
The amenability of an ore type to be sorted by microwave excitation followed by 

infrared measurement of the temperature change has been assessed by ranking 

particles according to their temperature change (Delta) at various times after heating 

and to the “hottest pixel” in the ROI of the image of each particle at those times. The 

basic potential for separation has been estimated using the copper assay of each 

particle. 

 

Setting the right thresholds which will divide the feed into the concentrate and the 

gangue minerals requires a more systematic study. Therefore, to investigate the 

potential of setting the right thresholds, separation curves were created. They present 

mass and metal rejected as a function of temperature change.  

 

All the rock particles for the reproducibility study were measured to determine their 

mass and then sent for assaying to quantify the content of copper, iron and 

molybdenum. The particles were pulverised and sent for independent assaying 

analysis by AMMTEC Laboratory based in Perth, AU. The copper content was 

determined by mixed acid digest followed by ICP (Induction Coupled Plasma) and 

finished with AAS (Atomic Absorption Spectroscopy). 

 

It was found that for the selected rock particles the content of molybdenum was 

between 10 and 1950 ppm. The average content of all tested particles was 344 ppm 
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with a very large standard deviation of 394 ppm which points to a very uneven 

distribution of molybdenum throughout the tested sample. Despite the fact that some 

of the particles had a significant content of molybdenum metal detected, minerals with 

molybdenum for this particular ore type were taken as contributing factors and not as 

leading factors in the process of selective heating.  

 

The separation curves were sorted by temperature change for Delta T2, Delta T1 and 

Delta Max. For these separation curves the temperature threshold will change 

depending on the time chosen to execute physical separation and whether it is decided 

to sort by average or maximum temperature change. Figure 6-13 shows separation 

curves sorted by temperature change for Delta Max. 
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Figure 6-13 Separation curves for QZ OHIO -22.4 +19.0 mm size fraction based on Delta Max T 
 

Cumulative copper and iron recovery curves are compared to cumulative mass to 

determine temperature change which will define the loss of metal with the mass being 

rejected. The separation curves for Delta T2, Delta T1 are given in Appendix K while 

separation curve for Delta Max (see Figure 6-13) is presented this section since it 

gave the best separation results. 
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Figure 6-14 Non-linear deviation between the Cumulative Mass % and the Cumulative Copper 
Recovery % for Delta Max T for QZ OHIO ore type 
 
To choose the best operating point, non-linear deviation between the cumulative 

copper recovery % and cumulative mass % for Delta Max is presented in Figure 6-14. 

According to Cohen (2000) “Rejection of 25 – 30% of the feed mass is usually a 

minimum requirement for sorting to be economically justifiable.” Taking this into the 

consideration and that for this particular ore type 30 to 40 % of mass demonstrated 

larger temperature changes, the sorting process would be operated as a scavenging 

process with the aim to remove hot particles which would contain microwave 

responsive minerals. Choosing to remove 30% of the feed mass treated, following 

temperature thresholds can be placed: for the Delta Max T temperature change above 

2.6 oC will scavenge 30% mass with close to 50% of overall copper. 

 

The cumulative iron recovery follows mass recovery very closely and at about 55% it 

starts to separate. The separation indicates that in the remaining 45% of the mass 

tested, which corresponds mostly to the hotter particles, the content of iron is 

increasing. In this case the increased content of iron cannot be correlated only with the 

presence of a copper bearing minerals. The results for iron content were obtained 

from pulverised samples therefore; they represent overall content of iron whether it 
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comes from sulphides (e.g. pyrite, arsenopyrite and chalcopyrite) or oxides (e.g. 

magnetite).  

6.8.2 Summary 

A separation strategy was developed as a most suitable method to illustrate the level 

of separability by exposing rock particles to microwave heating and obtaining copper 

content by assaying. The laboratory method was used to investigate the sorting 

potential (operated as scavenging process) of QZ Ohio ore. Every ore sorter can be 

described through a performance curve. This information describes the best separation 

which can be achieved with a particular ore sorting machine. The difference between 

separation by separation curves and sorter performance curve which comes from 

build-in inefficiency of the sorter has to be acknowledged. 

 

For this laboratory method, the theoretical separator with temperature information 

from two sides of the particle which could detect copper content with similar 

precision to an assaying test was used. The separation curves indicate that QZ Ohio 

ore material was responsive to scavenging strategy which had goal to separate all 

particles with higher temperature difference then set threshold. For a minimum 

requirement of 30% mass separated, temperature difference for Delta Max T gave the 

most promising separation conditions to carry out sorting in the laboratory tests.  

 

As the particles cool down the efficiency of sorting by selective heating was reduced 

and the temperature thresholds needed to be reduced to retain the pre-determined 

percentage of scavenged mass, as shown in Table 6-2. 
Table 6-2 Identified thresholds to scavenge 30% of mass tested 

Reproducibility study Delta Max T Delta T1 Delta T2 
Temperature threshold, oC 2.6 2.3 2.1 
Regained overall copper, % 50 49 48 
 
The QZ Ohio ore was sourced as a low copper grade material with an average bulk 

copper grade of 0.25%. It is of great interest if this ore type can be upgraded through 

sorting technology up to 0.35% of copper content and treated as economic ore. After 

plotting separation curves, copper grade frequency distribution for QZ Ohio ore was 

analysed and shown in Figure 6-15. 
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Figure 6-15 Copper grade frequency distribution for QZ Ohio ore type 
 

Data from the histogram shows that the majority of assayed ore particles are below 

the set threshold for them to be considered as ore and this can be easily correlated to a 

majority of cold particles. Within the scavenged mass, 20% mass can be upgraded to 

have copper content of 0.35% and more. If the threshold is lowered to be just above 

bulk grade of ore then an additional increase of 4% can be achieved. 
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6.9 Flotation Testing of Microwave Sorted Ore 

The main aim of this section is to investigate the content of copper after sorting the 

QZ Ohio ore in three selected fractions (hot, medium and cold), by performing 

preliminary flotation testing under controlled operating conditions. Along with 

copper, the content of molybdenum was also investigated. The unprocessed (UP) 

material, which was tested under the same flotation conditions, was used as a control. 

Flotation testing was performed by JKMRC Pilot Plant Flotation Laboratory. The 

utilised flotation cell and the conditions are described in the following sections. 

6.9.1 Preparation of the material  

The Figure 6-16 shows the temperature profile for particles of -22.4 +19.0 mm QZ 

Ohio plotted in terms of temperature change Delta T2 against cumulative mass from 

cold to hot. All particles were labelled and treated in microwave domestic multimode 

oven for 12 seconds at the 1.2 kW. The procedure of exposing particles and acquiring 

temperature measurements are described in detail in Section 5.6 of Chapter 5. 

 
Figure 6-16 – Cumulative mass-temperature curve for -22 +19 mm QZOHIO 
 

The approximate mass of 6 kg was then divided into three fractions of approximately 

2 kg representing a hot fraction with the highest temperature change, the medium with 

the slighter temperature change and the cold fraction. All three fractions were split 

into two different groups for the two different grinding times (the first 10 min and the 
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second 15 min). By selecting every second rock from the curve for one group an even 

distribution of hotter particles was achieved throughout the groups. 

 

The diagram for preparation of the material for the flotation testing is shown in Figure 

6-17. The selection provided six flotation tests which were complemented with two 

more for the unprocessed material. During the preparation of approximately 6 kg, for 

microwave treatment and sorting, a sub-sample of approximately 2 kg was prepared 

following the same procedure for the unprocessed material. By splitting the 

representatively unprocessed fraction in half, two groups were obtained for 10 and 15 

minute grinding. 

 
Figure 6-17 Diagram of the material split after microwave treatment and sorting 
 
All groups were prepared for the flotation testing after grinding to investigate how 

much of the sulphide minerals can be recovered under controlled conditions. To 

investigate copper recovery from the floated material all samples were sent for 

independent assaying by AMMTEC Laboratory based in Perth, AU. 

6.9.2 Procedure and Flotation Apparatus 

A review by Bruckard et al. (2011) found that the flotation response of ground 

minerals can be influenced by the grinding conditions used. This include interaction 

of the minerals with the grinding media, the generation or presence of oxyhydroxide 

species in the pulp, the effects of any added reagents or chemicals, and the type of 

grinding method employed. To achieve controlled conditions for this particular testing 
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all these influences were considered. The choice for some came from consultation 

with the sponsor. 

 

The metallurgical performance of any separation technique is influenced by mineral 

liberation. The locking characteristics and the liberation of the minerals in an ore are 

mainly dictated by the grain size of the minerals. Kelly and Spottiswood (1995) 

commented that the interaction between minerals and reagents and the effect of the 

reagents on the surface of the minerals is the first important condition for a successful 

flotation process. The second is of a physical-mechanical nature and determined by 

the flotation machine characteristics. 

 

The results obtained from the mineralogical characterization study using MLA ( in the 

section 6.3 of this chapter) on the ore showed that the grain size of copper bearing 

sulphide and sulphides particles was fine (from 100 to 200 µm) and fine grinding was 

required to achieve a high degree of liberation of minerals. In this study, for achieving 

the desired 75% passing size (P75) the conventional rod mill grinding technique was 

used. For determining the best grind size and achieving a higher degree of liberation 

size between 100 and 200 µm was targeted. The grinding experiments were conducted 

using a laboratory-scale 260 mm (L) × 205 mm (D) rod mill with a charge of 15 rods. 

The mill and rods were made of stainless steel and they can be seen in Figure 6-18. 

 
Figure 6-18 Rod mill used to grind samples for 
10 and 15 minutes 

 
Figure 6-19 The standard JKMRC flotation 
cell 

Scraper  

Impeller inside 
 the cell  

Collection  
container  
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After wet grinding, the samples were wet sieved to determine 75% passing size. This 

was done by plotting the cumulative passing percentage of the mass with the sieve 

sizes used for screening. The linear interpolation between the two closest sieve sizes 

was used to calculate values for the P75. Figure 6-20 shows linear interpolation for 

the hot fraction and the group which was grinded for 10 minutes. For all the other 

groups their mass distributions and their linear interpolations can be found in 

Appendix L. 
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Figure 6-20 The passing size (P75) for the hotter fraction after 10 minute grind time 
 
The 75% passing size (P75) for each temperature category and the unprocessed rocks 

are shown in Table 6-3. 

 
Table 6-3 Grind product sizes (P75) for different temperature categories and untreated -22 +19 
mm QZOHIO 

Grind time 
(min) 

P75 (µm) 
Hot 

P75 (µm) 
Medium 

P75 (µm) 
Cold 

P75 (µm) 
Unprocessed 

10 146 158 160 181 
15 121 127 132 144 

 
The passing size is smaller for the hotter rocks for both of the grinding times. The 

colder rocks also have a smaller passing size than the unprocessed rocks for this size 

fraction which tends to indicate that the microwave test procedure might weaken the 

ore. However, there is not enough evidence that this was the major factor for the 

smaller passing size. It might be that an increase in grindability in the hot group is 

related to the specific minerals species present, particle size of the specific minerals 

and also the degree of dissemination. The content of sulphide minerals should be 
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higher in the hot group as a result of sorting and this may be reflected in different 

breakage characteristics when compared to medium and cold groups. 

 

All of the flotation experiments were carried out in a 5-litre, bottom-driven JKMRC 

batch flotation cell (Figure 6-19) which is also used for the commercial testing of 

froth performance. In this cell, air is injected through the stator on the top of the 

impeller. The air flow rate, air pressure and impeller speed were controlled constantly 

during the experiments. At 10 second intervals, using the scraper, all the froth was 

swept with a single brisk stroke from the rear of the cell to the overflow into the 

collection container. 

 

Some of the operating conditions for this flotation testing were chosen by the sponsor 

to be similar to the operating conditions in the real operation. To summarise, all 

conditions used during flotation testing are presented in tables from Table 6-4 to 

Table 6-7.  

 
Table 6-4 Pre-Grind reagent additions used to prepare material for flotation 
pH Modifier Ca(OH)2 
Concentration 5% 
Target pH 10.2 
Amount Added 1000µl 
 Mo promoter Diesel 
Concentration Neat 
Amount Added 21µl 
 

Ore supplier uses a non-standard molybdenum promoter (“Burner Oil”). As the 

“Burner Oil” was not available, with the approval from sponsor, standard automotive 

diesel was used as a molybdenum promoter. 

 
Table 6-5 Grind conditions  
Sample Mass (g): Approx. 1000.00 
Charge Mass (g): 11020.00 
Water Mass (g): Approx. 500.00 
RPM: 76 
Grind Time (min): 10 
Water Source: Pilot Plant 
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Table 6-6 Test conditions 
Cell Size (L): 5 
Air Rate (L/min): 10 
Froth Pull (s) 10 
Air Press.(kPa): 200 
Froth Depth (cm) 1 
Water source: Pilot Plant tap water 
Conditioning time per 
reagent added (min) 

1 

 
Table 6-7 Float chemistry used during flotation tests 
pH Modifier Ca(OH)2 
Concentration 5.00% 
Amount Added 6ml 
Collector S8989 
Concentration Neat 
Amount Added 18µl 
Frother MIBC 
Concentration Neat 
Amount Added 210µl 
 
Initial readings after grinding showed satisfactory values of pH around the targeted 

value of 10.2. In Table 6-7 it can be seen that commercial collector AERO® S 9889 

produced by CYTEC was used along with the most common frother methyl isobutyl 

carbinol (MIBC) to promote separation of sulphide minerals. 

6.10  Results from Flotation Testing 

As a result of sorting in three fractions the highest content of sulphide minerals should 

be in the hot fraction followed by the content in medium fraction and finishing with 

the most barren cold fraction. From Figure 6-21 and Figure 6-22 by observing all 

floated groups it can be seen that the hot group has separated from the rest of the 

groups. This is evident for both grinding times which demonstrate that the most 

sulphides minerals in the mass recovered originated from the particles which had the 

good response to microwave heating. The experimental data for all calculations can be 

found in Appendix L.  

 

When the obtained results of treated fractions are compared with the results from 

unprocessed fraction it shows that they all follow increase in mass recovery with time. 

In addition, it demonstrates that their sequence is a function of distribution and 

content of heating phases within the particles which comprise the particular group. 
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From the Figure 6-16 it can be seen that the temperature difference between cold and 

medium fraction is minimal. This small difference can also be noticed in Figure 6-21 

and Figure 6-22 with the higher cumulative mass recovery percentage for the medium 

fraction.  
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Figure 6-21 Flotation recovery for 10 min grind time 
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Figure 6-22 Flotation recovery for 15 min grind time 
 
Data for UP fraction, which is not sorted and in that context represents all three 

fractions, at the very beginning (first minute during flotation time) has values close to 

cold and the medium fractions. This can be explained through the higher influence of 

the existing medium and cold phase within the UP fraction. As the flotation time 

passes (third, fifth and tenth minute) values for cumulative mass recovery for UP 

fraction increases gradually distinguishing them from the medium and cold fraction; 
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here the influence of the hot fraction is more evident. All of the obtained results show 

that unprocessed material used as control is in the right sequence and its values are 

between values of hot and cold fraction which were selected as extremes for tested ore 

types. 

To determine copper content in the concentrates from the froth and in the tailings 

samples from flotation testing, they were sent for independent assaying analysis by 

AMMTEC Laboratory based in Perth, AU. The copper content was determined by 

mixed acid digest followed by ICP (Induction Coupled Plasma) and finished with 

AAS (Atomic Absorption Spectroscopy). 
Table 6-8 Copper content obtained through assaying and used to calculate final mass in each 
concentrate and final recovered copper content in each group grinded for 10 minutes  

Copper ( ppm) 
 Flotation time (min) Hot  Med  Cold  
Concentrate 1 1 47600 35800 24400 
Concentrate 2 3 12300 22600 7750 
Concentrate 3 5 3470 2490 1710 
Concentrate 4 10 1580 990 1140 
Tail  190 120 90 

Copper (g) 
 Flotation time (min) Hot  Med  Cold  
Concentrate 1 1 2.49 1.23 0.79 
Concentrate 2 3 0.11 0.11 0.04 
Concentrate 3 5 0.02 0.01 0.01 
Concentrate 4 10 0.02 0.01 0.01 
Cu lost in Tail   0.17 0.11 0.09 
Total without Tail  2.64 1.36 0.85 
 
Table 6-9 Copper content obtained through assaying and used to calculate final mass in each 
concentrate and final recovered copper content in each group grinded for 15 minutes 

Copper ( ppm) 
 Flotation time (min) Hot  Med  Cold  
Concentrate 1 1 41300 28400 28600 
Concentrate 2 3 19500 14000 15000 
Concentrate 3 5 3750 2740 3150 
Concentrate 4 10 950 1870 1490 
Tail  180 90 100 

Copper (g) 
 Flotation time (min) Hot  Med  Cold  
Concentrate 1 1 2.04 0.91 0.88 
Concentrate 2 3 0.17 0.05 0.08 
Concentrate 3 5 0.01 0.01 0.01 
Concentrate 4 10 0.01 0.01 0.01 
Cu lost in Tail   0.16 0.08 0.09 
Total without Tail  2.24 0.97 0.97 
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From Table 6-8 and Table 6-9 it can be seen that after sorting the largest amount of 

copper recovered it is from the hot fraction followed by the medium and the cold 

fraction. The location of the copper can be discussed by plotting cumulative copper 

recovery from all copper content with flotation time as seen in Figure 6-23 and Figure 

6-24 for different grind times. The data for these calculations are shown in Appendix 

L.  

The results for the shorter grinding time in general demonstrate better copper recovery 

when compared with the longer grinding time. As the flotation time increases the 

cumulative copper recovery becomes the highest for the hot group as expected.  

82.0

84.0

86.0

88.0

90.0

92.0

94.0

96.0

0 2 4 6 8 10 12

Flotation time, min

C
um

ul
at

iv
e 

co
pp

er
 r

ec
ov

er
y,

 %

Hot
Medium
Cold

 
Figure 6-23 The cumulative copper recovery for 10 min grind time 
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Figure 6-24  The cumulative copper recovery for 15 min grind time 
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The content of molybdenum was also investigated as a commercially valuable metal. 

The results obtained from the mineralogical characterization study using MLA 

showed that the grain size of molybdenum were very small (less than 50 µm). It was 

mostly found as very well dispersed and with the surface percentage around 0.1%. 

Minerals with molybdenum for this study were considered not to be the major 

minerals for selective heating but contributing minerals taking into account their 

content and distribution. Data for recovered molybdenum content in each group is 

presented in the Table 6-10 for 10 minutes grinding time and in Table 6-11 for 15 

minutes grinding time. It can be seen that for a longer grinding time which resulted 

with smaller P75, recovered molybdenum content follows the pattern of copper by 

having the highest content of molybdenum in the hot group. In the case of samples 

grinded for 10 minutes the highest recovered molybdenum content was in the cold 

group. 

 
Table 6-10 Molybdenum content obtained through assaying and used to calculate final mass in 

each concentrate and final recovered molybdenum content in each group grinded for 10 minutes 

Molybdenum ( ppm) 
  Flotation time (min) Hot  Med  Cold  
Concentrate 1 1 6370 9560 19600 
Concentrate 2 3 1530 7700 4470 
Concentrate 3 5 560 940 870 
Concentrate 4 10 240 290 520 
Tail   30 30 20 

Molybdenum (g) 
  Flotation time (min) Hot  Med  Cold  
Concentrate 1 1 0.333 0.329 0.636 
Concentrate 2 3 0.014 0.037 0.026 
Concentrate 3 5 0.003 0.005 0.003 
Concentrate 4 10 0.003 0.003 0.003 
Cu lost in Tail   0.027 0.028 0.019 
Total without Tail   0.35 0.37 0.67 
 

The unprocessed material, which was tested under the same flotation conditions, was 

used as a control. Data for the copper and the molybdenum content is presented in  

Table 6-12. It can be seen that in the case of copper, a shorter grinding time resulted 

in a much better recovery, while for molybdenum a longer grinding time only slightly 

increased the recovery. 
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Table 6-11 Molybdenum content obtained through assaying and used to calculate final mass in 

each concentrate and final recovered molybdenum content in each group grinded for 15 minutes 

Molybdenum (ppm) 
 Flotation time (min) Hot  Med  Cold  
Concentrate 1 1 13200 7240 6410 
Concentrate 2 3 6450 3090 3320 
Concentrate 3 5 1490 740 670 
Concentrate 4 10 430 550 440 
Tail  60 40 40 

Molybdenum, (g) 
 Flotation time (min) Hot  Med  Cold  
Concentrate 1 1 0.651 0.232 0.197 
Concentrate 2 3 0.057 0.010 0.017 
Concentrate 3 5 0.006 0.002 0.002 
Concentrate 4 10 0.006 0.002 0.002 
Tail   0.055 0.035 0.038 
Total without Tail  0.77 0.28 0.26 
 
Table 6-12 Copper and molybdenum content obtained through assaying and used to calculate 

final mass in each concentrate and final recovered copper and molybdenum content for 

unprocessed material grinded for 10 and 15 minutes 

Grinding time 10 min 15 min 
 Flotation 

time (min) 
Cu (ppm) Mo (ppm) Cu (ppm) Mo (ppm) 

Concentrate 1 1 53000 8410 27100 5830 
Concentrate 2 3 17400 3050 30500 8320 
Concentrate 3 5 2100 270 2130 530 
Concentrate 4 10 770 120 630 190 
Tail  140 20 110 40 
Grinding time 10 min 15 min 
 Flotation 

time (min) 
Cu (g) Mo (g) Cu (g) Mo (g) 

Concentrate 1 1 1.68 0.27 0.83 0.18 
Concentrate 2 3 0.18 0.03 0.35 0.09 
Concentrate 3 5 0.01 0.00 0.01 0.00 
Concentrate 4 10 0.01 0.00 0.01 0.00 
Cu lost in Tail   0.13 0.02 0.10 0.04 
Total without 
Tail 

 1.89 0.30 1.20 0.32 
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6.11 Summary 

This section has described the investigation of the copper content after sorting the QZ 

Ohio ore in three selected fractions: hot, medium and cold. The type of grinding 

media, the size reduction method employed, pre-conditioning stages prior to flotation, 

and reagent interactions during grinding (and conditioning) were chosen for the 

flotation process so that the ore composition in the fractions could be investigated. 

 

For the -22.4+19.0 mm size fraction tested, the hot and medium fractions are 

generally of higher grade and indicate a substantial improvement in recovery of 

copper and molybdenum compared with the cold fraction, except that the 

molybdenum recovery for the 10 minute grind time is higher in the colder fraction.  

By comparing data with the unprocessed material it shows that there is an 

improvement in molybdenum recovery in the hot fraction with the largest difference 

achieved through finer grinding. 

 

Nevertheless, the copper results revealed that the shorter (coarser) grind time 

delivered much better improvements in recovery in the hot and medium fractions 

(these fractions were of interest because valuable minerals were located there) when 

compared with the cold fraction. 

 

In scavenging mode (of the theoretical sorter) the hottest one third could be accepted 

with a recovery of more than half the metal and substantial grade improvement for 

copper and molybdenum for both grind times.  

 

In pre-concentration mode (of the theoretical sorter), the coldest one third of the mass 

could be rejected for the loss of about 18% of the metal for the 15 minute grind time 

and 24% of the metal for the 10 minute grind time. 
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6.12 Test Procedure for the Experimental Investigation Using 
Two Types of Microwave Applicators - Second Step 

 
The first step of the investigation ended with destroying samples, necessary to 

perform assaying analysis, in the second step of investigation samples were analysed 

with more of conserving techniques such as x-ray tomography and optical 

microscopy. New sets of particles were tested in a microwave oven and in TWA that 

had ability to obtain data in real time from ROI. This was used to quickly estimate 

heating behaviour of tested particles within the every set tested. 

6.12.1 Overview of the Test Procedure 

The representative sample was prepared for -22.4 + 19.0 mm size fraction. The eight 

new sets containing eleven particles were randomly chosen from the remaining sub-

sample in this particular size fraction after preparation for the first step of 

experimental investigations. The detailed procedure of the ore screening and obtaining 

a representative sample is presented in section 6.2 in this chapter. The particles were 

tested for textural interaction with an electromagnetic field created in two different 

microwave applicators. They were subjected to batch microwave heating in the 

domestic multimode oven and individual testing in the TWA. The data collected from 

the particle’s temperature profiles were combined to create two temperature curves 

and analyse separability. 

 

The results of the MLA examination for the first experimental study revealed that the 

QZ Ohio ore contains good absorbers of microwave energy such as pyrite and 

chalcopyrite which are embedded in the quartz matrix (usually interlocked with 

biotite, feldspar and sometimes chlorite). For the majority of particles heating phases 

were mostly well dispersed, while for some they could be found in clusters forming a 

plain or vein like structure. For this reason the power applied in the second step was 

1.2 kW same as in reproducibility and flotation study. 

 

After microwave exposures, fifteen randomly chosen particles were analysed by high-

resolution X-ray computed tomography which was used to obtain information about 

texture and structure of minerals with higher densities. These minerals were 
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associated with minerals which have a tendency to heat more. Five randomly chosen 

particles were studied in great detail by combining an automated mineral 

identification by optical microscopy and X-ray computed tomography to identify 

sulphide minerals. Surfaces for optical microscopy were prepared by cutting particles 

in half or removing the top part of the whole particle with the aim to primary 

identifies pyrite and chalcopyrite. Figure 6-25 shows locations of rock particles 

selected within tested sets and technique applied. 

 

 
 
Figure 6-25 Particles randomly chosen for more detail analysis with less destructive techniques 
such as x-ray tomography and optical microscopy  
 

6.12.2 Exposing “QZ Ohio” Particles to Multimode 
Electromagnetic Field in Microwave Oven 

The batch microwave heating was carried out with the same microwave oven used in 

the first study. The glass microwave tray was separated into eleven sections for eleven 

ore particles. Those same particles were then distributed along the edges of the 

rotating tray in order to cover the larger area of the tray. This was done to ensure that 

particles have a greater chance of passing through multiple modes. During repeated 

exposures, particles were positioned in numbered, ascending and clockwise order. 

Once allocated on the edge of the tray they did not have any preferred orientation.  
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Each batch of ore particles was then heated four times alternating their sides with 

labels placing numbers “up” and numbers “down” in front of infrared camera. Before 

placing the tray in the oven, the infrared snapshot was taken to obtain initial 

temperatures of the ore particles. An applied power of 1200 W was used and after 

heating for 12 seconds (for the one rotation respectively of the microwave tray) the 

tray was taken out. The infrared snapshot of the tray was taken after 5 seconds using 

the CEDIP infrared camera. 

6.12.3 Exposing “QZ Ohio” to Electromagnetic Field in the 
Travelling Wave Applicator  

The individual microwave heating of ore particles was carried out by the travelling 

wave applicator. A detailed description of TWA is given in Chapter 3 section 3.10. 

All rock particles were placed in a numbered sequence from one to eleven on the 

vibratory feeder which can be seen in Figure 5-23 on the left side. Particles were fed 

one by one into the applicator. The generator was set for 1200 W with an exposure 

time of 12 seconds. 

 

During testing infrared images were collected with 25 frames per second in real time. 

The region of interest was set to cover the whole surface of the particle holder placed 

in the middle of the applicator. The region of interest was introduced as a quick 

insight in temperature profile for every particle in real time during testing. These 

temperatures are calculated and plotted in time.  

 
Figure 6-26 TWA used to test Low Recovery Ore  
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6.13 Experimental Results from Testing Rock Particles in Two 

Applicators 

To compare experimental data, the temperature difference for maximum and mean 

temperatures were calculated from data before and after microwave exposure. 

Following abbreviations were taken to represent data: 

• ΔT max = temperature difference for the maximum temperature on the surface 

of the particle calculated from data before microwave exposure and after 

microwave exposure 

• ΔT mean = temperature difference for the mean temperature on the surface of 

the particle calculated from data before microwave exposure and after 

microwave exposure 

• average ΔT max = mean value for ΔT max calculated from repeated exposures 

• average ΔT mean = mean value for ΔT mean calculated from repeated 

exposures 

 

Results from the TWA exposures are presented as a surface temperature change as a 

function of time. The surface temperature change was calculated from region of 

interest in a shape of circle set to cover the whole area of particle holder. The graphs 

form the three repeated exposures provide a good insight into responsive and non-

responsive particles (the graphs from all repeated exposures are given in Appendix 

M).  Finally, for every particle temperature change was calculated by placing new 

region of interest corresponding to the visible perimeter of the particle. These new 

values are compared with the values from multimode exposures as an average value 

from repeated testing. Temperature differences are presented in one common graph 

for each particle within the set. 

 

Five randomly chosen particles were studied in great detail to identify sulphide 

minerals by combining a high-resolution X-ray computed tomography and an 

automated mineral identification by optical microscopy. IR images were studied 

during heating to identify selective heating and locate responsive minerals. The 

appropriate planes for optical microscopy were determined by cutting these particles 

in half in the locations where selective heating took place. The identification was 

focused primarily to recognize two sulphides; chalcopyrite and pyrite. 
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To present reconstructed data from the tomography analysis, visualisation software 

DataViewer ver. 1.4.4 (licensed by SkyScan) was used to view a stack of images in 

2D/3D at their original range and resolution. This process enabled the texture to be 

seen from three different views: 

 

• transaxial view (in the red colour, in x-y plane), 

• coronal view (in the green colour, x-z plane), 

• sagittal view (in the blue colour, z-y plane). 

 

For every particle tested top left image is used to display coronal view of the selected 

reconstructed plane. The largest bottom left image is used to see transaxial view 

which is also chosen to correspond to surface analysis performed by optical 

microscope. In the top right corner the image of all three chosen planes through the 

particle can be seen, while the bottom left image is used to display sagittal view. 

6.13.1 Set No. 1: 
 

 
Figure 6-27 Third exposure, timing graph for set no.1 
 
Figure 6-27 shows the temperature change from the ROI, placed to quickly obtain a 

heating rate from every particle exposed to microwave heating in real time (time is 

given in 25 frames per second). The top line represents the maximum temperature, 

while the bottom one represents the mean temperature, calculated from the visible 

surface of the particle including the background confined within the ROI. It can be 
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clearly seen that the change for both temperatures exhibit almost a meandering shape, 

produced by the increase in temperature (during microwave heating) and followed by 

a sudden decrease (after stopped particle heating and ejection from the holder). 
 

 
Figure 6-28 X-ray radiogram for particle No. 2 

 
Figure 6-29 X-ray radiogram for particle No. 5 

By observing all eleven peaks, specified with numbers for each particle, it can be seen 

that the best heating response was detected for particle No. 5.  Figure 6-28 shows x-

ray radiogram of particle No. 2 presenting only low density minerals (associated with 

quartz, biotite and feldspar) which caused a slight increase in temperature change. In 

Figure 6-29 x-ray radiogram for particle No. 5 clearly reveals a presence of high 

density minerals (associated with magnetite, pyrite and chalcopyrite). These minerals 

have responded well to microwave heating causing a steeper increase for mean 

temperature and a very sharp increase of maximum temperature reaching over 46 oC. 

X-ray radiograms exhibit texture and structure of these particles under different 

angles, and they are given in Appendix M of this chapter. 

 

Data from all repeated exposures in a multimode domestic oven and TWA are 

compared and presented in Figure 6-30. As the timing graph of temperature profiles 

indicated the best heating response was for particle No. 5 and also had the largest 

standard deviation from repeated measurements in both types of applicators. The rest 

of the particles exhibited a slight increase in temperature change showing an absence 

of higher contents of microwave absorbing phases.  From this set, particle No. 9 was 

chosen for a more detailed study. IR images were examined from TWA testing (the 

right image in Figure 6-31) with a goal to pinpoint locations on the surface of the 

particle where temperature had increased significantly, signifying the presence of 

more responsive minerals. From Figure 6-30 it can be seen that the particle No. 9 can 

be classified as “cold” or less responsive. Considering that from IR images there was 

no specific hot locations, it was decided to cut and polish the top of the whole particle 
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and in that manner prepares a larger surface for the optical microscopy analysis. 

Following the preparation for optical microscopy the same particle was analysed by 

high-resolution X-ray computed tomography.  
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Figure 6-30 Compared results for MC and TWA for the set No.1 

The reconstructed data from the tomography analysis is presented in Figure 6-32. The 

largest bottom left image is used to see transaxial view which is also chosen to 

correspond to surface analysis performed by optical microscope. The coronal view (in 

the top left corner) and the sagittal view (in the bottom right corner) show that there is 

not a presence of large grains or structures of minerals with higher densities. 

 

The transaxial view shows mineral grains which belong to a plane situated very close 

to a polished top surface. If the locations of the grains were compared with results 

from optical microscopy (the left image in Figure 6-31) only some of them were 

identified as chalcopyrite, while the rest of the minerals were minerals with higher 

densities such as bornite, tennantite or chlorite.  

 

All obtained results show a significant absence of heating phases and clearly explain 

temperature profile of this particle and why it can be considered as “cold”. 
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• Scale min-max: 25oC-40 oC 
• From third exposure at the end of 12 s 

since the beginning of the heating 
 

Figure 6-31 Optical mineral identification and IR temperature profile for particle No. 9 from the 
set No.1 

 
Figure 6-32 X-ray computed tomography analysis for particle No. 9 from the set No.1 
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6.13.2 Set No. 2: 
 

 
Figure 6-33 Third exposure, timing graph for set No.2  
 
Temperature profiles from ROI for the set No.2 are given in Figure 6-33. Data for the 

first and the second exposure are provided in the Appendix M. Particles with No. 3, 5, 

and 7 can be easily identified as very responsive.  

 

 
Figure 6-34 X-ray radiogram for particle No. 7 
 
It can be seen from Figure 6-34 that particle No. 7 is interwoven with microwave 

responsive minerals which form couple of thin planes. One of these planes can be 

identified as a straight line at the left side of the particle.  The other x-ray radiograms 

demonstrate this texture under different angles and they are provided in the Appendix 

M. 

 

The presented data in Figure 6-35 for repeated exposures, shows that the particles 

with No. 3, 5, and 7 can be considered as “hot” because they did reach temperature 

difference almost three times more than the rest of the particles. It shows that for the 
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rest of the particles average temperature difference was about 2 oC with the exception 

of particle No. 11 which was almost two times higher. 
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Figure 6-35 Compared results for MC and TWA for the set No. 2 
 
Two particles were chosen for a more detailed analysis. These were particle No. 5 and 

particle No. 11. An IR image during heating for the particle No. 5, demonstrated 

results of more uniform heating during repeated exposures, although one half of the 

particle had higher temperature gradients then the other (as seen in the right image in  

Figure 6-36). The particle was cut in the middle and the chosen half was polished and 

prepared for optical microscope analysis (results are given the left image in  Figure 

6-36). The results from x-ray computed tomography showed a presence of embedded 

minerals of a higher density which are scattered within the matrix of lower density. 

When the transaxial view in Figure 6-37 was analysed along with optical results it 

showed that embedded minerals are identified as grains of very responsive pyrite. A 

similar distribution of mineral grains was identified in samples used for surface MLA 

analysis. 

 

For the particle No. 11 which was also analysed in great detail, IR image revealed a 

spot on the surface of the particle with much higher temperature gradient identifying a 
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presence of microwave responsive minerals. This spot can be seen in the right image 

of the Figure 6-38.  

 

 
• Scale min-max: 25oC-40 oC 
• From third exposure at the end of 12 s 

since the beginning of the heating 
 

 Figure 6-36 Optical mineral identification and IR temperature profile for particle No. 5 from the 
set No.2 
 

 
Figure 6-37 X-ray computed tomography analysis for particle No. 5 from the set No.2 
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• Scale min-max: 25oC-40 oC 
• From third exposure at the end of 12 s 

since the beginning of the heating 
 

Figure 6-38 Optical mineral identification and IR temperature profile for particle No. 11 from 
the set No.2 
 

 
Figure 6-39 X-ray computed tomography analysis for particle No. 11 from the set No.2 
 

To prepare particles for the mineral identification by optical microscopy, the top 

surface of the whole particle was removed and polished. The coronal and sagittal view 

after computed tomographic reconstruction (shown in Figure 6-39) displayed the 

presence of a very thin vein like structure embedded in the middle of the particle. 
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Only the top of that structure was exposed to optical microscopy identification which 

identified pyrite as a dominant mineral. Chalcopyrite was also identified in much 

smaller grains and on the larger spatial distance from the vein. 

6.13.3 Set No. 3: 
 

 
Figure 6-40 Third exposure, timing graph for set No.3 
 
Within the tested set No. 3 it can be seen that the highest temperature change was 

detected with exposure of particle No.7 (observing timing graph for the maximum 

temperature in Figure 6-40). There was slight increase for the particle No. 4 which in 

addition can be seen on the timing graph for the mean temperature. 

 

 
Figure 6-41 X-ray radiogram for particle No. 7  
 
Examining textural features, from x-ray radiogram (displayed in Figure 6-41), it 

demonstrates that the particle No. 7 consists of dispersed grains of high density 

minerals similar in size and with even spatial distribution.  
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Exploring calculated mean values presented in Figure 6-42 it can be said that during 

exposure in multimode domestic oven particles had reached temperature difference in 

average higher than 2 oC, while in the case of TWA exposures these values were on 

average below 2 oC.  
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Figure 6-42 Compared results for MC and TWA for the set No. 3 
 

6.13.4 Set No. 4: 
 

 
Figure 6-43 Third exposure, timing graph for set No. 4 
 
After testing set No. 4, temperature profiles revealed an increase in max temperature 

in a couple of particles, although with close examination of mean temperatures it can 
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be seen that the best response was with particle No.4. Results from third exposure, are 

given in Figure 6-43. 

 

 
Figure 6-44 X-ray radiogram for 
particle No. 2  
 

 
Figure 6-45 X-ray radiogram for 
particle No. 4 

Figure 6-44 and Figure 6-45 show textural differences between particle No. 2 and 

particle No. 4. The first particle is completely made of low density minerals while in 

the second particle a presence of higher density minerals can be identified. 
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Figure 6-46 Compared results for MC and TWA for the set No. 4 
 
By combining information from x-ray radiograms with calculated data from repeated 

testing in Figure 6-46 it is easy to associate a poor heating response with particle No. 

2 and a good heating response with particle No. 4. 
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6.13.5 Set No. 5: 
 
During repetitive testing of set No. 5 all timing graphs showed a presence of 

responsive particles to microwave heating. In Figure 6-47 the locations of the peaks of 

maximum and mean temperature from the ROI in positions 1, 5 and 10 clearly point 

to responsive particles. 

 

 
Figure 6-47 Third exposure, timing graph for set No. 5 
 

 
Figure 6-48 X-ray radiogram for particle No. 5 
 

Figure 6-48 shows a high concentration of very responsive minerals within particle 

No. 5 which are distributed along the particular plane located almost in the middle of 

the particle (refer to the Appendix M for the X-ray radiograms taken under different 

viewing positions). The presence of this kind of structure clearly displays why particle 

No. 5 had such a good response. 
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Figure 6-49 Compared results for MC and TWA for the set No. 5 
 
In Figure 6-49 it can be seen that the average ΔT max for particle No. 5 reached 34 oC 

during tests with TWA and 26 oC with multimode domestic oven. These results 

support earlier observations about influence of texture in forming temperature 

profiles. 

6.13.6 Set No. 6: 
 

 
Figure 6-50 Second exposure, timing graph for set No. 6 
 
Figure 6-50 shows quickly obtained heating rates from particles within the ROI 

exposed to microwave heating in real time. For this particular set, three particles were 
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randomly chosen for analysis using a SkyScan 1172 Cone Beam X-ray micro-

tomograph. 
 

 
Figure 6-51 X-ray radiogram 
for particle No. 2 

Figure 6-52 X-ray radiogram 
for particle No. 6 

Figure 6-53 X-ray radiogram 
for particle No. 11 

 

By acquiring x-ray radiograms which are given in Figure 6-51, Figure 6-52 and 

Figure 6-53 show that particles No. 2 and 6 have presence of mineral structures which 

is absent in the particle No. 11. 
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Figure 6-54 Compared results for MC and TWA for the set No. 6 
 

The absence of higher density mineral structure inside particle No. 11 caused small 

temperature difference as it can be seen in Figure 6-54. 
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6.13.7 Set No. 7: 
Individual testing of all eleven rock particles in the TWA and the heating response for 

set No. 7 can be assessed with the temperature graph presented in Figure 6-55. 

 
Figure 6-55 Second exposure, timing graph for set no.7 
 

 
Figure 6-56 X-ray radiogram for 
particle No. 2 

Figure 6-57X-ray 
radiogram for particle No. 
7 

Figure 6-58 X-ray radiogram 
for particle No.10 

As same as in the previous set, three randomly chosen particles were x-ray, and 

scanned to produce their radiograms, which provided information about the presence 

and distribution of mineral phases without destroying rock particles. 

 

Figure 6-56 shows a strong presence of mineral structure on the one side of the 

particle No. 2 very close to the surface. It shows that for this particular particle and 

similar to this one, there will be both a favourable and unfavourable side. It depends 

which side falls in front of the IR detector (during the second exposure it was the 

unfavourable side). Particle No.7 also displayed a presence of minerals with higher 

density while in particle No.10 there was none. 



Chapter 6- Study of QZ Ohio Ore Type 
_____________________________________________________________________ 

_____________________________________________________________________ 
 

241 

By observing data from the Figure 6-59, particles No. 2 and 7 can be identified as 

“hot” within this tested set of rocks. 
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Figure 6-59 Compared results for MC and TWA for the set No. 7  
 

6.13.8 Set No. 8: 
 

 
Figure 6-60 Third exposure, timing graph for set No. 8  
 
The timing graph for the last set tested as shown in Figure 6-60. The highest 

temperature change was detected with exposure of particles No. 3, 8 and 9. Four 

particles from this set were chosen for a closer study. 
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Figure 6-61 X-ray radiogram 
for particle No. 2  

 
Figure 6-62 X-ray radiogram for particle No. 3 

 

It was observed that particle No.2 is made of low density minerals shown in Figure 

6-61. By examining textural features, displayed in Figure 6-62, it appears that the 

particle No. 3 consists of dispersed grains of high density minerals similar in size and 

with even spatial distribution. Following their mean temperatures after repeated 

microwave testing in Figure 6-63 it is easy to associate particle No.2 with “cold” and 

No. 3 with “hot”. 
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Figure 6-63 Compared results for MC and TWA for the set No. 8 
 

The remaining chosen two were studied in greater detail. These are particle No. 8 and 

particle No. 9. The IR image during heating for particle No. 8 revealed a very 
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concentrated hot spot close to the edge of particle (as seen in the right image in  

Figure 6-36). In this particular IR image, the particle had fallen vertically and the hot 

spot was located at the left side. The particle was cut in the middle and the chosen half 

was polished and prepared for optical microscope analysis (results are given the left 

image in Figure 6-64). The transaxial view (from x-ray computed tomography 

presented in Figure 6-65) is analysed along with optical results and demonstrated that 

embedded minerals are identified as very responsive chalcopyrite. The matrix of this 

particular particle was also with a higher density, indicating higher content of biotite 

or feldspar interlocked with quartz. 

 

For the particle No. 11 the IR image revealed a spot on the surface of the particle with 

a much higher temperature gradient, identifying the presence of microwave 

responsive minerals. This spot can be seen in the right image of the Figure 6-66. It 

was decided to cut the particle in the middle close to the location of the hot spot. The 

coronal and sagittal view after computed tomographic reconstruction (shown in 

Figure 6-67) displayed a presence of closely sized inclusions which are nearly 

connected to resemble more vein-like structure. Only the top of that structure was 

exposed to optical microscopy identification which identified pyrite and chalcopyrite 

as dominant minerals. 
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• Scale min-max: 25oC-40 oC 
• From third exposure at the end of 12 s 

since the beginning of the heating 
 

Figure 6-64 Optical mineral identification and IR temperature profile for particle No. 8 from the 
set No.8 
 

 
Figure 6-65 X-ray computed tomography analysis for particle No. 8 from the set No.8 
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• Scale min-max: 20oC-65 oC 
• From third exposure at the end of 12 s 

since the beginning of the heating 
 

Figure 6-66 Optical mineral identification and IR temperature profile for particle No. 9 from the 
set No.8 
 

 
Figure 6-67 X-ray computed tomography analysis for particle No. 9 from the set No.8 
 

6.14 Summary 

After analysing eight sets under the same conditions, repetitive testing revealed 

similar results to the reproducibility study. The “cold” particles had undergone to a 
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slight increase in temperature while “hot” had a much greater temperature difference. 

This behaviour was also confirmed by observing a change of the surface temperature 

in real time. A sharp increase in temperature was associated with the presence of 

microwave responsive minerals. These minerals were additionally identified by data 

from x-ray tomography and optical microscopy. 

 

6.15 Determining a Temperature Threshold for the “Hot” Ore 
Particles 

 
The term “hot” is used to describe very responsive ore particles which have a high 

content of mineral phases which can be easily heated by microwave energy. A similar 

outcome was achieved through experimental testing with synthetic samples presented 

in Chapter 4. The synthetic particles with created and well defined mineral textures 

had noticeably a higher maximum and mean temperature difference compared to the 

rest of the particles which were created to resemble barren rock particles. From the 

results obtained it was confirmed that the temperature difference is strongly dependent 

upon the texture of the heating mineral phases and their proximity to the surface of the 

particle.  

 

To determine temperature threshold for the “hot” ore particles the best case scenario 

was used. This case was defined for the highest energy transfer reached in all repeated 

microwave exposures and the ΔT mean measured from the surface closest to the 

heating minerals. In other words, the particle was coupled at that time to receive the 

best power transfer during exposure while also having the most favourable orientation 

of the surface for the infrared temperature measurement. Maximum from all repeated 

exposures for ΔT mean was calculated and plotted with cumulative mass. This was 

carried out for both applicators as displayed in Figure 5-66. 

 

The barren ore particles were heated much more during multimode exposures. The 

better heating response was achieved when the ore particles were heated up in the 

group which increased overall volume of the load. During individual testing of the 

particles with the TWA, which was designed to respond to reflected power from 

introduced external influence, absence of the heating mineral phase caused a lower 

heating response.  
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The ore particles which had a responsive mineral phase were able to absorb more of 

applied power. This was caused by higher reflected power from the same ore 

particles, which was used by the TWA to achieve better coupling with automatic 

tuning. Eventually this resulted in a much higher heating temperature difference 

which was used as a strong indication of the mineral texture present. 
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Figure 6-68 Temperature threshold for the “hot” ore particles from the QZ Ohio 
 
 

From these two exposures the temperature threshold which is defined by bulk 

properties of barren ore particles can be determined as shown Figure 6-68. It can be 

considered as a base line for the surface temperature variability caused by the matrix 

material and at the same time points to the beginning for the scavenging process. The 

particles which reach higher temperatures indicate the presence of mineral phases 

within the matrix material as an additional heating source. 
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Figure 6-69 Determining temperature threshold for the “hot” ore particles 
 
For this particular ore type the target of the scavenging process is to identify and 

select “hot” particles. To achieve that, a minimum of 30% of the feed mass will have 

to be selected to be economically justifiable. The temperature threshold was obtained 

as a highest temperature change closest to the predetermined mass percentage for the 

sorting in multimode oven. In Figure 6-69 , ΔT2.represents this threshold and for the 

value of ΔT2=2.96oC, 30.17% of the feed mass can be rejected. For the same 

percentage temperature threshold using TWA, will be ΔT3=3.37 oC.  

 

The temperature threshold ΔT1 has to be calculated only from the particles which were 

hot during testing in both types of microwave applicators. For this laboratory testing 

identification of “hot” particles was achieved by sorting particles within ΔT2 threshold 

by their max ΔT mean. Data before sorting and after sorting can be found in Appendix 

M. The overlapping “hot” particles in both types of cavities are shown in Table 6-13. 

 

By implementing the percentage for the overlapping hot particles from the TWA 

cavity on the 30.17% of the feed mass, new experimental value for the temperature 

threshold can be determined as ΔT1=3.12oC for the 24.58% of the feed mass. 
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Table 6-13 Overlapping particles in both types of cavities 

Set number Multimode cavity  
(particle No.) 

TWA (particle 
No.) 

Number of 
overlapping 
particles 

1 5, 6, 7 5, 7 2 
2 3, 5, 7, 9, 11 3, 5 2 
3 7 4, 7 1 
4 1, 4 1, 4 2 
5 5, 8, 9, 10 1, 5, 8, 10 3 
6 2, 6, 9, 10 2, 6, 8, 9, 10 4 
7 2, 7 2, 7, 10 2 
8 3, 4, 5, 6, 8, 9 2, 3, 4, 5, 6, 8, 9 6 
Overall No. of the 
particles in 30% of 
mass 

28 27 22 

% overlapping 
from the group 

78.57 81.48  

 

6.16 Summary 

The results of controlled laboratory testing on the eight sets of rocks clearly 

demonstrated that combining temperature curves from microwave exposure in two 

applicators can be used to set a threshold for the scavenging process. The results also 

demonstrated that majority of the tested particles (about 60%) exhibited a slight 

increase in temperature change, which is in agreement with experimental results from 

the first step of experimental investigations. 
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General Summary for Low Grade Quartzite Ore – QZ OHIO (16) 
 
To address the goal from the beginning of this chapter, which is to detect rock 

fragments with minerals which interact with microwaves, low grade quartzite ore “QZ 

Ohio” was tested in two steps. The first step involved MLA analysis, repeatability and 

separability testing followed by flotation testing. The major findings from the first 

step of investigation can be summarised as follows: 

 

The results of the ore modal mineralogy presented through MLA investigation show 

that the QZ Ohio ore contains the presence of good absorbers of microwave energy 

such as magnetite, pyrite and chalcopyrite. These minerals are usually dispersed 

within the matrix made of a very large content of quartz interlocked with biotite, 

feldspar and sometimes chlorite. The presence of mineral grains (mostly chalcopyrite 

and pyrite) larger than 200 µm is detected. In some tested samples clustered grain 

forms of chalcopyrite are present in several different locations. 

 

The repeatability investigation clearly demonstrated that the existence of very uniform 

and very transparent matrix (which was tested in this case of QZ Ohio ore type) had 

an effect of increasing repeatability. Particles which had responsive minerals were 

easily reheated and reached similar temperatures which caused lower values of 

standard deviation and at the same time contributed to the repeatability of microwave 

heating of the overall population. 

 

With temperature separation curves, an ideal separation could scavenge 30% of the 

mass with a gain of 50% of the copper for the Delta Max T temperature change above 

2.6 oC. The baselines for both metals of economic interest are at mineralised waste 

(values for the bulk properties in the obtained ore type 0.25% for Cu and 1000ppm for 

Mo) which would probably be stockpiled and not processed. However, the sorted 

products would be above a notional cut-off grade of 0.35% Cu and could contribute to 

metal production. 

 

The flotation performance of both the hot and medium products is improved in line 

with the grade improvement. Two grinding times used were 10 and 15 min. The 
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copper results clearly show that the shorter (coarser) grind time delivers much better 

improvements in recovery in the hot and medium fractions (these fractions are of  

interest because the valuable minerals are located there) when compared with the cold 

fraction. 

 

In the second step of the investigation the data collected was used to discuss natural 

separability as a function of mineral texture which causes selective heating. The 

results of controlled laboratory testing also clearly demonstrated that combining 

temperature curves from microwave exposure in two applicators it can be used to set a 

threshold for the scavenging process without destroying rock particles. For the 

temperature threshold ΔT1=3.12oC (determined from mineral texture as in contrast to 

assayed metal content) 24.58% of the feed mass can be selected having a mineral 

texture which causes selective heating. 
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7 Chapter 7- Conclusions and 
Recommendations for Future Work 

_____________________________________________________________________ 

7.1 Introduction 
 

Research developments in the last two decades have highlighted the potential for 

microwave heating to provide an important step change in ore processing. Microwave 

selective heating used for sorting is still however, not used commercially in the 

mining and mineral industry and it belongs to a class of technologies which are still 

under new development and evaluation. This thesis investigates the conditions under 

which this process is technically effective and can potentially move to the next stage. 

 

A detailed investigation was conducted to understand the reasons for selective heating 

of ore particles and how infrared sensing can be used as an identification technique to 

discriminate particles. In this research, it is hypothesized that: “The texture in addition 

to composition of minerals within ore particles, especially microwave absorbing 

minerals, has a significant effect on the creation of the temperature profiles which are 

used to evaluate selectivity and potential for the mineral sorting.” To test the 

hypothesis, significant sets of experiments were conducted to investigate in detail 

factors such as: particle shape and proportion, mineral composition and most 

importantly the textures of the minerals which have tendency to heat quickly when 

exposed to microwave energy. In the earlier reviewed studies, (including the study for 

this thesis), it was found that copper sulphide bearing minerals respond well to 

microwave heating. If these minerals are present in ore particles with less responsive 
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gangue minerals (such as quartz, feldspar and calcite) the overall surface temperature 

will increase enabling their identification with infrared detection. The sorting of 

microwave responsive minerals from two types of complex ores from Bingham 

Canyon Mine gave very promising results. The main findings and derived conclusions 

of this research are summarised in the following section. 

7.2 Major Findings and Conclusions 
 
Findings from synthetic particle analysis 

 
In this part of the study the effects of different factors on microwave heating of ore 

particles were considered. These include the influences of dielectric and thermal 

properties of minerals, applied power, and textural features such as absorbent phase 

grain size and absorbent phase dissemination. The aim of this part of the study was to 

better understand the influences of these factors on the heating rates and temperature 

profiles of the ore particles. For this purpose the synthetic ore particles with defined 

shapes and known properties were engineered and tested. The resonant cavity used for 

heating, proved to be suitable to measure bulk dielectric properties of synthetic rock 

particles. The difference in dielectric properties between synthetic samples (cubes) 

used as tracers and the samples without minerals was easily measured. 

 

The results showed that barren synthetic particles had better heating response when 

they were heated up in a group with other particles, which increased the overall 

volume of the load during exposure in a multimode cavity. In addition, individual 

testing with a TWA (which was designed to respond to reflected power from 

introduced external influence) showed that an absence of a heating mineral phase 

caused lower heating response. The synthetic particles which had responsive mineral 

phase were able to absorb more power during individual testing with a TWA because 

of better coupling and therefore power transfer during their testing. Eventually, this 

resulted in a much higher heating temperature difference compared to exposure in a 

multimode oven which can then be used as a strong indication of present mineral 

texture. 
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By comparing data from both exposures, it can be concluded that synthetic particles 

with created mineral textures had noticeably higher maximum and mean temperature 

differences on their measured surfaces. They were compared with the rest of the 

particles which were created to resemble barren rock particles. These results lead to 

the conclusion that by exposing synthetic particles in these two different applicators it 

is possible to set a temperature threshold which is defined by bulk properties of barren 

synthetic particles. This temperature threshold can be considered as a base line for the 

surface temperature variability caused by the matrix material (in the case of ore 

particles variability caused by the composition and texture of less microwave 

responsive gangue minerals). The particles which reach higher temperatures indicate a 

presence of the mineral phases as additional heating source within the matrix material. 

Previously reviewed studies of microwave assisted liberation showed that ores with 

coarser grain sizes (of microwave reactive minerals) respond better to microwave 

treatment having higher extent of damage between mineral phases. For microwave 

assisted sorting the results from synthetic samples also demonstrated that the 

proximity of responsive mineral phase to the particle surface is very important. All 

tracers were made with same mineral content and the tracer which had the mineral 

grains closest to its surface had the highest temperature difference. 

 

Findings from particle analysis by image analysis 

 

When synthetic samples were tested they were created to have the same shape and 

proportions to avoid any additional factors which could influence the temperature 

profiles under the investigation. Two ore types supplied from the Bingham Canyon 

Mine were chosen for testing and it was important to determine how much the shape 

and proportion will vary within the boundaries given for specific size chosen for 

microwave exposure. In some cases for a specific ore type the shape or proportion can 

be dominant, which can influence temperature profiles. By comparing shape factors 

for the same size -22.4+19.0 mm of QZ Ohio and LRO data showed that LRO ore was 

slightly larger than QZ Ohio, although they had a very similar distribution between 

the smallest and the largest particle within analysed population. Also, QZ Ohio had 

particles which were slightly elongated compared to LRO particles. In conclusion, it 

can be stated that there is no significant difference in shapes and proportions between 
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them for chosen testing size and that temperature profiles will be more dominated by 

their mineral texture and composition. 

 

Findings for LRO ore type 

 

The results of the ore modal mineralogy summarised through MLA investigation 

revealed that the LRO ore contains significant amounts of good absorbers of 

microwave energy such as pyrite and chalcopyrite. The particles also exposed a 

substantial variation in distribution of minerals and mineral grain sizes. The presence 

of the garnet was a strong indicator of skarn ore. The major gangue minerals 

(relatively transparent to microwave energy) were: quartz, feldspar and calcite with 

varying content of garnet, amphibole and biotite. 

 

The -22.4 + 19.0 mm size fraction of the Low Recovery Ore was tested for 

repeatability and separability using multimode excitation in a domestic microwave 

oven. Sixty-six particles were tested up to six times in different orientations. The 

standard deviation from the repeatability study for the LRO ore type was presented 

through cumulative mass percentage. The results indicated that cold particles were 

clearly distinguishable with a much smaller standard deviation. From the analysed 

results it can be concluded that there is a substantial variation in content and 

distribution of good absorbers such as pyrite and chalcopyrite contributed to a higher 

standard deviation for a majority of the rock particles.  

 

All particles were sent for assaying and along with obtained content of copper, 

separation temperature curves were created. They were used to assess the best 

separation strategy. Temperature threshold measuring Delta MAX (or change in 

maximum temperature during heating period and after 5 seconds) gave the most 

promising option. For the Delta MAX with 30% of mass having standard deviation up 

to 5 oC temperature change of 20 oC would reject 30% mass with an 18% loss of 

overall copper. Analysed data showed that this particular ore type is a good candidate 

for a case where microwave assisted sorting can be used for pre-concentration 

process. 
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Furthermore, testing was expanded to a larger population of rock particles by a factor 

of three compared to a previous reproducibility study. In this case temperatures were 

measured only from one side (with labels facing infrared detector) as opposed to the 

reproducibility study, where mean values from measurements with labels “up” and 

“down” were taken. The temperature threshold measuring Delta MAX temperature 

change of 16 oC would reject 30% mass with a 16% loss of overall copper. It can be 

stated that for the Delta MAX temperature threshold, in the larger population study, 

was lower. This can be partially explained by inefficiency in operation of the defined 

“theoretical” sorter and partially by standard deviation from the reproducibility study. 

A threshold of 20 oC from reproducibility study was determined for 30% of mass with 

standard deviation up to 5 oC, so threshold of 16 oC is within 20 oC± 5 oC defined for 

the same 30% of mass from reproducibility testing. 

 

The Low Recovery Ore contained significant amounts of good absorbers of 

microwave energy, such as pyrite and chalcopyrite. This indicated that the test can be 

carried out with much less energy required. The power applied in the second step of 

experimental investigation was reduced from 1.2 kW to the 600 W. It can be stated 

that with the lower applied power lower temperature threshold can be placed for ore 

types which have more responsive mineral phases. 

 

To determine temperature threshold for the “cold” ore particles which were defined 

by choosing a pre-concentration process, experimental investigation was continued by 

heating ore particles in two types of applicators. By following experimental 

methodology, validated on synthetic samples, the data was collected and used with the 

objective to create two temperature curves and discuss natural separability as a 

function of mineral texture which causes selective heating. For the 600 W of applied 

power temperature threshold of ΔT1=4.90 oC would reject 20.80 % of the feed mass 

defined as “cold” ore particles. To achieve similar economically valuable percentage 

from the first step of investigation the temperature threshold of ΔT1=6.90 oC would 

reject 31.20 % of the feed mass with the loss of 10.40 % ore particles with responsive 

texture. 
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From both steps of experimental investigations, it can be concluded that Low 

Recovery Ore can be sorted by selecting a pre-concentration process. Economically 

justifiable 30 % of mass feed can be sorted by using microwave heating of ore 

particles and classification by infrared detector. 

 

Findings for QZ Ohio ore type 

 

The mineralogical characterisation performed by MLA upon QZ Ohio ore showed the 

presence of mineral phases such as magnetite, pyrite and chalcopyrite. All these 

detected minerals are good absorbers of microwave energy. The dimensions of 

mineral grains (mostly chalcopyrite and pyrite) were estimated to be larger than 200 

µm. In some tested samples clustered forms of chalcopyrite grains were present in 

several different locations. These minerals were usually dispersed within the matrix 

made of very large content of quartz interlocked with biotite, feldspar and sometimes 

chlorite.  

 

The repeatability investigation clearly presented that the existence of very uniform 

and very transparent matrix, which was found in this case of QZ Ohio ore type, had an 

effect by increasing repeatability. Particles which had responsive minerals were easily 

reheated and reached similar higher temperatures. This caused smaller values for 

standard deviation and at the same time contributed to the repeatability of microwave 

heating of overall tested population. 

 

From the repeatability investigation all particles were sent for assaying and with the 

obtained content of copper, separation temperature curves were created. With 

temperature separation curves, an ideal separation could scavenge 30% of the mass 

with a gain of 50% of the copper for the Delta Max T temperature change above 2.6 

oC. Within the scavenged mass, 20% mass can be upgraded to have copper content of 

0.35% and more and contribute to metal production. The baselines for both copper 

and molybdenum within provided ore was at the values of mineralised waste (0.25% 

for Cu and 1000 ppm for Mo). It can be stated that the for this ore type sorting as a 

scavenging process could achieve with an economic upgrade.  

 



Chapter 7-Conclusions and Recommendations for Future Work 
_____________________________________________________________________ 

_____________________________________________________________________ 
 

258 

Experimental investigation extended with flotation testing under controlled operating 

conditions. The objective was to investigate the content of copper after sorting the QZ 

Ohio ore in three selected fractions: hot, medium and cold. The flotation performance 

of both the hot and medium products was improved in line with the grade 

improvement. Two grinding times were used 10 and 15 min. The copper results show 

that the shorter (coarser) grind time delivers much better improvements in recovery in 

hot and medium fractions (these fractions are of our interest because valuable 

minerals are located there) when compared with the cold fraction. 

 

In the second step of the investigation the data collected was used to discuss natural 

separability as a function of mineral texture which causes selective heating. The 

results of controlled laboratory testing clearly demonstrated that combining 

temperature curves from microwave exposure in two applicators can be used to set a 

threshold for the scavenging process without destroying rock particles. For the 

temperature threshold ΔT1=3.12oC (determined from mineral texture as in contrast to 

assayed metal content) 24.58% of the feed mass can be selected having mineral 

texture which causes selective heating. From both stages of the experimental 

investigations, it can be concluded that QZ Ohio ore can be sorted by a selecting 

scavenging process. 

 

Summarising overall results it can be stated: both approaches of microwave heating 

(the first with multimode cavity and the second with waveguide applicator) in 

conjunction with infrared detection can be applied for different ore types. Every ore 

type will have its own separation curve which will be a function of applied power, 

mineral composition and mineral textures.  

7.3 Recommendations for Future Work 
 

A domestic multimode oven used for this experimental research could be upgraded 

with an industrial multimode oven which can be engineered to allow automation of 

the particle preparation and data collection during and after microwave exposures. 
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With a similar approach of measuring surface temperatures, measuring dielectric 

properties of particles in sets and individually can be performed. The correlation 

with their heating responses can be further investigated in this manner. 

 

Further automation during the detection step could include inspection of ore particles 

from multiple angles to complete the data for temperature profiles. By using multi 

sensors founded to simultaneously detect several features, having different detection 

principles, the efficiency and accuracy of the sorting process can be improved and the 

possibility to discriminate between copper bearing and non-copper bearing minerals 

can be accomplished. 

 

Once the best recovery-grade ratio is determined (for a good ore candidate) larger-

scale/pilot tests should be conducted. Then, after the prediction of  “theoretical” sorter 

performance, the “real” sorter performance can be accurately predicted when 

extensive test work at set throughput on full sized sorting machines, using a 

representative feed properly crushed and screening are performed. 

 

The combination of electromagnetic and thermal processes could be modelled very 

effectively using a “multi-physics” FEM package such as COMSOL or ANSYS. This 

modelling approach can be used to study virtual ore type which can be then associated 

with a realistic ore. The modelling results of the virtual ore type then can be used to 

mathematically interpolate and predict best operating conditions for the real ore. 
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A. Appendix A 

Implementation of the Engineering Design for the Travelling Wave 
Applicator 
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This appendix is dedicated to provide more details regarding the design of the 

travelling wave applicator used in the experiment. Components used to build 

applicator came from different manufactures (Sairem, Festo, Ocean Controls...) and 

the main problem was to build universal controlling platform. For that purpose 

LabView graphical programming environment was used. It offered integration of 

hardware devices, data processing, data storing and visualisation of data at the same 

time. Although LabView graphical programming environment is using intuitive 

graphical icons and wires that look like a flowchart which is easy to follow, some 

knowledge of graphical or LabView programming is required for this section. 

The Figure App. A-1 shows project structure used to organise LabView code and 

virtual instruments (VI). Three groups can be seen: state VI’s, controls and sub VI’s 

which are all dependable by main VI’s. 

 

 
Figure App. A-1 Project structure used to organise LabView code 
Main State Machine VI has a structure of state machine which code can be seen in 

Figure App. A-2 and it is set to initial or default state. Depending on inputs, states will 

change accordingly to inputs and proper state sub VI will be executed. 
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Figure App. A-2 Initial Default state 

In Figure App. A-3 user interface which is designed to allow easy manipulation of 

parameters before testing can be seen. In the top right side, we can see temperature 

display for maximum, mean and minimum temperature from region of interest (ROI) 

and bottom display for forward and reflected power. ROI is defined through control 

window positioned on the left bottom side. 

 
Figure App. A-3 User interface build for main state machine code 

 
In Figure App. A-4 it can be seen that controls for automatic tuner, microwave 

generator and user interface for state machine are in same place for convenient usage 

by the operator. 
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Figure App. A-4 Microwave control system with LabView user interface control 
 
Following order of the executions in the state machine presented in Figure 3-35 in 

Chapter 3 adequate hardware and supporting LabView code will be explained. 

After initial state set parameters we can see that next state is particle holder to 

waveguide. The Figure App. A-5 shows the particle holder which is here in “flush” 

position used to sort particles to hot or cold group. This state is set as default when 

testing is started. In order to hold the particles it needs to be moved up in second 

position which is in the middle of the applicator. 

 

 
Figure App. A-5 Particle holder made out Teflon® 
 
Particle holder is positioned up or down by servo motor manufactured by FESTO. 

This motor is controlled by its own FESTO controller which operates on 24V and 

requires four bit input for control. In Figure App. A-6 we can see code used to 



Appendices 
_____________________________________________________________________ 

_____________________________________________________________________ 
 

274 

generate those four bits to FESTO controller and in Figure App. A-7 we can see the 

FESTO controller. Problem of difference between supplied voltage from LabView 

DAQ card and required 24V for FESTO  was solved by using relays manufactured by 

Ocean Controls. 

 
Figure App. A-6 Motor control 
 

 
Figure App. A-7 FESTO controller connected to LabView DAQ card used to run servo motor 
 
Next state is feeding particles to a travelling wave applicator by two serial vibratory 

feeders. Those feeders are presented in Figure App. A-8 and the code is given in 

Figure App. A-9. 

 



Appendices 
_____________________________________________________________________ 

_____________________________________________________________________ 
 

275 

 
Figure App. A-8 Two vibratory feeders with different speeds used to supply continuous flow of 
particles one by one 
 

 
Figure App. A-9 Vibration Feeder control 
 
This state is conditioned by signal created from IR sensor manufactured by FESTO. 

Spike of voltage is generated when object breaks the infrared beam. State is looping 

which means that both vibratory feeders are working and moving particles toward 

funnel with IR sensor. Once the particle breaks the beam feeders are stopped and 

condition to move to following state is enabled. Funnel is made to guide fall of 

particles as much as possible to the middle of particle holder which is important for 

repeatability in the experiment. 
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Figure App. A-10 Guiding funnel with IR sensor  
 
Integration of IR sensor, funnel and vibratory feeders made possible to test particles in 

sequence and treat them one by one. Speed of vibration had to be tested before 

microwave testing and tuned to specific particle size or ore type.  

 

When particle is positioned in applicator exposure to microwave power is defined by 

previously set parameters. This state is executing multiple sub VI’s which are used to 

calculate temperatures from region of interest and collect and store data. Figure App. 

A-11 shows LabView code for expose rock to microwave state. Initialise System, 

Screenshot and Calculate temperature are used to communicate with IR camera 

(manufactured by CEDIP). They are used to obtain image, apply region of interest and 

calculate temperatures. Microwave test and Reflected power readings are sub VI’s 

which are used to perform quick calibration and readings of forward and reflected 

power. Those sub VI’s are given from Figure App. A-12 to Figure App. A-16 

respectively. 

 
Figure App. A-11 Expose rock 
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Figure App. A-12 Initialise System 
 

 
Figure App. A-13 Screenshot  

 
Figure App. A-14 Calculate temperature 
 

 
Figure App. A-15 Microwave test 
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Figure App. A-16 Reflected power readings  
 
After microwave exposure particle is lowered down from applicator to flush position. 

In this state compressed air is used to flush particle to the cold or the hot group by a 

compressed air using solenoid valves (manufactured by FESTO). Figure App. A-17 

shows code used for this state.  

 
Figure App. A-17 Flush rock 

In the last state, before new cycle starts again any residual heat is removed by cooling 

the platform from. Teflon® is used for particle holder because it has low thermal 

conductivity and temperature increase after contact with heated particle is reduced by 

using forced convection cooling with compressed air. Figure App. A-18 shows the 
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code for that state. Air was used by opening cold and hot flush at the same time for set 

period. 

 
Figure App. A-18 Cool platform 
 

In Figure App. A-19 National Instruments DAQ NI USB-6221 card can be seen 

which was used for the acquisition of data and execution of LabView code during 

experiment. 

 
Figure App. A-19 National Instruments DAQ NI USB-6221 card 
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B. Appendix B 

Recommendations and Considerations for Calculating Coefficient 
of the Heat Transfer for the Particles on the Conveyor Belt 
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After heating in microwave applicators particles will fall on conveyor belt which is 

used to transport them to a location for further separation according their temperature.  

 

 
Figure App. B-1 Conveyor belt for transporting particles from microwave applicator to sorting 
location. 
As it can be seen on Figure App. B-1 particles will spend certain amount of time on 

conveyor belt and they will be exposed to cooling effect of surrounding air.  

 

 
Figure App. B-2 Under the premise that speed of conveyor belt is equal to a speed of air over 
particles and conveyor belt  
Rock particles are losing heat over their surfaces through conduction and convection. 

In most cases, depending on particle shape, surface area for convection is much larger 

than surface for conduction, and why it is necessary to calculate heat transfer 

coefficient.  
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Heat transfer coefficient is used in calculating the heat transfer, between a fluid and a 

solid and it can be calculated from a dimensionless Nusselt number. 

The Nusselt number is the ratio of convective to conductive heat transfer across 

(normal to) the boundary. 

 

fk
hL =Nu  

Where: 

• L = characteristic length 

• kf = thermal conductivity of the fluid 

• h = convective heat transfer coefficient  

The Nusselt number is the function in this particular problem of two dimensionless 

numbers, Reynolds number (Re), and Prandtl number (Pr). 

 

The Reynolds number Re is a dimensionless number that gives a measure of the ratio 

of inertial forces over viscous forces. In boundary layer flow over a flat plate, 

experiments can confirm that, after a certain length of flow, a laminar boundary layer 

will become unstable and become turbulent. This instability occurs across different 

scales and with different fluids, usually when, 5105Re ⋅≈x where x is the distance 

from the leading edge of the flat plate, and the flow velocity is the 'free stream' 

velocity of the fluid outside the boundary layer. 

νμ
ρ LULU

x ==Re  

Where: 

• U is the mean fluid velocity (m/s) 

• L is a characteristic linear dimension, (travelled length of fluid, or hydraulic 

radius when dealing with river systems) (m) 

• μ is the dynamic viscosity of the fluid (Pa·s or N·s/m² or kg/m·s) 

• ν is the kinematic viscosity (ν = μ / ρ) (m²/s) 
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• is the density of the fluid (kg/m³) 

The Prandtl number Pr is a dimensionless number approximating the ratio of 

momentum diffusivity (kinematic viscosity) and thermal diffusivity. 

k
c pμ

α
ν
==Pr  

Where: 

• ν : kinematic viscosity, ν = μ / ρ, (m2/s) 

• α : thermal diffusivity, α = k / (ρcp), (m2/s) 

• μ : dynamic viscosity, ( Pa s) 

• k: thermal conductivity, ( W/(m K) ) 

• cp : specific heat, ( J/(kg K) ) 

In order to determine Re number average velocity over the surface of particles needs 

to be determined. Re number will tell us whether the flow is laminar or turbulent. 

Certain assumptions are taken in this calculation. 

Assumptions 
In Figure App. B-3 we can see how shapes of particles of particular size (-22.4+19.0 

mm) can be different. Passing through air on conveyor belt all this different shapes 

will interact in a different way with air, so choosing some average size and shape is 

favourable. Simplification of their shapes will simplify solution to the problem. 

 

 
Figure App. B-3 Shapes of real particles 
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• Cubes with side of a=22.4 mm were chosen to represent simplified realistic 

particles. Bottom of the cube is not exposed to the fluid and that side is 

considered to exchange heat over conduction.  

• Sides of cubes are represented with average temperature 

• Shape of cube is represented with flat surfaces so model for forced convection 

over flat surfaces is chosen 

• Heat flux is constant over surfaces in a very short amount of time which 

correspond with previous assumption with average temperature on the surface 

• Velocity of air is equal to velocity of conveyor belt. Speed of air is set to 

U=5m/s.  

Numerical modelling of air flow 
Air flow over the particles and conveyor belt was simulated with CFX form Ansys. 

CFX is a commercial Computational Fluid Dynamics (CFD) program, used to 

simulate fluid flow in a variety of applications. Speed of air is set to U=5m/s.  

Shear Stress Transport (SST) turbulence model was used because of its highly 

accurate predictions of flow separation.  

To take full advantage of SST air as an ideal fluid is used. Pressure is set to 1 atm , 

temperature is set to 27 ºC and air is considered to be dry.  

Geometry and spacing between particles considerations 
For all cases, assumption is taken. First particle is not in the shadow of other particles, 

it is on distance long enough so that interaction of others particles with fluid is 

minimised before.  

Simple labelling of sides is introduced for better explanation of average velocity on 

them. 

Three consecutive particles evenly spaced-Case No. 1 
 

 
Figure App. B-4 Case No.1 
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Figure App. B-5Velocity vector plotted over particles for case No.1 
 

 
Figure App. B-6 Velocity vector plotted in horizontal plane equal to the height of particles for 
case No.1 
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Figure App. B-7 Velocity streamline plotted over particles for case 1 
 
This case simplified in Figure App. B-4 investigates three consecutive particles 

evenly spaced. Space between particles is equal to cube side. Table App. B-1 shows 

the average velocity change on sides caused by geometry and spacing between 

particles. 
Table App. B-1 Velocity change caused by geometry and spacing between particles for the casse 
No. 1 
Particle 

Side 
A1B1 B1C1 C1D1 Sideways (in this model, for 

both sides) 

First 2/3U 0.5U 0 2/3U 
Particle 

Side 
A2B2 B2C2 C2D2 Sideways (in this model, for 

both sides) 

Second  1/3U 1/3U 0 2/3U 
Particle 

Side 
A3B3 B3C3 C3D3 Sideways (in this model, for 

both sides) 

Third  1/3U 0.5U 0 2/3U 
 
It can be seen that particle in the middle experience the highest velocity decrease. 

Creation of velocity dead zones is observed on all particles C1D1, C2D2 and C3D3 

correspondingly. 

By observing velocity streamlines in Figure App. B-7 we can see that first particle is 

creating interaction zone approximately equal to 1.5 cube side in radius. 



Appendices 
_____________________________________________________________________ 

_____________________________________________________________________ 
 

287 

Two particles on the distance equal to 3a-Case No. 2 
 

 
Figure App. B-8 Case No.2 
 

 
Figure App. B-9 Velocity vector plotted over particles for case No.2 
 
 

 
Figure App. B-10 Velocity vector plotted in horizontal plane equal to the height of particles for 
case 2 
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Figure App. B-11 Velocity streamline plotted over particles for case 2 
 
The case No.2 simplified in Figure App. B-8By investigates two consecutive particles 

and much longer distance between them, this can represent case where time delay 

happened or one of the particles is missing, in a case of evenly spaced particles. Space 

between particles is equal to 3a. Table App. B-2 shows the average velocity change 

on sides caused by geometry and spacing between particles. 
Table App. B-2 Velocity change caused by geometry and spacing between particles for the casse 

No. 2 

Particle 
Side 

A1B1 B1C1 C1D1 Sideways (in this model, for 
both sides) 

First 2/3U 0.5U 1/3U 1/3U 
Particle 

Side 
A2B2 B2C2 C2D2 Sideways (in this model, for 

both sides) 

Second  0.5U 0.5U 0 2/3U 
 
It can be seen that increased distance caused decay of death zone on the first particle 

and higher recirculation of fluid in a space between them. On the second particle 

increase on both sides A2B2 and B2C2 is noticeable while the side C2D2 is the only 

one with velocity death zone in this case. 

By observing velocity streamlines in Figure App. B-10 we can see that first particle is 

creating interaction zone which is not that different from case No. 1. 
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Smaller particle in front of larger particle-Case No. 3 
 

 
Figure App. B-12 Case No.3 
 

 
Figure App. B-13 Velocity vector plotted over particles for the case No.3 
 

 
Figure App. B-14 Velocity vector plotted in horizontal plane equal to the height of the smallest 
particle for the case No.3 
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Figure App. B-15 Velocity streamline plotted over particles for the case No.3 
 
This case simplified in Figure App. B-12 investigates two consecutive particles where 

height of the first particle is half of the height of second one or a/2. Space between 

particles is equal to a. Table App. B-3 shows the average velocity change on sides 

caused by geometry and spacing between particles. 
Table App. B-3 Velocity change caused by geometry and spacing between particles for the casse 

No. 3 

Particle 
Side 

A1B1 B1C1 C1D1 Sideways (in this model, for 
both sides) 

First 1/3U 1/3U 1/3U 1/3U 
Particle 

Side 
A2B2 B2C2 C2D2 Sideways (in this model, for 

both sides) 

Second  0.5U 1/3U 0 2/3U 
 

It can be seen that by reducing height of first particle in half, velocity dead zone on 

side B1C1 is disappearing and that there is almost uniform velocity on all sides of 

particle. 

On the second particle increase on side A2B2 is noticeable while the biggest increase 

is sideways. 

By observing velocity streamlines in Figure App. B-15 we can see that first particle is 

creating interaction zone which is much smaller than the second particle. 
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Larger particle in front of smaller particle-Case No. 4 
 

 
Figure App. B-16 Case No.4 
 

 
Figure App. B-17 Velocity vector plotted over particles for the case No. 4 
 

 
Figure App. B-18 Velocity vector plotted in horizontal plane equal to the height of smallest 
particle for the case No. 4 
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Figure App. B-19 Velocity streamline plotted over particles for the case No. 4 
 
This case simplified in Figure App. B-16 investigates two consecutive particles where 

height of the second particle is half of the height of first one or a/2. Space between 

particles is equal to a. Table App. B-4 shows the average velocity change on sides 

caused by geometry and spacing between particles. 
Table App. B-4 Velocity change caused by geometry and spacing between particles for the casse 

No. 4 

Particle 
Side 

A1B1 B1C1 C1D1 Sideways (in this model, for 
both sides) 

First 2/3U 1/3U 1/3U 1/3U 
Particle 

Side 
A2B2 B2C2 C2D2 Sideways (in this model, for 

both sides) 

Second  0U 0U 0 1/3U 
 
It can be seen that by reducing height of second particle in half place second particle 

entirely in velocity dead zone of first one. Velocity on side C1D1 is increased slightly 

caused by some recirculation from a top edge of side A2B2. 

Observing velocity streamlines in Figure App. B-19. It can be seen that first particle is 

creating interaction zone which is similar to case No. 1. 

Analysis  
Taking all cases in consideration, we can see that in average on overall surfaces of 

particles, there is decrease of velocity for about 50% except in case No. 4 where 

second particle was in velocity dead zone of first particle. 
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Using Table A-C-5 from (Thomas 1999) we obtain data for air at 27 ºC: 

ρ= 1.18 (kg/m³) 

ν = 1.57 x 10 -5 (m2/s) 

μ =1.85 x 10 -5 (Pa s) 

k = 0.0262 (W/(m K) ) 

Pr=0.708 

Nu number is dependent on location and whether the flow is laminar or turbulent. To 

see what kind of flow we have, we need to calculate Re number. 

Using half of air speed which is taken as an average speed on almost all surfaces on 

particle, Re number is calculated. 

==
ν

aURe 3.566 x 103 

Comparing value to criteria for flow over flat plate Re<1 x 105 which tells us that flow 

is definitely laminar. Using Equation 8-92 from Thomas (1999) for laminar boundary 

layer flow with uniform wall flux heating Nu number can be approximated with: 

3
1

2
1

PrRe45.0=Nu  for condition 0.464≤Pr which is met in this case. 

Nu=23.953, now we can calculate convective heat transfer coefficient from
fk

hL =Nu .  

Average convective heat transfer coefficient is h=28.01 W/(m2ºC) 

Recommendations 

Optimum spacing  
In order to prevent heat dissipation into surrounding fluid, space between particles 

should not exceed more than one length of cube side used to simplify particle 

geometry. 

Average convective heat transfer coefficient 
Assumption is used that heat flux is constant over the flat surface; this is closer for a 

case of highly disseminated texture of minerals which are heated by microwave 

energy. For vein like or more concentrated texture of minerals which will have more 

localised heating higher errors can be expected. 



Appendices 
_____________________________________________________________________ 

_____________________________________________________________________ 
 

294 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

C. Appendix C 
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The Calibration of the Images 

Vision Assistant can calibrate images containing linear, perspective, or nonlinear 

distortions in order to return accurate measurements. The Image Calibration step 

calibrates images so that inspection results are returned in real-world units. 

Calibrating an image is a two-step process: 

1. The first is an offline step during which you specify the type of calibration, the 

calibration parameters, and the real-world unit in which you want to express 

measurements.  

2. The second step of the calibration process applies the computed calibration to 

the image during the inspection process. This step is represented in the 

inspection as the Image Calibration step. 

Vision Assistant supports three types of calibration, which depend on the position of 

the camera in relation to the object under inspection and the type of lens used in the 

application: Simple Calibration, Calibration Using User-Defined Points, and Grid 

Calibration.  

In this measurement a digital camera was placed directly above the centre of the 

background. Additional light was applied to avoid creation of shadows and a flash 

from the digital camera was used to make a clear contrast between the background 

and the particles. The digital camera was placed 65 cm perpendicular to the 

background plane. A simple calibration was chosen to create the X-Y coordinate 

system and input values which will convert pixels into real word dimensions. In 

Figure App. C-1 the image calibration with X-Y coordinate system can be seen. 
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Figure App. C-1  Image calibration  

Colour Plane Extraction 

It extracts one of the three colour planes (Red, Green, Blue, Hue, Saturation, 

Luminance, Value, and Intensity) from an image. 

• RGB – Red Plane—Extracts the red plane from an RGB image.  

• RGB – Green Plane—Extracts the green plane from an RGB image.  

• RGB – Blue Plane—Extracts the blue plane from an RGB image.  

After colour plane extraction we can see results in Figure App. C-2. 

 

 
Figure App. C-2  Colour plane extraction 
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Threshold 

Threshold was used to separate significant structures in an image from the rest of the 

image. Thresholding sets all pixels within the Threshold Range to 1 and sets all other 

pixels in the image to 0. The resulting image is a binary image which we can be seen 

in Figure App. C-3. 

 
Figure App. C-3  Threshold 

FFT Filter 

This function applies a frequency filter to the image. This function performs three 

steps. First, it finds the fast Fourier transform (FFT) of the source image, which is a 

complex image. Then the function filters (truncates or attenuates) the complex image. 

Finally, it computes the inverse FFT. Generally, the FFT Filter is used to compute 

backgrounds in order to correct light drifts. We can see the background enhancement 

in Figure App. C-4. 
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Figure App. C-4  FFT filter 

Basic Morphology 

The basis morphology affects the shape of particles in binary images. Each particle or 

region is affected on an individual basis. It was used for tasks such as expanding or 

reducing objects, filling holes, closing particles, or smoothing boundaries. These tasks 

are to delineate objects and prepare images for quantitative analysis.  

Dilate objects was used. Eliminates tiny holes isolated in objects and expands the 

contour of the objects based on the structuring element. Dilation makes objects larger. 

Effects can be seen in Figure App. C-5. 

 
Figure App. C-5  Basic Morphology Dilate 
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Advanced Morphology 

The advanced morphology was used to perform high-level operations on particles in 

binary images. These can be used for tasks such as removing small particles from an 

image, removing border objects and labelling particles in an image. 

Removing small objects: Removes small objects. A small object is defined by the 

number of erosions (specified in Iterations) needed to remove the object. Figure App. 

C-6 shows the result. 

 
Figure App. C-6  Advanced Morphology Remove small objects 

Removing border objects: Eliminates particles that touch the borders of an image. 

Figure App. C-7 is without border objects. 
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Figure App. C-7  Advanced Morphology Remove border objects 
 

Labelling objects: Produces a labelled image using greyscale values equal to the 

number of objects in the image plus the greyscale 0 used in the background area. 

Figure App. C-8 shows us labelled particles for much easier identification. 

 

 
Figure App. C-8  Advanced Morphology label objects 
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D. Appendix D 
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Perimeter 
 
Table App. D-1 Histogram values describing Perimeter Calibrated for size -22.4+19.0 mm QZ 

Ohio 

Perimeter 
Calibrated    
average bin Bin Frequency

78.27 54.88 54.88 0
stdev 62.68 62.68 1

7.80 70.48 70.48 12
 78.27 78.27 36
 86.07 86.07 26
 93.87 93.87 10
 101.67 101.67 3
  More 0

 
Table App. D-2 Histogram values describing Perimeter Calibrated for size -22.4+19.0 mm LRO 

Perimeter 
Calibrated    
average bin Bin Frequency

80.11 53.46 53.46 0
stdev 62.34 62.34 2

8.89 71.23 71.23 8
 80.11 80.11 31
 89.00 89.00 32
 97.89 97.89 13
 106.77 106.77 1
  More 1

 

Waddel Disk Diameter 
 
Table App. D-3 Histogram values describing Waddel Disk Diameter for size -22.4+19.0 mm QZ 

Ohio 

Waddel 
Disk 
Diameter 
Calibrated    
average bin Bin Frequency

22.90 16.60 16.60 0
stdev 18.70 18.70 1

2.10 20.80 20.80 13
 22.90 22.90 34
 25.00 25.00 25
 27.10 27.10 11
 29.20 29.20 4
  More 0
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Table App. D-4 Histogram values describing Waddel Disk Diameter for size -22.4+19.0 mm LRO 

Waddel 
Disk 
Diameter 
Calibrated    
average bin Bin Frequency

23.35 16.14 16.14 0
stdev 18.55 18.55 3

2.40 20.95 20.95 9
 23.35 23.35 33
 25.76 25.76 31
 28.16 28.16 10
 30.57 30.57 2
  More 0

 

Elongation Factor 
 
Table App. D-5 Histogram values for Elongation Factor Calibrated for size -22.4+19.0 mm QZ 

Ohio 

Elongation 
Factor 
Calibrated    
average bin Bin Frequency 

1.98 1.09 1.09 0
stdev 1.38 1.38 0

0.30 1.68 1.68 15
 1.98 1.98 31
 2.28 2.28 31
 2.58 2.58 6
 2.87 2.87 5
  More 0

 
Table App. D-6 Histogram values for Elongation Factor Calibrated for size -22.4+19.0 mm LRO 

Elongation 
Factor 
Calibrated    
average bin Bin Frequency 

1.96 1.09 1.09 0
stdev 1.38 1.38 0

0.29 1.67 1.67 16
 1.96 1.96 29
 2.24 2.24 28
 2.53 2.53 14
 2.82 2.82 1
  More 0
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Heywood Circularity Factor 
 
Table App. D-7 Histogram values for Heywood circularity factor for size -22.4+19.0 mm QZ 

Ohio 

Heywood 
Circularity 
Factor 
Calibrated    
average bin Bin Frequency

1.09 0.98 0.98 0
stdev 1.02 1.02 0

0.04 1.05 1.05 12
 1.09 1.09 42
 1.12 1.12 18
 1.16 1.16 13
 1.20 1.20 3
  More 0

 

Table App. D-8 Histogram values for Heywood circularity factor for size -22.4+19.0 mm LRO 

Heywood 
Circularity 
Factor 
Calibrated    
average bin Bin Frequency

1.09 0.96 0.96 0
stdev 1.00 1.00 0

0.04 1.05 1.05 15
 1.09 1.09 32
 1.14 1.14 28
 1.18 1.18 12
 1.22 1.22 0
  More 1
 

Area 
 
Table App. D-9 Histogram values for Area for size -22.4+19.0 mm QZ Ohio 

Area 
Calibrated    
average bin Bin Frequency

415.37 185.18 185.18 0
stdev 261.91 261.91 1

76.73 338.64 338.64 11
 415.37 415.37 37
 492.10 492.10 24
 568.83 568.83 11
 645.56 645.56 3
  More 1
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Table App. D-10 Histogram values for Area for size -22.4+19.0 mm LRO 

Area 
Calibrated    
average bin Bin Frequency

432.88 169.67 169.67 0
stdev 257.41 257.41 2

87.74 345.15 345.15 10
 432.88 432.88 33
 520.62 520.62 31
 608.36 608.36 10
 696.10 696.10 1
  More 1
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E. Appendix E 

Dielectric Properties of the Materials Used to Create Synthetic 
Samples for the Testing 
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Dielectric Probe Kit 85070E from Agilent Technologies was used to determine the 

dielectric properties, complex permittivity, of materials used to create synthetic 

samples. In Agilent Technical Overview (Agilent 2008) information is provided, that 

a complete system is based on a network analyser, which measures the material’s 

response to RF or microwave energy. The probe transmits a signal into the material 

under test. 

A high temperature probe is used with these requirements which are given in Table 

App. E-1: 
Table App. E-1 Probe Characteristics Table from (Agilent 2008) 

Requirement Range or assumption 
Frequency Range (nominal) 200 MHz to 20 GHz with network 

analyser 
Temperature Range –40 to +200 °C 
Temperature Slew Rate < 10 degrees/minute 
Immersible length (approximate) 35 mm 
Connector 3.5 mm male 
Repeatability and resolution Two to four times better than accuracy 
Material under test assumptions Material is “infinite” in size, 

non-magnetic (μr
* = 1), 

isotropic (uniform orientation), 
and homogeneous (uniform composition) 
Solids have a single, smooth, 
flat surface with gap-free contact 
at the probe face. 

Sample size requirements Diameter: > 20 mm 

Thickness: >
*

20

rε
mm 

Granule size: < 0.3 mm 
Expected Value requirements Maximum recommended εr’: < 100 

Minimum recommended loss 
tangent > 0.05  
Not recommended for low loss (loss 
tangent < 0.5) materials with εr’ > 5 

Accuracy (typical) Dielectric constant, εr’ = εr’ 
±0.05| εr

 *|. εr”= εr”±0.05| εr *| 
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Table App. E-2 Data from measuring dielectric constant ε’ and dielectric loss factor ε’’ for Poly 

(methyl methacrylate) in the frequency range 2.0-3.0 GHz and room temperature of 23 oC 

First Measurment Second Measurment Third Measurment Fourth Measurment
Frequency e' e'' e' e'' e' e'' e' e''

2E+09 2.3561 ‐0.0114 2.3813 ‐0.0124 2.3731 ‐0.0154 2.3561 ‐0.0114
2.01E+09 2.3204 0.0164 2.3519 0.0157 2.3437 0.0119 2.3204 0.0164
2.02E+09 2.2942 0.0356 2.3279 0.0325 2.3116 0.0324 2.2942 0.0356
2.03E+09 2.2956 0.0372 2.3275 0.0363 2.3075 0.0348 2.2956 0.0372
2.04E+09 2.3357 0.0236 2.3629 0.0231 2.3467 0.0255 2.3357 0.0236
2.05E+09 2.3945 0.0122 2.4174 0.0117 2.4132 0.0133 2.3945 0.0122
2.06E+09 2.4517 0.0062 2.464 0.0113 2.4708 0.0091 2.4517 0.0062
2.07E+09 2.4519 0.02 2.4727 0.0219 2.4705 0.0234 2.4519 0.02
2.08E+09 2.4062 0.0302 2.4331 0.031 2.4345 0.0297 2.4062 0.0302
2.09E+09 2.3365 0.0306 2.3619 0.036 2.3687 0.0281 2.3365 0.0306
2.1E+09 2.289 0.0182 2.3195 0.0164 2.3171 0.0142 2.289 0.0182

2.11E+09 2.2882 ‐0.0078 2.3147 ‐0.0106 2.3168 ‐0.0097 2.2882 ‐0.0078
2.12E+09 2.3207 ‐0.022 2.3413 ‐0.0218 2.3533 ‐0.0216 2.3207 ‐0.022
2.13E+09 2.375 ‐0.0192 2.3839 ‐0.0073 2.3906 ‐0.0096 2.375 ‐0.0192
2.14E+09 2.3957 0.0085 2.398 0.0285 2.4089 0.0245 2.3957 0.0085
2.15E+09 2.3721 0.0517 2.3923 0.0623 2.3931 0.0614 2.3721 0.0517
2.16E+09 2.3529 0.0677 2.3788 0.0762 2.3706 0.0754 2.3529 0.0677
2.17E+09 2.348 0.057 2.3784 0.0589 2.3725 0.0573 2.348 0.057
2.18E+09 2.3683 0.0261 2.3927 0.0273 2.3908 0.026 2.3683 0.0261
2.19E+09 2.399 ‐0.0081 2.4075 ‐0.0014 2.412 ‐0.0007 2.399 ‐0.0081
2.2E+09 2.3981 ‐0.0188 2.4095 ‐0.0095 2.4023 ‐0.0079 2.3981 ‐0.0188

2.21E+09 2.3627 ‐0.015 2.3636 0.0068 2.3789 ‐0.0065 2.3627 ‐0.015
2.22E+09 2.2957 0.0186 2.3149 0.0275 2.3173 0.0213 2.2957 0.0186
2.23E+09 2.2684 0.0286 2.2945 0.0354 2.2906 0.0298 2.2684 0.0286
2.24E+09 2.2889 0.0286 2.3193 0.03 2.308 0.0297 2.2889 0.0286
2.25E+09 2.3566 0.0212 2.3779 0.022 2.375 0.023 2.3566 0.0212
2.26E+09 2.4344 0.0169 2.4343 0.0242 2.4442 0.0227 2.4344 0.0169
2.27E+09 2.4526 0.0299 2.4507 0.039 2.4566 0.0356 2.4526 0.0299
2.28E+09 2.4185 0.0438 2.4147 0.0567 2.4395 0.0388 2.4185 0.0438
2.29E+09 2.3428 0.0481 2.3587 0.0586 2.3563 0.0519 2.3428 0.0481
2.3E+09 2.2808 0.0303 2.3124 0.0368 2.2992 0.0308 2.2808 0.0303

2.31E+09 2.2713 0.0024 2.3036 0.004 2.287 0.0045 2.2713 0.0024
2.32E+09 2.3048 ‐0.02 2.3281 ‐0.0207 2.3179 ‐0.0193 2.3048 ‐0.02
2.33E+09 2.3519 ‐0.0211 2.361 ‐0.0203 2.3725 ‐0.0214 2.3519 ‐0.0211
2.34E+09 2.3693 0.0034 2.372 0.0065 2.3792 0.0051 2.3693 0.0034
2.35E+09 2.3642 0.0312 2.3629 0.0435 2.3679 0.0396 2.3642 0.0312
2.36E+09 2.3331 0.0549 2.345 0.0666 2.3434 0.0618 2.3331 0.0549
2.37E+09 2.3236 0.055 2.3467 0.062 2.3326 0.0588 2.3236 0.055
2.38E+09 2.3441 0.0345 2.3675 0.036 2.3507 0.0356 2.3441 0.0345
2.39E+09 2.3766 0.0088 2.3939 0.007 2.3806 0.0081 2.3766 0.0088
2.4E+09 2.3938 ‐0.0069 2.4036 ‐0.0066 2.3874 ‐0.0073 2.3938 ‐0.0069

2.41E+09 2.3688 ‐0.0026 2.3736 0.0004 2.3565 ‐0.0021 2.3688 ‐0.0026
2.42E+09 2.324 0.0058 2.3258 0.0163 2.3076 0.0124 2.324 0.0058
2.43E+09 2.2727 0.0205 2.2914 0.0284 2.2711 0.0268 2.2727 0.0205
2.44E+09 2.2656 0.0233 2.2987 0.0279 2.2784 0.0272 2.2656 0.0233
2.45E+09 2.309 0.016 2.3421 0.0165 2.3231 0.0169 2.309 0.016
2.46E+09 2.3696 0.0093 2.398 0.0082 2.3828 0.0079 2.3696 0.0093
2.47E+09 2.4279 0.0055 2.4232 0.0117 2.4116 0.0096 2.4279 0.0055
2.48E+09 2.4125 0.0191 2.4026 0.0271 2.3994 0.0263 2.4125 0.0191
2.49E+09 2.3589 0.0345 2.3579 0.0425 2.3569 0.0408 2.3589 0.0345
2.5E+09 2.3 0.0396 2.3173 0.0473 2.3218 0.0412 2.3 0.0396  
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Table App. E-3 Data from measuring dielectric constant ε’ and dielectric loss factor ε’’ for 

Quartz sand in the frequency range 2.0-3.0 GHz and room temperature of 23 oC 

First Measurment Second Measurment Third Measurment Fourth Measurment
Frequency e' e'' e' e'' e' e'' e' e''

2E+09 2.8204 0.0198 2.874 0.0116 2.8827 ‐0.0276 2.8005 ‐0.0061
2.01E+09 2.834 0.0286 2.8773 0.016 2.88 ‐0.0269 2.7963 ‐0.0062
2.02E+09 2.8155 0.0385 2.8681 0.0274 2.8455 ‐0.0023 2.7674 0.0109
2.03E+09 2.7789 0.0461 2.8475 0.0417 2.8106 0.0293 2.732 0.0314
2.04E+09 2.7714 0.0436 2.8306 0.0478 2.7989 0.0434 2.7148 0.0439
2.05E+09 2.788 0.0383 2.835 0.0467 2.8166 0.0337 2.7253 0.0418
2.06E+09 2.8212 0.0326 2.8586 0.0393 2.8549 0.0079 2.7576 0.0285
2.07E+09 2.8479 0.0313 2.8795 0.03 2.8822 ‐0.0161 2.7828 0.013
2.08E+09 2.8507 0.0347 2.8881 0.0239 2.8806 ‐0.0212 2.7854 0.0043
2.09E+09 2.8431 0.0367 2.8782 0.0228 2.8551 ‐0.0074 2.7637 0.0065
2.1E+09 2.8276 0.0332 2.8518 0.0233 2.8173 0.0128 2.7328 0.015

2.11E+09 2.811 0.0274 2.8257 0.0246 2.7974 0.0224 2.7148 0.0211
2.12E+09 2.8051 0.0262 2.8173 0.0284 2.806 0.0167 2.7196 0.0257
2.13E+09 2.8003 0.0314 2.8193 0.0345 2.8346 0.0045 2.7384 0.0259
2.14E+09 2.8089 0.0427 2.8325 0.0419 2.8597 ‐0.0008 2.7579 0.0267
2.15E+09 2.8114 0.0535 2.8308 0.0493 2.8557 0.0076 2.7649 0.0272
2.16E+09 2.805 0.0593 2.8258 0.0529 2.8324 0.0257 2.7513 0.0333
2.17E+09 2.8034 0.0512 2.8201 0.0465 2.8137 0.0345 2.7344 0.0367
2.18E+09 2.8123 0.0386 2.8223 0.0377 2.82 0.0303 2.732 0.033
2.19E+09 2.8228 0.0261 2.8358 0.0261 2.8497 0.0079 2.757 0.0211
2.2E+09 2.8318 0.0224 2.8485 0.0203 2.883 ‐0.0138 2.7983 0.0017

2.21E+09 2.8319 0.0282 2.8526 0.0191 2.8882 ‐0.022 2.8168 ‐0.0115
2.22E+09 2.8119 0.0396 2.8447 0.0269 2.8594 ‐0.007 2.7964 ‐0.0026
2.23E+09 2.7761 0.046 2.8175 0.0355 2.8129 0.0167 2.7501 0.0168
2.24E+09 2.7478 0.0485 2.7868 0.0438 2.7757 0.038 2.7128 0.035
2.25E+09 2.7451 0.0444 2.774 0.0469 2.7735 0.0403 2.7073 0.0391
2.26E+09 2.7648 0.0404 2.7855 0.045 2.8023 0.0222 2.7365 0.0282
2.27E+09 2.7987 0.0377 2.8123 0.0393 2.8465 0.0003 2.7833 0.0074
2.28E+09 2.8227 0.0395 2.8402 0.033 2.8723 ‐0.0096 2.8082 ‐0.0107
2.29E+09 2.8268 0.0431 2.8485 0.0307 2.8604 ‐0.0018 2.802 ‐0.0025
2.3E+09 2.8135 0.0421 2.8361 0.0283 2.8257 0.0147 2.7737 0.0113

2.31E+09 2.7981 0.0381 2.8118 0.0297 2.8008 0.0262 2.7478 0.0255
2.32E+09 2.7937 0.031 2.7997 0.0301 2.803 0.0245 2.7462 0.0239
2.33E+09 2.7934 0.0261 2.8054 0.0285 2.8284 0.0117 2.7692 0.0089
2.34E+09 2.7889 0.0238 2.81 0.0244 2.8498 ‐0.0027 2.7872 ‐0.0078
2.35E+09 2.7676 0.0242 2.8106 0.0193 2.8448 ‐0.0078 2.7859 ‐0.0188
2.36E+09 2.7469 0.0235 2.8029 0.0179 2.8184 ‐0.0018 2.7581 ‐0.0112
2.37E+09 2.7399 0.0227 2.793 0.018 2.7892 0.0108 2.7308 0.0071
2.38E+09 2.7617 0.0244 2.8 0.0219 2.7863 0.0201 2.7297 0.0192
2.39E+09 2.7931 0.028 2.8207 0.0268 2.8107 0.0198 2.7622 0.0184
2.4E+09 2.8204 0.0297 2.8454 0.0292 2.8538 0.0087 2.8048 0.0044

2.41E+09 2.8252 0.0287 2.8576 0.0262 2.8808 ‐0.0027 2.824 ‐0.0082
2.42E+09 2.8069 0.0207 2.8491 0.0222 2.8629 ‐0.0067 2.7998 ‐0.0069
2.43E+09 2.7759 0.0128 2.8219 0.0166 2.8152 ‐0.0009 2.7526 ‐0.0018
2.44E+09 2.7535 0.0119 2.7941 0.0162 2.7708 0.0116 2.714 0.0109
2.45E+09 2.7647 0.0161 2.7854 0.021 2.7653 0.0214 2.7097 0.0213
2.46E+09 2.8031 0.02 2.8068 0.0241 2.8086 0.0171 2.7468 0.0176
2.47E+09 2.8338 0.0216 2.8423 0.0233 2.8628 0.0036 2.806 ‐0.0024
2.48E+09 2.8563 0.018 2.8713 0.0151 2.896 ‐0.0153 2.8403 ‐0.0229
2.49E+09 2.8519 0.0086 2.8786 0.006 2.8781 ‐0.022 2.8238 ‐0.0236
2.5E+09 2.8244 0.005 2.8547 0.0041 2.8214 ‐0.0085 2.7765 ‐0.0102  
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Table App. E-4 Data from measuring dielectric constant ε’ and dielectric loss factor ε’’ for Pyrite 

in the frequency range 2.0-3.0 GHz and room temperature of 23 oC 

First Measurment Second Measurment Third Measurment Fourth Measurment
Frequency e' e'' e' e'' e' e'' e' e''

2E+09 22.0558 8.6858 21.0635 6.7793 26.5979 15.2999 24.8334 13.1336
2.01E+09 22.0419 8.7682 20.9476 6.6578 26.5552 15.2598 24.8271 13.0709
2.02E+09 22.0061 8.8599 20.7231 6.4659 26.491 15.2295 24.8143 13.0144
2.03E+09 21.9658 8.9027 20.4899 6.2986 26.4344 15.2037 24.799 13.0005
2.04E+09 21.9319 8.8157 19.4821 5.5412 26.411 15.1851 24.773 12.9486
2.05E+09 21.9364 8.7722 19.2004 5.3638 26.4237 15.1536 24.7408 12.9139
2.06E+09 21.9497 8.4858 19.1159 5.2849 26.4557 15.1012 24.7238 12.8518
2.07E+09 21.9549 8.4076 19.1039 5.2536 26.4644 15.0486 24.7144 12.845
2.08E+09 21.9559 8.4279 19.2361 5.3131 26.4452 14.9906 24.7207 12.8282
2.09E+09 21.9173 8.458 19.3461 5.3743 26.3871 14.955 24.7106 12.7854
2.1E+09 21.8698 8.4967 19.0263 5.1589 26.3271 14.9385 24.6857 12.7952

2.11E+09 21.8232 8.4178 19.0786 5.2118 26.2919 14.9088 24.6589 12.8277
2.12E+09 21.8112 8.3081 19.2319 5.3356 26.2963 14.8793 24.62 12.8799
2.13E+09 21.8093 8.2382 18.8998 5.1254 26.3051 14.8424 24.5767 12.9086
2.14E+09 21.8254 8.2083 18.2399 4.7034 26.3196 14.8133 24.5865 12.8622
2.15E+09 21.8133 8.0675 14.8439 3.058 26.2964 14.7881 24.6222 12.6846
2.16E+09 21.7795 8.0404 10.7526 1.5355 26.2576 14.7616 24.6187 12.6919
2.17E+09 21.7231 7.8688 9.8708 1.2724 26.2267 14.7342 24.6066 12.724
2.18E+09 21.6451 7.6197 9.5411 1.1832 26.2233 14.7065 24.5869 12.7281
2.19E+09 21.6817 7.741 10.0404 1.3021 26.2355 14.6657 24.5762 12.5398
2.2E+09 21.6965 7.7595 10.2583 1.3628 26.2408 14.6222 24.544 12.2637

2.21E+09 21.6547 7.5988 10.6278 1.4667 26.2178 14.5757 24.4984 12.2677
2.22E+09 21.5959 7.5796 10.09 1.3374 26.1572 14.5479 24.5139 12.045
2.23E+09 21.5438 7.6297 10.438 1.4357 26.0916 14.5339 24.5657 11.8187
2.24E+09 21.4919 7.5804 10.9765 1.5911 26.0527 14.5298 24.518 11.7389
2.25E+09 21.4615 7.4796 10.3304 1.4163 26.058 14.5052 24.4311 11.6875
2.26E+09 21.5131 7.538 10.0443 1.3379 26.0814 14.4679 24.3994 11.9016
2.27E+09 21.4859 7.3825 10.0825 1.339 26.1143 14.4107 24.383 12.0283
2.28E+09 21.4789 7.3553 10.8158 1.5304 26.1083 14.3644 24.3804 11.9811
2.29E+09 21.4863 7.419 10.8302 1.5274 26.069 14.3273 24.4107 11.8195
2.3E+09 21.4659 7.5023 11.1375 1.6136 26.0169 14.2933 24.394 11.867

2.31E+09 21.4373 7.4796 11.5451 1.7405 25.9896 14.2822 24.3697 11.769
2.32E+09 21.4456 7.5197 11.5162 1.7366 25.9772 14.2612 24.3122 11.8358
2.33E+09 21.4753 7.5271 11.9596 1.8791 25.9931 14.2333 24.3054 11.9933
2.34E+09 21.4423 7.3959 12.2142 1.9605 25.993 14.1951 24.2861 11.994
2.35E+09 21.4136 7.3995 12.3947 2.0167 25.9662 14.1562 24.2886 11.9686
2.36E+09 21.3759 7.3923 12.7516 2.134 25.9258 14.1333 24.306 11.9106
2.37E+09 21.3249 7.329 13.1932 2.2912 25.8963 14.1306 24.3085 11.9018
2.38E+09 21.3026 7.278 14.1617 2.6714 25.8955 14.117 24.2999 11.8656
2.39E+09 21.3037 7.2401 15.4995 3.2596 25.9176 14.109 24.2687 11.15
2.4E+09 21.3341 7.2302 15.9026 3.4427 25.9417 14.0657 24.2309 11.218

2.41E+09 21.2888 7.1819 15.7884 3.3905 25.9275 14.0151 24.2122 11.4474
2.42E+09 21.2862 7.2133 15.6533 3.3258 25.8738 13.9764 24.1766 11.4473
2.43E+09 21.2634 7.2543 15.5523 3.2845 25.8074 13.9609 24.1582 11.5044
2.44E+09 21.1654 7.1584 15.4424 3.2373 25.773 13.9595 24.1549 11.4727
2.45E+09 21.1817 7.1935 14.9764 3.0349 25.7751 13.9537 24.1485 11.3961
2.46E+09 21.1809 7.1451 14.8133 2.9572 25.8235 13.9318 24.1545 11.4196
2.47E+09 21.1731 7.0897 14.1554 2.6743 25.8619 13.8887 24.1544 11.4316
2.48E+09 21.2082 7.0896 13.9043 2.556 25.8622 13.845 24.1556 11.4101
2.49E+09 21.1937 7.08 12.5435 2.0433 25.8121 13.8093 24.1354 11.4597
2.5E+09 21.0262 6.9523 12.3144 1.9716 25.7493 13.7987 24.1116 11.5029  
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Data from the literature: 
 

 
Figure App. E-1 (A) Loss factor vs. temperature for polyaniline, PC and PMMA and (B) loss 
tangent vs. temperature for polyaniline, PC and PMMA, from the work of Yussuf et al. (2007) 
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F. Appendix F 

Mineralogical Investigation of the LRO ore type 
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Figure App. F-1 Sample No. 1 from LRO ore type 
 

 
Table App. F-1 Mineral content represented in surface percentage 

Copper Sulphides Surface % Other Forming Minerals Surface % 
Bornite  <0.01 Amphibole  21.76 
Chalcopyrite  5.77 Apatite  2.48 
Chalcocite  <0.01 Biotite  0.80 
Tennantite  <0.01 Calcite   2.39 
    Chlorite  1.49 
Other Sulphides   Galena  <0.01 
Pyrite   32.82 Ilmenite <0.01 
Arsenopyrite  0.03 Molybdenite   <0.01 
    Olivine  0.03 
Quartz  15.92 Pyroxene  0.62 
Feldspar  5.93 Rutile   <0.01 
    Talc  0.03 
Garnet  8.39 Titanite  0.33 
Magnetite  0.01 Other Minerals  1.21 
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Figure App. F-2 Sample No. 2 from LRO ore type  

 
Table App. F-2 Mineral content represented in surface percentage 

Copper Sulphides Surface % Other Forming Minerals Surface % 
Bornite  <0.01 Amphibole 0.22 
Chalcopyrite  2.78 Apatite  0.57 
Chalcocite  <0.01 Biotite   <0.01 
Tennantite  <0.01 Calcite  23.76 
    Chlorite 0.01 
Other Sulphides   Galena  0.07 
Pyrite  38.35 Ilmenite  Not present 
Arsenopyrite  0.06 Molybdenite   <0.01 
    Olivine   <0.01 
Quartz  0.17 Pyroxene   0.17 
Feldspar  <0.01 Rutile   <0.01 
    Talc   <0.01 
Garnet  33.36 Titanite    <0.01 
Magnetite   0.01 Other Minerals   0.47 
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Figure App. F-3 Sample No. 3 from LRO ore type 
 

 
Table App. F-3 Mineral content represented in surface percentage 

Copper Sulphides Surface % Other Forming Minerals Surface % 
Bornite  0.02 Amphibole 5.23 
Chalcopyrite  2.50 Apatite  0.48 
Chalcocite  0.01 Biotite   3.67 
Tennantite  <0.01 Calcite  0.36 
    Chlorite  1.17 
Other Sulphides   Galena   <0.01 
Pyrite  12.56 Ilmenite  Not present 
Arsenopyrite   <0.01 Molybdenite   <0.01 
    Olivine   0.02 
Quartz  11.67 Pyroxene   1.73 
Feldspar  0.07 Rutile   <0.01 
    Talc   0.16 
Garnet  59.34 Titanite   0.01 
Magnetite   0.01 Other Minerals   0.98 
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Figure App. F-4 Sample No. 4 from LRO ore type 
 
 
Table App. F-4 Mineral content represented in surface percentage 

Copper Sulphides Surface % Other Forming Minerals Surface % 
Bornite  <0.01 Amphibole 71.59 
Chalcopyrite  0.91 Apatite  0.58 
Chalcocite  <0.01 Biotite   0.04 
Tennantite  <0.01 Calcite  6.82 
    Chlorite  0.07 
Other Sulphides   Galena   <0.01 
Pyrite  0.06 Ilmenite  Not present 
Arsenopyrite   <0.01 Molybdenite   <0.01 
    Olivine  <0.01 
Quartz  2.66 Pyroxene   0.94 
Feldspar  <0.01 Rutile   0.12 
    Talc   0.19 
Garnet  14.77 Titanite   0.01 
Magnetite   <0.01 Other Minerals   1.35 



Appendices 
_____________________________________________________________________ 

_____________________________________________________________________ 
 

317 

Figure App. F-5 Sample No. 5 from LRO ore type 
 
 
Copper Sulphides Surface % Other Forming Minerals Surface % 
Bornite  <0.01 Amphibole 1.71 
Chalcopyrite  0.33 Apatite  1.58 
Chalcocite  <0.01 Biotite   0.01 
Tennantite  <0.01 Calcite  13.36 
    Chlorite  0.21 
Other Sulphides   Galena   <0.01 
Pyrite  0.03 Ilmenite  Not present 
Arsenopyrite   <0.01 Molybdenite   <0.01 
    Olivine   0.41 
Quartz  12.56 Pyroxene   1.04 
Feldspar  0.02 Rutile   <0.01 
    Talc   <0.01 
Garnet  67.31 Titanite   <0.01 
Magnetite   0.08 Other Minerals   1.33 
Table App. F-5 Mineral content represented in surface percentage 
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Figure App. F-6 Sample No. 6 from LRO ore type 
 

 
Table App. F-6 Mineral content represented in surface percentage 

Copper Sulphides Surface % Other Forming Minerals Surface % 
Bornite  <0.01 Amphibole 8.18 
Chalcopyrite  0.13 Apatite  0.06 
Chalcocite  <0.01 Biotite   0.09 
Tennantite  <0.01 Calcite  9.39 
    Chlorite  0.14 
Other Sulphides   Galena   <0.01 
Pyrite  3.13 Ilmenite  Not present 
Arsenopyrite   <0.01 Molybdenite   <0.01 
    Olivine   0.01 
Quartz  71.78 Pyroxene   0.47 
Feldspar  4.35 Rutile   <0.01 
    Talc   0.01 
Garnet  1.53 Titanite   0.08 
Magnetite   0.01 Other Minerals   0.63 
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Figure App. F-7 Sample No. 7 from LRO ore type 
 
 
 
Table App. F-7 Mineral content represented in surface percentage 

Copper Sulphides Surface % Other Forming Minerals Surface % 
Bornite  0.01 Amphibole 0.09 
Chalcopyrite  0.10 Apatite  0.66 
Chalcocite  <0.01 Biotite   16.43 
Tennantite  <0.01 Calcite  0.01 
    Chlorite  0.36 
Other Sulphides   Galena   <0.01 
Pyrite  0.09 Ilmenite <0.01 
Arsenopyrite   <0.01 Molybdenite   <0.01 
    Olivine   0.01 
Quartz  23.59 Pyroxene   0.04 
Feldspar  56.71 Rutile   0.12 
    Talc   <0.01 
Garnet  0.01 Titanite   <0.01 
Magnetite   <0.01 Other Minerals   1.78 
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Figure App. F-8 Sample No. 8 from LRO ore type 
 
Table App. F-8 Mineral content represented in surface percentage 

Copper Sulphides Surface % Other Forming Minerals Surface % 
Bornite  <0.01 Amphibole  1.14 
Chalcopyrite  0.01 Apatite  0.32 
Chalcocite  <0.01 Biotite  0.05 
Tennantite  <0.01 Calcite   20.54 
    Chlorite  2.40 
Other Sulphides   Galena  Not present 
Pyrite   21.01 Ilmenite  Not present 
Arsenopyrite  0.01 Molybdenite   <0.01 
    Olivine   0.01 
Quartz  48.19 Pyroxene   3.01 
Feldspar  0.05 Rutile   <0.01 
    Talc  0.48 
Garnet  1.28 Titanite  <0.01 
Magnetite   <0.01 Other Minerals  1.49 
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G. Appendix G 

Reproducibility Testing for the LRO Ore Type 



Appendices 
_____________________________________________________________________ 

_____________________________________________________________________ 
 

322 

 

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11

Rock Number

Te
m

pe
ra

tu
re

 (C
)

Delta T1
Delta T2
Delta Max T1

 
Figure App. G-1 Reproducibility temperature change graph for the eleven -22+19 mm particles 
in set No. 1 where each particle was tested 6 times in different orientations 
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Figure App. G-2 Reproducibility temperature change graph for the eleven -22+19 mm particles 
in set No. 2 where each particle was tested 6 times in different orientations 
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Figure App. G-3 Reproducibility temperature change graph for the eleven -22+19 mm particles 
in set No. 3 where each particle was tested 6 times in different orientations 
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Figure App. G-4 Reproducibility temperature change graph for the eleven -22+19 mm particles 
in set No. 4 where each particle was tested 6 times in different orientations 
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Figure App. G-5 Reproducibility temperature change graph for the eleven -22+19 mm particles 
in set No. 5 where each particle was tested 6 times in different orientations 
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Figure App. G-6 Reproducibility temperature change graph for the eleven -22+19 mm particles 
in set No. 6 where each particle was tested 6 times in different orientations 
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Sub 
Sample 
No

Position 
Number

Rock 
Number 
durin 
testing

Rock 
Number 

Rock 
Mass (g)

Cu Assay 
%

Fe Assay 
%

Delta Max 
T1

Cumulativ
e Mass %

Cumulativ
e Copper 
Recovery
% 

Cumulativ
e Iron 
Recovery 
%

1 1 8 1 18.23 0.038 8.400 5.810 1.843 0.113 2.374
1 2 3 2 15.71 0.010 0.240 7.290 3.431 0.139 2.432
1 2 9 3 13.81 0.060 1.300 7.700 4.828 0.275 2.711
1 8 11 4 9.35 0.249 1.580 8.080 5.773 0.653 2.940
1 4 10 5 11.96 0.361 4.970 9.150 6.982 1.356 3.861
1 2 4 6 15.51 0.012 10.500 9.430 8.550 1.385 6.385
1 8 8 7 17.4 0.197 1.390 11.600 10.309 1.945 6.760
1 3 3 8 7.54 0.047 3.110 11.830 11.072 2.003 7.124
1 11 11 9 8.85 1.330 2.030 12.440 11.966 3.920 7.402
1 9 9 10 20.19 1.260 2.070 13.470 14.008 8.062 8.050
2 5 2 11 15.99 0.154 7.760 14.850 15.624 8.464 9.974
2 6 3 12 12.63 0.022 10.400 15.230 16.901 8.510 12.010
2 8 11 13 12.7 0.042 9.470 15.230 18.185 8.596 13.874
2 1 1 14 13.68 0.096 6.650 15.770 19.568 8.809 15.285
2 4 3 15 4.06 0.102 1.760 16.380 19.979 8.877 15.395
2 6 5 16 17.61 0.852 1.080 16.630 21.759 11.319 15.690
2 9 9 17 16.08 0.408 4.720 17.780 23.385 12.387 16.867
2 9 7 18 13.2 0.034 9.320 19.220 24.719 12.459 18.774
2 4 4 19 7.17 1.400 2.020 19.670 25.444 14.094 18.998
2 5 6 20 25.86 0.819 7.430 19.760 28.059 17.542 21.977
2 11 8 21 10.26 0.076 8.060 20.940 29.096 17.669 23.259
3 5 8 22 16.19 0.503 8.570 21.490 30.733 18.994 25.410
3 7 10 23 15.47 0.530 8.700 21.960 32.297 20.329 27.496
3 7 4 24 15.87 0.971 8.600 22.180 33.902 22.838 29.612
3 5 7 25 20.15 0.063 11.500 25.090 35.939 23.044 33.204
3 8 8 26 18.99 0.465 13.100 25.470 37.859 24.482 37.060
3 9 9 27 14.98 0.962 3.940 26.000 39.373 26.828 37.975
3 10 9 28 19.53 1.340 5.740 26.060 41.348 31.090 39.713
3 8 6 29 11.93 0.524 2.770 26.460 42.554 32.108 40.225
3 4 8 30 15.43 0.274 10.200 27.600 44.114 32.797 42.665
3 7 7 31 13.07 0.379 2.540 29.090 45.435 33.604 43.179
3 5 5 32 15.33 1.930 4.130 31.510 46.985 38.422 44.161
4 10 10 33 15.11 0.055 5.290 32.650 48.513 38.557 45.400
4 1 1 34 15.35 0.434 1.900 33.080 50.065 39.643 45.852
4 1 1 35 11.5 0.045 0.882 33.460 51.227 39.728 46.009
4 11 7 36 10.59 1.550 2.720 35.340 52.298 42.401 46.456
4 3 11 37 13.89 0.060 1.570 35.610 53.702 42.537 46.794
4 1 2 38 18.86 0.614 6.520 38.970 55.609 44.423 48.700
4 3 3 39 22.03 0.633 3.880 39.370 57.836 46.696 50.025
4 10 10 40 14.36 0.972 4.140 40.830 59.288 48.968 50.947
4 4 4 41 25.15 0.989 6.540 41.100 61.831 53.020 53.497
4 10 5 42 15.7 1.200 4.900 42.440 63.418 56.088 54.689
4 3 4 43 10.89 0.013 1.450 53.400 64.519 56.110 54.934
5 7 1 44 18.94 0.093 3.300 54.300 66.434 56.396 55.903
5 6 6 45 17.39 0.015 10.500 56.760 68.192 56.439 58.733
5 2 2 46 13.13 0.073 1.130 65.600 69.520 56.594 58.963
5 11 9 47 17.53 0.028 3.470 66.560 71.292 56.674 59.906
5 2 1 48 16.95 1.390 9.060 67.610 73.006 60.511 62.287
5 3 7 49 11.68 0.116 1.000 72.550 74.187 60.733 62.468
5 9 3 50 16.69 0.019 5.340 74.510 75.874 60.784 63.849
5 7 7 51 5.96 0.895 5.990 77.100 76.477 61.653 64.403
5 8 1 52 12.35 3.420 5.500 77.310 77.725 68.531 65.456
5 11 11 53 20.7 0.010 10.800 77.950 79.818 68.564 68.921
5 9 10 54 14.51 2.090 13.600 80.370 81.285 73.503 71.980
6 6 6 55 18.67 1.710 8.510 84.140 83.173 78.702 74.443
6 3 6 56 10.57 1.000 5.330 85.670 84.241 80.424 75.317
6 5 5 57 15.83 0.028 6.460 86.840 85.842 80.495 76.902
6 4 5 58 13.1 0.012 10.400 88.010 87.166 80.519 79.014
6 6 6 59 13.74 0.061 3.480 89.280 88.555 80.655 79.755
6 2 2 60 15.55 0.042 4.860 89.530 90.127 80.762 80.927
6 11 11 61 11.76 0.288 3.450 89.570 91.316 81.313 81.556
6 10 10 62 17.49 0.069 0.935 91.000 93.085 81.509 81.809
6 1 2 63 18.48 0.835 20.800 91.570 94.953 84.021 87.768
6 7 2 64 14.91 0.005 15.600 91.660 96.460 84.034 91.373
6 10 5 65 19.8 0.189 15.200 91.730 98.462 84.643 96.039
1 10 5 66 15.21 6.200 16.800 92.620 100.000 100.000 100.000  

Figure App. G-7 Data for separation curves from reproducibility study six sets sorted by Delta 
T1 for LRO ore type 
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Figure App. G-8 Separation curves from reproducibility study six sets sorted by Delta T1 for 
LRO ore type 
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Figure App. G-9 Separation curves from reproducibility study six sets sorted by Delta T2 for 
LRO ore type 
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Figure App. G-10 Separation curve for LRO (larger population) -22+19 mm size fraction based 
on Delta T2 
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Figure App. G-11 Separation curve for LRO  (larger population)-22+19 mm size fraction based 
on Delta T1  
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Set No. 1: 
 

 
Figure App. H-1 First exposure, timing graph for the set No. 1 
 

 
Figure App. H-2 Second exposure, timing graph for the set No. 1 
 

 
Figure App. H-3 Third exposure, timing graph for the set No. 1 
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Tomography Analysis for Some of the Particles in the Set No. 1: 
 
Tomography analysis of some of the cold particles: 
 
Particle No. 1 Set No. 1 

Position 0 deg Position 90 deg Position 120 deg 
Figure App. H-4 LRO Ore Particle No. 1 Set No. 1 
 
Tomography analysis of some of the hot particles: 
 
Particle No. 9 Set No. 1 
 

Position 0 deg Position 45 deg Position 110 deg 
Figure App. H-5 LRO Ore Particle No. 9 Set No. 1 
 
 

3mm 3mm
3mm 

3mm 3mm 3mm 
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Set No. 2: 
 

 
Figure App. H-6 First exposure, timing graph for the set No. 2 
 

 
Figure App. H-7 Second exposure, timing graph for the set No. 2 
 

 
Figure App. H-8 Third exposure, timing graph for the set No. 2 
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Tomography Analysis for Some of the Particles in the Set No. 2: 
 
Tomography analysis of some of the hot particles: 
 
Particle No. 3 Set No. 2 
 

 
Position 0 deg Position 56 deg Position 90 deg 
Figure App. H-9 LRO Ore Particle No. 3 Set No. 2 
 
Particle No. 11 Set No. 2 
 

 
Position 0 deg Position 90 deg Position 110 deg 
Figure App. H-10 LRO Ore Particle No. 11 Set No. 2 
 

3mm 3mm 3mm

3mm 3mm 3mm 
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Set No. 3: 
 

 
Figure App. H-11 First exposure, timing graph the set No. 3 
 

 
Figure App. H-12Second exposure, timing graph for the set No. 3 
 

 
Figure App. H-13Third exposure, timing graph for the set No. 3 
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Set No. 4: 
 

 
Figure App. H-14 First exposure, timing graph for the set No. 4 
 

 
Figure App. H-15 Second exposure, timing graph for the set No. 4 
 

 
Figure App. H-16 Third exposure, timing graph for the set No. 4 



Appendices 
_____________________________________________________________________ 

_____________________________________________________________________ 
 

335 

Tomography analysis of some of the cold particles: 
 
Particle No. 3 Set No. 4 
 

Position 0 deg Position 90 deg Position110 deg 
Figure App. H-17 LRO Ore Particle No. 3 Set No. 4 
 
Tomography analysis of some of the hot particles: 
 
Particle No. 10 Set No. 4 
 

Position 0 deg Position 90 deg Position 120 deg 
Figure App. H-18 LRO Ore Particle No. 10 Set No. 4 
 
Particle No. 11 Set No. 4 
 

Position 0 deg Position 90 deg Position110 deg 
Figure App. H-19 LRO Ore Particle No. 11 Set No. 4 

3mm 3mm 3mm 

3mm 3mm 3mm 

3mm 3mm 3mm



Appendices 
_____________________________________________________________________ 

_____________________________________________________________________ 
 

336 

 

Set No. 5: 
 

 
Figure App. H-20 First exposure, timing graph for the set No.5 
 

 
Figure App. H-21 Second exposure, timing graph for the set No.5 
 
 

 
Figure App. H-22 Third exposure, timing graph for the set No. 5 
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Particle No. 3 Set No. 5 
 

Position 0 deg Position 90 deg Position120 deg 
Figure App. H-23 LRO Ore Particle No. 3 Set No. 5 
 
Particle No. 6 Set No. 5 
 

Position 0 deg Position 90 deg Position110 deg 
Figure App. H-24 LRO Ore Particle No. 6 Set No. 5 
 

3mm 
3mm

3mm 

3mm 3mm 3mm 
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Set No. 6: 
 
 

 
Figure App. H-25 First exposure, timing graph for the set No. 6 
 

 
Figure App. H-26 Second exposure, timing graph the set No. 6 
 

 
Figure App. H-27 Third exposure, timing graph the set No. 6 
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Particle No. 10 Set No. 6 
 

 
Position 0 deg Position 90 deg Position 212 deg 
Figure App. H-28 LRO Ore Particle No. 10 Set No. 6 

3mm 3mm 3mm
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Set No. 7: 
 
 

 
Figure App. H-29 First exposure, timing graph for the set No. 7 
 

 
Figure App. H-30 Second exposure, timing graph for the set No. 7 
 

 
Figure App. H-31 Third exposure, timing graph for the set No. 7 
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Tomography analysis of some of the hot particles: 
 
Particle No. 2 Set No. 7 
 

Position 0 deg Position 45 deg Position 180 deg 
Figure App. H-32 LRO Ore Particle No. 2 Set No. 7 
 
Particle No. 9 Set No. 7 
 

Position 40 deg Position 180 deg Position 280 deg 
Figure App. H-33 LRO Ore Particle No. 9 Set No. 7 
 
Tomography analysis of some of the cold particles: 
 
 
Particle No. 10 Set No. 7 

 
Position 0 deg Position 90 deg Position 212 deg 

Figure App. H-34 LRO Ore Particle No. 10 Set No. 7 

3mm 3mm 
3mm 

3mm 3mm 3ma

3mm 3mm 3mm 
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Set No. 8: 
 

 
Figure App. H-35 First exposure, timing graph for the set No. 8 
 

 
Figure App. H-36Second exposure, timing graph for the set No. 8 
 

 
Figure App. H-37 Third exposure, timing graph for the set No.. 8 
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Tomography analysis of some of the cold particles: 
 
Particle No. 1 Set No. 8 
 

 
Position 0 deg Position 90 deg Position 180 deg 

Figure App. H-38 LRO Ore Particle No. 1 Set No. 8 
 
Tomography analysis of some of the hot particles: 
 
Particle No. 5 Set No. 8 
 

 
Position 0 deg Position 45 deg Position 90 deg 

Figure App. H-39 LRO Ore Particle No. 5 Set No. 8 
 

3mm 3mm 3mm 

3mm 3mm 3mm 
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Overlapping particles in both types of cavities 
Table App. H-1 Before sorting by max ΔT mean for the LRO ore type: 

Multimode Cavity Single Mode Cavity 
particle numbag max delta t mass of pa CumulativeCumulative mass% particle numbag max delta t mass of pa CumulativeCumulative

1 1 8 1.21 11.99 11.99 0.770942 1 8 0.76 11.99 11.99 0.770942
2 2 8 4.75 19.7 31.69 2.037628 2 8 3.97 19.7 31.69 2.037628
3 3 8 9.52 15.91 47.6 3.060621 3 8 39.62 15.91 47.6 3.060621
4 4 8 18.67 16.34 63.94 4.111263 4 8 50.34 16.34 63.94 4.111263
5 5 8 53.38 19.27 83.21 5.3503 5 8 56.26 19.27 83.21 5.3503
6 6 8 13.68 14.9 98.11 6.308351 6 8 7.64 14.9 98.11 6.308351
7 7 8 6.79 13.03 111.14 7.146164 7 8 6.86 13.03 111.14 7.146164
8 8 8 26.5 14.14 125.28 8.055348 8 8 18.26 14.14 125.28 8.055348
9 9 8 29.06 16.6 141.88 9.122708 9 8 27.74 16.6 141.88 9.122708

10 10 8 13.2 15.99 157.87 10.15084 10 8 22.46 15.99 157.87 10.15084
11 11 8 4.74 17.88 175.75 11.30051 11 8 7.76 17.88 175.75 11.30051
12 1 7 1.05 15.29 191.04 12.28363 1 7 0.91 15.29 191.04 12.28363
13 2 7 22.39 15.42 206.46 13.27512 2 7 36.74 15.42 206.46 13.27512
14 3 7 14.6 23.29 229.75 14.77264 3 7 45.7 23.29 229.75 14.77264
15 4 7 9.45 14.93 244.68 15.73262 4 7 5.82 14.93 244.68 15.73262
16 5 7 20.67 13.29 257.97 16.58715 5 7 17.69 13.29 257.97 16.58715
17 6 7 4.45 18.11 276.08 17.7516 6 7 3.01 18.11 276.08 17.7516
18 7 7 22.97 12.91 288.99 18.5817 7 7 19.37 12.91 288.99 18.5817
19 8 7 38.27 14.53 303.52 19.51596 8 7 31.51 14.53 303.52 19.51596
20 9 7 24.24 12.56 316.08 20.32355 9 7 11.26 12.56 316.08 20.32355
21 10 7 5.55 16.11 332.19 21.3594 10 7 2.94 16.11 332.19 21.3594
22 11 7 18.62 17.43 349.62 22.48013 11 7 21.43 17.43 349.62 22.48013
23 1 6 2.84 19.14 368.76 23.71081 1 6 2.09 19.14 368.76 23.71081
24 2 6 11.24 11.37 380.13 24.44189 2 6 4.29 11.37 380.13 24.44189
25 3 6 26.43 21.83 401.96 25.84553 3 6 48.7 21.83 401.96 25.84553
26 4 6 4.81 15.26 417.22 26.82673 4 6 2.95 15.26 417.22 26.82673
27 5 6 7.7 15.83 433.05 27.84458 5 6 9.11 15.83 433.05 27.84458
28 6 6 2.12 23.33 456.38 29.34467 6 6 14.37 23.33 456.38 29.34467
29 7 6 13.18 17.84 474.22 30.49176 7 6 63.33 17.84 474.22 30.49176
30 8 6 3.12 12.19 486.41 31.27556 8 6 1.67 12.19 486.41 31.27556
31 9 6 20.93 28.96 515.37 33.13765 9 6 58.43 28.96 515.37 33.13765
32 10 6 62.98 18.26 533.63 34.31175 10 6 58.67 18.26 533.63 34.31175
33 11 6 6.9 16.17 549.8 35.35146 11 6 4.47 16.17 549.8 35.35146
34 1 5 17.45 13.9 563.7 36.24521 1 5 16.78 13.9 563.7 36.24521
35 2 5 12.9 22.08 585.78 37.66493 2 5 38.12 22.08 585.78 37.66493
36 3 5 20.07 14.47 600.25 38.59533 3 5 16.57 14.47 600.25 38.59533
37 4 5 4.66 15.82 616.07 39.61254 4 5 3.1 15.82 616.07 39.61254
38 5 5 11.21 20.85 636.92 40.95316 5 5 59.52 20.85 636.92 40.95316
39 6 5 21.5 21.36 658.28 42.32659 6 5 23.01 21.36 658.28 42.32659
40 7 5 13.29 18.95 677.23 43.54505 7 5 73.04 18.95 677.23 43.54505
41 8 5 6.78 24.78 702.01 45.13837 8 5 15.82 24.78 702.01 45.13837
42 9 5 13.54 17.87 719.88 46.28739 9 5 17.35 17.87 719.88 46.28739
43 10 5 3.75 20.71 740.59 47.61902 10 5 2.71 20.71 740.59 47.61902
44 11 5 17.11 22.03 762.62 49.03552 11 5 61.38 22.03 762.62 49.03552
45 1 4 4.91 14.91 777.53 49.99421 1 4 5.96 14.91 777.53 49.99421
46 2 4 7.14 12.18 789.71 50.77737 2 4 5.73 12.18 789.71 50.77737
47 3 4 7.6 16.61 806.32 51.84537 3 4 13.45 16.61 806.32 51.84537
48 4 4 22.55 16.69 823.01 52.91852 4 4 31.11 16.69 823.01 52.91852
49 5 4 4.4 15.39 838.4 53.90808 5 4 2.45 15.39 838.4 53.90808
50 6 4 5.98 26.67 865.07 55.62293 6 4 11.38 26.67 865.07 55.62293
51 7 4 4.05 20.99 886.06 56.97256 7 4 35.3 20.99 886.06 56.97256
52 8 4 68.71 20.36 906.42 58.28168 8 4 62.36 20.36 906.42 58.28168
53 9 4 16.27 21.79 928.21 59.68275 9 4 58.41 21.79 928.21 59.68275
54 10 4 21.36 11.76 939.97 60.4389 10 4 27.25 11.76 939.97 60.4389
55 11 4 67.85 16.26 956.23 61.4844 11 4 63.11 16.26 956.23 61.4844
56 1 3 16.08 10.42 966.65 62.15439 1 3 9.72 10.42 966.65 62.15439
57 2 3 25.78 18.2 984.85 63.32463 2 3 63.58 18.2 984.85 63.32463
58 3 3 38.15 15.85 1000.7 64.34377 3 3 35.15 15.85 1000.7 64.34377
59 4 3 5.7 21.77 1022.47 65.74355 4 3 7.35 21.77 1022.47 65.74355
60 5 3 4.72 21.53 1044 67.1279 5 3 5.45 21.53 1044 67.1279
61 6 3 5.55 13.8 1057.8 68.01523 6 3 4.06 13.8 1057.8 68.01523
62 7 3 4.02 24.26 1082.06 69.57511 7 3 41.45 24.26 1082.06 69.57511
63 8 3 12.49 21.56 1103.62 70.9614 8 3 29.53 21.56 1103.62 70.9614
64 9 3 6.91 18.78 1122.4 72.16893 9 3 22.61 18.78 1122.4 72.16893
65 10 3 27.76 18.54 1140.94 73.36102 10 3 43.8 18.54 1140.94 73.36102
66 11 3 7.1 23.65 1164.59 74.88169 11 3 5.03 23.65 1164.59 74.88169
67 1 2 12.69 22.6 1187.19 76.33484 1 2 48.05 22.6 1187.19 76.33484
68 2 2 9.3 22.47 1209.66 77.77964 2 2 34.43 22.47 1209.66 77.77964
69 3 2 63.71 16.59 1226.25 78.84635 3 2 54.65 16.59 1226.25 78.84635
70 4 2 80.1 19.29 1245.54 80.08667 4 2 81.54 19.29 1245.54 80.08667
71 5 2 27.83 18.85 1264.39 81.29871 5 2 32.71 18.85 1264.39 81.29871
72 6 2 22.29 12.59 1276.98 82.10823 6 2 31.03 12.59 1276.98 82.10823
73 7 2 3.38 19.26 1296.24 83.34662 7 2 3.71 19.26 1296.24 83.34662
74 8 2 7.07 22.83 1319.07 84.81456 8 2 41.26 22.83 1319.07 84.81456
75 9 2 6.46 21.28 1340.35 86.18284 9 2 12.93 21.28 1340.35 86.18284
76 10 2 2.77 16.16 1356.51 87.22191 10 2 2.72 16.16 1356.51 87.22191
77 11 2 16.43 18.24 1374.75 88.39472 11 2 61.35 18.24 1374.75 88.39472
78 1 1 2.24 10.17 1384.92 89.04864 1 1 2.75 10.17 1384.92 89.04864
79 2 1 20.52 16.04 1400.96 90.07999 2 1 17.55 16.04 1400.96 90.07999
80 3 1 12.52 19.48 1420.44 91.33253 3 1 13.64 19.48 1420.44 91.33253
81 4 1 9.01 20.97 1441.41 92.68087 4 1 16.17 20.97 1441.41 92.68087
82 5 1 7.07 9.87 1451.28 93.3155 5 1 2.94 9.87 1451.28 93.3155
83 6 1 18.6 19.74 1471.02 94.58476 6 1 48.98 19.74 1471.02 94.58476
84 7 1 18.37 18.31 1489.33 95.76207 7 1 62.43 18.31 1489.33 95.76207
85 8 1 12.82 20 1509.33 97.04804 8 1 61.15 20 1509.33 97.04804
86 9 1 31.33 14.9 1524.23 98.0061 9 1 17.72 14.9 1524.23 98.0061
87 10 1 13.27 10.71 1534.94 98.69474 10 1 6.15 10.71 1534.94 98.69474
88 11 1 26.66 20.3 1555.24 100 11 1 50.37 20.3 1555.24 100  
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Table App. H-2 After sorting by max ΔT mean LRO ore type: 

Multimode Cavity Single Mode Cavity 
particle numbag max delta t mass of pa CumulativeCumulative mass% particle numbag max delta t mass of pa CumulativeCumulative mass%

1 1 7 1.05 15.29 15.29 0.983128 1 8 0.76 11.99 11.99 0.770942
2 1 8 1.21 11.99 27.28 1.75407 1 7 0.91 15.29 27.28 1.75407
3 6 6 2.12 23.33 50.61 3.25416 8 6 1.67 12.19 39.47 2.537872
4 1 1 2.24 10.17 60.78 3.908078 1 6 2.09 19.14 58.61 3.76855
5 10 2 2.77 16.16 76.94 4.947146 5 4 2.45 15.39 74 4.758108
6 1 6 2.84 19.14 96.08 6.177825 10 5 2.71 20.71 94.71 6.089735
7 8 6 3.12 12.19 108.27 6.961627 10 2 2.72 16.16 110.87 7.128803
8 7 2 3.38 19.26 127.53 8.200021 1 1 2.75 10.17 121.04 7.782722
9 10 5 3.75 20.71 148.24 9.531648 10 7 2.94 16.11 137.15 8.818575

10 7 3 4.02 24.26 172.5 11.09154 5 1 2.94 9.87 147.02 9.453203
11 7 4 4.05 20.99 193.49 12.44117 4 6 2.95 15.26 162.28 10.4344
12 5 4 4.4 15.39 208.88 13.43072 6 7 3.01 18.11 180.39 11.59885
13 6 7 4.45 18.11 226.99 14.59518 6.90 oC 4 5 3.1 15.82 196.21 12.61606 6.90 oC
14 4 5 4.66 15.82 242.81 15.61238 7 2 3.71 19.26 215.47 13.85445
15 5 3 4.72 21.53 264.34 16.99673 2 8 3.97 19.7 235.17 15.12114
16 11 8 4.74 17.88 282.22 18.1464 6 3 4.06 13.8 248.97 16.00846
17 2 8 4.75 19.7 301.92 19.41308 2 6 4.29 11.37 260.34 16.73954
18 4 6 4.81 15.26 317.18 20.39428 11 6 4.47 16.17 276.51 17.77925
19 1 4 4.91 14.91 332.09 21.35297 11 3 5.03 23.65 300.16 19.29992
20 10 7 5.55 16.11 348.2 22.38883 5 3 5.45 21.53 321.69 20.68427
21 6 3 5.55 13.8 362 23.27615 2 4 5.73 12.18 333.87 21.46743
22 4 3 5.7 21.77 383.77 24.67593 4 7 5.82 14.93 348.8 22.42741
23 6 4 5.98 26.67 410.44 26.39078 1 4 5.96 14.91 363.71 23.3861
24 9 2 6.46 21.28 431.72 27.75906 10 1 6.15 10.71 374.42 24.07474
25 8 5 6.78 24.78 456.5 29.35238 7 8 6.86 13.03 387.45 24.91255
26 7 8 6.79 13.03 469.53 30.1902 4 3 7.35 21.77 409.22 26.31234
27 11 6 6.9 16.17 485.7 31.22991 6 8 7.64 14.9 424.12 27.27039
28 9 3 6.91 18.78 504.48 32.43744 11 8 7.76 17.88 442 28.42005
29 8 2 7.07 22.83 527.31 33.90538 5 6 9.11 15.83 457.83 29.4379
30 5 1 7.07 9.87 537.18 34.54001 1 3 9.72 10.42 468.25 30.10789
31 11 3 7.1 23.65 560.83 36.06067 9 7 11.26 12.56 480.81 30.91549
32 2 4 7.14 12.18 573.01 36.84383 6 4 11.38 26.67 507.48 32.63033
33 3 4 7.6 16.61 589.62 37.91183 9 2 12.93 21.28 528.76 33.99861
34 5 6 7.7 15.83 605.45 38.92968 3 4 13.45 16.61 545.37 35.06661
35 4 1 9.01 20.97 626.42 40.27803 3 1 13.64 19.48 564.85 36.31915
36 2 2 9.3 22.47 648.89 41.72282 6 6 14.37 23.33 588.18 37.81924
37 4 7 9.45 14.93 663.82 42.6828 8 5 15.82 24.78 612.96 39.41257
38 3 8 9.52 15.91 679.73 43.70579 4 1 16.17 20.97 633.93 40.76091
39 5 5 11.21 20.85 700.58 45.04642 3 5 16.57 14.47 648.4 41.69131
40 2 6 11.24 11.37 711.95 45.7775 1 5 16.78 13.9 662.3 42.58507
41 8 3 12.49 21.56 733.51 47.16378 9 5 17.35 17.87 680.17 43.73409
42 3 1 12.52 19.48 752.99 48.41632 2 1 17.55 16.04 696.21 44.76544
43 1 2 12.69 22.6 775.59 49.86947 5 7 17.69 13.29 709.5 45.61997
44 8 1 12.82 20 795.59 51.15545 9 1 17.72 14.9 724.4 46.57802
45 2 5 12.9 22.08 817.67 52.57517 8 8 18.26 14.14 738.54 47.4872
46 7 6 13.18 17.84 835.51 53.72226 7 7 19.37 12.91 751.45 48.3173
47 10 8 13.2 15.99 851.5 54.75039 11 7 21.43 17.43 768.88 49.43803
48 10 1 13.27 10.71 862.21 55.43903 10 8 22.46 15.99 784.87 50.46617
49 7 5 13.29 18.95 881.16 56.65749 9 3 22.61 18.78 803.65 51.6737
50 9 5 13.54 17.87 899.03 57.80651 6 5 23.01 21.36 825.01 53.04712
51 6 8 13.68 14.9 913.93 58.76456 10 4 27.25 11.76 836.77 53.80327
52 3 7 14.6 23.29 937.22 60.26208 9 8 27.74 16.6 853.37 54.87063
53 1 3 16.08 10.42 947.64 60.93207 8 3 29.53 21.56 874.93 56.25691
54 9 4 16.27 21.79 969.43 62.33314 6 2 31.03 12.59 887.52 57.06643
55 11 2 16.43 18.24 987.67 63.50595 4 4 31.11 16.69 904.21 58.13958
56 11 5 17.11 22.03 1009.7 64.92246 8 7 31.51 14.53 918.74 59.07384
57 1 5 17.45 13.9 1023.6 65.81621 5 2 32.71 18.85 937.59 60.28587
58 7 1 18.37 18.31 1041.91 66.99352 2 2 34.43 22.47 960.06 61.73067
59 6 1 18.6 19.74 1061.65 68.26278 3 3 35.15 15.85 975.91 62.7498
60 11 7 18.62 17.43 1079.08 69.3835 7 4 35.3 20.99 996.9 64.09943
61 4 8 18.67 16.34 1095.42 70.43415 2 7 36.74 15.42 1012.32 65.09092
62 3 5 20.07 14.47 1109.89 71.36455 2 5 38.12 22.08 1034.4 66.51064
63 2 1 20.52 16.04 1125.93 72.3959 3 8 39.62 15.91 1050.31 67.53363
64 5 7 20.67 13.29 1139.22 73.25043 8 2 41.26 22.83 1073.14 69.00157
65 9 6 20.93 28.96 1168.18 75.11252 7 3 41.45 24.26 1097.4 70.56146
66 10 4 21.36 11.76 1179.94 75.86868 10 3 43.8 18.54 1115.94 71.75356
67 6 5 21.5 21.36 1201.3 77.2421 3 7 45.7 23.29 1139.23 73.25107
68 6 2 22.29 12.59 1213.89 78.05162 1 2 48.05 22.6 1161.83 74.70423
69 2 7 22.39 15.42 1229.31 79.04311 3 6 48.7 21.83 1183.66 76.10787
70 4 4 22.55 16.69 1246 80.11625 6 1 48.98 19.74 1203.4 77.37713
71 7 7 22.97 12.91 1258.91 80.94635 4 8 50.34 16.34 1219.74 78.42777
72 9 7 24.24 12.56 1271.47 81.75394 11 1 50.37 20.3 1240.04 79.73303
73 2 3 25.78 18.2 1289.67 82.92418 3 2 54.65 16.59 1256.63 80.79975
74 3 6 26.43 21.83 1311.5 84.32782 5 8 56.26 19.27 1275.9 82.03879
75 8 8 26.5 14.14 1325.64 85.23701 9 4 58.41 21.79 1297.69 83.43985
76 11 1 26.66 20.3 1345.94 86.54227 9 6 58.43 28.96 1326.65 85.30195
77 10 3 27.76 18.54 1364.48 87.73437 10 6 58.67 18.26 1344.91 86.47604
78 5 2 27.83 18.85 1383.33 88.9464 5 5 59.52 20.85 1365.76 87.81667
79 9 8 29.06 16.6 1399.93 90.01376 8 1 61.15 20 1385.76 89.10265
80 9 1 31.33 14.9 1414.83 90.97181 11 2 61.35 18.24 1404 90.27546
81 3 3 38.15 15.85 1430.68 91.99095 11 5 61.38 22.03 1426.03 91.69196
82 8 7 38.27 14.53 1445.21 92.92521 8 4 62.36 20.36 1446.39 93.00108
83 5 8 53.38 19.27 1464.48 94.16424 7 1 62.43 18.31 1464.7 94.17839
84 10 6 62.98 18.26 1482.74 95.33834 11 4 63.11 16.26 1480.96 95.22389
85 3 2 63.71 16.59 1499.33 96.40506 7 6 63.33 17.84 1498.8 96.37098
86 11 4 67.85 16.26 1515.59 97.45055 2 3 63.58 18.2 1517 97.54122
87 8 4 68.71 20.36 1535.95 98.75968 7 5 73.04 18.95 1535.95 98.75968
88 4 2 80.1 19.29 1555.24 100 4 2 81.54 19.29 1555.24 100  
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Table App. I-1 Mass retained within selected size fractions after screening obtained LRO ore 
sample 
LRO Size Distribution 
Size Fraction Mass 

(Kg) 
% 
Retained

+90mm 0 0.0 
90x75mm 61.38 11.0 
75x63mm 59.8 10.7 
63x45mm 119.08 21.4 
45x37.5mm 52.56 9.4 
37.5x31.5mm 40.32 7.2 
31.5x22.4mm 58.6 10.5 
22.4x19.0mm 25.2 4.5 
19.0x16.0mm 21.42 3.8 
16.0x13.2mm 19.12 3.4 
13.2x9.5mm 39.72 7.1 
9.5x6.7mm 27.46 4.9 
-6.7mm 32.52 5.8 
Total 557.18 100.0 
 
 
Table App. I-2 Mass retained within selected size fractions after screening obtained QZ Ohio ore 
sample 
Size Fraction Mass 

(Kg) 
% 
Retained

+90mm 43.86 5.7% 
90x75mm 14.9 1.9% 
75x63mm 19.36 2.5% 
63x45mm 42.12 5.5% 
45x37.5mm 42.16 5.5% 
37.5x31.5mm 45.22 5.9% 
31.5x22.4mm 99.86 12.9% 
22.4x19.0mm 53.52 6.9% 
19.0x16.0mm 55.46 7.2% 
16.0x13.2mm 52.32 6.8% 
13.2x9.5mm 88.66 11.5% 
9.5x6.7mm 58.96 7.6% 
-6.7mm 155.22 20.1% 
Total 771.62 100.0% 
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J. Appendix J 

Mineralogical Investigation of the QZ Ohio Ore Type 
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Figure App. J-1 Sample No. 1 
 

 
 
Table App. J-1  Mineral content represented in surface percentage 

Copper Sulphides Surface % Other Forming Minerals Surface % 
Bornite  0.11 Amphibole  0.03 
Chalcopyrite  0.26 Apatite  0.01 
Chalcocite  Not present Biotite  9.17 
Tennantite  Not present Calcite   <0.01 
    Chlorite  0.01 
Other Sulphides   Galena  Not present 
Pyrite   <0.01 Ilmenite  Not present 
Arsenopyrite  Not present Molybdenite   <0.01 
    Olivine   <0.01 
Quartz  89.03 Pyroxene   <0.01 
Feldspar  0.37 Rutile   <0.01 
    Talc  0.01 
Garnet  <0.01 Titanite  <0.01 
Magnetite  Not present Other Minerals  0.98 
 



Appendices 
_____________________________________________________________________ 

_____________________________________________________________________ 
 

350 

 
Figure App. J-2 Sample No. 2 
 

 
 
Table App. J-2  Mineral content represented in surface percentage 

Copper Sulphides Surface % Other Forming Minerals Surface % 
Bornite  0.10 Amphibole  0.03 
Chalcopyrite  0.15 Apatite  0.01 
Chalcocite <0.01 Biotite 8.03 
Tennantite <0.01 Calcite  0.02 
    Chlorite <0.01 
Other Sulphides   Galena  Not present 
Pyrite   <0.01 Ilmenite  Not present 
Arsenopyrite  Not present Molybdenite 0.11 
    Olivine   <0.01 
Quartz  90.17 Pyroxene   <0.01 
Feldspar  0.39 Rutile  <0.01 
    Talc  0.01 
Garnet  <0.01 Titanite  <0.01 
Magnetite 0.01 Other Minerals  0.96 
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Figure App. J-3 Sample No. 3 
 
Table App. J-3 Mineral content represented in surface percentage 

Copper Sulphides Surface % Other Forming Minerals Surface % 
Bornite  0.02 Amphibole  0.01 
Chalcopyrite  0.09 Apatite  0.01 
Chalcocite <0.01 Biotite 4.21 
Tennantite <0.01 Calcite <0.01 
    Chlorite 0.01 
Other Sulphides   Galena <0.01 
Pyrite   <0.01 Ilmenite  Not present 
Arsenopyrite  Not present Molybdenite <0.01 
    Olivine 0.01 
Quartz  91.24 Pyroxene 0.01 
Feldspar 3.16 Rutile  <0.01 
    Talc <0.01 
Garnet  <0.01 Titanite  <0.01 
Magnetite <0.01 Other Minerals  1.23 
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Figure App. J-4 Sample No. 4 
 

 
 
Table App. J-4 Mineral content represented in surface percentage 

Copper Sulphides Surface % Other Forming Minerals Surface % 
Bornite <0.01 Amphibole  0.63 
Chalcopyrite <0.01 Apatite  0.02 
Chalcocite <0.01 Biotite 0.22 
Tennantite <0.01 Calcite  <0.01 
    Chlorite 0.23 
Other Sulphides   Galena  <0.01 
Pyrite  0.01 Ilmenite  Not present 
Arsenopyrite  Not present Molybdenite 0.11 
    Olivine 0.15 
Quartz  90.12 Pyroxene  0.02 
Feldspar  6.78 Rutile 0.01 
    Talc  <0.01 
Garnet  <0.01 Titanite  <0.01 
Magnetite 0.45 Other Minerals 1.36 
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Figure App. J-5 Sample No. 5 
 

 
Table App. J-5 Mineral content represented in surface percentage 

Copper Sulphides Surface % Other Forming Minerals Surface % 
Bornite  0.18 Amphibole  0.20 
Chalcopyrite  0.86 Apatite  0.08 
Chalcocite <0.01 Biotite 14.67 
Tennantite <0.01 Calcite  0.01 
    Chlorite 1.77 
Other Sulphides   Galena  <0.01 
Pyrite  0.01 Ilmenite  Not present 
Arsenopyrite  Not present Molybdenite 0.11 
    Olivine 0.02 
Quartz  80.45 Pyroxene  0.02 
Feldspar  0.66 Rutile <0.01 
    Talc  0.01 
Garnet  <0.01 Titanite  <0.01 
Magnetite <0.01 Other Minerals 1.05 
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Figure App. J-6 Sample No. 6 
 

 
Table App. J-6  Mineral content represented in surface percentage 

Copper Sulphides Surface % Other Forming Minerals Surface % 
Bornite   <0.01 Amphibole  0.41 
Chalcopyrite  0.03 Apatite  0.11 
Chalcocite <0.01 Biotite 12.88 
Tennantite <0.01 Calcite  0.01 
    Chlorite 5.54 
Other Sulphides   Galena  <0.01 
Pyrite  0.04 Ilmenite  Not present 
Arsenopyrite   <0.01 Molybdenite 0.11 
    Olivine 0.23 
Quartz  77.02 Pyroxene  0.46 
Feldspar  0.59 Rutile <0.01 
    Talc  0.16 
Garnet  <0.01 Titanite  <0.01 
Magnetite 0.10 Other Minerals 2.40 
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K. Appendix K 

Reproducibility Testing for the QZ Ohio Ore Type 
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Figure App. K-1 Reproducibility temperature change graph for the eleven -22+19 mm particles 
in set one where each particle was tested 6 times in different orientations 
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Figure App. K-2Reproducibility temperature change graph for the eleven -22+19 mm particles in 
set two where each particle was tested 6 times in different orientations 
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Figure App. K-3 Reproducibility temperature change graph for the eleven -22+19 mm particles 
in set three where each particle was tested 6 times in different orientations 
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Figure App. K-4 Reproducibility temperature change graph for the eleven -22+19 mm particles 
in set four where each particle was tested 6 times in different orientations 
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Figure App. K-5 Reproducibility temperature change graph for the eleven -22+19 mm particles 
in set five where each particle was tested 6 times in different orientations 
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Figure App. K-6 Reproducibility temperature change graph for the eleven -22+19 mm particles 
in set six where each particle was tested 6 times in different orientations 
 
 



Appendices 
_____________________________________________________________________ 

_____________________________________________________________________ 
 

359 

Sub 
Sample 
No

Position 
Number

Rock 
Number 
durin 
testing

Rock 
Number 

Rock 
Mass (g)

Rock 
density 
(g/cm3)

Cu Assay 
%

Fe Assay 
%

Delta Max 
T1

Cumulative 
Mass %

Cumulative 
Copper 
Recovery% 

Cumulative 
Iron 
Recovery %

28 9 8 1 18.5 2.569 0.093 0.520 1.630 2.018 0.929 1.145
11 1 10 2 16.49 2.589 0.057 0.640 1.930 3.818 1.436 2.400
28 10 5 3 13.57 2.620 0.089 0.650 1.980 5.298 2.088 3.450
32 1 5 4 11.51 2.622 0.037 0.740 1.950 6.554 2.317 4.463

7 10 9 5 13.3 2.628 0.086 0.700 2.010 8.005 2.935 5.571
20 10 3 6 13.59 2.613 0.120 0.720 1.950 9.488 3.815 6.735
11 2 8 7 16.31 2.614 0.109 0.690 2.010 11.267 4.774 8.074
20 1 7 8 11.86 2.573 0.176 0.820 1.800 12.561 5.901 9.231
20 2 1 9 27.8 2.527 0.402 1.470 2.430 15.594 11.932 14.093
11 6 3 10 11.28 7.139 0.142 0.910 1.900 16.825 12.796 15.314
11 10 1 11 10 2.591 0.087 0.750 3.160 17.916 13.266 16.206

2 1 6 12 14.09 2.609 0.051 0.720 2.250 19.453 13.654 17.413
7 3 6 13 11.84 2.580 0.527 1.140 2.400 20.745 17.021 19.019
7 8 7 14 15.67 2.586 0.075 0.630 2.320 22.455 17.655 20.194
7 4 3 15 12.32 2.556 0.117 0.720 2.360 23.799 18.433 21.249

32 5 8 16 13.52 2.580 0.063 0.730 2.130 25.274 18.893 22.423
7 9 2 17 12.44 2.534 0.068 0.730 2.140 26.631 19.349 23.504

32 4 1 18 15.35 2.521 0.027 0.670 2.330 28.306 19.573 24.727
28 1 11 19 13.72 2.608 0.058 0.720 2.440 29.803 20.002 25.902
32 8 6 20 9.75 2.621 0.137 1.200 2.270 30.867 20.723 27.294
20 11 6 21 14.17 2.629 0.095 0.710 2.160 32.412 21.450 28.491
28 7 4 22 12.85 2.596 0.069 0.740 2.210 33.814 21.928 29.623

2 2 3 23 13.79 2.597 0.135 0.700 2.310 35.319 22.933 30.771
7 1 11 24 13.84 2.631 0.167 0.740 2.250 36.829 24.180 31.990
2 3 11 25 13.78 2.571 0.039 0.700 2.290 38.332 24.470 33.137

32 6 4 26 14.95 2.551 0.085 0.660 2.440 39.964 25.156 34.311
11 9 4 27 14.79 2.572 0.136 0.610 2.020 41.577 26.242 35.385
32 2 7 28 11.78 2.550 0.032 0.540 2.370 42.862 26.445 36.141

7 7 4 29 19.57 2.585 0.062 0.540 2.420 44.998 27.100 37.399
32 7 9 30 14.16 2.637 0.169 0.920 2.310 46.543 28.391 38.949
32 9 10 31 14.92 2.546 0.209 0.710 2.210 48.170 30.074 40.209
20 4 5 32 12.7 2.581 0.086 0.720 2.480 49.556 30.664 41.297
11 5 7 33 16.72 2.576 0.081 0.680 2.180 51.380 31.395 42.649
20 3 2 34 13.77 2.588 0.109 0.610 2.350 52.883 32.205 43.649

7 5 10 35 16.69 2.572 0.371 0.990 2.330 54.703 35.546 45.615
11 3 11 36 9.47 2.566 0.171 0.700 2.340 55.737 36.420 46.403
32 10 11 37 9.65 2.573 0.102 0.860 2.560 56.790 36.951 47.391

7 2 5 38 9.1 2.615 0.486 1.290 2.460 57.782 39.338 48.787
28 8 9 39 16.77 2.620 0.052 0.670 2.450 59.612 39.809 50.124

2 9 4 40 12.23 2.591 0.072 0.680 2.880 60.946 40.284 51.113
20 7 4 41 7.95 2.548 0.079 0.800 2.420 61.814 40.623 51.870
28 3 1 42 11.45 2.556 0.193 0.760 2.430 63.063 41.815 52.905
11 7 9 43 20.83 2.597 0.063 0.710 2.610 65.336 42.524 54.665
32 3 3 44 10.43 2.627 0.110 0.770 2.630 66.474 43.143 55.621
28 5 3 45 8.58 2.592 0.053 0.760 2.810 67.410 43.388 56.396
28 4 7 46 10.42 2.560 0.041 0.820 2.630 68.547 43.619 57.413

2 6 5 47 14.39 2.588 0.041 0.710 2.610 70.117 43.937 58.628
20 5 9 48 10.39 2.778 0.700 1.210 2.820 71.250 47.862 60.124

2 11 10 49 11.65 2.589 0.353 1.100 2.800 72.521 50.082 61.649
2 5 8 50 16.92 2.595 0.140 0.700 3.050 74.367 51.360 63.058

28 6 2 51 16.5 2.594 0.093 0.640 2.820 76.167 52.188 64.314
11 11 2 52 12.61 2.542 1.050 1.160 3.010 77.543 59.334 66.055
11 4 6 53 8.62 2.620 0.850 1.430 2.790 78.484 63.288 67.521

2 8 2 54 14.05 2.592 0.104 0.840 2.840 80.017 64.076 68.925
2 4 7 55 12.08 2.565 0.240 1.170 3.060 81.335 65.641 70.607

20 8 10 56 13.48 2.597 0.612 1.110 3.320 82.805 70.093 72.387
28 2 10 57 18.95 2.544 0.137 1.230 3.330 84.873 71.494 75.160

2 7 1 58 16.85 2.596 0.745 1.310 3.310 86.711 78.269 77.786
7 6 8 59 10.5 2.586 0.150 0.740 3.650 87.857 79.119 78.711
7 11 1 60 14.99 2.576 0.573 1.290 3.580 89.492 83.754 81.011

20 6 8 61 18.76 2.606 0.100 0.690 4.120 91.539 84.767 82.551
32 11 2 62 25.39 2.626 0.406 2.470 5.280 94.309 90.330 90.013
20 9 11 63 11.03 2.614 0.996 1.580 5.870 95.513 96.259 92.086

2 10 9 64 11.64 2.536 0.089 1.720 11.010 96.783 96.818 94.468
28 11 6 65 11.35 2.489 0.275 1.140 22.520 98.021 98.502 96.007
11 8 5 66 18.14 2.534 0.153 1.850 26.270 100.000 100.000 100.000  

Figure App. K-7- Data for separation curves for QZ OHIO -22.4 +19.0 mm size fraction based on 
Delta MAX T  
 



Appendices 
_____________________________________________________________________ 

_____________________________________________________________________ 
 

360 

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

0 2 4 6 8 10 12 14

Temperature, C

Pe
rc

en
ta

ge
 %

Cumulative Mass %

Cumulative Copper
Recovery% 

Cumulative Iron Recovery %

 
Figure App. K-8- Separation curves for QZ OHIO -22.4 +19.0 mm size fraction based on Delta 
T1  
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Figure App. K-9 Separation curves for QZ OHIO -22.4 +19.0 mm size fraction based on Delta T2 
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L. Appendix L 

Calculated Flotation Results 
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Table App. L-1 Flotation results for mass and cumulative mass % from concentrates for the 

groups grinded for 10 minutes 

Mass, g 
 Flotation 

time (min) 
Hot  Med  Cold  UP  

Concentrate 1 1 52.22 34.38 32.47 31.75 
Concentrate 2 3 9.03 4.75 5.71 10.54 
Concentrate 3 5 6.06 5.56 3.80 6.40 
Concentrate 4 10 12.16 8.99 5.97 18.46 
Tail   910.80 946.23 948.15 924.71 
Total    990.27 999.91 996.10 991.86 
Cumulative mass % from concentrates 
 Flotation 

time (min) 
Hot  Med  Cold  UP  

Concentrate 1 1 5.27 3.44 3.26 3.20 
Concentrate 2 3 6.19 3.91 3.83 4.26 
Concentrate 3 5 6.80 4.47 4.21 4.91 
Concentrate 4 10 8.03 5.37 4.81 6.77 
 
 

 

 

Table App. L-2  Flotation results for mass and cumulative mass % from concentrates for the 

groups grinded for 15 minutes 

Mass, g 
  Flotation time 

(min) 
Hot  Med  Cold  UP  

Concentrate 1 1 49.35 32.10 30.69 30.72 
Concentrate 2 3 8.78 3.35 5.26 11.40 
Concentrate 3 5 3.74 2.15 2.55 4.47 
Concentrate 4 10 13.52 3.55 5.21 12.44 
Tail   911.14 869.98 947.16 947.38 
Total   986.53 911.13 990.87 1006.41 
Cumulative mass % from concentrates 
  Flotation time 

(min) 
Hot  Med  Cold  UP  

Concentrate 1 1 5.00 3.52 3.10 3.05 
Concentrate 2 3 5.89 3.89 3.63 4.19 
Concentrate 3 5 6.27 4.13 3.89 4.63 
Concentrate 4 10 7.64 4.52 4.41 5.87 
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Table App. L-3  Cumulative Copper Recovery (%)grinded for 10 minutes 

  Flotation time (min) Hot Medium Cold 
Concentrate 1 1 88.5 83.5 84.7 
Concentrate 2 3 92.4 90.8 89.5 
Concentrate 3 5 93.2 91.7 90.1 
Concentrate 4 10 93.8 92.3 90.9 
 
 
Table App. L-4 Cumulative Copper Recovery (%) grinded for 15 minutes 

  Flotation time (min) Hot Medium Cold 
Concentrate 1 1 84.9 86.9 82.3 
Concentrate 2 3 92.0 91.3 89.6 
Concentrate 3 5 92.6 91.9 90.4 
Concentrate 4 10 93.2 92.5 91.1 
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The Linear Interpolation for 75% Passing Size (P75) for the hot, 
medium, cold fraction and unprocessed material at different 
grinding times  
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Figure App. L-1 Linear interpolation for P75 for the hot fraction at 10 minutes grind.  
P75=146 µm 
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Figure App. L-2 Linear interpolation for P75 for the hot fraction at 15 minutes grind.  
P75=121 µm 
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Figure App. L-3 Linear interpolation for P75 for the medium fraction at 10 minutes grind.  
P75=158 µm 
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Figure App. L-4Linear interpolation for P75 for the medium fraction at 15 minutes grind.  
P75=127 µm 
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Figure App. L-5 Linear interpolation for P75 for the cold fraction at 10 minutes grind.  
P75=160 µm 
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Figure App. L-6Linear interpolation for P75 for the cold fraction at 15 minutes grind.  
P75=132 µm 
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Figure App. L-7 Linear interpolation for P75 for the unprocessed material at 10 minutes grind. 
P75=181 µm 
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Figure App. L-8 Linear interpolation for P75 for the unprocessed material at 10 minutes grind. 
P75=144 µm 
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Flotation results 

 
Table App. L-5 QZ Ohio Hot grinded for 15 min 
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Table App. L-6  QZ Ohio Medium grinded for 15 min 
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Table App. L-7  QZ Ohio Cold grinded for 15 min 
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Table App. L-8  QZ Ohio not treated grinded for 15 min 
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Table App. L-9  QZ Ohio Hot grinded for 10 min 
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Table App. L-10  QZ Ohio Medium grinded for 10 min 
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Table App. L-11  QZ Ohio Cold grinded for 10 min 
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Table App. L-12  QZ Ohio not treated grinded for 10 min 
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M. Appendix M 
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Set No 1: 
 

 
Figure App. M-1 First exposure, timing graph for the set No. 1 
 

 
Figure App. M-2 Second exposure, timing graph for the set No. 1 
 

 
Figure App. M-3 Third exposure, timing graph for the set No. 1 
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Tomography analysis of some of the hot particles: 
 
Particle No. 5 Set No. 1 

Position 0 deg Position 45 deg Position 180 deg 
Figure App. M-4 QZ Ohio Ore Particle No. 5 Set No. 1 
 
Tomography analysis of some of the cold particles: 
 

Particle No. 2 Set No. 1 

Position 0 deg Position 45 deg Position 180 deg 
Figure App. M-5 QZ Ohio Ore Particle No. 2 Set No. 1 
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Set No 2: 

 
Figure App. M-6 First exposure, timing graph for the set No. 2 
 

 
Figure App. M-7 Second exposure, timing graph for the set No. 2 
 

 
Figure App. M-8 Third exposure, timing graph for the set No. 2 
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Tomography analysis of some of the hot particles: 
 
Particle No. 7 Set No. 2 

Position 0 deg Position 90 deg Position 135 deg 
Figure App. M-9 QZ Ohio Ore Particle No. 7 Set No. 2 
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Set No 3: 

 
Figure App. M-10 First exposure, timing graph for set no. 3 
 

 
Figure App. M-11 Second exposure, timing graph for set no.3 

 
Figure App. M-12 Third exposure, timing graph for set no 3 
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Tomography analysis of some of the hot particles: 
 

Particle No. 7 Set No. 3 

Position 0 deg Position 45 deg Position 90 deg 
Figure App. M-13 QZ Ohio Ore Particle No. 7 Set No. 3 
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Set No 4: 

 
Figure App. M-14 First exposure, timing graph for set no. 4 

 
Figure App. M-15 Second exposure, timing graph for set no.4 

 
Figure App. M-16 Third exposure, timing graph for set no 4 
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Tomography analysis of some of the hot particles: 
 

Particle No. 4 Set No. 4 

Position 0 deg Position 90 deg Position 90 deg 
Figure App. M-17 QZ Ohio Ore Particle No. 4 Set No. 4 
 
Tomography analysis of some of the cold particles: 
 

Particle No. 2 Set No. 4 

 
Position 0 deg 

 
Position 45 deg 

 
Position 90 deg 

Figure App. M-18 QZ Ohio Ore Particle No. 2 Set No. 4 
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Set No 5: 

 
Figure App. M-19 First exposure, timing graph for set no. 5 

 
Figure App. M-20Second exposure, timing graph for set no.5 

 
Figure App. M-21 Third exposure, timing graph for set no.5 
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Tomography analysis of some of the hot particles: 
 

Particle No. 5 Set No. 5 

Position 0 deg Position 45 deg Position 90 deg 
Figure App. M-22 QZ Ohio Ore Particle No. 5 Set No. 5 
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Set No 6: 

 
Figure App. M-23 First exposure, timing graph for set no. 6 

 
Figure App. M-24 Second exposure, timing graph for set no.6 

 
Figure App. M-25 Third exposure, timing graph for set no.6 
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Tomography analysis of some of the hot particles: 
 

Particle No. 2 Set No. 6 

Position 0 deg Position 90 deg Position 225 deg 
Figure App. M-26 QZ Ohio Ore Particle No. 2 Set No. 6 
 

Particle No. 6 Set No. 6 

Position 0 deg Position 45 deg Position 90 deg 
Figure App. M-27 QZ Ohio Ore Particle No. 6 Set No. 6 
 
Tomography analysis of some of the cold particles: 
 

Particle No. 11 Set No. 6 

 
Position 0 deg Position 45 deg Position 180 deg 
Figure App. M-28 QZ Ohio Ore Particle No. 11 Set No. 6 
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Set No 7: 

 
Figure App. M-29 First exposure, timing graph for set no. 7 

 
Figure App. M-30 Second exposure, timing graph for set no.7 

 
Figure App. M-31 Third exposure, timing graph for set no.7 
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Tomography analysis of some of the hot particles: 
 

Particle No. 2 Set No. 7 

Position 0 deg Position 90 deg Position 270 deg 

Figure App. M-32 QZ Ohio Ore Particle No. 2 Set No. 7 
 
Particle No. 7 Set No. 7 

 
Position 0 deg 

 
Position 180 deg 

 
Position 90 deg 

Figure App. M-33 QZ Ohio Ore Particle No. 7 Set No.7 
 
Tomography analysis of some of the cold particles: 
 

Particle No. 10 Set No. 7 

Position 0 deg Position 45 deg Position 180 deg 
Figure App. M-34 QZ Ohio Ore Particle No. 10 Set No. 7 
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Set No 8: 

 
Figure App. M-35 First exposure, timing graph for set no. 8  

 
Figure App. M-36 Second exposure, timing graph for set no. 8  
 

 
Figure App. M-37 Third exposure, timing graph for set no. 8  
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Tomography analysis of some of the hot particles: 
 

Particle No. 3 Set No. 8 

 
Position 0 deg Position 90 deg 

 
Position 180 deg 

Figure App. M-38 QZ Ohio Ore Particle No. 3 Set No. 8 
 
Tomography analysis of some of the cold particles: 
 

Particle No. 2 Set No. 8 

 
Position 0 deg Position 45 deg Position 60 deg 
Figure App. M-39 QZ Ohio Ore Particle No. 2 Set No. 8 
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Overlapping particles in both types of cavities 
Table App. M-1 Before sorting max ΔT mean for the QZ Ohio Ore: 

Multimode Cavity TWA

particle numset max delta t mass of pa CumulativeCumulative mass% particle numset max delta t mass of pa CumulativeCumulative
1 1 1 8 1.98 12.87 12.87 0.98108 1 1 8 1.82 12.87 12.87 0.98108
2 2 2 8 2.74 17.44 30.31 2.31053 2 2 8 4.53 17.44 30.31 2.31053
3 3 3 8 7.26 14.13 44.44 3.38766 3 3 8 12.95 14.13 44.44 3.38766
4 4 4 8 4.36 13.91 58.35 4.448019 4 4 8 5.96 13.91 58.35 4.448019
5 5 5 8 3.48 11.86 70.21 5.352106 5 5 8 4.06 11.86 70.21 5.352106
6 6 6 8 3.12 23.08 93.29 7.111494 6 6 8 6.23 23.08 93.29 7.111494
7 7 7 8 1.76 10.53 103.82 7.914196 7 7 8 2.84 10.53 103.82 7.914196
8 8 8 8 3.32 15.24 119.06 9.07594 8 8 8 5.82 15.24 119.06 9.07594
9 9 9 8 6.66 13.59 132.65 10.11191 9 9 8 8.25 13.59 132.65 10.11191

10 10 10 8 1.9 17.6 150.25 11.45355 10 10 8 1.62 17.6 150.25 11.45355
11 11 11 8 1.99 13.66 163.91 12.49485 11 11 8 2.11 13.66 163.91 12.49485
12 12 1 7 1.86 18.71 182.62 13.92112 12 1 7 2.15 18.71 182.62 13.92112
13 13 2 7 4.1 16.68 199.3 15.19263 13 2 7 4.97 16.68 199.3 15.19263
14 14 3 7 2.02 15.83 215.13 16.39935 14 3 7 2.23 15.83 215.13 16.39935
15 15 4 7 1.67 18.22 233.35 17.78826 15 4 7 2 18.22 233.35 17.78826
16 16 5 7 2.45 18.08 251.43 19.1665 16 5 7 2.8 18.08 251.43 19.1665
17 17 6 7 1.52 21.77 273.2 20.82603 17 6 7 2.18 21.77 273.2 20.82603
18 18 7 7 3.02 16.53 289.73 22.08611 18 7 7 4.47 16.53 289.73 22.08611
19 19 8 7 1.65 18.47 308.2 23.49408 19 8 7 2.11 18.47 308.2 23.49408
20 20 9 7 2.24 17.1 325.3 24.79761 20 9 7 2.69 17.1 325.3 24.79761
21 21 10 7 2.29 25.06 350.36 26.70793 21 10 7 4.16 25.06 350.36 26.70793
22 22 11 7 1.61 16.52 366.88 27.96725 22 11 7 1.62 16.52 366.88 27.96725
23 23 1 6 2.31 17.69 384.57 29.31576 23 1 6 2.61 17.69 384.57 29.31576
24 24 2 6 4.48 16.68 401.25 30.58728 24 2 6 5.14 16.68 401.25 30.58728
25 25 3 6 2.23 12.88 414.13 31.56912 25 3 6 2.29 12.88 414.13 31.56912
26 26 4 6 1.79 12.19 426.32 32.49836 26 4 6 2.23 12.19 426.32 32.49836
27 27 5 6 3.34 15.79 442.11 33.70203 27 5 6 2.76 15.79 442.11 33.70203
28 28 6 6 4.49 13.87 455.98 34.75934 28 6 6 6.15 13.87 455.98 34.75934
29 29 7 6 2.28 10.75 466.73 35.57881 29 7 6 1.37 10.75 466.73 35.57881
30 30 8 6 2.72 17.29 484.02 36.89683 30 8 6 4.85 17.29 484.02 36.89683
31 31 9 6 3.04 20.89 504.91 38.48927 31 9 6 4.41 20.89 504.91 38.48927
32 32 10 6 8.52 18.31 523.22 39.88505 32 10 6 13.86 18.31 523.22 39.88505
33 33 11 6 2.19 16.69 539.91 41.15732 33 11 6 2.1 16.69 539.91 41.15732
34 34 1 5 2.2 24.68 564.59 43.03868 34 1 5 3.37 24.68 564.59 43.03868
35 35 2 5 1.92 11.43 576.02 43.90999 35 2 5 1.59 11.43 576.02 43.90999
36 36 3 5 2.05 18.84 594.86 45.34616 36 3 5 2.14 18.84 594.86 45.34616
37 37 4 5 2.35 15.43 610.29 46.52239 37 4 5 1.76 15.43 610.29 46.52239
38 38 5 5 14.82 9.49 619.78 47.24581 38 5 5 15.04 9.49 619.78 47.24581
39 39 6 5 2.21 12.01 631.79 48.16133 39 6 5 2.46 12.01 631.79 48.16133
40 40 7 5 2.72 14.45 646.24 49.26286 40 7 5 1.88 14.45 646.24 49.26286
41 41 8 5 5.81 10.64 656.88 50.07394 41 8 5 4.53 10.64 656.88 50.07394
42 42 9 5 3.53 11.21 668.09 50.92848 42 9 5 2.06 11.21 668.09 50.92848
43 43 10 5 6.71 15.25 683.34 52.09099 43 10 5 7.54 15.25 683.34 52.09099
44 44 11 5 1.97 11.52 694.86 52.96916 44 11 5 1.44 11.52 694.86 52.96916
45 45 1 4 3.6 11.35 706.21 53.83437 45 1 4 4.17 11.35 706.21 53.83437
46 46 2 4 1.91 16.66 722.87 55.10436 46 2 4 1.81 16.66 722.87 55.10436
47 47 3 4 2.3 14.75 737.62 56.22875 47 3 4 2.36 14.75 737.62 56.22875
48 48 4 4 6.76 14.89 752.51 57.36382 48 4 4 7.41 14.89 752.51 57.36382
49 49 5 4 2.71 13.79 766.3 58.41503 49 5 4 2.4 13.79 766.3 58.41503
50 50 6 4 2.35 18.04 784.34 59.79022 50 6 4 1.37 18.04 784.34 59.79022
51 51 7 4 2.06 14.08 798.42 60.86353 51 7 4 1.24 14.08 798.42 60.86353
52 52 8 4 2.44 14.8 813.22 61.99174 52 8 4 2.57 14.8 813.22 61.99174
53 53 9 4 2.61 21.73 834.95 63.64821 53 9 4 2.35 21.73 834.95 63.64821
54 54 10 4 2.5 13.57 848.52 64.68265 54 10 4 1.55 13.57 848.52 64.68265
55 55 11 4 2.48 12.18 860.7 65.61114 55 11 4 2.42 12.18 860.7 65.61114
56 56 1 3 2 12.12 872.82 66.53504 56 1 3 1.77 12.12 872.82 66.53504
57 57 2 3 1.98 15.86 888.68 67.74405 57 2 3 1.8 15.86 888.68 67.74405
58 58 3 3 2.06 12.66 901.34 68.70912 58 3 3 1.88 12.66 901.34 68.70912
59 59 4 3 2.6 16.23 917.57 69.94633 59 4 3 3.51 16.23 917.57 69.94633
60 60 5 3 2.55 15.64 933.21 71.13857 60 5 3 1.7 15.64 933.21 71.13857
61 61 6 3 2.3 13.6 946.81 72.1753 61 6 3 2.76 13.6 946.81 72.1753
62 62 7 3 6.07 19.21 966.02 73.63968 62 7 3 7.72 19.21 966.02 73.63968
63 63 8 3 2.27 12.25 978.27 74.57349 63 8 3 1.84 12.25 978.27 74.57349
64 64 9 3 2.63 15.31 993.58 75.74057 64 9 3 1.73 15.31 993.58 75.74057
65 65 10 3 2.31 15.43 1009.01 76.9168 65 10 3 1.67 15.43 1009.01 76.9168
66 66 11 3 2.19 16.21 1025.22 78.15249 66 11 3 2.09 16.21 1025.22 78.15249
67 67 1 2 1.95 9.42 1034.64 78.87058 67 1 2 2.58 9.42 1034.64 78.87058
68 68 2 2 2.67 12.34 1046.98 79.81125 68 2 2 1.85 12.34 1046.98 79.81125
69 69 3 2 6.29 12 1058.98 80.72601 69 3 2 6.32 12 1058.98 80.72601
70 70 4 2 2.63 8.89 1067.87 81.4037 70 4 2 1.32 8.89 1067.87 81.4037
71 71 5 2 6.3 16.65 1084.52 82.67293 71 5 2 4.96 16.65 1084.52 82.67293
72 72 6 2 2.41 15.1 1099.62 83.824 72 6 2 1.88 15.1 1099.62 83.824
73 73 7 2 3.31 15.86 1115.48 85.03301 73 7 2 3.13 15.86 1115.48 85.03301
74 74 8 2 2.08 12.6 1128.08 85.99351 74 8 2 1.75 12.6 1128.08 85.99351
75 75 9 2 2.96 10.92 1139 86.82594 75 9 2 2.24 10.92 1139 86.82594
76 76 10 2 2.2 15.11 1154.11 87.97777 76 10 2 2.46 15.11 1154.11 87.97777
77 77 11 2 3.86 13.73 1167.84 89.02441 77 11 2 3.17 13.73 1167.84 89.02441
78 78 1 1 1.8 14.94 1182.78 90.16328 78 1 1 1.98 14.94 1182.78 90.16328
79 79 2 1 2.33 12.75 1195.53 91.13522 79 2 1 2.07 12.75 1195.53 91.13522
80 80 3 1 1.65 12.44 1207.97 92.08352 80 3 1 1.76 12.44 1207.97 92.08352
81 81 4 1 2.29 12.51 1220.48 93.03715 81 4 1 2.07 12.51 1220.48 93.03715
82 82 5 1 10.96 11.43 1231.91 93.90846 82 5 1 11.37 11.43 1231.91 93.90846
83 83 6 1 3.09 12.25 1244.16 94.84228 83 6 1 2.26 12.25 1244.16 94.84228
84 84 7 1 3.97 11.22 1255.38 95.69758 84 7 1 3.41 11.22 1255.38 95.69758
85 85 8 1 2.59 11.89 1267.27 96.60395 85 8 1 2.05 11.89 1267.27 96.60395
86 86 9 1 2.38 12.92 1280.19 97.58885 86 9 1 2.65 12.92 1280.19 97.58885
87 87 10 1 2.24 19.64 1299.83 99.086 87 10 1 2.1 19.64 1299.83 99.086
88 88 11 1 2.65 11.99 1311.82 100 88 11 1 2.51 11.99 1311.82 100  
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Table App. M-2 After sorting max ΔT mean for QZ Ohio Ore: 

Multimode Cavity TWA

particle numset max delta t mass of pa CumulativeCumulative mass% particle numset max delta t mass of pa CumulativeCumulative mass%
1 17 6 7 1.52 21.77 21.77 1.659526 51 7 4 1.24 14.08 14.08 1.073318
2 22 11 7 1.61 16.52 38.29 2.918846 70 4 2 1.32 8.89 22.97 1.751002
3 19 8 7 1.65 18.47 56.76 4.326813 29 7 6 1.37 10.75 33.72 2.570475
4 80 3 1 1.65 12.44 69.2 5.275114 50 6 4 1.37 18.04 51.76 3.945663
5 15 4 7 1.67 18.22 87.42 6.664024 44 11 5 1.44 11.52 63.28 4.823833
6 7 7 8 1.76 10.53 97.95 7.466726 54 10 4 1.55 13.57 76.85 5.858273
7 26 4 6 1.79 12.19 110.14 8.395969 35 2 5 1.59 11.43 88.28 6.729582
8 78 1 1 1.8 14.94 125.08 9.534845 10 10 8 1.62 17.6 105.88 8.071229
9 12 1 7 1.86 18.71 143.79 10.96111 22 11 7 1.62 16.52 122.4 9.330548

10 10 10 8 1.9 17.6 161.39 12.30275 65 10 3 1.67 15.43 137.83 10.50678
11 46 2 4 1.91 16.66 178.05 13.57275 60 5 3 1.7 15.64 153.47 11.69901
12 35 2 5 1.92 11.43 189.48 14.44405 64 9 3 1.73 15.31 168.78 12.86609
13 67 1 2 1.95 9.42 198.9 15.16214 74 8 2 1.75 12.6 181.38 13.82659
14 44 11 5 1.97 11.52 210.42 16.04031 37 4 5 1.76 15.43 196.81 15.00282
15 1 1 8 1.98 12.87 223.29 17.02139 80 3 1 1.76 12.44 209.25 15.95112
16 57 2 3 1.98 15.86 239.15 18.2304 56 1 3 1.77 12.12 221.37 16.87503
17 11 11 8 1.99 13.66 252.81 19.2717 57 2 3 1.8 15.86 237.23 18.08404
18 56 1 3 2 12.12 264.93 20.19561 46 2 4 1.81 16.66 253.89 19.35403
19 14 3 7 2.02 15.83 280.76 21.40233 1 1 8 1.82 12.87 266.76 20.33511
20 36 3 5 2.05 18.84 299.6 22.8385 63 8 3 1.84 12.25 279.01 21.26892
21 51 7 4 2.06 14.08 313.68 23.91182 68 2 2 1.85 12.34 291.35 22.2096
22 58 3 3 2.06 12.66 326.34 24.87689 40 7 5 1.88 14.45 305.8 23.31113
23 74 8 2 2.08 12.6 338.94 25.83739 58 3 3 1.88 12.66 318.46 24.2762
24 33 11 6 2.19 16.69 355.63 27.10966 72 6 2 1.88 15.1 333.56 25.42727
25 66 11 3 2.19 16.21 371.84 28.34535 78 1 1 1.98 14.94 348.5 26.56614
26 34 1 5 2.2 24.68 396.52 30.22671 15 4 7 2 18.22 366.72 27.95505
27 76 10 2 2.2 15.11 411.63 31.37854 85 8 1 2.05 11.89 378.61 28.86143
28 39 6 5 2.21 12.01 423.64 32.29406 42 9 5 2.06 11.21 389.82 29.71597
29 25 3 6 2.23 12.88 436.52 33.27591 79 2 1 2.07 12.75 402.57 30.6879
30 20 9 7 2.24 17.1 453.62 34.57944 81 4 1 2.07 12.51 415.08 31.64154
31 87 10 1 2.24 19.64 473.26 36.0766 66 11 3 2.09 16.21 431.29 32.87722
32 63 8 3 2.27 12.25 485.51 37.01041 33 11 6 2.1 16.69 447.98 34.1495
33 29 7 6 2.28 10.75 496.26 37.82989 87 10 1 2.1 19.64 467.62 35.64666
34 21 10 7 2.29 25.06 521.32 39.74021 11 11 8 2.11 13.66 481.28 36.68796
35 81 4 1 2.29 12.51 533.83 40.69385 19 8 7 2.11 18.47 499.75 38.09593
36 47 3 4 2.3 14.75 548.58 41.81824 36 3 5 2.14 18.84 518.59 39.5321
37 61 6 3 2.3 13.6 562.18 42.85496 12 1 7 2.15 18.71 537.3 40.95836
38 23 1 6 2.31 17.69 579.87 44.20347 17 6 7 2.18 21.77 559.07 42.61789
39 65 10 3 2.31 15.43 595.3 45.3797 14 3 7 2.23 15.83 574.9 43.82461
40 79 2 1 2.33 12.75 608.05 46.35163 26 4 6 2.23 12.19 587.09 44.75385
41 37 4 5 2.35 15.43 623.48 47.52786 75 9 2 2.24 10.92 598.01 45.58628
42 50 6 4 2.35 18.04 641.52 48.90305 83 6 1 2.26 12.25 610.26 46.5201
43 86 9 1 2.38 12.92 654.44 49.88794 25 3 6 2.29 12.88 623.14 47.50194
44 72 6 2 2.41 15.1 669.54 51.03901 53 9 4 2.35 21.73 644.87 49.15842
45 52 8 4 2.44 14.8 684.34 52.16722 47 3 4 2.36 14.75 659.62 50.28281
46 16 5 7 2.45 18.08 702.42 53.54546 49 5 4 2.4 13.79 673.41 51.33402
47 55 11 4 2.48 12.18 714.6 54.47394 55 11 4 2.42 12.18 685.59 52.26251
48 54 10 4 2.5 13.57 728.17 55.50838 39 6 5 2.46 12.01 697.6 53.17803
49 60 5 3 2.55 15.64 743.81 56.70061 76 10 2 2.46 15.11 712.71 54.32986
50 85 8 1 2.59 11.89 755.7 57.60699 88 11 1 2.51 11.99 724.7 55.24386
51 59 4 3 2.6 16.23 771.93 58.8442 52 8 4 2.57 14.8 739.5 56.37206
52 53 9 4 2.61 21.73 793.66 60.50068 67 1 2 2.58 9.42 748.92 57.09015
53 64 9 3 2.63 15.31 808.97 61.66776 23 1 6 2.61 17.69 766.61 58.43866
54 70 4 2 2.63 8.89 817.86 62.34544 86 9 1 2.65 12.92 779.53 59.42355
55 88 11 1 2.65 11.99 829.85 63.25944 20 9 7 2.69 17.1 796.63 60.72708
56 68 2 2 2.67 12.34 842.19 64.20012 27 5 6 2.76 15.79 812.42 61.93075
57 49 5 4 2.71 13.79 855.98 65.25133 61 6 3 2.76 13.6 826.02 62.96748
58 30 8 6 2.72 17.29 873.27 66.56935 16 5 7 2.8 18.08 844.1 64.34572
59 40 7 5 2.72 14.45 887.72 67.67087 7 7 8 2.84 10.53 854.63 65.14842
60 2 2 8 2.74 17.44 905.16 69.00032 73 7 2 3.13 15.86 870.49 66.35743
61 75 9 2 2.96 10.92 916.08 69.83275 77 11 2 3.17 13.73 884.22 67.40406
62 18 7 7 3.02 16.53 932.61 71.09283 34 1 5 3.37 24.68 908.9 69.28542
63 31 9 6 3.04 20.89 953.5 72.68528 84 7 1 3.41 11.22 920.12 70.14072
64 83 6 1 3.09 12.25 965.75 73.61909 59 4 3 3.51 16.23 936.35 71.37793
65 6 6 8 3.12 23.08 988.83 75.37848 5 5 8 4.06 11.86 948.21 72.28202
66 73 7 2 3.31 15.86 1004.69 76.58749 21 10 7 4.16 25.06 973.27 74.19234
67 8 8 8 3.32 15.24 1019.93 77.74923 45 1 4 4.17 11.35 984.62 75.05755
68 27 5 6 3.34 15.79 1035.72 78.95291 31 9 6 4.41 20.89 1005.51 76.65
69 5 5 8 3.48 11.86 1047.58 79.85699 18 7 7 4.47 16.53 1022.04 77.91008
70 42 9 5 3.53 11.21 1058.79 80.71153 2 2 8 4.53 17.44 1039.48 79.23953
71 45 1 4 3.6 11.35 1070.14 81.57674 41 8 5 4.53 10.64 1050.12 80.05062
72 77 11 2 3.86 13.73 1083.87 82.62338 30 8 6 4.85 17.29 1067.41 81.36863
73 84 7 1 3.97 11.22 1095.09 83.47868 71 5 2 4.96 16.65 1084.06 82.63786
74 13 2 7 4.1 16.68 1111.77 84.75019 2.96 oC 13 2 7 4.97 16.68 1100.74 83.90938 2.96 oC
75 4 4 8 4.36 13.91 1125.68 85.81055 24 2 6 5.14 16.68 1117.42 85.18089
76 24 2 6 4.48 16.68 1142.36 87.08207 8 8 8 5.82 15.24 1132.66 86.34264
77 28 6 6 4.49 13.87 1156.23 88.13938 4 4 8 5.96 13.91 1146.57 87.403
78 41 8 5 5.81 10.64 1166.87 88.95047 28 6 6 6.15 13.87 1160.44 88.46031
79 62 7 3 6.07 19.21 1186.08 90.41484 6 6 8 6.23 23.08 1183.52 90.21969
80 69 3 2 6.29 12 1198.08 91.3296 69 3 2 6.32 12 1195.52 91.13445
81 71 5 2 6.3 16.65 1214.73 92.59883 48 4 4 7.41 14.89 1210.41 92.26952
82 9 9 8 6.66 13.59 1228.32 93.6348 43 10 5 7.54 15.25 1225.66 93.43203
83 43 10 5 6.71 15.25 1243.57 94.7973 62 7 3 7.72 19.21 1244.87 94.8964
84 48 4 4 6.76 14.89 1258.46 95.93237 9 9 8 8.25 13.59 1258.46 95.93237
85 3 3 8 7.26 14.13 1272.59 97.0095 82 5 1 11.37 11.43 1269.89 96.80368
86 32 10 6 8.52 18.31 1290.9 98.40527 3 3 8 12.95 14.13 1284.02 97.88081
87 82 5 1 10.96 11.43 1302.33 99.27658 32 10 6 13.86 18.31 1302.33 99.27658
88 38 5 5 14.82 9.49 1311.82 100 38 5 5 15.04 9.49 1311.82 100

 


