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ABSTRACT 

Understanding the molecular mechanisms of bacterial virulence has broad implications. In 

addition to just academic interest many practical applications can be foreseen emerging from 

virulence research: identification of novel antimicrobial drug targets, potential vaccines, and 

diagnostics of infectious diseases. Different virulence factors are responsible for the initiation 

of the disease and others for the disease symptoms. Consequently, elimination of a single 

virulence factor can severely attenuate or even completely abrogate virulence. Due to the 

increasing antibiotic resistance world-wide there is an urgent need for new antimicrobial 

agents. The virulence factors and their eukaryotic interaction partners are recognized as 

potential targets for vaccine and antibacterial drug development and therefore highly 

prioritized research topics internationally.  

Genus Yersinia consists of 17 species of which Y. pestis, Y. pseudotuberculosis and Y. 

enterocolitica are human pathogens. Y. pestis causes bubonic plague while Y. pseudotuberculosis 

and Y. enterocolitica cause mostly food-borne yersiniosis, usually a diarrheal disease 

sometimes followed by post-infectious reactive arthritis. The pathogenic potential of these 

bacteria resides on many essential virulence factors some of which are encoded by genes 

located on a 70 kb virulence plasmid of Yersinia (pYV) and others by chromosomal loci. 

Yersiniosis is considered to be the third most common cause of gastroenteritis in Europe. In 

Finland both Y. pseudotuberculosis and Y. enterocolitica cause hundreds of human infections 

annually.  

The aim of the study is to characterize the intricate regulatory networks of Yersinia especially 

those that control the expression of the virulence factors. To achieve that goal three regulators 

were initially selected. The first gene studied, ybeY, was selected based on the literature due to 

the fact its protein product is believed to affect the sRNA regulation similar to Hfq. YbeY was 

recently recognized as an endoribonuclease playing an important role in the process of 

ribosome biosynthesis. The absence of ybeY gene in Y. enterocolitica serotype O:3  resulted in 

misprocessing of 16S rRNA and in severe decrease of growth rate with complete growth arrest 

at elevated temperatures. Interestingly, the lack of YbeY disturbed severely the regulation of 

the Yersinia virulence plasmid genes and affected the expression of regulatory small RNA 

species. Furthermore, the ybeY mutant displayed impairment of many virulence-related 

features, and decreased infectivity in the cell infection model.  
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The gene rfaH was selected as RfaH is implicated in regulation of different virulence factors in 

pathogenic bacteria, where it is required for the expression of lipopolysaccharide (LPS), 

capsule, hemolysin, exotoxin, hemin uptake receptor, and F pilus. This study revealed that RfaH 

of Y. enterocolitica O:3 acts as a highly specific regulator that enhances the transcription of the 

operons involved in biosynthesis of LPS O-antigen and outer core but does not affect the 

expression of enterobacterial common antigen. Furthermore, the transcriptome of the rfaH 

strain showed high similarity with the transcriptome of the O-antigen negative mutant, what 

indicated that the some changes seen in the rfaH strain were actually due to indirect responses 

to the loss of O-antigen. Moreover, the lack of RfaH resulted in attenuated stress response and 

lower resistance to compounds such as sodium dodecyl sulfate and polymyxin B. Conversely, 

the rfaH strain displayed higher resistance to complement-mediated killing by normal human 

serum.  

Due to an established role of non-coding RNAs in the gene regulation of bacteria, the small RNA 

chaperone gene hfq was chosen for further study.  Previous studies recognized the role of Hfq 

in bacterial virulence. However, the effects of Hfq-deficiency differ between the bacterial 

species. In Y. enterocolitica O:3 loss of Hfq caused impairment in growth, elongation of the 

bacterial cells, and decreased the resistance of bacteria to heat, acid and oxidative stresses, as 

well as attenuation in mouse infection experiments. Moreover, this study revealed that several 

alterations typical for the hfq-negative phenotype were due to derepression of the 

transcriptional factor RovM. The inactivation of the rovM gene of the hfq mutant reversed the 

motility and biofilm formation defects, mannitol utilization changes, and partially 

complemented the growth defect of the hfq mutant.  

In conclusion, all the studied proteins affected the gene regulation of Y. enterocolitica O:3 in 

different manner causing changes in gene and protein expression. The conducted experiments 

demonstrated that all the studied mutations compromised the bacterial virulence. The studied 

mutants showed significant decrease in resistance to different environmental conditions that 

are normally encountered during the course of infection. Furthermore, the loss of studied 

proteins resulted in such effects as growth defect, impairment of motility and biofilm formation, 

changes in carbohydrates metabolism, and alterations in production of different virulence 

factors that also contributes to vitality and ability to establish infection in host organism. 



12 
 

1. INTRODUCTION 

Yersiniosis is currently the third most common food-borne gastroenteritis in Europe after 

Salmonella and Campylobacter infections, with the Yersinia enterocolitica subsp. palearctica 

serobiotype O:3/4 being most frequently isolated from humans and slaughter pigs. In Finland, 

the number of Yersinia incidence is among the highest in European Union, with approximately 

500-700 cases per year (ca. 10 cases per 100 000 population). Moreover, as a psychrotrophic 

microorganism, Y. enterocolitica is able to proliferate at temperatures as low as 0⁰C, which 

makes it a substantial concern for the public health.  

Understanding the molecular mechanisms of bacterial gene regulation can bring many practical 

applications: identification of novel antimicrobial drug targets, development of novel vaccines, 

and improvements in diagnostics of infectious diseases. Due to the fact that different virulence 

factors are needed during different stages of infection, elimination of a single factor can severely 

attenuate the virulence. Therefore these factors are recognized as potential targets for vaccine 

and antibacterial drug development. In this respect Yersinia makes an exceptionally good model 

because it possesses tens of recognized virulence factors, there are good animal models for the 

disease, and the genomic sequences of several Yersinia species are known. In the face of rapidly 

emerging resistance it is vital that there is no diminish in the search for new antimicrobial 

agents, particularly of new lines (e.g. the inhibitors of bacterial virulence).  
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2. REVIEW OF THE LITERATURE 

2.1. Gene regulation in bacteria 

A large reservoir of genetic information increases the versatility of a bacterium by allowing it 

to adapt to variety of environmental conditions. The sequenced bacterial genomes contain from 

700 up to 9 000 genes, although only approximately 600 – 800 are needed at a certain time 

point (Dale & Park, 2010). Furthermore, both gene expression and protein synthesis is an 

energy-consuming process. Therefore, in order to respond adequately to the external stimuli 

and conserve the energy, the gene expression undergoes tight regulation.  

Regulation of gene expression in bacterial cell takes place at different levels (Fig. 3). The most 

general control occurs at the level of transcription. The expression is further controlled at the 

level of translation and subsequently undergoes the postranslational control. Following the 

scheme presented in the Figure 3 a number of potential regulatory factors can be mentioned. 

First of all, higher number of copies of the gene can increase the expression. In general, if the 

genome harbors more copies of a certain gene, there are more sites available for the 

transcription process to take place. However, most of the genes on the bacterial chromosome 

exist only in one copy, excluding genes coding for such molecules as rRNA. Therefore, this type 

of regulation is restricted to only several genes. Secondly, the promoter activity determines the 

efficiency with which the gene is transcribed by affecting the level of initiation of transcription 

by RNA polymerase. Promoter activity is considered to be the most important cue in control of 

expression of individual genes in bacteria. Next step of regulation focuses on the stability of 

mRNA molecules, which serve as the templates for translation. Most of the bacterial mRNAs are 

short-lived and are typically degraded with half-lives below 2 minutes, whereas other forms of 

RNA (rRNA or tRNA) are considerably more stable. All the above mentioned steps focus on 

providing and maintaining the proper amount of mRNA available in bacterial cell. The process 

of translation is controlled by the efficiency of initiation (ribosome binding) and the rate of 

translation (codon usage). Furthermore, the abundance of protein reflects both the rate of 

production and its stability. The last step of regulation involves different posttranscriptional 

effects that may include events like protein folding, covalent modifications, as well as activation 

and inhibition by other proteins. (Birge, 2006 189, Dale & Park, 2010 188).  
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Figure 3. Model of information flow and potential regulatory factors affecting the gene 
expression in bacteria (modified from (Dale & Park, 2010)).  

2.1.1. Regulation of transcription 

In prokaryotes, the most common way to regulate gene expression is by influencing the rate at 

which transcription is regulated. This part of the gene expression regulation allows controlling 

the amount of mRNA produced from the coding gene. Although, this step is characterized by 

lowest sensitivity, it provides bacterial cell with possibility to stop the gene expression at 

earliest stage and thus preserve energy. (Birge, 2006 189, Dale & Park, 2010 188). 

2.1.1.1. Promoters 

Promoter is a sequence located upstream of a gene which acts as a specific recognition site for 

RNA polymerase and regulatory DNA binding proteins. Generally, promoters contain two 

highly conserved regions that are placed approximately 33 and 10 bp upstream from the start 

of the gene and are termed -35 and -10 boxes. In Escherichia coli the highly conserved regions 
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TTGACA and TATAAT constitute the consensus sequences for -35 and – 10 boxes, respectively. 

The sequence separating these highly conserved regions is variable and for major of promoters 

it is 16 to 18 bp long. The variations of the promoter sequence reflect both its strength and its 

capacity to bind different classes of RNA polymerases. Promoters that have sequence close to 

the ideal consensus are considered to be strong and they can direct the initiation of the 

transcription of the gene every 2 seconds. Changes in the conserved boxes or in the separating 

sequence lead to decrease in the promoter activity. Despite the diversity of the promoters, the 

TATA motif of the -10 box is common for all classes of promoters, including eukaryotic and 

archeal promoters. Therefore promoter constitutes a fixed level of control that determines the 

potential level of expression of a certain gene. (Travers, 1987, Dale & Park, 2010).  

2.1.1.2. Sigma factors and anti-sigma factors 

RNA polymerase that conducts transcription is composed of four subunits (α2ββ’) and 

additional dissociable element called -factor. The -factor allows recognition of the conserved 

-10 and -35 boxes in the promoter region determining the specificity of the enzyme. Since 

regulons of -factors can be comprised of hundreds of genes, this mechanism is frequently used 

to respond to such stimuli as environmental stresses, nutritional downshifts, and variations in 

pH and osmolarity (Kazmierczak et al., 2005, Dale & Park, 2010). The most common -factor, 

70, is responsible for transcription of housekeeping genes required for the essential cellular 

functions. The presence of alternative sigma factors allows bacterium to redirect the 

transcription into set of a smaller number of genes linked to a specific function. In E. coli seven 

different -factors have been identified (Table 3) (reviewed in (Landini et al., 2014)). 

The general stress response alternative sigma factor RpoS ( 38) is responsible for 

transcription of genes contributing to bacterial survival under unfavorable environmental 

conditions. Its expression is activated during starvation, oxidative damage, reduced pH, as well 

as during stationary phase of growth. The rpoS gene is not essential for growth of E. coli and its 

deletion does not affect the growth rate in neither rich nor minimal medium. However, strains 

lacking RpoS display high sensitivity to a variety of environmental stresses. Approximately 140 

genes are induced directly by the increase in 38 levels, regardless of growth conditions and 

environmental cues. Moreover, up to 500 genes together can be affected directly or indirectly 

by the activity of RpoS, indicating interplay with additional regulators (reviewed in (Landini et 

al., 2014)). Many studies have shown that in some species like S. enterica serovar Typhimurium 

RpoS is needed for full virulence. The RpoS mutant of this species displayed alterations in 
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transcription of several chromosomal and plasmid-carried virulence genes (reviewed in 

(Kazmierczak et al., 2005)). The function of other alternative sigma factors is briefly described 

in Table 3. 

Table 3. The function of the seven different -factors present in E. coli (modified from (Dale & Park, 2010)). 

-factor Function of regulated genes 
Number of genes 

regulated in E. coli 

70 / RpoD  Housekeeping genes 1000 

38 / RpoS  Stationary phase / general stress response 140 

32 / RpoH  Heat shock response 40 

28 / RpoF * Chemotaxis and flagellum synthesis 40 

54 / RpoN  Nitrogen assimilation 15 

24 / RpoE  Periplasmic and surface proteins 5 

18 / FecI Ferric citrate transport 5 

*no homologue annotated in the genome of Y. enterocolitica 

The shift from one sigma factor to another requires removal or inactivation of the expressed 

sigma factor the function of which is no longer needed. Such conversion is often assisted by 

anti-sigma factors, proteins that are defined by the ability to prevent its cognate sigma factor to 

compete for core RNA polymerase. The anti-sigma factors utilize various mechanisms, ranging 

from enzymatic modifications to export of the sigma factor out of the bacterial cell (reviewed 

in (Brown & Hughes, 1995, Hughes & Mathee, 1998)). 

2.1.1.3. Operons and regulons 

In bacteria, set of genes can be coordinately regulated through grouping in organizational unit 

called operon. The operon consists of a group of genes encoding for related functions, e.g. 

enzymes from a certain biochemical pathway. Such organization allows coordinate 

transcription and translation of all the genes in a sequential manner and ensures similar mRNA 

yields (Birge, 2006). Moreover, the expression of the genes from the operon undergoes either 

positive or negative regulation that is maintained by the presence of a repressor or an activator, 

commonly co-functioning with a metabolite or a catabolite from the biochemical pathway 

(Jacob, 1997). Such a mechanism of regulation allows an adequate response to changes in the 

environment, for example the appearance of different nutrients. In molecular terms, the operon 

contains certain genetic elements as: (i) structural genes that are transcribed into RNA, (ii) 

operator that serves as a repression/activation site, and (iii) a promoter from which the 
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transcription starts. Furthermore, there is a regulator gene  that codes for a regulatory molecule 

which interacts with the operator (Birge, 2006). A regulon constitutes another form of 

organized gene regulation in bacteria, where a set of genes is regulated by the same regulatory 

gene product (Snyder & Champness, 2007). 

2.1.1.4. Transcriptional regulators 

Transcription process starts downstream from the promoter region, where the polymerase 

begins the elongation of the RNA. Termination site designates the location at which the 

polymerase is being released from the DNA and thus the elongation of the RNA molecule stops. 

That occurs in some distance from the translation termination codon, leaving the 3’ 

untranslated region in between (Snyder & Champness, 2007). The dissociation of polymerase 

can be caused by two types of mechanisms: Rho-dependent (factor-mediated) or intrinsic (Rho-

independent). Rho-independent termination occurs in the absence of auxiliary factors at 

locations where the RNA forms a stable hairpin structure, whereas Rho-mediated termination 

results from the action of Rho protein, which binds to specific sequences present in the RNA 

(Boudvillain et al., 2013). Both the beginning and the termination of the transcription process 

can be influenced by the activity of transcriptional factors. 

The initiation of transcription can be positively or negatively influenced by the recruitment of 

a specific activator or repressor, respectively. A repressor binds to an operator changing the 

conformation of the upstream region and prevents the polymerase from binding and/or 

advancing on the DNA template. An activator typically binds to an upstream activator sequence 

located upstream of the promoter and promotes the initiation of transcription. Transcription 

factors can either work solely as activators or repressors, or as both (dual regulators) 

depending on the target promoter (Snyder & Champness, 2007). A computational analysis of E. 

coli genome estimated presence of 314 transcriptional factors, out of which 35% were 

activators, 43% repressors, and 22% dual regulators (Perez-Rueda & Collado-Vides, 2000).  

Distinct group of transcriptional regulators comprises global transcriptional regulators, which 

have the ability to regulate large numbers of genes belonging to different functional classes. 

The action of these factors can be complex, as they not only directly affect the expression of 

certain genes, but also indirectly regulate various cellular pathways by controlling different 

regulators. In E. coli it has been estimated, that seven global transcriptional regulators (CRP, 

FNR, IHF, Fis, ArcA, NarL and Lrp) control 50% of all regulated genes (Martinez-Antonio & 

Collado-Vides, 2003).  
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The rate of transcription can be also altered by changes in the topology of the bacterial 

chromosome. H-NS is a nucleid-associated protein that affects the DNA topology at specific loci 

and therefore modulates gene transcription by selective supercoiling of the promoter regions. 

The regulatory effects of H-NS are linked to metabolic and environmental conditions. The 

primary direct effect of H-NS is repression. (Fang & Rimsky, 2008). 

Additionally, the process of transcription can be influenced at the stage of termination. Several 

proteins act to prevent transcriptional termination by utilizing two different mechanisms. The 

non-processive transcription antitermination factors bind a specific RNA sequence preventing 

the RNA from forming a transcription termination structure and allowing the polymerase to 

continue the elongation beyond this sequence. The processive elongation factors modify the 

polymerase so that it becomes resistant to the termination signal and it reads through the 

termination site (Rutberg, 1997). 

Two-component regulatory systems (TCRs) and phosphorelay systems constitute a mechanism 

of sensing and responding to external stimuli by bacterial cells. Generally, this system 

comprises of two elements: (i) a histidine protein kinase, an integral membrane protein, and 

(ii) a cytoplasmic response regulator. Upon occurrence of a certain external stimulus, the 

histidine protein kinase undergoes a conformational change, autophosphorylates and 

subsequently transfers the phosphate group to the response regulator. The phosphorylation 

activates the regulator and enables it to bind to target DNA sequences and thus to regulate the 

expression of controlled genes. (Dale & Park, 2010). 

Additionally, cyclic di-GMP signaling is implicated in regulation of wide range of bacterial 

features, including adhesion to surfaces, biofilm formation, aggregation and the virulence. The 

concentration of cyclic di-GMP inside of the cell results from the balance between the synthesis 

and degradation. The GGDEF protein domain catalyzes the synthesis of cyclic di-GMP from two 

GMP molecules, while EAL and HD-GYP domains catalyze the hydrolysis back to GMP. Cyclic di-

GMP functions through binding to different receptors or effectors with the pilZ domain, as well 

as different transcription factors and riboswitches. Therefore, the regulation exerted by the 

cyclic di-GMP can occur not only at the level of transcription, but also at the post-transcription 

or post-translation level. (Ryan, 2013). 

An exceptional situation, where bacterial cell requires nimble and adequate response to 

changes in external environment occurs during the infection. The expression of virulence 
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factors is tightly and coordinately regulated during different stages of infection. Precise control 

of virulence gene expression is ensured by the virulence-related transcriptional factors, which 

can sense host signals such as changes in temperature, osmolarity, pH, iron levels, nutrient 

availability, antimicrobial agents and oxygen levels. Disruption of these virulence factors leads 

to reduced virulence or complete attenuation of the pathogen (Cotter & Miller, 1998, Zhou & 

Yang, 2006). 

2.1.1.5. RfaH antiterminator 

RfaH is a bacterial transcriptional antiterminator that enables polymerase to overcome the 

intrinsic termination signals and prevent the polarization of long operons. Genetic polarity is 

caused by a failure in transcription of mRNA of particular part of the operon or reduced 

translation of a certain region (Birge, 2006). In case of long operons genetic polarity leads to 

reduced production of enzymes encoded by genes distal to the promoter. Loss of RfaH increases 

transcription polarity of limited long operons without affecting the transcription initiation from 

the operon promoters. In E. coli and Salmonella RfaH controls the transcription of a specialized 

group of operons that direct the synthesis, assembly and export of the lipopolysaccharide core, 

exopolysaccharide, F conjugation pilus and hemolysin toxin (Bailey et al., 1997). 

For its activity RfaH requires a non-coding 8 bp motif 5’-GGCGGTAG-3’ termed ops (operon 

polarity suppressor). In order to function, the ops element must be located downstream of an 

active promoter in the correct orientation. The importance of the ops element was further 

proven by the discovery, that the deletion of the ops sequence increased transcriptional polarity 

within the operon in a similar way as rfaH null mutation. Moreover, insertion of this 8 bp motif 

downstream of a non-native promoter resulted in increase of distal gene transcription (Nieto 

et al., 1996). Further research showed that RfaH-dependent transcription elongation occurs 

upon recruitment of RfaH into a transcription complex and that this recruitment is specifically 

directed by the ops element (Bailey et al., 2000). Moreover, the examination of genomic 

sequences revealed that ops element is conserved among gamma-proteobacteria, being present 

and functional in such species as Shigella flexneri, Vibrio cholerae, Klebsiella pneumoniae and 

Pseudomonas aeruginosa (Nieto et al., 1996, Rahn et al., 1999, Carter et al., 2004, Carter et al., 

2007).  

The RfaH protein consists of two domains connected by a flexible linker. The N-terminal domain 

is structurally similar to NusG and mediates the RNA polymerase binding and anti-pausing 

functions. The C-terminal domain is a short α-helical hairpin. In a free RfaH molecule the two 



20 
 

domains interact and are tightly associated. The contact with the ops element triggers the 

conformational change that separates the domains and allows the RfaH to bind to the 

polymerase. Moreover, the C- terminal domains refolds into a β-barrel. The association of the 

two domains in the free state restricts the RfaH actions to ops-containing operons and thus 

helps avoiding interference with NusG (Belogurov et al., 2007). After binding to the ops-

element RfaH delays the transcription, but after the escape from the ops element, it enhances 

the elongation by suppressing pausing and Rho-dependent termination (Artsimovitch & 

Landick, 2002). Moreover, the RfaH protein shows high level of conservation between the 

species. Orthologues of RfaH were also proven to complement an E. coli rfaH deletion 

suggesting high level of functional homology (Carter et al., 2004). 

RfaH was first described as a component of LPS synthesis machinery in Salmonella and believed 

to function as an enzyme (Wilkinson & Stocker, 1968). Later it was shown that RfaH acts as a 

positive regulator of the expression of a gene cluster involved in the lipopolysaccharide 

biosynthesis pathway ( (Lindberg & Hellerqvist, 1980) and displays homology with E. coli sfrB, 

a gene required for the expression of F-factor functions (Sanderson & Stocker, 1981). Further 

studies revealed that RfaH is also needed for the synthesis and secretion of haemolysin (Bailey 

et al., 1992) and the expression of the type II capsule K5 antigen in E. coli (Stevens et al., 1994). 

In addition, RfaH enhances the expression of kps operons necessary for the synthesis of group 

2 polysialic acid capsules (Navasa et al., 2014) and hemin receptor molecule ChuA (Nagy et al., 

2001). Recent research demonstrated that RfaH selectively controls fimB expression at the 

post-transcriptional level by suppression of small RNA MicA inhibition (Moores et al., 2014).  

Due to the fact that RfaH promotes the expression of components that are required for bacterial 

virulence, loss of RfaH usually leads to decrease in pathogenicity (Nagy et al., 2002, Nagy et al., 

2006). The decrease in virulence was observed for example for Salmonella enterica serovar 

Typhimurium, uropathogenic and avian pathogenic E. coli. The absence of RfaH in E. coli results 

in downregulation of several virulence factors (LPS, K15 capsule, alpha-hemolysin and hemin 

receptor ChuA) and subsequently to reduced urovirulence in the mouse model (Nagy et al., 

2002). The rfaH deletion mutant of Salmonella showed decreased intracellular net growth in 

epithelial and macrophage cells. Similarly, the mutant was deficient in production of outer 

membrane structures. In this case it was shown that the absence of rfaH results not only in 

changes that are a result of polarization of long operons with ops sequence, but also leads to 

indirect changes caused by rough-phenotype (Nagy et al., 2006).  
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2.1.1.6. The LysR-family transcriptional regulators 

The LysR-type transcriptional regulators are widely distributed among the prokaryotes. They 

are involved in the regulation of metabolic functions like sugar catabolism, amino-acid 

synthesis, aromatic compound degradation, antibiotic resistance and virulence. Typically they 

consist of two domains: N-terminal DNA binding domain with a helix-turn-helix motif and a C-

terminal regulatory domain that binds an effector. Classically, these regulators oligomerize to 

form tetramers that bind to DNA to activate or repress transcription upon binding to one or 

more effectors. The two domains are connected by a linker helix that together with N- terminal 

domain plays also a role in oligomerization. (Schell, 1993). 

In E. coli the LysR homologue A (LrhA) functions as a global transcriptional regulator of genes 

related to motility, chemotaxis and flagella synthesis. In other bacteria, the LrhA homologs are 

known under diverse names and functions. The PecT of Erwinia chrysanthemi and HexA of 

Erwinia carotovora are 75-79% identical to LrhA, and were implicated to regulate several 

virulence determinants (Surgey et al., 1996, Mukherjee et al., 2000). The Yersinia 

pseudotuberculosis LrhA homolog RovM (ca. 70% identical to LrhA) represses the invasin 

regulator RovA (Heroven & Dersch, 2006). The RovM of Y. enterocolitica O:3 is 88% identical to 

RovM of Y. pseudotuberculosis and ca. 70 % identical to LrhA of E. coli. 

The structure analysis of RovM from Y. pseudotuberculosis revealed that it most likely adopts a 

tetrameric arrangement with two distant DNA-binding domains. Such a conformation would 

cause the target DNA to bend around the regulator. Additionaly, it was shown that RovM 

possesses a cavity that could bind small inducer molecules (Quade et al., 2011). 

Y. pseudotuberculosis RovM was shown to recognize a 50 bp region upstream of promoters that 

contains two palindromic sequences. Moreover, hyper-reactive bases were detected in the 

RovM-binding sequence suggesting that RovM bends its binding site upon interaction (Heroven 

& Dersch, 2006). LrhA is known to interact directly with the promoter of the flagellar flhDC 

genes, and thereby affects indirectly the genes that are under the control of the FlhDC master 

regulon (Lehnen et al., 2002). In E. coli, it was shown that LrhA protein binds directly to the 

promoter region upstream of the lrhA gene and thus the expression of lrhA is subject to positive 

autoregulation (Lehnen et al., 2002). Although, unlike the other orthologues, RovM does not 

bind directly to its own promoter, it is positively autoregulated through an unknown 

mechanism (Heroven & Dersch, 2006). In addition, the expression of lrhA in E. coli is repressed 

by the RcsCDB phosphorelay system (a cell-envelope stress-sensing pathway) and induced by 
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mutations in the FtsK DNA motor protein (Peterson et al., 2006) and in Pantoea stewartii by the 

regulatory protein EsaR (Ramachandran & Stevens, 2013, Ramachandran et al., 2014). In Y. 

pseudotuberculosis the expression of rovM is medium-dependent and mediated by CsrC 

(Heroven et al., 2008). It was also shown that the expression of lrhA in Salmonella is growth 

phase-dependent (Mouslim & Hughes, 2014). 

2.1.2. Post-transcriptional regulation 

Expression of a gene can also be regulated at later stages, when the transcription process has 

already happened and mRNA was produced. In both prokaryotes and eukaryotes, the 

messenger RNA can be translated into a protein with different efficiency depending on its 

sequence, structure and presence of different factors. Such type of control of expression is 

called post-transcriptional or translational regulation. Generally, the post-transcriptional 

control of expression involves interactions of different molecules with the mRNA transcripts 

that affect the process of translation or may be based on different accessibility or stability of 

the mRNA transcript. 

2.1.2.1. Translation initiation efficiency 

Commonly, bacterial mRNA contains a translation initiation region (TIR) composed of the 

initiation codon and the Shine-Dalgarno sequence (SD). The SD site is located 4 to 15 bp 

upstream of the initiation codon and contains a sequence of nucleotides with variable 

complementarity to the 3’ end of the 16S rRNA. Such complementarity allows the 30S ribosomal 

to bind to the mRNA upstream of the initiation codon. The level of complementarity is one of 

the factors contributing to the efficiency of translation (Jacob et al., 1987). Moreover, TIRs can 

also harbor a short U- or A/U-rich sequence that binds the ribosomal protein S1. The presence 

of this sequence upstream of the initiation codon enhances the efficiency of translation 

initiation (Boni et al., 1991). Another important factor that determines the efficiency of 

translation is the structure of the mRNA transcript. Occasionally, the conformation of the mRNA 

can inhibit the translation through hampering the access of the 30S ribosomal subunit to the 

ribosomal binding site (de Smit & van Duin, 1990). Moreover, it has been recently suggested 

that the synonymous mutations within the first 40 nt of the transcript can significantly affect 

the abundance of the protein through alterations in the mRNA folding (Kudla et al., 2009).  
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2.1.2.2. Stability of mRNA 

The stability of mRNA transcript comprises another level of post-transcriptional regulation. 

Generally, the concentration of mRNA within the bacterial cell is a result of balance between 

the synthesis and the degradation of the mRNA molecules. Therefore, not only the transcription, 

but also the degradation of mRNA directly affects the synthesis of protein by decreasing the 

concentration of mRNA available for translation. In many bacterial species, mRNA degradation 

is modulated in response to changes in the environment and to stress conditions (Redon et al., 

2005, Shalem et al., 2008). This mechanism allows quick disposal of unnecessary mRNA and 

thus prevents the cell from producing the proteins that are no longer required under changed 

conditions. 

In E. coli mRNA degradation is generally initiated by endoribonucleolytic cleavages induced by 

single-stranded RNA-specific endoribonucleases (e.g., RNase E and RNase G) or double-

stranded RNA-specific endoribonucleases (e.g., RNase III). This initial nucleolytic step 

generates primary decay intermediates which are further degraded by a combination of endo- 

and exonucleases (PNPase, RNase II, RNase R). This stage yields short nucleotides which are 

later converted to mononucleotides by oligoribonuclease. In addition to major ribonucleases, 

bacteria possess a number of ancillary mRNA-modifying enzymes that assist the mRNA 

degradation process (reviewed in (Kaberdin et al., 2011)).  

Gene expression can be also influenced by the secondary structure of the RNA molecule. The 

RNA helicases are proteins that are able to change the secondary structure of RNA molecules 

by unwinding the RNA or DNA-RNA duplexes and by performing local strand separation. The 

most well-known group of the RNA helicases are DEAD-box proteins that induce a local strand 

separation. Such separation can be further used for either protein or regulatory RNA binding 

to one of the strands. The activity of different bacterial DEAD-box proteins has been implicated 

in ribosome biogenesis, RNA decay, and translation initiation. (Reviewed in (Khemici & Linder, 

2016)). 

2.1.2.3. Non-coding RNAs 

Non-coding RNA (ncRNA) molecules are widely spread among all kingdoms of life and recently 

have become recognized as a novel class of gene expression regulators. These molecules 

encompass a large and diverse group of RNA species that do not encode for proteins and thus 

do not undergo the translation process. Instead, they present regulatory functions. Regulatory 

ncRNAs can be divided into several classes: (i) cis-encoded base-pairing RNAs (antisense RNAs, 
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asRNAs), (ii) trans-encoded base-pairing RNAs, (iii) riboswitches, (iv) ribozymes, (v) RNAs 

modulating protein activity, and (vi) CRISPRs (clustered regulatory interspaced short 

palindromic repeats) (Liang et al., 2011). The asRNAs are encoded on the DNA strand opposite 

to the coding mRNA and they typically share over 75 nt complementarity with their target 

mRNA. The trans-encoded RNAs are typically encoded in the intragenic regions away from their 

target mRNA and they share only limited complementarity with the mRNA species. Moreover, 

unlike cis-encoded RNAs, trans-acting RNAs can regulate more than one mRNA molecule 

(Michaux et al., 2014). Small RNA molecules (sRNAs) are also known to interact directly with 

proteins and alter their activity by sequestration (e.g. 6S RNA in E. coli) (Wassarman, 2007). 

The ribozymes are catalytic RNAs which typically catalyze cleavage or ligation of another RNA 

particle through a phosphodiester cleavage reaction (Serganov & Patel, 2007). Riboswitches 

are metabolite-sensing RNA structures that response to such environmental cues as cations or 

temperature shifts. Upon a change in the environment they change their conformation leading 

to activation or inhibition of gene expression (Serganov & Patel, 2007). The last group, CRISPRs, 

are highly variable regions of 24-47 bp, separated by a series of 2-249 repeat-spacer units. The 

whole CRISPR region, preceded by a 550 bp leader sequence, determines resistance to 

bacteriophages and foreign plasmids (Michaux et al., 2014). 

Trans-encoded sRNAs range in size from 50 to 500 nt in length and present various secondary 

structures. Base-pairing with the target mRNA is usually imperfect and based on 7-10 nt seed 

sequence. Moreover, for proper functionality trans-encoded sRNAs often require the presence 

of Hfq chaperone that simultaneously bind to both the sRNA and mRNA and facilitate the 

interaction (Gottesman & Storz, 2011). The sRNAs regulate the gene expression by base-pairing 

with the target mRNAs, which leads to changes in mRNA translation or stability. sRNAs can be 

both activators and repressors of gene expression depending on the location of pairing with the 

target mRNA. They can act positively by changing the mRNA conformation and preventing 

formation of an inhibitory structure that sequesters the ribosome-binding site (Fig. 4A). sRNAs 

can act negatively by base pairing with 5’ untranslated region (UTR) and inferring with the 

ribosome binding (Fig. 4C) or by targeting the sRNA-mRNA duplex for degradation by 

ribonucleases (Fig. 4D) (Waters & Storz, 2009).  
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Figure 4. Different regulatory functions of base-pairing regulatory RNAs (modified from 
(Waters & Storz, 2009)). 

The various biological functions of sRNA elements encompass the regulation of metabolism, 

growth, quorum sensing and biofilm formation, as well as adaptation to stress conditions. 

Furthermore, recent studies showed that non-coding RNAs play an important role in microbial 

pathogenesis. Among other functions, during infection process sRNAs serve as signal 

transducers of external cues and thus allow fast and efficient adaptation to changing 

environmental conditions. Moreover, several sRNAs have been implicated in regulation of 

synthesis of virulence factors (Toledo-Arana et al., 2007, Gong et al., 2011, Koo et al., 2011). 

There are also instances pointing to the existence of cross-kingdom gene silencing between 

pathogens and their hosts. Even though this system has been mainly described for plant 

pathogens (reviewed in (Weiberg et al., 2015)), recently two sRNAs from E. coli, OxyS and DsrA, 

were shown to suppress protein-coding genes in Caenorhabditis elegans (Liu et al., 2012). 

The sizes of cis-encoded sRNAs vary considerably. The smallest ones can be as short as 100 nt, 

but frequently they are substantially longer, ranging from 700 up to 3,500 nt (Opdyke et al., 

2004, Stazic et al., 2011). Based on their location relative to the sense strand transcriptional 

unit asRNAs can be classified as (i) 5’-overlapping, (ii) 3’-overlapping or (iii) internally located 

(Georg & Hess, 2011). It is generally believed, that the cis-acting sRNA species hybridize to their 

sense mRNA counterparts causing alterations in the secondary structures of both interacting 

molecules and resulting in changes in the stability and half-life of the mRNA species (Wagner, 
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1994). Eventually, asRNAs can influence the abundance of mRNA through regulation of 

transcription, degradation of sense transcripts or their stabilization. Moreover, antisense 

species can also regulate the translation process through binding to the SD sequence of their 

target mRNA (reviewed in (Georg & Hess, 2011) and (Sesto et al., 2013)). Recently, the 

transcriptome analysis revealed that in Mycoplasma pneumonie, Sinorizobium meliloti, Vibrio 

cholerae and Staphylococcus aureus antisense transcription rates reach approximately 13%, 

11%, 4.7% and 1.3%, respectively (Guell et al., 2009, Liu et al., 2009, Beaume et al., 2010, 

Schluter et al., 2010). In addition, a recent RNA sequencing-based study conducted on the 

transcriptome of E. coli identified about 1,000 different asRNA species (Dornenburg et al., 

2010). 

Several recent studies led to identification of various non-coding sRNAs among Yersinia-

species. A deep RNA-sequencing approach resulted in identification of 150 sRNAs in Y. 

pseudotuberculosis and 31 in Y. pestis (Koo et al., 2011, Beauregard et al., 2013). Another 

approach based on cDNA-cloning allowed verification of 43 novel sRNA from Y. pestis (Qu et al., 

2012). Recently, several studies focused on their expression under different conditions and 

their role in bacterial virulence (Koo et al., 2011, Yan et al., 2013). Moreover, it was shown, that 

some sRNAs, although conserved in both Yersinia display different function, suggesting 

evolutionary changes in sRNA regulation network between these two species (Koo et al., 2011). 

 

2.1.2.4. Usage of rare codons 

The efficiency of translation is strongly influenced by the codon bias. The same amino acid can 

be coded by different triplets of nucleotides, and therefore different tRNAs have to be drawn 

during the translation. Due to the fact that different tRNA species show different abundance, 

the synonymous mutation can significantly affect the efficiency of translation (Parmley & Hurst, 

2007, Tuller et al., 2010).  

2.1.2.5. RNA-binding proteins 

Bacterial post-transcriptional regulators typically influence RNA degradation, translation 

initiation efficiency or transcript elongation. The RNA-binding proteins (RBPs) can use 

different mechanisms to exert their regulatory functions: (i) change in the mRNA susceptibility 

to RNases, (ii) modulation of mRNA RBS accessibility, or (iii) acting as a chaperone to facilitate 

the interaction between mRNA and other factors (Van Assche et al., 2015). 
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Apart from RNases that are directly involved in mRNA decay (described in 2.2.2.2.), bacteria 

also possess a number of mRNA modifying enzymes that can facilitate mRNA degradation. For 

example in E. coli, the pyrophosphate removal at the 5’ end by pyrophosphate hydrolase (RppH) 

and addition of a single-stranded poly(A) extension to the 3’ end of mRNA facilitated by poly(A) 

polymerase I (PAPI) both enhance the mRNA degradation. Additionally, the degradation of 

highly structured RNA molecules can be assisted by the RhlB, which unwinds the RNA 

structures in an ATP-dependent manner. (Kaberdin et al., 2011, Van Assche et al., 2015). 

Regulatory RBPs can alter the efficiency of translation initiation directly by competing with 

ribosomes for the RBS or indirectly by altering the secondary structure of the mRNA near the 

ribosome interaction region (Van Assche et al., 2015). One example of RBP that is conserved 

among many bacterial species is CsrA, a central component of the global carbon storage 

regulatory system. CsrA binds to GGA-motifs in the 5’ UTR near the Shine-Dalgarno region and 

represses translation by competing with the 30S ribosomal subunit (Baker et al., 2007). 

Another group of RBPs can affect RNA stability or translation initiation efficiency by assisting 

in the interactions with other molecules. These proteins typically bind simultaneously the 

mRNA target and its co-effector molecule that can be a sRNA or another protein. A well-known 

example of such function is Hfq, RNA-chaperone implicated in global post-transcriptional 

regulation (Geng et al., 2009, Schiano et al., 2010, Kakoschke et al., 2014). The selected 

examples of RBPs are presented in Table 4. 

Table 4. Selected examples of RNA-binding proteins involved in post-transcriptional gene expression 

regulation in Yersinia species. 

Regulator Target Function References 
CsrA GGA-motifs in 

the 5’ UTR 
global carbon storage regulation; in Y. 
enterocolitica CsrA activates expression of genes 
encoding the master motility regulator flhDC, 
enhances resistance to osmolytes and allows 
growth at 4°C and 42°C 

(LeGrand et al., 2015) 

Hfq AU-rich regions sRNA chaperone that stabilizes the sRNA-mRNA 
interactions; highly pleiotropic; affects growth, 
metabolism and virulence 

(Geng et al., 2009, 
Schiano et al., 2010, 
Kakoschke et al., 
2014) 

SmpB Small stable 
RNA A 

in Y. pseudotuberculosis affects pathogenesis, 
resistance to environmental stresses, and 
motility; enables proliferation in macrophages, 
affects Yop-mediated cytotoxicity 

(Okan et al., 2006) 

YopD 5’ UTR of T3SS 
genes 

represses expression of T3SS genes, shows 
highest affinity to effector Yops; prevents 
ribosome binding and accelerates degradation. 

(Chen & Anderson, 
2011) 
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2.1.2.6. RNA chaperone Hfq as a global post-transcriptional regulator 

Hfq, an RNA chaperone required for maintaining the stability and function of many sRNAs, has 

been recognized as a central component of global post-transcriptional regulation network 

(reviewed in (Vogel & Luisi, 2011)). Hfq was first identified as a host bacterium factor required 

for the replication of bacteriophage Qβ RNA (Franze de Fernandez et al., 1968). Subsequent 

research revealed that it is widely distributed in the bacterial kingdom, present in many 

different pathogenic species. Hfq is a bacterial homolog of the eukaryotic and archeal Sm/LSm 

proteins, with a characteristic ring-like multimeric quaternary architecture supporting 

interactions with other macromolecules. In eukaryotes, many different functions were 

implicated for the Sm/LSm proteins, including role in mRNA splicing, RNA decapping and RNA 

stabilization (reviewed in (Wilusz & Wilusz, 2005)).  

The Hfq of E. coli is a 102 amino acid residue (11.2 kDa) highly abundant protein with an 

estimated 50 000 to 60 000 copies per cell, of which 80 – 90% are found in association with 

ribosomes (Brennan & Link, 2007). Hfq has a 25Å thick toroidal structure with an outer 

diameter of around 70 Å and a 8-12 Å wide central pore. The protein is characterized by an N-

terminal α helix followed by β strands displaying the topology β5α1β1β2β3β4. Like other 

proteins from Sm family Hfq contains Sm1 and Sm2 motives, two highly conserved regions. The 

Sm1 motif encompasses the first three β strands, whereas the Sm2 motif is located in fourth 

and fifth β strand. The hexamer structure is formed through the interactions between the 

residues of β4 and β5 of pairing subunits. The α helix is located on the top of the β sheet and 

constitutes the distal side of the protein (Sauter et al., 2003). 

In E. coli, AU-rich sequences of sRNAs typically bind to the proximal surface of the Hfq protein 

and A-rich sequences of mRNAs bind to the distal surface (Mikulecky et al., 2004). The structure 

of S. aureus Hfq showed that the Sm1 and Sm2 motifs play an important role in RNA binding. 

The sRNA molecule expands and fills the central pore on the proximal side binding to Hfq 

through AU-rich regions in a circular manner. The Hfq structure possesses six AU nucleotide 

binding pockets, yet as many of the sRNAs contain stretches shorter than six U or A, it is unlikely 

that all the pockets are filled simultaneously (Schumacher et al., 2002). The motif required for 

binding of A-rich sequences of mRNA is located on the distal side of the Hfq protein, opposite 

to the AU-binding side (Mikulecky et al., 2004). 

There are different mechanisms through which Hfq exhibits its regulatory functions. First, Hfq 

can suppress protein synthesis by allowing the sRNA to bind to the 5’ region of the mRNA 
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sequestering the translation initiation site. It can also display opposite function by promoting 

sRNA binding to the 5’ region of mRNA in order to disrupt a secondary structure that initially 

inhibited the translation. By binding to sRNAs Hfq can also protect them from the ribonuclease 

cleavage or promote the degradation. The mechanism of action depends on the RNA molecules 

(reviewed in (Vogel & Luisi, 2011)). Recent studies using co-immunoprecipitation and 

subsequent detection of sRNAs and mRNAs led to identification of a large number of Hfq targets 

(Zhang et al., 2003, Sittka et al., 2008, Chao et al., 2012, Bilusic et al., 2014). 

The regulation of Hfq expression is growth phase dependent. The study showed that the level 

of Hfq protein is higher during the log phase and decreases when bacteria enter the stationary 

phase (Kajitani et al., 1994). It is also known, that in E. coli CsrA can bind to hfq mRNA and 

inhibit its synthesis by blocking the ribosome binding (Baker et al., 2007). 

In most of the studied bacterial species the absence of Hfq results in pleiotropic phenotypic 

alterations that compromise the fitness and the responses to external cues. Due to its 

pleiotropic nature, many different defects were observed among Hfq-deficient strains: 

impaired growth, inability to cope with different types of environmental stresses, higher 

susceptibility to antimicrobial agents, defects in quorum sensing and host invasion. However, 

the effects of Hfq-deficiency seemed to be always unique for each bacterial species. Moreover, 

the virulence of many pathogenic species was attenuated upon depletion of Hfq. The highest 

levels of attenuation were observed for Gram-negative pathogens like Brucella abortus, 

Salmonella spp, Vibrio cholerae, uropathogenic E. coli, Neisseria meningitis and Y. pestis 

(reviewed in (Chao & Vogel, 2010)). Considering the high levels of attenuation observed in 

many pathogens, it is believed that the Hfq-deficient strains may serve as live attenuated 

vaccines (Geng et al., 2009, Chao & Vogel, 2010, Schiano et al., 2010, Hayashi-Nishino et al., 

2012). 

Previous studies showed that Hfq has a profound influence on the fitness of Y. enterocolitica O:8 

including the metabolism of carbohydrates, nitrogen, iron, fatty acids and ATP synthesis. 

Moreover, the depletion of Hfq led to slower bacterial growth, decreased resistance to stress 

and impaired synthesis of urease and yersiniabactin. In addition, the role of Hfq in biofilm 

formation was implicated for that species (Kakoschke et al., 2014). The hfq mutant of Y. 

pseudotuberculosis presented hypermotility and increased production of a biosurfactant-like 

substance. Furthermore, it showed decreased survival in macrophages, affected biofilm 

formation, impaired production of T3SS effector proteins and high attenuation rate in mouse 
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model infection (Schiano et al., 2010, Bellows et al., 2012). Also in Y. pestis Hfq was implicated 

in the persistence inside of macrophages and resistance to stress. Similarly, the loss of hfq led 

to attenuation (Geng et al., 2009).  

2.1.2.7. Ribonuclease YbeY 

YbeY is a 17-kDa highly conserved protein from the UPF0054 family that was discovered during 

the global transcriptional analysis as a product of a heat-shock gene. At first, due to the 

sequence similarity to metal-dependent hydrolases, YbeY was believed to possess a hydrolytic 

function (Oganesyan et al., 2003, Zhan et al., 2005). Although the structure homology analysis 

showed similarity to eukaryotic extracellular proteinases such as collagenase and gelatinase, in 

vitro studies failed to detect any hydrolase activity (Rasouly et al., 2009). Only recently it was 

discovered that YbeY is a ribonuclease that plays a critical role in rRNA maturation, as well as 

in late-stage 70S ribosome quality control (Jacob et al., 2013). 

The structural study revealed that the overall protein structure of YbeY consists of six α helices 

and four β strands in a βααβαββααα fold. It harbors a conserved domain, characteristic for the 

UPF0054 family. Moreover it contains a metal ion, most probably a Ni2+ ion that is coordinated 

by the residues of His114, His118 and His124 (Zhan et al., 2005). YbeY shows high level of 

conservation between the bacterial species, as ybeY genes from four distantly related pathogens 

can fully complement ybeY mutant strain of E. coli (Vercruysse et al., 2014). 

In E. coli the YbeY functions as a single strand-specific endoribonuclease that in its purified form 

effectively degrades total rRNA and mRNA, yet is unable to degrade double-stranded RNA. 

Moreover, the ribonuclease activity is manifested at 37°C and at 45°C, though it significantly 

decreases at 65°C, in line with previous findings about YbeY playing a role in heat-shock 

response. It was also proposed that YbeY cleaves the 17S rRNA precursor generating a 3’ 

phosphate terminus. Furthermore, under standard growth conditions as well as under stress 

YbeY together with RNase R removes defective 70S ribosomes from the cellular pool allowing 

effective translation. It was proposed that YbeY acts as a sensor of defective ribosomes by 

recognizing defects in 30S subunits, which subsequently initiates degradation of complete 70S 

ribosomes by introducing endonucleolytic cuts in the rRNA. Such damage in rRNA leads to its 

misprocessing and misfolding and further destruction by other ribonucleases (Jacob et al., 

2013). Moreover, YbeY plays a role in transcriptional antitermination of rRNA synthesis, that is 

also critical for ribosome biogenesis (Grinwald & Ron, 2013). Recent studies show that in S. 
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meliloti, E. coli, as well as in V. cholerae YbeY has an impact on small non-coding RNAs (sRNAs) 

(Pandey et al., 2011, Pandey et al., 2014, Vercruysse et al., 2014).  

YbeY belongs to the 206 genes postulated to comprise the minimal bacterial genome set (Gil et 

al., 2004), but is essential only in some bacteria like Vibrio cholerae, Haemophilus influenzae and 

Bacillus subtilis (Akerley et al., 2002, Kobayashi et al., 2003) (Vercruysse et al., 2014). In other 

species like E. coli and Shinorhizobium meliloti its loss causes increase in the sensitivity to 

environmental stresses and in addition in S. meliloti its loss abrogates intracellular infection 

necessary for the symbiosis (Davies & Walker, 2008, Rasouly et al., 2009). In E. coli the ybeY 

deletion mutant presented severe translational defects caused by very low level of functional 

polysomes and accumulation of free ribosomes and ribosomal subunits. Translational defects 

were mostly manifested at elevated temperatures and resulted in growth failure (Rasouly et al., 

2009). In V. cholerae loss of YbeY resulted in complete loss of mouse colonization and biofilm 

formation, reduced cholera toxin production, as well as alterations in expression of virulence-

related sRNAs (Vercruysse et al., 2014). Additionally, it was implicated that in E. coli YbeY plays 

a role in apoptosis-like death (Erental et al., 2014). 

An YbeY endoribonuclease homolog was also observed in eukaryotes. The ybeY null mutants of 

Arabidopsis thaliana are seeding lethal, suggesting an important role of this protein in plant 

growth. The ybeY mutant displayed slow growth, impaired photosynthesis, defective 

chloroplast development and alterations in rRNA maturation (Liu et al., 2015).  

2.1.3. Post-translational regulation 

The last step of gene expression regulation is based on post-translational modifications (PTM) 

that alter the structure or the function of a synthetized protein. PTMs can alter the activity of a 

protein by having an impact on protein complex formation, enzyme catalysis or interactions 

with other biomolecules. The possible modifications in prokaryotes include phosphorylation, 

acetylation, methylation, carboxylation, glycosylation, lipidation, adenylation, ribosylation, 

nitrosylation, oxidation, pupylation and deamination (reviewed in (Cain et al., 2014)).  

It was previously shown that PTMs contribute significantly to bacterial adaptability and cell 

cycle control. Protein phosphorylation, the attachment of phosphate onto the functional groups 

of amino acid side chains, is probably the most extensively studied type of modification. 

Different bacterial kinases are involved in signal trafficking in regulatory networks (reviewed 

in (Cain et al., 2014)). PTMs have also a profound impact on bacterial physiology and virulence. 
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Campylobacter jejuni, impaired in protein glycosylation, showed decreased ability to adhere 

and invade eukaryotic cells and lost ability to colonize intestinal tracts of mice (Szymanski et 

al., 2002). Although single PTM can already change the function of a protein, in some cases a 

protein can undergo several modifications at competing sites. Interplay between acylation and 

phosphorylation was previously observed in bacteria (Liarzi et al., 2010).  

2.2. The genus Yersinia 

Yersiniae are Gram-negative, rod-shaped, facultative anaerobic, non-spore-forming bacteria, 

about 2 μm long and 0.6 μm in diameter. They are named after Alexandre Yersin, a 

bacteriologist who discovered Yersinia pestis in 1894. Yersinia species are widely distributed in 

nature and adapted, depending on the species, to survive in the outside environment and/or 

within a specific animal host.  

The genus Yersinia belongs to the family Enterobacteriaceae, within the class 

Gammaproteobacteria of the phylum Proteobacteria (Garrity, 2005). Currently, this genus 

consists of 17 species of which three, Y. pestis, Y. pseudotuberculosis and Y. enterocolitica, are 

infect humans, and one, Y. ruckeri, fish (Ewing et al., 1978). Y. pestis is a causative agent of 

plaque, whereas Y. pseudotuberculosis and Y. enterocolitica are enteropathogens that usually 

cause self-limited gastroenteritis, yersiniosis, typically restricted to the intestinal tract and 

lymph nodes. Y. ruckeri causes enteric red mouth disease, which affects mainly salmonid fish 

(Ewing et al., 1978). Other species belonging to this genus are considered to be environmental 

bacteria appearing mainly in fresh water and terrestrial ecosystems and include Y. aldovae, Y. 

alecksiciae, Y. bercovieri, Y. entomophaga, Y. fredriksenii, Y. intermedia, Y. kristensenii, Y. 

massiliensis, Y. mollaretti, Y. nurmii, Y. pekkanenii, Y. rohdei, and Y. similis (Garrity, 2005, Sprague 

& Neubauer, 2005, Merhej et al., 2008, Sprague et al., 2008, Hurst et al., 2011, Murros-

Kontiainen et al., 2011, Murros-Kontiainen et al., 2011) 

2.2.1. Yersinia enterocolitica 

Currently Y. enterocolitica is the most common pathogenic Yersinia infecting humans. Based on 

DNA-DNA hybridization and differences in 16S rRNA sequences, Y. enterocolitica was divided 

into two subspecies: enterocolitica and palearctica (Neubauer et al., 2000). A further division of 

the species is based on the biochemical heterogeneity and it distributes the strains into six 
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biotypes: 1A, 1B, 2, 3, 4 and 5 (Wauters et al., 1987). Generally, the biotype 1B is considered to 

be pathogenic, biotypes 2-5 are characterized by low pathogenicity, and biotype 1A includes 

non-pathogenic strains (Bottone, 1997). Furthermore, Yersinia species are additionally divided 

into different serotypes based on the variability of O-antigen structure. Y. enterocolitica subsp. 

enterocolitica comprises the biotype 1B strains formerly termed North American and is 

represented by the serotype O:8 ATCC 9610 strain, while Y. enterocolitica subsp. palearctica 

comprises the former European strain from biotypes 1A and 2-5 with the serotype O:3 strain 

Y11 being the postulated representative (Neubauer et al., 2000).  

Typically Y. enterocolitica causes self-limiting gastroenteritis with non-specific diarrhea, fever, 

abdominal pain, and sometimes nausea and vomiting. Normally symptoms of acute illness 

appear after 1-11 days of incubation and last for about 5-14 days (Cover & Aber, 1989). The 

most common post-infectious sequelae include reactive arthritis and erythema nodusum, more 

rarely erythema multiforme, uveitis, and conjunctivitis (Saari et al., 1980, Bottone, 1997). 

Moreover, Y. enterocolitica can lead to such extraintestinal complications as liver and spleen 

abscesses, pneumonia, meningitis, empyema and endocarditis (Zheng et al., 2008). In 

immunocompromised patients yersiniosis can result in septicemia (Zheng et al., 2008). 

Additionally, asymptomatic carriage of Y. enterocolitica is has been reported (Van Ossel & 

Wauters, 1990). 

Most of the yersiniosis cases are sporadic, however, rare outbreaks have also been reported, 

with sources tracked to contaminated water, dairy and porcine products (Thompson & Gravel, 

1986, Marjai et al., 1987, Ackers et al., 2000). The incidence of yersiniosis is hard to estimate as 

it is rarely reported, and usually only the genus name is recorded. Nevertheless, vast majority 

(around 91%) of the reported cases are due to Y. enterocolitica, with the 4/O:3 being the most 

common bio/serotype worldwide (Long et al., 2010, EFSA, 2014). Currently, Y. enterocolitica is 

the third most commonly reported cause of enteric zoonosis in European Union, after 

Salmonella and Campylobacter, with 6 471 confirmed cases of yersiniosis reported in 2013 

(EFSA, 2014). Finland is among the countries with the highest incidence rate in EU, with the 

number of reported cases between 500 and 700 per year. Even though a decreasing trend in 

the number of cases was observed, the incidence rate of yersiniosis is still higher than 

salmonellosis. Moreover, also in Finland the bio/serotype 4/O:3 is the most predominant one. 

(EFSA, 2014).  
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Raw pork meat has been shown to be the most important reservoir of enteropathogenic 

Yersiniae (Tauxe et al., 1987, Rosner et al., 2012). In 2013 positive findings were reported 

mainly for the pig meat and products thereof, but also for bovine meat and raw cow milk. In 

addition, Y. enterocolitica was found in other animal species, including cattle, sheep, goat, dogs 

and cats (EFSA, 2014).  

2.2.1.1. General characteristics 

Y. enterocolitica is capable of anaerogenic fermentation of glucose and other carbohydrates, 

produces urease, and lacks lysine decarboxylase and phenylalanine deaminase activities. 

Additionally, a distinctive characteristic of temperature dependent motility is observed, as 

bacteria display motility when grown at 27°C, but not when grown at 37°C. Despite high 

similarity, Y. enterocolitica can be differentiated from Y. pseudotuberculosis by indole and acetyl 

methyl carbinol production, ornithine decarboxylation, sucrose fermentation and incapability 

to ferment rhamnose (Sedgwick & Tilton, 1971). The biochemical characteristics of Y. 

enterocolitica are summarized in Table 1. 

Table 1. Biochemical reactions of Y. enterocolitica (modified from (Sedgwick & Tilton, 1971)). 

Substrate or test Reaction Substrate or test Reaction 

Triple sugar iron butt A Catalase + 

     Slant  A Dextrose A 

     H2S - Lactose - 

Urease production + Sucrose A 

Indole production + Salicin - 

Nitrate reduction + Maltose A 

Citrate utilization - Mannitol A 

Voges-Proskauer at 35°C - Rhamnose - 

     similar reaction at 27°C + Arabinose A 

Lysine decarboxylase - Raffinose - 

Arginine decarboxylase - Inositol A 

Ornithine decarboxylase + Xylose A 

Oxidase - Sorbitol A 

+, positive; -, negative; A, production of acid. 

The optimal temperature for growth of Y. enterocolitica is 28°C-30°C, but it is able to grow in a 

temperature range from 0°C to 44°C (Garrity, 2005). At temperatures below 5°C the growth is 
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significantly slowed down and the bacterium undergoes cold adaptation that includes 

alterations in the compositions of lipids and proteins in the cell membrane (Goverde et al., 

1994). Moreover, Y. enterocolitica can survive in frozen food product for extended period of 

time as well as withstand repeated freezing and thawing (Asadishad et al., 2013). Y. 

enterocolitica can grow in pH range between 4.0 and 10.0, with the optimum around 7.2 - 7.4, 

and tolerate sodium chloride concentrations up to 5% (Garrity, 2005). It is able to grow under 

both aerobic and anaerobic conditions, though the presence of carbon dioxide affects the 

growth rate by prolonging the lag phase of the organism (Pin et al., 2000).  

2.2.1.2. Virulence factors 

2.2.1.2.1. Plasmid encoded virulence factors 

Virulence factors of Y. enterocolitica are encoded both on the bacterial chromosome and on the 

70-kb virulence plasmid (pYV). The latter one encodes, among the others, the proteins of the 

type III secretion system (T3SS), effector proteins (Yops) and adhesion protein YadA (Table 2). 

The presence of pYV is strictly necessary for virulence, yet not sufficient (Gemski et al., 1980, 

Heesemann & Laufs, 1983, Heesemann et al., 1984). The injectosome of T3SS of Y. enterocolitica 

consists of 29 Ysc proteins (schematic model with the major proteins presented in Fig. 1). Its 

main function is to translocate the effector proteins from the bacterial cells into the eukaryotic 

host cytosol without extensive leakage. Ten of these Ysc proteins (YscD, -J, -L, -N, -Q, _R, -S, -T, 

U, and –V) are conserved, typical for all T3SSs and constitute the proximal part attached to the 

membrane (Cornelis, 2002). The injectosome is anchored by the basal body in the 

peptidoglycan and membranes with a ring-shaped structure with external diameter of about 

200 Å and a central pore of about 50 Å. Basal body constitutes a base for a needle that is 600-

800 Å in length and 60-70 Å in width (Koster et al., 1997, Hoiczyk & Blobel, 2001). The needle 

tip consists of a hypothetical structure called the pore complex, which connects the needle with 

the target host cell and forms a pore within its membrane (Dewoody et al., 2013). Based on the 

size of the molecules that can be transported through the pore complex, its size is estimated to 

be about 16 – 23 Å (Neyt & Cornelis, 1999). T3SS was generally believed to translocate the 

effector proteins from the bacterial cytosol to the target-cell cytoplasm in one step process, but 

recent research showed that the translocation of Yops can also occur through a different 

mechanism that involves an intermediate extracellular step (Akopyan et al., 2011). 
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Figure 1. Model of the Y. enterocolitica T3SS injectosome (modified from (Dewoody et al., 
2013)). 

The expression of T3SS is regulated by temperature and calcium, being expressed maximally at 

37°C in absence of calcium (Straley et al., 1993). In medium containing calcium, secretion of 

effector proteins is prevented by forming of the YopN-TyeA-YscB-SycN complex, known as the 

calcium plug (Forsberg et al., 1991, Dewoody et al., 2013). Under favorable conditions, at 37°C 

in the low calcium medium or upon the contact with host cells, effector proteins are released. 

The Yop effector proteins serve different functions; some are directly involved in attacking the 

host cells while other bear regulatory functions. Four of them, YopE, YopH, YopT and YopO 

interfere with different signal transduction pathways, disturb the host cytoskeleton dynamics 

and thus contribute to the resistance to macrophage phagocytosis (reviewed in (Fallman et al., 

1997)). The functions of the Yop effector proteins are listed in Table 2.  

Yersinia adhesion A (YadA) is expressed as a homotrimeric 200-240 kDa, lollipop-shaped, outer 

membrane protein (Skurnik et al., 1984). It mediates adherence to epithelial cells, professional 

phagocytes and proteins of the extracellular matrix. Furthermore, during the course of 

infection, YadA protects the bacterium from complement mediated lysis (Biedzka-Sarek et al., 

2005). It also mediates the autoagglutination of bacteria that is most likely another means of 
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protection against host defenses (Skurnik et al., 1984). It was shown, that YadA is an essential 

virulence factor for Y. enterocolitica (reviewed in (El Tahir & Skurnik, 2001)). 

2.2.1.2.2. Chromosomally encoded virulence factors 

Even though pYV is necessary for virulence of Y. enterocolitica, the chromosomally encoded 

virulence factors are needed for full infectivity (Revell & Miller, 2001) (Table 2). One important 

aspect of virulence is the ability of these bacteria to invade intestinal epithelial cells, which is 

mediated by invasin (Inv) and Ail (attachment and invasion locus) (Miller & Falkow, 1988). 

Invasin is a 92 kDa outer membrane protein, the expression of which is usually highest at 

ambient temperature, prior to initiation of infection in the eukaryotic host. It serves as a 

primary invasion factor and is necessary for efficient penetration of the intestinal barrier. In a 

mouse infection model, Inv negative strains are unable to colonize Peyer’s patches early after 

infection and showed 3-4 day delay in colonization when compared with the wild type (Pepe & 

Miller, 1993). In vivo, invasin promotes the penetration of Y. enterocolitica into M cells by 

adhesion to β1-integrins located on the surface of epithelial cells (Isberg & Leong, 1990). In Y. 

enterocolitica serotype O:3 the synthesis of invasin is highly activated and nearly constitutive, 

with no temperature dependence due to acquisition of IS1667 insertion sequence in the invA 

regulatory region (Uliczka et al., 2011). Ail is a 17 kDa integral membrane protein with four 

surface-exposed loops. In Y. enterocolitica it mediates the attachment and invasion into the host 

cells, as well as serum resistance (Miller et al., 2001, Biedzka-Sarek et al., 2005). Previously, the 

presence of attachment and invasion locus in the genome has been associated exclusively with 

pathogenic Y. enterocolitica strains (Miller et al., 1989), yet recent study detected Ail in some 

biotype 1A strains (Sihvonen et al., 2011). 

One important virulence factor encoded chromosomally is lipopolysaccharide (LPS), a major 

component of Gram-negative bacterial outer membrane. It consists of three main structural 

components: the most external O-specific polysaccharide (O-antigen, O-Ag), the core region 

(inner and outer cores) and the lipid A, which anchors the whole structure into the membrane 

(Fig. 2) (Muszynski et al., 2013). The O-Ag of the O:3 serotype is a homopolymer composed of 

6-deoxy-L-altrose repeating units, linked together by 1,2 linkages (Hoffman et al., 1980, Skurnik 

et al., 1999). The inner core (IC) is composed of seven sugar residues, while the outer core (OC) 

includes six residues (Radziejewska-Lebrecht et al., 1994, Skurnik et al., 1995). Untypically for 

Gram-negative bacteria, in Y. enterocolitica O:3, there are two distinctive types of LPS molecules 

present on the bacterial surface. One form constitutes of molecules where the O-Ag is linked to 
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the IC, whereas in the other form is the OC attached to the IC (Pinta et al., 2012, Muszynski et 

al., 2013). The enterobacterial common antigen (ECA) is uniquely present in 

Enterobacteriaceae and constitutes of a polysaccharide build of 3)-α-D-Fucp4NAc-(1 4)-β-

D-ManpNAcA-(1 4)-α-D-GlcpNAc-(1  repeats. The ECA polymer is either covalently 

anchored to the outer membrane (via its own L-glycerophospholipid or via the core of LPS) or 

is found in cyclic form in the periplasmic space (Lugowski et al., 1983, Kuhn et al., 1988, 

Kajimura et al., 2005). The role of ECA is not fully known, it is assumed it has a protective 

function against environmental stresses, confers resistance to low pH, bile salts, host defense 

mechanisms, and is needed for motility (Danese et al., 1998, Barua et al., 2002, Ramos-Morales 

et al., 2003, Castelli et al., 2008). 

 

 

Figure 2. A schematic structure of two Y. enterocolitica O:3 LPS forms (modified from 
(Skurnik et al., 1995, Pinta et al., 2012, Muszynski et al., 2013)). 
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In Yersinia enterocolitica serotype O:3 the OC and O-ag biosynthetic genes are organized into 

two distinct gene clusters. The OC gene cluster consists of nine genes (wzx, wbcKLMNOPQ and 

gne) and is located between the hemH and gsk genes (Skurnik et al., 1995), whereas the O-

antigen gene cluster consists of two operons and eight genes (wbbSTU, wzm, wzt, wbbVWX) 

(Zhang et al., 1993, Skurnik & Bengoechea, 2003). The expression of the O-ag is regulated at 

transcriptional level and dependent on the temperature of growth. The optimal expression 

occurs at 25°C, while at 37°C the number of repeating units per LPS molecule is much lower. 

However, temperature seems to affect the transcription only in the stationary phase, whereas 

in the exponential phase the O-ag is expressed constitutively (Lahtinen et al., 2003). The 

detailed mechanism of this regulation is still unknown. 

LPS confers to the virulence of Gram-negative bacteria and their resistance to antimicrobial 

compounds (Al-Hendy et al., 1992, Biedzka-Sarek et al., 2005, Reines et al., 2012). It has been 

shown previously that the O-antigen and OC are essential for full virulence of Y. enterocolitica 

O:3 and O:8 and loss of either of them leads to severe attenuation in murine models  (Al-Hendy, 

1992, Zhang et al., 1997, Skurnik et al., 1999) . The O-ag is required for effective colonization of 

host tissues during the first hours of infection, while the OC allows colonization of the deeper 

organs and prolonged persistence of the bacteria in the Peyer’s patches (Al-Hendy, 1992, Zhang 

et al., 1997, Skurnik et al., 1999). Moreover, it was shown that LPS contributes to serum 

resistance indirectly, by blocking the other factors present on the surface of bacterial cell 

(Biedzka-Sarek et al., 2005).  

In addition, another gene located in the chromosome showed important involvement in the 

virulence of Y. enterocolitica. The heat-stable enterotoxin Yst appears in three different 

variants: YstA, YstB and YstC. It was shown in young rabbit model, that Yst plays an important 

role in fluid secretion and development of diarrhea (Delor & Cornelis, 1992).  

2.2.1.2.3. Virulence-related features 

In addition to typical virulence factors, Y. enterocolitica possesses other metabolic features that 

contribute to virulence. One of these features is production of urease, an enzyme that catalyzes 

the hydrolysis of urea to ammonia and carbamic acid, which subsequently spontaneously 

hydrolyzes to carbonic acid and ammonia. During the growth in external environment this 

enzyme enables bacteria to utilize urea as a source of nitrogen. However, as the hydrolysis of 

urea causes local increase in pH, urease is necessary for Y. enterocolitica to survive the passage 

through the acidic stomach of the host (De Koning-Ward & Robins-Browne, 1995). Unlike in 
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some other enteropathogens, acid tolerance of Y. enterocolitica depends only on production of 

urease. The regulation of urease expression in Y. enterocolitica is regulated by the growth 

phase, with maximal activity during the stationary phase, and temperature, with the activity 

being higher at 28°C than at 37°C. However, urease activity is not regulated by nitrogen 

limitation (de Koning-Ward & Robins-Browne, 1997).  

Iron is an essential nutrient for almost all bacterial species. While this chemical element is easily 

available in natural environments and most of culture media, the concentration of free iron 

within the host tissues is remarkably low. Usually in mammalian tissues iron is bound to carrier 

proteins like transferrin and lactoferrin that further restricts its availability for bacteria. Many 

pathogens acquire iron from the host by secreting high-affinity iron-binding siderophores. 

Production of siderophores, mainly yersiniobactin, was reported for many strains of pathogenic 

Yersinia, including Y. enterocolitica biotype 1B. Therefore, without available iron, the low-

pathogenic strains of Y. enterocolitica can cause only moderate intestinal syndromes, while 

patients with iron overload a may develop a systematic yersiniosis (Chambers & Sokol, 1994, 

Carniel, 2001). Moreover, patients treated with Desferal (commercially available form of iron-

chelating deferoxamine) have been reported to be more prone to develop septicemia caused by 

Y. enterocolitica (Boelaert et al., 1987). The virulence-enhancing effect of Desferal depends on 

the production of outer membrane protein FoxA that acts as a receptor for deferoxamine 

(Baumler & Hantke, 1992). Morover, Desferal was also shown to have a potential 

immunosuppressive effect on the host (Autenrieth et al., 1994, Autenrieth et al., 1995). 

Another feature with implicated role in virulence is motility. It was shown, that flagellum-

dependent motility in Y. enterocolitica ensures migration of the bacteria to host cells. In HEp-2 

cell culture model non-motile strain displayed impairment in invasion. However, the same 

strain showed no difference in invasion when bacteria were brought into contact with host cells 

by centrifugation (Young et al., 2000). Moreover, it was previously implicated, that some 

virulence genes can be regulated as part of the flagellar regulon (Young et al., 1999). In Y. 

enterocolitica ylpA, a gene required for survival in Peyer’s patches and stimulation of the acute 

inflammatory response, is a part of flagellar regulon (Schmiel et al., 1998). Therefore the 

alterations in motility may have both direct and indirect effect on the virulence of this 

enteropathogen. Due to high similarity of flagellar regulon it is likely that many members of 

Enterobacteriaceae share the same type of regulation, which follows a hierarchical cascade with 

three major gene classes I, II, and III. The flhDC operon (class I) is at the top of the hierarchy 
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and it regulates the expression of class II genes. Class II consists of structural and accessory 

proteins, as well as sigma factor, which allows the transcription of the class III genes (proteins 

involved in maturation of flagellar system) (Young, 2004). Moreover, it has been demonstrated 

that motility is regulated by AHL-dependent quorum sensing in Y. enterocolitica (Atkinson et 

al., 2006).  

2.3. Coordination of gene regulation in Yersiniae 

Pathogenic Yersinia species are well adapted for survival in various external environments and 

persistence in a variety of host organisms. During the invasion process, bacteria must adjust 

rapidly to several extremely different environments, such as gastric acidity, altered osmolarity, 

changing nutrient availability, and competition with the microbiota colonizing the host 

organism. In order to establish infection several virulence factors must be employed. That 

process involves precise regulation of expression that ensures that these virulence factors and 

adequate metabolic pathways are produced at the correct spatiotemporal conditions. The 

regulation is achieved at transcriptional, post-transcriptional and post-translational levels 

through the employment of various transcription factors, nucleoid-associated proteins, ncRNAs 

and ribonucleases (Heroven & Dersch, 2014, Erhardt & Dersch, 2015). 

Although, the majority of the mechanisms and factors involved in gene regulation in Yersiniae 

are highly conserved, yet the network composition and architecture may vary between the 

species (Erhardt & Dersch, 2015). During the first stages of host colonization bacteria have to 

survive the acidic environment of the stomach. For this the bacteria use urease, an enzyme that 

counteracts low pH by neutralizing it with ammonia generated from urea (Young et al., 1996). 

The regulators as TCS OmpR/EnvZ and Hfq chaperone have been implicated in the regulation 

of urease biosynthesis in Yersinia species (Hu et al., 2009, Kakoschke et al., 2014). The 

gastrointestinal tract is a rich source of food, yet the availability of nutrients depends on the 

host and there is a constant competition with the resident microbiota for resources. This phase 

of infection depends to a large extend on the ability to sense the available nutrients and to 

response adequately by changing the expression of enzymes of the metabolic pathways. This 

stage involves such regulators as the  PhoP/PhoQ TCS, the global carbon storage regulator 

(Csr), cAMP receptor protein Crp, the UvrY/BarA TCS, and the sRNA regulatory network in 

cooperation with the Hfq chaperone (reviewed in details in (Heroven & Dersch, 2014)). 
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Subsequently, bacteria attach to and invade the M cells overlaying the Peyer’s patches in the 

ileum (Grutzkau et al., 1990). The key virulence factors of this stage are the outer membrane 

proteins invasin, Ail, and YadA, that are regulated by the MarR-type regulator RovA, H-NS, and 

YmoA. Moreover, the ability of bacterium to internalize is also enhanced by the flagella-

mediated motility, which is controlled by the master operon flhDC (reviewed in (Erhardt & 

Dersch, 2015)). From the Peyer’s patches bacteria disseminate to the mesenteric lymph nodes, 

liver and spleen (Cornelis & Wolf-Watz, 1997). This phase of infection requires the expression 

of ysc genes encoding the T3SS and the Yop effector proteins. These genes are encoded on the 

pYV and their transcription is activated by the LcrF(VirF) regulator (Bolin et al., 1988). The 

ability of Yersinia spp. to avoid the host defense mechanisms depend also on the expression of 

LPS, YadA and Ail, due to their involvement in the resistance against the host serum 

complement system (Biedzka-Sarek et al., 2005).  

The sensing of the environment occurs through different cues, yet the changes in temperature 

is the most important signal received by the pathogenic Yersiniae. Temperature-dependent 

regulation of the gene expression happens through several different regulators. The expression 

of T3SS and associated Yop effector  proteins is allowed only at body temperatures and 

controlled by LcrF/VirF, YmoA and levels of supercoiling of the pYV (Lambert de Rouvroit et 

al., 1992, Hoe & Goguen, 1993, Rohde et al., 1999, Bohme et al., 2012). The temperature-

dependent regulation of Inv expression is governed by the RovA regulator, an intristic 

temperature-sensing protein (Revell & Miller, 2000, Herbst et al., 2009, Quade et al., 2012). The 

loss of motility at 37°C occurs through 28/FliA without the involvement of the flhDC master 

operon (Kapatral et al., 2004). Several virulence genes of Yersinia are expressed in response to 

changes in the environmental concentration of Ca2+ in a process referred to as low calcium 

response  (Goguen et al., 1984, Straley et al., 1993). The changes in temperature and osmolarity 

are sensed by the TCS OmpR/EnvZ that controls the expression of the outer membrane porins 

(Dorrell et al., 1998, Brzostek et al., 2012). Another transcriptional regulator, IscR, responds to 

oxidative stress, oxygen limitation and iron availability and controls the expression of T3SS 

through the LcrF(VirF) (Miller et al., 2014). In Yersinia the response to different carbon sources 

is mediated by BarA/UvrY, Crp and Csr systems (Poncet et al., 2009, LeGrand et al., 2015). The 

low pH and low levels of magnesium in the environment are the trigger factors affecting the 

expression of the PhoP/PhoQ TCS (Groisman, 2001). In addition, the CpxAR system is 

responsible for responses to the extra-cytoplasmatic stress in Yersinia (Liu et al., 2012). The 
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regulatory networks that control the expression of virulence-related factors and motility in 

response to different environmental cues in Yersinia are presented in Figure 5. The details 

regarding the function of selected regulators controlling the gene expression in Yersinia are 

summarized in Table 5. 

 

 

Figure 5. Regulatory networks controlling Yersinia virulence factors (reproduced from 
(Erhardt & Dersch, 2015) with the permission of the author). 
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Table 5. Selected examples of transcriptional regulators present in Yersinia species. 

Regulator Activity References 
RovA  positive regulation of invasin (inv) gene expression; 

important virulence factor; probably regulates genes in 
addition to inv 

(Revell & Miller, 2000, Ellison et 
al., 2004) 

RovM  repression of RovA expression; elimination of rovM increases 
the virulence of Y. pseudotuberculosis in the mouse model; 

(Heroven & Dersch, 2006) 

PhoP/ 
PhoQ 

in Y. enterocolitica affects the expression of rovA and lpxR; 
regulates lipid A deacylation; allows intracellular survival of 
Y. pestis; elimination of phoP in Y. pestis results in partial 
attenuation; shows positive and negative regulation of 
number of proteins 

(Oyston et al., 2000, Reines et al., 
2012, Reines et al., 2012) } 

OmpR/ 
EnvZ 

control of the expression of outer membrane porins in 
response to changes in the osmolarity of the environment; 
adaptation to high osmolarity, oxidative stress and low pH; 
control of motility and biofilm; negative regulation of invasin 
(inv) gene expression 

(Brzostek & Raczkowska, 2007, 
Raczkowska et al., 2011, 
Raczkowska et al., 2011, 
Brzostkowska et al., 2012 ) 

FlhDC control of motility, flagellation and biofilm formation; the 
active heteromultimeric form (FlhD4C2) directs the 70-RNA 
polymerase to transcribe genes with flagellar Class 2 
promoters; repressed by OmpR in response to extracellular 
osmolarity; affects the expression of T3SS 

(Young et al., 1999, Bleves et al., 
2002, Raczkowska et al., 2011) 

LcrF in a temperature-dependent manner activates the 
transcription of T3SS and associated Yop effector genes; 
AraC-type regulator; repressed by YmoA-H-NS complex; 
affected also by different environmental cues through 
different regulators  

(Bohme et al., 2012, Hoe & 
Goguen, 1993, Lambert de 
Rouvroit et al., 1992, Rohde et al., 
1999) 

Crp cAMP receptor protein; by binding to cAMP signal molecule 
forms the active complex cAMP-Crp, that controls genes of 
different metabolic pathways; required for growth on 
different carbon sources and under limited carbon, nitrogen 
and phosphate sources.  

(Petersen & Young, 2002, Heroven 
et al., 2012, Lathem et al., 2014) 

CsrA controls the translation of a large number of metabolic genes 
by binding to the 5’-untranslated regions of their mRNAs; 
inhibited by two sRNA species CsrB and CsrC, that have higher 
affinity to CsrA than other targets and thus sequester the 
binding sites of CsrA; affects the expression of RovA 

(Liu & Romeo, 1997, Heroven et 
al., 2008, Heroven et al., 2012, 
Heroven et al., 2012, LeGrand et 
al., 2015) 

BarA/UvrY activated by metabolic end products and alterations in the 
citric acid cycle; controls the metabolism by affecting the Csr 
system; regulates the expression of adhesion and invasion 
genes 

(Chavez et al., 2010, Dahiya & 
Stevenson, 2010, Heroven et al., 
2012) 

CpxAR responds to extra-cytoplasmic stress, important for the 
bacterial envelope integrity; affects the expression of T3SS 
elements  and RpoE  

(Ronnebaumer et al., 2009, Hunke 
et al., 2012, Liu et al., 2012) 
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3. AIMS OF THE STUDY 

During the course of infection bacterial cell passes through different niches. Sensing properly 

environmental cues allows it to respond accordingly, survive and establish infection. Therefore 

for pathogens, the gene regulation also means adaptation to the host and coordination of 

expression of virulence factors, either directly or indirectly by affecting global regulators.  

The details of bacterial gene expression regulation are not fully understood. This thesis work 

was undertaken to increase the knowledge of the regulatory networks and involvement of 

different regulators in bacterial physiology and virulence. In this study, I aimed at using two 

high-throughput methods, RNA-sequencing (RNA-seq) and quantitative proteomics (LC-

MS/MS), to identify mRNAs and proteins of Yersinia enterocolitica O:3 dependent on selected 

regulatory proteins, and to elucidate their role in the physiology and virulence of the pathogen. 

 

The specific objectives of this thesis work were: 

I. To identify the genes regulated directly or indirectly by Hfq, YbeY and RfaH in Y. 

enterocolitica. 

II. To investigate the role of Hfq, YbeY, RfaH and RovM in the physiology of Y. 

enterocolitica 

III. To investigate the role of Hfq, YbeY, RfaH and RovM in the virulence and virulence-

associated phenotypes of Y. enterocolitica. 
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4. MATERIALS AND METHODS 

4.1. Materials 

4.1.1. Bacterial strains and bacteriophages 

All bacterial strains and bacteriophages used in this thesis are listed in Table 6. The detailed 

descriptions of the strains, including the growth conditions, are available in the original 

publications I, II and a manuscript (III). 

Table 6. Bacterial strains and bacteriophages used in this study. 

Bacterial strain Description Reference Used in 
Y. enterocolitica O:3 strains 
YeO3-wt 6471/76, serotype O:3, patient isolate, wild type (Skurnik, 

1984) 
I, II, III 

YeO3- ybeY YeO3-wt, ybeY:: pKNG101-ybeY; StrepR this study I 
YeO3-

ybeY/pMMB207- 
ybeY 

YeO3- ybeY strain transformed with pMMB207-ybeY; 
StrepR, ClmR 

this study I 

YeO3-c Virulence plasmid cured derivative of YeO3-wt (Skurnik, 
1984) 

II 

YeO3-c-R1 Spontaneous rough derivative of YeO3-c (al-Hendy 
et al., 1992) 

II 

YeO3- rfaH YeO3-wt, rfaH::pSW25T-rfaH; SpecR this study II 
YeO3-c- rfaH YeO3-c, rfaH::pSW23T-rfaH; ClmR this study II 
YeO3- rfaH/pTM100-
rfaH 

YeO3- rfaH strain transformed with pTM100-rfaH; 
SpecR, ClmR 

this study II 

YeO3-c-
rfaH/pLux232oT-POC 

YeO3-c- rfaH strain carrying OC gene cluster promoter 
reporter vector pLux232oT-POC, ClmR, KmR 

this study II 

YeO3-c-
rfaH/pLux232oT-

PECA 

YeO3-c- rfaH strain carrying ECA gene cluster 
promoter reporter vector pLux232oT-PECA, ClmR, KmR 

this study II 

YeO3-c-
rfaH/pLux232oT-

POP1 

YeO3-c- rfaH strain carrying O-antigen gene cluster 
promoter 1 reporter vector pLux232oT-POP1, ClmR, KmR 

this study II 

YeO3-c-
rfaH/pLux232oT-

POP2 

YeO3-c- rfaH strain carrying O-antigen gene cluster 
promoter 2 reporter vector pLux232oT-POP2, ClmR, KmR 

this study II 

YeO3-hfq::Km YeO3-wt, hfq::Km-GenBlock, KmR this study III 
YeO3-hfq::Km/phfq YeO3-hfq::Km transformed with pTM100-hfq; KmR, 

ClmR 
this study III 

YeO3-rovM YeO3-wt, rovM::pKNG101, StrepR this study III 
YeO3-rovM-hfq::Km YeO3-wt, hfq rovM double mutant; KmR, StrepR this study III 
YeO3-
rovM/pMMB207-
rovM 

YeO3-wt, rovM strain with pMMB207-rovM plasmid to 
overexpress rovM under the IPTG induced promoter; 
StrepR, ClmR 

this study III 

YeO3/ pLux232oT-
rovM 

YeO3-wt carrying rovM promoter reporter vector 
pLux232oT-rovM, KmR 

this study III 
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YeO3-rovM/ 
pLux232oT-rovM 

YeO3-rovM carrying rovM promoter reporter vector 
pLux232oT-rovM, KmR, StrepR 

this study III 

YeO3/pMMB207-
rovM/ pLux232oT-
rovM 

YeO3-rovM/pMMB207-rovM strain carrying rovM 
promoter reporter vector pLux232oT-rovM, KmR, 
StrepR, ClmR 

this study III 

E. coli strains 
ω7249 (F-) RP4-2-Tc::Mu dapA::(erm-pir) nic35, E. coli strain 

for suicide vector delivery, requirement for 
diaminopimelic acid, KmRErmR 

(Babic et 
al., 2008) 

I, II, III 

SY327λpir recA56(λpir), E. coli strain for suicide vector delivery (Miller & 
Mekalanos, 
1988) 

III 

S17-1λpir recA, λpir, E. coli strain for suicide vector delivery (Simon et 
al., 1983) 

I, II, III 

S17-1λpir/ 
pLux232oT-rovM 

E. coli S17-1λpir strain carrying rovM promoter reporter 
vector pLux232oT-lrhA, KmR 

this study III 

Bacteriophages 
R1-37 YeO3 OC-specific (Skurnik et 

al., 1995, 
Kiljunen et 
al., 2005, 
Skurnik et 
al., 2012) 

II 

YeO3-12 YeO3 O-antigen-specific (al-Hendy 
et al., 1991, 
Pajunen et 
al., 2000, 
Pajunen et 
al., 2001) 

II 

 

4.1.2. Plasmids  

All plasmids used in this thesis, are listed in Table 7. Detailed descriptions and primer 

sequences are available in the original publications. 

Table 7. Plasmids used in this study. 

Plasmid Description Reference Used in 
pTM100 Mobilizable vector, pACYC184-oriT of RK2; 

ClmR 
(Michiels & Cornelis, 1991)  II, III 

pUC18 Cloning vector; AmpR (Yanisch-Perron et al., 1985) III 
pUC-4K Origin of the Km-GenBlock cassette; AmpR, 

KmR 
(Taylor & Rose, 1988) III 

pKNG101 Suicide vector; StrepR (Kaniga et al., 1991) I, III 
pSW23T Suicide vector; ClmR (Demarre et al., 2005) II 
pSW25T Suicide vector; SpecR (Demarre et al., 2005) II 
pMMB207 Cloning vector derived from RSF1010; ClmR (Morales et al., 1991) I, III 
pLux232oT Promoterless reporter plasmid II II, III 
pKNG101-ybeY Internal 286 bp fragment of the ybeY gene 

cloned into pKNG101; StrepR 
I I 
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pMMB207-ybeY Overexpression plasmid; the complete ybeY 
gene cloned into pMMB207; ClmR 

I I 

pSW23T-rfaH Internal 201 bp fragment of the rfaH gene 
cloned into pSW23T; ClmR 

II II 

pSW25T-rfaH Internal 201 bp fragment of the rfaH gene 
cloned into pSW25T; SpecR 

II II 

pTM100-rfaH Full rfaH gene with the upstream promoter 
cloned into pTM100; ClmR 

II II 

pLux232oT-POC OC gene cluster promoter fragment cloned 
into the promoter reporter vector 
pLux232oT; KmR 

II II 

pLux232oT-PECA ECA gene cluster promoter fragment cloned 
into the promoter reporter vector 
pLux232oT; KmR 

II II 

pLux232oT-POP1 O-antigen gene cluster promoter 1 fragment 
cloned into the promoter reporter vector 
pLux232oT; KmR 

II II 

pLux232oT-POP2 O-antigen gene cluster promoter 2 fragment 
cloned into the promoter reporter vector 
pLux232oT; KmR 

II II 

pUC18-hfq The hfq gene with flanking regions cloned 
into pUC18; AmpR 

III III 

pUC18-hfq::Km pUC18-hfq derivative with the internal part 
of hfq gene replaced with Km-GenBlock; KmR, 
AmpR  

III III 

pKNG101-hfq::km hfq::Km-GenBlock fragment of pUC18-
hfq::Km cloned into BamHI site of pKNG101; 
KmR,, StrepR 

III III 

pKNG101-rovM Internal rovM gene fragment cloned into 
pKNG101; StrepR 

III III 

pMMB207-rovM Overexpression plasmid; the complete rovM 
gene cloned into pMMB207; ClmR 

III III 

pTM100-hfq Full hfq gene with the upstream promoter 
cloned into pTM100; ClmR 

III III 

pLux232oT-rovM rovM promoter fragment cloned into the 
promoter reporter vector pLux232oT; KmR 

III III 

 

4.1.3. Antibodies and antisera 

Table 8. Antibodies and antisera used in this study. 

Antibody/A
ntiserum 

Description Source or reference Used in 

Primary antisera and antibodies 
α-YopM Polyclonal rabbit anti-YopM antiserum (Trulzsch et al., 2004) I 
α-YopH Polyclonal rabbit anti-YopH antiserum (Trulzsch et al., 2004) I 
α-YopE Polyclonal rabbit anti-YopE antiserum (Trulzsch et al., 2004) I 
α-YopD Polyclonal rabbit anti-YopD antiserum (Trulzsch et al., 2004) I 
α-LcrV Polyclonal rabbit anti-LcrV antiserum (Trulzsch et al., 2004) I 
2A9 Mouse anti-YadA monoclonal antibody (Skurnik et al., 1994, 

Biedzka-Sarek et al., 2008) 
I 

α-Inv Mouse anti-Invasin monoclonal antibody Petra Dersch I 
Mab 898 Mouse anti-ECA monoclonal antibody (Meier-Dieter et al., 1989) II 
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TomA6 Mouse anti- Y. enterocolitica O:3 O-antigen 
monoclonal antibody 

(Pekkola-Heino et al., 1987) II 

2B5 Mouse anti- Y. enterocolitica O:3 OC monoclonal 
antibody 

(Pekkola-Heino et al., 1987) II 

15D8 Mouse anti-flagellin monoclonal antibody (Feng et al., 1990) III 
α-RpoS Polyclonal rabbit anti-RpoS antiserum (Coynault et al., 1996) III 

Secondary antisera 
P0447 Polyclonal goat peroxidase-conjugated anti-mouse 

immunoglobulin antibodies 
Dako  I, II, III 

P0217 Polyclonal swine peroxidase-conjugated anti-rabbit 
immunoglobulin antibodies 

Dako  I, III 

 

4.1.4. Bioinformatics resources used 

The following web resources were used to obtain reference sequences and annotation 

information: NCBI National Center for Biotechnology Information 

(http://www.ncbi.nlm.nih.gov), UniProt (http://www.uniprot.org) and RCSB PDB Protein Data 

Bank (http://www.rcsb.org/pdb). 

 

4.2. Methods 

4.2.1. Bacterial cultivation 

Cultures were grown aerobically in Lysogeny Broth (LB) (Bertani, 2004), in brain heart infusion 

(BHI) (Fluka) or on Yersinia selective agar (cefsulodin, irgasan and novobiocin supplemented; 

CIN-agar, Oxoid, UK) at either 37°C or at room temperature (RT, ca. 22°C). LB plates were 

prepared by adding 15 g of bacto agar to 1 L of LB. For electron microscopy, flagellin production 

and motility evaluation bacteria were grown in tryptone broth (TB) (1% tryptone, 0.5% NaCl) 

and on motility trypton agar plates (0.3% TB plates) (1% tryptone, 0.5% NaCl, 0.3% bacto agar) 

at 22°C. Additionally, for biofilm formation test M9 (2mM MgSO4, 0.1 mM CaCl2, 1x M9 salts, 

0.4% glucose) and MedECa (Skurnik, 1985) media were used. Antibiotics were used when 

needed at the following concentrations: streptomycin (Str) 50 μg/ml, chloramphenicol (Clm) 

20 μg/ml, kanamycin (Km) 100 μg/ml, ampicillin (Amp) 50 μg/ml. Expression from plasmid 

pMMB207 was induced with 1 mM isopropyl-β-D-thiogalactopyranoside (IPTG). 
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4.2.2. Growth curves.  

Bacteria were grown overnight at RT. Subsequently, cultures were diluted in fresh medium to 

an OD600 of 0.2 and 200 μl aliquots were distributed into honeycomb plate wells (Growth Curves 

Ab Ltd). The growth experiments were carried out at selected temperatures using the 

Bioscreen C incubator (Growth Curves Ab Ltd) with continuous shaking. The OD600 values were 

measured at 10 or 15 min intervals. The average values were calculated from 9 or 10 parallel 

results. 

4.2.3. SDS-PAGE.  

Proteins were separated using sodium dodecyl sulfate polyacrylamide gel electrophoresis 

(SDS-PAGE) with 5% stacking and 12% separating gels. After the electrophoresis the material 

was either visualized using InstantBlue (Expedon), by silver staining (Mortz et al., 2001), or 

transferred onto nitrocellulose membrane (Protran, Whatman, pore size 0.45 μm). Transfer of 

the proteins from the SDS-PAGE gel onto the membrane was done using the semi-dry apparatus 

(Thermo Scientific Owl, USA).  

4.2.4. Preparation of LPS samples. 

LPS samples were prepared using the modified protocol of Hitchcock and Brown (Hitchcock & 

Brown, 1983) as described previously (Pinta et al., 2012).  

4.2.5. Detection of O-antigen in culture supernatants.  

Bacteria were grown in 5 ml LB overnight at 22°C or at 37°C. Subsequently the overnight 

cultures were pelleted and 50 μl of the supernatant was mixed with 50 μl of DOC lysis buffer. 

The mixture was boiled for 10 min, cooled down and incubated for 4 h at 55˚C with proteinase 

K. Altogether 3, 6, 9 and 12 μl of the samples in 3 μl portions were spotted onto nitrocellulose 

membranes and left at RT to air-dry. The membrane was blocked and incubated with the O-

antigen specific mAb TomA6 as described below (see immunoblotting). 

4.2.6. DOC-PAGE.  

LPS was separated using deoxycholate–polyacrylamide gel electrophoresis (DOC-PAGE) with 

4% stacking and 12% separating as described previously (Krauss et al., 1988, Zhang & Skurnik, 

1994, Skurnik et al., 1995). After the run the material was either visualized by silver staining 

(Al-Hendy et al., 1991) or transferred for immunoblotting onto nitrocellulose membrane 

(Protran, Whatman, pore size 0.45 μm) using the semi-dry apparatus (Thermo Scientific Owl, 



52 
 

USA).  For dot-blotting 5 μl aliquots of serial 1:2 dilutions of the LPS samples were applied 

directly to the membrane and left at room temperature to air-dry. 

4.2.7. Immunoblotting 

The membrane was blocked using 5% fat-free milk in TBST buffer (50 mM Tris-HCl, 150 mM 

NaCl, 0.05% Tween 20, pH7.6) for 1h at RT. Subsequently, the membrane was incubated for 

16h at 4°C with primary antibodies diluted in blocking buffer. After washing 3 times with TBST 

buffer, the membrane was incubated for 1h at RT with suitable peroxidase-conjugated 

secondary antibodies (dilution 1:2000 in blocking buffer). Subsequently membrane was 

washed in TBST as before and incubated in ECL solution (0.1M Tris-HCl pH 8.5, 1.25 mM 

luminol, 0.2 mM cumaric acid, 5.3 mM hydrogen peroxide). After draining excess fluid, the 

membrane was exposed to light sensitive film (Kodak, USA). 

4.2.8. Total RNA extraction.  

The total RNA of bacteria was isolated using the SV Total RNA Isolation System (Promega) 

following the instructions provided by the manufacturer. The quality of the isolated RNA was 

verified using the Bioanalyzer (Agilent).  

4.2.9. RNA-sequencing.  

The RNA-seq was performed at the FIMM Technology Centre Sequencing Unit 

(www.fimm.fi). The ribosomal RNA was removed using Ribo-ZeroTM rRNA Removal Kit for 

Gram-negative Bacteria (Epicentre). Paired-end sequencing was completed on Illumina 

HISeq2000 sequencer (Illumina) producing the read length of 90 nucleotides. The obtained 

sequencing reads were filtered for quality and aligned against the Y. enterocolitica strain Y11 

genome (accession number FR729477) using the TopHat read aligner (Langmead et al., 2009). 

Subsequently, the Cufflinks program (Trapnell et al., 2013) was used to obtain the fragments 

per kilobase of gene per million aligned fragments (FPKM) values for differential expression. 

The genes were considered differentially expressed if the fold change (FC) of the average values 

was >2, and the Student’s T-test p-value was <0.01. The data for RfaH project was analyzed 

using the edgeR differential expression analysis package (Robinson et al., 2010). The RNA 

sequence data has been deposited to Gene Expression Omnibus (Acc. no GSE66516 and 

GSE62601). 
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4.2.10. Quantitative RT-PCR.  

The extracted total RNA was diluted to the final concentration of 25 ng/μl. The quantitative RT-

PCR was performed using the GoTaq 1-step RT-qPCR System (Promega). The results were 

calculated using the Unit Mass method. The gene-specific primers used are listed in the 

respective studies. 

4.2.11. Quantitative proteomics.  

After growing the bacteria overnight at RT in 3 ml of LB cultures were diluted 1:10 in fresh LB 

and incubated for another 4h at either RT or 37°C Afterwards, bacterial cells were pelleted by 

centrifugation at 3000 x g, washed with sterile phosphate-buffered saline (PBS) and adjusted 

to 2.5 x 108 cfu/ml. Subsequently, 1 ml of each culture was pelleted, resuspended in lysis buffer 

(100 mM ammoniumbicarbonate, 8M urea, 0.1% RapiGestTM), sonicated for 3 min (Branson 

Sonifier 450, pulsed mode 30%, loading level 2) and stored at -70°C. Samples were prepared in 

3 parallels. The proteins in the samples were reduced with Tris(2-carboxyethyl)phosphine 

(TCEP),  alkylated with iodoacetamide and digested with trypsin. The obtained digests were 

purified by C18 reversed-phase chromatography columns. Afterwards, the MS analysis was 

completed on an Orbitrap Elite ETD mass spectrometer (Thermo Scientific), with Xcalibur 

version 2.7.1 coupled to an Thermo Scientific nLCII nanoflow HPLC system. Both the peak 

extraction and the protein identification was performed using Proteome Discoverer software 

(Thermo Scientific). Calibrated peak files were used to search against the Y. enterocolitica O:3 

strain Y11 proteins (Uniprot) using a SEQUEST search engine. Error tolerances on the 

precursor and fragment ions were ±15 ppm and ±0.6 Da, respectively. A stringent cut-off (0.5 

% false discovery rate) was used for peptide identification. Spectral counts for each protein in 

each sample were extracted and used in relative quantitation of protein abundance alterations 

for label-free quantification. 

4.2.12. Resistance assays  

Thermotolerance was tested by diluting the overnight cultures to obtain ca. 1,000 

bacterial cells in 10 μl of PBS. The dilutions were incubated in a thermoblock heated to 55°C. 

Serial 10-fold dilutions were prepared before the incubation and after 5 min of incubation. The 

number of viable bacteria was determined by plating the 10-fold dilutions.  

Acid tolerance was tested as described earlier (De Koning-Ward & Robins-Browne, 1995) 

with modifications. Briefly, the overnight cultures were diluted to obtain ca. 1,000 bacterial 

cells in 10 μl of PBS. Aliquots of 10 μl of freshly prepared bacterial cultures were added to 90 μl 
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of PBS pH 2.5 or pH 2.0 supplemented with 1.4 mM urea. The mixtures were incubated for 2h 

at 37°C. 10-fold dilutions were prepared before and after the incubation and plated on LA plates 

to determine the number of bacteria. 

4.2.13. Urease test.  

The production of urease was verified in urea broth (0.1% peptone, 0.1% glucose, 0.5% 

NaCl, 0.2% KH2PO4, 0.00012% phenol red, 2% urea) (Stuart et al., 1945). The broth was 

inoculated using the overnight cultures (1:20) and incubated at RT or 37°C with shaking. The 

test result was considered negative if the final color was yellow and positive if the medium 

changed the color from orange to red. 

4.2.14. Sugar utilization.  
The production of acid from different carbohydrates was determined in phenol red broth (10 g 

peptone, 5 g NaCl and 0.018 g phenol red per liter supplemented with the selected carbohydrate 

to a final concentration of 1%) (Iversen et al., 2006). Bacterial overnight cultures were pelleted 

and diluted in phenol red broth. Dilutions 1:10 were used to inoculate 3 ml of medium 

supplemented with selected sugars. Following carbohydrates were studied: glucose, sucrose, 

maltose, mannitol, arabinose, galactose, mannose, and myo-inositol. 

4.2.15. Motility and biofilm assays.  

After growing bacteria overnight in 5 ml of tryptone broth at RT with gentle shaking, 5 μl of 

each culture was applied in the middle of the tryptone motility plates (1% tryptone, 0.5% NaCl 

and 0.35% agar). Motility plates were incubated for 24h at RT. Subsequently, the radius of the 

bacterial growth was measured and images of the motility plates were taken (GelLogic 200 

Imaging System, Kodac). 

Biofilm formation was tested as described earlier (Blumer et al., 2005) with modifications. 

Overnight cultures of bacteria grown in TB, M9 or MedECa were diluted 1:10 into the same 

medium. The 200 μl aliquots of the cultures were transferred to the wells of 96-well polystyrene 

microtiter plate (Nunc). After 72h of incubation at RT the wells were emptied, washed three 

times with sterile PBS and drained. Subsequently, wells were washed with 200 μl of methanol 

and left overnight to dry in order to fix the biofilm. Adhered cells were stained using 200 μl of 

0.1 %  crystal violet solution. Non-bound dye was removed by rinsing the wells three times with 

distilled water. To solubilize the crystal violet the wells were filled with 200 μl of 96% ethanol 
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and incubated 30 min at RT. Subsequently, the absorbance of the dye was measured at 560 nm 

using the Labsystems iEMS Reader MF. 

4.2.16. Luminescence assay.  

The activities of the promoters cloned into the luciferase reporter plasmid pLux232oT were 

measured using a Chameleon microplate reader (Hidex). Bacteria were grown in black 96-well 

plates (PerkinElmer) in a total volume of 200 μl of LB per well with continuous shaking. The 

luminescence emission was measured at indicated time points. The relative light unit (RLU) 

values were normalized using the obtained OD600 values of the cultures. 

4.2.17. Bacteriophage sensitivity.  

Bacterial cultures were grown overnight at either RT or 37˚C with vigorous shaking. 

Afterwards, 100 μl of saturated culture was mixed with 3 ml of 0.3% soft agar (LB broth with 

0.3% agar, solubilized by boiling and cooled to 50°C) and poured over a sterile LB plate. After 

solidification of soft agar, 5 μl aliquots of indicated phage dilutions prepared in LB broth were 

applied on the plate. The bacteria were considered sensitive if a clear lysis zone was visible 

after 24 h of incubation. Bacteriophages used in this experiment are listed in the Table 6, study 

II. 

4.2.18. Electron microscopy. 

Bacteria grown overnight on tryptone motility plates were collected from the migration area, 

washed with sterile PBS, pelleted and resuspended in 0.1 M ammonium acetate. Subsequently, 

the bacterial cells were allowed to sediment on carbon coated grids for 1 min and stained 

negatively using 1% uranyl acetate. Samples were examined with JEOL JEM1400 transmission 

electron microscope. Pictures were taken using the Olympus Morada CCD camera with the 

iTEM software. 

4.2.19. Serum killing assay.  

The serum was prepared and the killing assay was performed as described previously 

(Biedzka-Sarek et al., 2005). Normal human serum (NHS) was obtained from healthy 

individuals lacking anti-Yersinia antibodies (Biedzka-Sarek et al., 2005). Overnight bacterial 

cultures were diluted to obtain ca. 1,000 bacterial cells in 10 μl. 10 μl bacterial aliquots were 

incubated for 30 minutes at 37°C with (i) 20 μl of NHS, (ii) 20 μl of heat-inactivated serum (HIS) 

or (iii) 20 μl of EGTA serum (10 mM EGTA, 5 mM MgCl2). Afterwards, 70 μl of ice-cold brain 

heart infusion broth (BHI) was added to stop the activity of complement and the tubes were 
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incubated on ice. Subsequently, the mixtures were plated on LB plates supplemented with 

proper antibiotics. The bactericidal effect of the serum was calculated as the survival 

percentage taking the CFU values obtained for bacteria incubated with HIS as 100%. The 

experiment was carried out in triplicates, starting from individual colonies. Two separate 

experiments were carried out on two separate occasions.  

4.2.20. Cell culture infection assay.  

The experiments were performed as described earlier (Schulte et al., 2000). HeLa cell cultures 

were grown in Dulbecco's Modified Eagle's Medium (DMEM) supplemented with 10% fetal 

bovine serum (FBS), 2 mM L-glutamine, 50 μg/ml of streptomycin and 100 μg/ml of penicillin. 

The cells were kept at 37°C in a humidified 5% CO2 atmosphere. After incubation with trypsin 

and harvesting, cells were diluted 1:3 in fresh DMEM and transferred into the 6-well plates. 

Following the 24 h incubation the medium was changed into DMEM with 10% FBS and 2 mM 

L-glutamine without the antibiotic supplementation. The cells were incubated at 37°C for 

further 2 h. Meanwhile bacterial overnight cultures were diluted in LB and incubated for 3h at 

RT. Subsequently, bacterial cells were washed in PBS, pelleted and resuspended in DMEM. The 

dilutions of bacterial cultures were adjusted to infect the eukaryotic cells with 100:1 bacterium-

to-cell ratio. The number of bacteria was assessed by plating and the host cell number was 

estimated using a hemacytometer. Following the inoculation of the plates, bacteria were 

centrifuged down onto the cells (5 min, 750 rpm) and incubated at 37°C in a humidified 5% CO2 

atmosphere for 1h. After the incubation monolayers were washed with PBS.  Subsequently, 

either DMEM or DMEM supplemented with 100 μl/ml gentamycin was added to the wells to 

determine total cell-associated bacteria and the intracellular bacteria, respectively. Following 

the 1h incubation, HeLa cells were lysed using 1% Triton X-100 in PBS. 100 μl aliquots of the 

serial 10-fold dilutions were plated on LB plates in order to determine the number of released 

viable bacteria.  

4.2.21. Mouse experiments.  

Animal experiments were performed under the permit from the Animal Experiment Board in 

Finland (permit no ESAVI/5893/04.10.03/2012). The 35 inbred 6-8 week old female BALB/c 

mice were purchased from Envigo (Blackthorn, UK). Upon arrival the mice were allowed to 

adjust to the new housing conditions for 1 week. 
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Bacteria were prepared as described earlier (Skurnik et al., 1999) with modifications. Briefly, 

bacteria were grown overnight at RT in LB supplemented with appropriate antibiotics (Km, 

Clm, Strep). Afterwards, the bacterial cells were centrifuged down, resuspended in 10 ml of PBS, 

and mixed thoroughly. Three 1 ml aliquots were pelleted and after removal of the supernatant 

the weight of wet pellet mass was determined. Based on assumption that 100 mg (300 mg for 

YeO3-hfq::Km bacteria) of the bacterial pellet contains about 1011 bacterial cells, the bacterial 

suspensions were diluted to 1010 or 108 CFU per ml. The number of viable bacteria was further 

confirmed by plating. For the coinfection experiments the suspensions of wild type and YeO3-

hfq::Km bacteria were mixed at the ratio of approximately. 1:1. Samples from subsequent 10-

fold dilutions were plated in order to determine the exact bacterial counts.  

Mice were kept without food for 4-h before the infections. The bacterial suspensions (100 μl for 

the single infection and a total of 200 μl for the co-infection model) were administered either 

intraperitoneally using a 25G needle or intragastrically using a 20 gauge stainless-steel ball-

tipped catheter. After mice were sacrificed, the Peyer’s patches, spleen, and liver were removed, 

weighted and homogenized in 0.5, 0.5 and 1 ml of PBS, respectively, using the Ultra-Turrax T8 

homogenizer (IKA Labortechnik, Staufen, Germany). The number of viable bacterial cells was 

determined by plating serial dilutions on CIN agar plates without antibiotics. Afterwards, for 

the co-infection experiments the ratio of wild type to YeO3-hfq::Km colonies was determined 

by patching the colonies on CIN agar plates supplemented with kanamycin.  
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5. RESULTS  

5.1. YbeY, Hfq and RfaH are involved in the gene expression and protein 

synthesis 

In order to detect genes and proteins that are affected by the inactivation of the ybeY, hfq and 

rfaH genes the transcriptomes and proteomes of the wild type bacteria and mutant strains 

grown to logarithmic phase at RT and 37°C were determined. 

5.1.1. Transcriptomics 

The transcriptomic profiling revealed that the hfq mutation had the highest impact on gene 

expression. At RT and 37°C resulted in differential expression of respectively 364 and 541 

genes (Tables 2, S2 and S4, study III). The mutation in ybeY led to a similar profound change in 

the transcriptomic profile, affecting the expression of over 300 genes at growth in both of the 

studied temperatures (Table S2 and S3, study II). In contrast, loss of rfaH had less pronounced 

effect on the transcriptomic profile, as the rfah mutation led to alteration of expression of 102 

genes at either RT or 37°C (Table 1, study II). The number of genes affected directly or indirectly 

by the selected mutations is presented in Table 9. 

Table 9. Number of genes differentially expressed in ybeY, rfaH and hfq mutants at RT and 37°C. 

 Mutant strain 
 YeO3- ybeY YeO3- rfaH YeO3-hfq::Km 

RT 350 77 364 
 • 229 down-regulated 

• 121 up-regulated 
• 32 down-regulated 
• 45 up-regulated 

• 216 down-regulated 
• 132 up-regulated 

37°C 334 44 541 
 • 286 down-regulated 

• 48 up-regulated 
• 30 down-regulated 
• 14 up-regulated 

• 96 down-regulated 
• 445 up-regulated 

 

The RNA sequencing analysis furthermore revealed that the YeO3- ybeY and YeO3-hfq::Km 

strains had alterations in abundance of sRNAs indicating the role of both Hfq and YbeY in sRNA 

regulatory network. The conducted analysis showed that five sRNAs were affected by the loss 

of YbeY under at least one studied condition (Fig. 4, study I). Two of them, CsrB and CsrC were 

downregulated, whereas GcvB, RtT and 4.5S RNA were up-regulated. The analysis of sRNA 

abundance in YeO3-hfq::Km showed that six RNA species were affected by the lack of the Hfq 

RNA chaperone. Similarily to ybeY mutant, CsrB and CsrC were downregulated, and GcvB, FnrS, 

RrpA and SroB were upregulated under at least one condition (Fig. S2, study III).  
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Moreover, both the YeO3- ybeY and YeO3-hfq::Km displayed down-regulation of urease gene 

cluster.  

Interestingly, the transcriptome of YeO3- ybeY strain grown at RT revealed global upregulation 

of the pYV genes, which normally are repressed under these conditions (Fig. 2C, study I). 

Moreover, the inactivation of ybeY gene resulted at both temperatures in gene expression 

pattern typical for the cold shock response (Table 2, study I).  

The analysis of YeO3-hfq::Km transcriptome showed that differentially expressed genes were 

scattered among different functional classes (Fig. 1, study III). In all functional classes, except 

for the motility and biofilm class where all the genes were down-regulated, both up- and down-

regulation patterns were observed. In addition, the study revealed that the loss of Hfq resulted 

in changes in expression of several other transcriptional regulators (Table 3, study III), 

including a pronounced overexpression of RovM regulator (Fig. 2A, study III). 

The comparison of YeO3-rovM and YeO3/pMMB207-rovM transcriptomes showed that in Y. 

enterocolitica 24 genes are under the regulation of RovM (Table 4, study III). The elevated levels 

of RovM resulted in higher levels of several transcript including outer membrane protein X, L-

asparaginase and two members of the phosphotransferase system (PTS). Moreover, the 

overexpression of RovM regulator caused significant reduction of rovA transcript abundance.  

The functional analysis of genes differentially expressed in YeO3- rfaH mutant showed that 

most of the affected genes belong to the following functional classes: membrane, metabolism, 

cytoplasm and LPS biosynthesis (Fig. 3, study II). Moreover, the RNA sequencing data showed 

that the transcription of O-antigen and OC gene clusters was down-regulated up to 10-fold 

(Table 1 and Fig. 4, study II). The comparison of transcriptomic data of YeO3- rfaH and YeO3-

c-R1 strains cultivated at RT revealed that 22 out of 102 genes were similarly differentially 

expressed in both the strains (Table 1, study II). 

5.1.2. Proteomics 

Altogether, 2631 proteins could be reliably identified in the proteomics study, accounting for 

ca. 60% of all proteins annotated for the Y. enterocolitica Y11. The biggest impact on the 

proteome was observed for the YeO3- ybeY and YeO3-hfq::Km strains, where abundance of 

around 100 proteins was affected at both the temperatures. The rfaH mutation resulted in 

alterations in expression of 31 and 14 proteins at RT and 37°C, respectively (Table 10).  
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Table 10. Number of proteins differentially expressed in ybeY, rfaH and hfq mutants at RT and 

37°C. 

 Mutant strain 
 YeO3- ybeY YeO3- rfaH YeO3-hfq::Km 

RT 128 31 110 
 • 78 down-regulated 

• 50 up-regulated 
• 14 down-regulated 
• 17 up-regulated 

• 41 down-regulated 
• 69 up-regulated 

37°C 98 14 119 
 • 44 down-regulated 

• 54 up-regulated 
• 6 down-regulated 
• 8 up-regulated 

• 18 down-regulated 
• 101 up-regulated 

 

The analysis of YeO3- ybeY proteome demonstrated significant stimulation of the pYV-

encoded proteins, especially at RT (Fig. 2D, study I). Among the most highly overexpressed 

proteins were virulence effector proteins YopD and YopH, LcrG. Moreover, the loss of YbeY led 

to decrease in expression of urease proteins (Table 3, study I). 

The analysis of LC-MS/MS data of YeO3- rfaH strain showed that most of the affected proteins 

belonged to the functional classes of membrane, metabolism and cytoplasm (Fig. 3, study II). 

Furthermore, a significant decrease in abundance of dTDP-4-dehydrorhamnose 3,5-epimerase 

(WbbV), which plays a role in LPS biosynthesis was observed in the proteome of YeO3- rfaH 

(Table 1, study II). 

The analysis of YeO3-hfq::Km proteomic data revealed increase in the abundance of some outer 

membrane proteins (EnvZ, OmpX, OmpW), gene regulators (OmpR, RovM), members of Cpx 

signaling pathway (CpxA, CpxP, CpxR) and the decrease in abundance of urease proteins and 

RovA regulator (Table 3, study III).  

5.2. The role of ybeY, hfq, rfaH and rovM in the physiology of Y. enterocolitica 

O:3 

5.2.1. Bacterial growth 

The mutation in ybeY and hfq genes resulted in retardation of bacterial growth. Growth of YeO3-

ybeY strain was affected more at 37°C than at RT, and completely abrogated at 42°C. The 

decrease in growth at 37°C was less pronounced when the ybeY mutant was cured of its 

virulence plasmid. The growth of the mutant at 4°C was significantly slower, yet continuous. 

The growth speed of the ybey mutant was partially relieved or fully restored by the in trans 

complementation (Fig. 1, study I). 
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In line with previous findings in Yersinia species (Schiano et al., 2010, Kakoschke et al., 2014), 

inactivation of hfq gene in Y. enterocolitica O:3 resulted in growth defect at all tested 

temperatures (4, 22, 37 and 42°C). The growth retardation was most prominent at 4 and 42°C. 

The in trans complementation restored the growth almost completely. Moreover, the knock-

out of rovM gene of the YeO3-hfq::Km strain resulted in improved growth under all studied 

conditions (Fig 3, study III). The YeO3- rfaH, YeO3- rovM and YeO3/pMMB207-rovM strains 

showed no growth defects (data not shown).  

5.2.2. Cell and colony morphology 

The inactivation of the hfq gene in Y. enterocolitica caused alterations in colony morphology. 

After 48h of incubation on CIN agar plates at RT the YeO3-hfq::Km mutant strain formed small, 

dry and dark colonies surrounded by dark violet halo. Similar effect was observed upon 

overexpression of rovM in YeO3/pMMB207-rovM strain. Moreover, this phenotype was 

revoked after the knock-out of rovM gene in hfq mutant, indicating the role of RovM regulator 

in alterations of colony morphology.  

The analysis of cell morphology conducted using the electron microscopy (EM) showed that the 

YeO3-hfq::Km bacterial cells were significantly elongated (Fig. 4A and S5, study III). Moreover, 

the same bacteria were visibly less aggregated when compared with wild type (data not 

shown).  

5.2.3. Susceptibility to environmental stresses 

All the mutations introduced to Y. enterocolitica in this study resulted in decreased resistance 

to environmental stresses. The YeO3- ybeY strain presented highly impaired thermotolerance 

presented by decreased survival upon incubation at 50°C. While 95.26 ± 0.86% of YeO3-wt 

bacteria survived 5 min incubation under this condition, only 2.38 ± 3.78% of ybeY mutant 

bacteria survived. The in trans complementation restored the survival to the level of 87.17 

±6.44%. Moreover, the loss of YbeY decreased the ability of bacteria to survive in acidified 

environment, an ability of Y. enterocolitica that depends on the degradation of urea. The YeO3-

ybeY strain was killed upon incubation in PBS pH=2.5 with 1.4 mM urea, while 112.42 ± 8.78% 

of YeO3-wt bacteria survived these conditions. In trans complementation resulted in 78.75 ± 

9.31% survival rate.  

Similarly to ybeY mutation, the depletion of Hfq caused decrease in survival rates during 

incubation at 55°C and in the acidified medium with 1.4 mM urea (Fig. 7, study III). Only 3.39 ± 
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1.41% of YeO3-hfq::Km bacteria survived 5 min incubation at 55°C, while the survival rate of 

YeO3-wt under same conditions reached 41.12 ±8.12%. The ability to survive in PBS pH=2.0 

was decreased from 26.35 ± 2.06% recorded for wild-type bacteria to 4.17 ± 1.03%. The trans-

complementation restored both the heat- and acid-resistance. 

The analyses of YeO3- rfaH mutant revealed increased susceptibility to SDS and polymyxin B 

(Fig. 6, study II), while no significant difference between the rfaH mutant and wild type strains 

were observed in tolerance to H2O2 nor to osmotic stress (data not shown).  

5.2.4. Motility and biofilm formation 

In line with previous studies (reviewed in (Chao & Vogel, 2010)) the loss of Hfq resulted in 

impaired swimming motility. Our study showed, that the deterioration of motility is due to 

decrease in synthesis of flagellin. The flagellation defect was abolished by both the in trans 

complementation and rovM knock-out. Moreover, the YeO3-hfq::Km strain formed significantly 

less biofilm that the wild type counterpart. Inactivation of rovM in the hfq negative background 

increased the production of biofilm. Additionally, the trans-complemented strain YeO3-

hfq::Km/phfq showed overproduction of biofilm, presumably due to the hfq copy number effect 

(Fig. 5, study III). 

Interestingly, unlike in some other species the rfaH mutant of Y. enterocolitica did not show any 

alterations in motility (data not shown). Also the YeO3- ybeY strain presented same pattern of 

motility as the wild type bacteria.  

5.2.5. Other physiological features affected by the mutations  

In prokaryotes the 16S rRNA undergoes maturation process. The original 17S rRNA transcript 

is cleaved from both 5’ and 3’ ends by different endonucleases (RNase E, RNase G, RNase R and 

YbeY) with help of ribosome maturation factors (i.e. Era, KsgA, RbfA and RsgA) (Jacob et al., 

2013). The comparison of rRNA profiles of wild type and mutant strains grown at RT and 37°C 

revealed remarkable differences in the structure of ybeY mutant rRNA profile. A strong 

decrease in the amount of 16S rRNA species produced by YeO3- ybeY was observed (Fig. 3, 

study I). The impairment in rRNA processing was more pronounced when YeO3- ybeY bacteria 

were incubated at 45°C (data not shown). The other mutant strains, YeO3-hfq::Km and YeO3-

rfaH, presented normal rRNA patterns. 
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The transcriptomics and proteomics data indicated that the mutations in ybeY and hfq genes 

altered the bacterial metabolism (Fig. S2 and S3, study I; Table S2-S5, study III). Further 

research revealed a decreased ability of YeO3- ybeY to utilize arabinose and galactose. 

Moreover, the same strain was not able to grow in the medium containing 1% myo-inositol as 

a carbon source (Table S5, study I). The YeO3-hfq::Km strain presented alteration in expression 

of several genes from the PTS, that optimize the utilization of carbohydrates present in the 

environment. The analysis of hfq mutant transcriptome showed up-regulation of β-glucoside, 

fructose, glucitol/sorbitol, glucose, mannitol, mannose and N-acetylgalactosamine-specific 

enzymes, whereas cellobiose and chitobiose-specific PTS systems were down-regulated under 

at least one incubation condition (Table S2 and S3, study III). Furthermore, both YeO3-hfq::Km 

and YeO3/pMMB207-rovM when grown on CIN agar plates formed dark colonies surrounded 

by dark violet halo indicating alterations in metabolism (Fig. S4B, study III). The same strains, 

when grown on mannitol plates displayed larger halo surrounding the bacterial growth 

suggesting higher rates of acidification of the medium (Fig S3B, study III).  

5.3. The effect of ybeY, hfq, and rfaH mutations on the virulence and 

virulence-associated traits of Y. enterocolitica O:3 

5.3.1. Production of Yop effector proteins 

The analyses of YeO3- ybeY transcriptome and proteome showed a significant upregulation of 

factors encoded on pYV (Fig. 2, study I) at RT. Among the overexpressed genes were yopE, yopH, 

yopO, yopM, as well as the injectisome genes yscN, yscO, yscP, yscB and yscD (Fig. 2C, study I). 

Consistently, the proteomic study showed the overexpression of pYV-encoded factors, 

especially at RT. Among the most highly expressed proteins were YopD, YopH and the secretion 

chaperone SycE (Fig 2D, study I). The overproduction of the effector proteins was examined in 

three different ways. First, the overnight incubation of ybeY mutant in liquid LB at 37°C resulted 

in strong aggregation, an effect known to be caused by Yop secretion (Fig 2A, study I). Secondly, 

the amount of proteins secreted by the wild type and YeO3- ybeY bacteria was assessed on 

SDS-PAGE gel (Fig. 2B, study I) revealing increased secretion levels. In addition, the abundance 

of virulence plasmid encoded proteins was evaluated with immunoblotting (Fig. 5A, study I). 

Also this experiment indicated the overexpression of YopE and YopH at RT, as well as increase 

in expression of YopH and YadA in DMEM medium at 37°C. Finally, immunoblotting of samples 

prepared from the growth media showed the presence of Yops only after incubation at 37°C 

and did not allow detection of any Yops in the supernatants of bacteria grown at RT (data not 
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shown).  Therefore, it is likely that the mutation in ybeY in Y. enterocolitica O:3 leads to a 

significant upregulation of factors encoded on pYV. 

In line with previous results obtained for Y. enterocolitica O:8 (Kakoschke et al., 2014), we did 

not observe changes in the expression of Yops in YeO3-hfq::Km strain (Table S8, study III). 

Similarly, no significant changes in Yops expression was observed in YeO3- rfaH mutant. 

5.3.2. LPS synthesis 

Both silver staining and immunobloting of DOC-PAGE gels showed a significant decrease in 

production of O-antigen and OC in YeO3- rfaH mutant strain at both RT and 37°C. The in trans 

complementation resulted not only in full restoration, but also slight overproduction of O-

antigen and OC (Fig. 1, study II). The possibility that the decrease in amount of these LPS 

structures was due to shedding of the O-antigen and OC from the bacterial surface was excluded 

(Fig. 2, study II). Thus, these results indicated impairment in biosynthesis of O-antigen and OC 

structures upon loss of RfaH. The rfaH mutation did not cause any significant changes in the 

amount of ECA. These results were supported by findings from transcriptomic and proteomic 

study (described earlier), and further verified by the analysis of promoter activities (Fig. 5, 

study II). The conducted analyses of LPS structures in YeO3- ybeY and YeO3-hfq::Km did not 

reveal any significant differences (data not shown). 

5.3.3. Production of other virulence factors 

The transcriptomics and quantitative proteomics analyses indicated decrease in the expression 

of urease genes in both YeO3- ybeY (Table 3, study I) and YeO3-hfq::Km strains (Table 3, study 

III). The urease test showed gave negative result for hfq mutant strain (Fig. 7B, study III), while 

ybeY strain presented positive results in urea broth, but only after prolonged incubation. In 

coherence with reduced urease activity, both the strains presented increased sensitivity to low 

pH medium (described in more details in 5.2.3.). 

In addition, the YeO3- ybeY strain presented a significant decrease in production of Ail, a 

protein encoded by the attachment invasion locus. This result was verified using the RNA 

sequencing, quantitative proteomics, as well as quantitative RT-PCR (Fig. 5B and Table S3, 

study I). 

Similarly, both YeO3-hfq::Km and YeO3- ybeY strains showed alterations in expression of 

OmpR and RovA regulators (Table 3, study I; Table 3, study III). Furthermore, the loss of YbeY 
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resulted in decrease in abundance of such virulence factors as Hfq, Inv and H-NS, and increase 

of VirF, YmoA (Table 3, study I). The knock-down of hfq gene caused alterations in expression 

of several regulators implicated in bacterial virulence (i.e. PhoB, RovM, RpoS) as well as changes 

in the structure of bacterial outer membrane (Cpx signaling pathway and outer membrane 

structures) (Table 3, study III).  

5.3.4. Resistance to normal human serum 

Due to the contribution of LPS, Ail and YadA for serum resistance was previously shown 

(Biedzka-Sarek et al., 2005), the susceptibility of the mutants to NHS was assessed. The test 

conditions probed for the classical, lectin and alternative complement activation pathways. 

The loss of ybeY resulted in significantly (p=0.023) increased resistance to NHS under studied 

conditions. The ybeY mutation increased the resistance to NHS by over 3-fold (Fig. 7). Also the 

loss of rfaH resulted in a slight but statistically significant (p=0.048) increase in resistance to 

NHS killing (Fig. 5; Fig. 6C, study II). No significant difference was observed in resistance of 

YeO3- ybeY and YeO3- rfaH strains to EGTA/Mg2+ serum (data not shown), where only the 

alternative pathway can be activated. On the other hand, the lack of Hfq chaperone caused 

significant (p=0.018) decrease in resistance to NHS (Fig. 7). 

 

Figure 7. Resistance to normal human serum (NHS). The bacteria were incubated for 30 
min in 66% NHS and in heat inactivated serum (HIS). The bactericidal effect was calculated 
as the survival percentage taking the bacterial counts obtained with bacteria incubated in 
HIS as 100 %. The columns show the mean ± SD serum bactericidal effect when compared 
with the wild type strain. The experiments were performed in triplicates. 
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5.3.5. Virulence in cell and animal models 

The importance of YbeY for the virulence of Y. enterocolitica O:3 was evaluated in HeLa cell 

infection model. The experiment showed decrease in the ability of the bacteria to infect the 

eukaryotic cells (Fig. 5C, study I). The most prominent effect was visible during the stage of 

adhesion (Fig. 5D - association, study I). The ybeY mutant bacteria displayed no apparent 

alterations during the stage of invasion and the rate of invasion of associated bacteria was even 

higher than the wild type bacteria (Fig. 5E, study I). Due to highly impaired growth and 

increased susceptibility to environmental stresses observed for YeO3- ybeY, the virulence was 

not evaluated in any animal model. 

The impact of rfaH mutation on the intracellular growth of Y. enterocolitica in human intestinal 

epithelial and mouse macrophage cell lines has been studied previously (Nagy et al., 2006). 

Moreover, the role of O-antigen and OC in virulence of Y. enterocolitica was also assessed in 

mouse experiments, showing 50- to 100-fold decrease in LD50 for the LPS mutant strains (al-

Hendy et al., 1992, Zhang et al., 1997, Skurnik et al., 1999). 

The virulence of YeO3-hfq::Km was tested in experimental mouse infection models, where both 

oral and intraperitoneal routes of infection were investigated. In the co-infection model mice 

were infected with a mixture of wild type and YeO3-hfq::Km bacteria, and after mice were killed, 

the bacterial counts in different organs were performed, and the percentage of Km-resistant 

(KmR) colonies was determined (Table 5, study III). The presence of KmR bacteria was detected 

only in Peyer’s patches. Moreover, the average percentage of KmR bacteria decreased over time, 

from 50 % to 5.9 % two days post infection, and to 0.5 % nine days post infection. Among the 

mice that were orally infected with one strain at time, a statistically significant (p=0.0064) 

reduction in the number of bacteria recovered from mouse organs five days post infection was 

observed (Fig. 7 and Table S8, study III) for the YeO3-hfq::Km strain. The infection with the 

complemented strain YeO3-hfq::Km/phfq increased the number of recovered bacteria, while 

the infection with the double mutant YeO3-rovM-hfq::Km had no significant effect on the 

bacterial counts. Interestingly, infected intraperitoneally, both the single hfq and double rovM-

hfq mutants caused the death of two out of three mice within two days post infection (Table S9, 

study III), whereas none of the mice infected with the wild-type strain died prematurely. The 

number of bacteria recovered from organs of mice that were infected with YeO3 and YeO3-

hfq::Km and survived till the fifth day post infection did not present any significant changes. 

Further investigation revealed that the amount of LPS released to the medium is increased in 
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YeO3-hfq::Km and YeO3-rovM-hfq::Km cultures (Fig S7, study III). Moreover, the hfq mutants 

were characterized by increased susceptibility to SDS (Fig. S8, study III) indicating that the 

structure of the outer membrane is compromised in the hfq and rovM-hfq mutant strains. 

Furthermore, the analysis of the lipid A revealed alterations in the structure of this molecule in 

the hfq negative bacteria grown at 37°C (Fig. S9, study III). 

  



68 
 

6. DISCUSSION 

In this thesis two global approaches, RNA sequencing and quantitative proteomics were 

combined in order to better understand the role of selected factors in gene regulation and their 

impact on physiology and virulence of Y. enterocolitica. Two of the studies showed that the 

deletion of hfq and ybeY genes caused highly pleiotropic effects (study I and III). The mutants 

presented significant growth defects and impairment of many physiological functions, as well 

as deterioration of features related to virulence and survival inside of the host organism. 

Moreover, this thesis demonstrates that RfaH acts as a highly specific antiterminator in Y. 

enterocolitica O:3 and affects the expression of LPS O-antigen and OC gene clusters (study II). 

6.1. The impact of studied mutations on the gene expression 

The most profound alterations in gene expression were caused by hfq and ybeY mutations. A 

very high percentage of genes being under Hfq regulation have also been previously observed 

in numerous other bacterial species, including the closely related was S. enterica and Y. pestis 

(Sittka et al., 2008, Geng et al., 2009). A significant impact of ybeY mutation on the gene 

expression has also been reported for E. coli (Pandey et al., 2014). On the other hand, the loss 

of RfaH do cause downregulation of gene clusters harboring the ops element located 

downstream in the cis-regulated promoter region (Bailey et al., 1997). In this study, the 

comparison of wild type and YeO3- rfaH transcriptomes revealed low number of differentially 

expressed genes, an indication of the narrow specificity of this regulator.  

The comparison of results obtained through RNA-sequencing and LC-MS/MS showed general 

coherence. In the case of YeO3-hfq::Km mutant a large number of proteins with altered 

abundance while the corresponding genes did not show differential expression in 

transcriptomic analyses. That likely originates from the role of Hfq in post-transcriptional 

regulation.  

The analyses of the transcriptome of the mutants indicated that the mutations caused changes 

in the gene expression. First of all, RfaH is known to bind to specific ops sequences present 

upstream of long operons. The main function of RfaH is to allow the polymerase to overcome 

the terminators (Bailey et al., 1997). In this study the rfaH mutation caused decrease in 

abundance of transcripts preceded by ops sequence, indicating the direct effect on these genes. 

Subsequently, the changes in LPS biosynthesis was most likely reflected as indirect response to 
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rough phenotype. Another indication of indirect effect was observed for Hfq. The hfq mutation 

changed the expression pattern of several other regulators that affected the expression of their 

target genes. In this study it was shown that the overexpression of RovM in the YeO3-hfq::Km 

mutant was responsible for several of the phenotypic changes observed in the hfq mutant. 

Moreover, some changes in gene expression might be a response to changes in metabolism. This 

study showed also that both hfq and ybeY mutations presented alterations in carbohydrate 

metabolism as well as in abundance in Csr-RNAs.  

6.2. YbeY 

This study shows, that ybeY is not an essential gene in Y. enterocolitica O:3, but its loss affects 

the growth and sensitizes the bacterium to multiple environmental stresses. In line with 

previous results and the fact that ybeY was first discovered as a heat shock gene, the effect of 

the ybeY mutation was most profound at elevated temperatures (Rasouly et al., 2009, Grinwald 

& Ron, 2013). Similar to E. coli (Jacob et al., 2013), in Y. enterocolitica YbeY plays a role in rRNA 

maturation process. In this study, the electropherograms revealed misprocessing of 16S rRNA 

with the biggest impact observed when bacteria were incubated at 45°C. The impairment in 

maturation may be caused by a defect in 17S rRNA cleavage and/or its degradation, as 

immature form of 16S rRNA shows low stability (Jacob et al., 2013). The changes in rRNA 

pattern can be also caused by a polarized expression of rrn operons that was previously 

observed in ybeY mutants (Grinwald & Ron, 2013). 

Results obtained in study I indicated overexpression of virulence plasmid genes under all 

studied conditions. This happens plausibly due to the increase in plasmid copy number, 

alterations in sRNA regulation network or changes in the supercoiling of the pYV. The latter one 

can be a result of changes in expression of histone-like proteins and/or indirectly through 

alterations in stability of sRNAs that play a role in virulence gene regulation.  

The loss of YbeY affected the abundance of several sRNA species. Two of them, CsrB and CsrC, 

are Hfq-independent and belong to the carbon storage regulatory system (Liu & Romeo, 1997, 

Schiano & Lathem, 2012). In Y. pestis GcvB binds to Hfq and represses dppA, a component of the 

dipeptide transport system (Koo et al., 2011). These results indicate, that both the Hfq- 

dependent and Hfq-independent sRNA regulation pathways were affected in the YeO3- ybeY 

mutant.  
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Moreover, the YeO3- ybeY mutant revealed the presence of transcripts typical for cold shock 

response (Annamalai & Venkitanarayanan, 2005). It is known that changes in temperature 

result in dissociation of polysomes, accumulation of free ribosomes and their subunits and the 

state of ribosomes is one of the main sensors of environmental conditions that in E. coli elicit 

the heat and cold shock responses (VanBogelen & Neidhardt, 1990, Jones et al., 1992, Golovlev, 

2003). Moreover, cold shock response can be induced artificially using different antibiotics like 

chloramphenicol, erythromycin, spiramycin and tetracycline, all inhibitors of protein synthesis 

(VanBogelen & Neidhardt, 1990). It was previously noticed that mutation in ybeY gene results 

in significant alterations in the structure of ribosomes (Rasouly et al., 2009, Rasouly et al., 2010, 

Jacob et al., 2013). Therefore it is highly possible, that the cold-shock like response in YeO3-

ybeY mutant occurs due to accumulation of defective ribosomes. The defect in the translation 

machinery together with accumulation of cspA transcript are factors decreasing the growth rate 

of the mutant.  

In Y. enterocolitica urease is considered to be an important virulence factor that allows bacteria 

to survive in low pH environment and therefore to pass through the stomach during the course 

of infection (De Koning-Ward & Robins-Browne, 1995, Gripenberg-Lerche et al., 2000). The 

decrease in urease production observed in YeO3- ybeY mutant resulted in reduced ability to 

survive in acidic conditions. Previous studies showed that the loss of acid resistance leads to 

severe decrease in bacterial virulence in mouse models (De Koning-Ward & Robins-Browne, 

1995, Gripenberg-Lerche et al., 2000). Moreover, ybeY mutant presented decreased ability 

adhere to the HeLa cells that was most probably caused by alterations in expression of Ail 

(Felek & Krukonis, 2009, Kolodziejek et al., 2010). It is known, that the ability of Y. enterocolitica 

to invade eukaryotic cells in vitro correlates with its virulence (Lee et al., 1977, Une, 1977). 

Taken together, the mutation in ybeY gene resulted in significant alterations in gene expression 

of Y. enterocolitica O:3. The results obtained in study I showed that YbeY is required for proper 

functioning of sRNA regulation network, the control of virulence gene expression and its loss 

induce the expression of cold-shock genes. Such profound changes in the control of gene 

expression resulted in a pleiotropic effect including an impairment of many virulence-related 

features.  
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6.3. RfaH 

In study II of this thesis it was shown that RfaH serves as a functional antiterminator in Y. 

enterocolitica O:3. In coherence with results obtained for other bacterial species, the loss of 

RfaH resulted in downregulation of long operons harboring the ops element located in the cis-

regulated promoter region (Bailey et al., 2000). The same study showed the importance of the 

correct location of the ops element for the RfaH recruitment, as the ops element located far 

upstream of the ECA gene cluster promoter region was not functional (Fig. 4, study II). 

Disruption of rfaH caused decrease in abundance of transcripts of several genes from the LPS 

biosynthesis pathway and resulted in loss of O-antigen and OC structures.  

The comparison of YeO3- rfaH and wild type transcriptome profiles revealed general 

similarity, indicating a narrow specificity of the regulator. Moreover, a correlation between the 

transcriptome pattern of rfaH mutant and spontaneous rough strain was detected. Several 

RfaH-dependent changes observed in study II were likely to be the indirect responses to the 

loss of LPS. Both the YeO3- rfaH and YeO3-c-R1 strains showed changes in the expression of 

Cpx envelope stress system indicating a response to changes in the cell wall integrity (Hunke et 

al., 2012, Vogt & Raivio, 2012). Moreover, the alterations in amount of transport ATPase 

proteins, sialic acid permease and phosphate ABC transporters were observed (Table 1, study 

II) that was previously correlated with a response to decreased LPS production and 

consequential reduced demand for sugars and energy (Nagy et al., 2006).  

In line with previous results (Biedzka-Sarek et al., 2005), loss of RfaH resulted in increased 

resistance to NHS. It is believed that the loss of LPS structure from the surface exposed the YadA 

and Ail, two other factors conferring to the complement resistance (Biedzka-Sarek et al., 2005). 

Similarly as in E. coli and S. enterica (Yethon et al., 2000, Nagy et al., 2006), reduction in O-

antigen and OC expression resulted in decreased resistance to SDS and polymyxin B (Fig. 6, 

study II), but no impairment in resistance to hydrogen peroxide was observed in this study. 

Previously it was demonstrated that the O-antigen and OC are essential for full virulence of Y. 

eneterocolitica serotype O:3 (al-Hendy et al., 1992, Skurnik et al., 1999). Experiment conducted 

on mice showed that the oral LD50 decreased 50- to 100 fold for the LPS mutant strains (al-

Hendy et al., 1992, Zhang et al., 1997, Skurnik et al., 1999). The impairment in virulence occurs 

due to the importance of the O-antigen for the early stages of infection, the resistance to 

environment of gastrointestinal track, and for the immune system evasion (al-Hendy et al., 
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1992, Biedzka-Sarek et al., 2005). Furthermore, the impact of rfaH mutation on intracellular net 

growth of Y. enterocolitica has been already evaluated by Nagy et al. (Nagy et al., 2006). In their 

study the comparison of the wild type and YeO3- rfaH strain yield was determined in cultured 

human intestinal epithelial (INT407) and mouse macrophage (RAW264.7) cell lines . The study 

revealed that rfaH mutant exhibits reduced intracellular yield when compared to the wild type 

bacterium.  

It was previously demonstrated that a rough mutant of Y. enterocolitica O:8 exhibited 

alterations in YadA function, loss of Ail and downregulation of inv expression. Moreover, due to 

upregulation of flhDC, the flagellar master regulatory operon, the mutant presented 

hypermotility (Bengoechea et al., 2004). In study II no significant changes in the production of 

these virulence factors were observed. Furthermore, the wild type and YeO3- rfaH strains 

presented similar motility. These discrepancies may be explained by differences underlying the 

serotypes (differences in motility and flagellation between the serotype O:8 and O:3 were 

described previously (Uliczka et al., 2011)). Furthermore, the rfaH mutation does not cause full 

abrogation of O-antigen and OC production and thus some functional LPS is still present on the 

surface of bacterial cell what may result in less severe phenotype than the one of rough mutant. 

Taken together, study II of this thesis showed that RfaH serves as a highly specific regulator 

that most likely affects only genes preceded by a functional ops element. Despite the small 

number of affected genes, the disruption of rfaH gene led to profound changes in the bacterial 

physiology. Decrease in the amount of LPS on the cell surface results in indirect changes in the 

transcriptome, stress response, and lower resistance to some environmental cues. Moreover, 

based on the previous results (al-Hendy et al., 1992, Zhang et al., 1997, Skurnik et al., 1999, 

Nagy et al., 2006), it can be assumed that YeO3- rfaH has decreased virulence. 

6.4. Hfq 

The study III of this thesis demonstrated the importance of Hfq in the post-transcriptional 

regulation in Y. enterocolitica O:3. The results showed, that similar as in the case of S. enterica 

and Y. pestis, a high percentage of genes stay under the regulation of Hfq. Moreover, the fact that 

numerous proteins displayed alterations in abundance, even though their coding genes did not 

show differential expression affirms the importance of Hfq for post-transcriptional regulation. 

Due to the fact that Hfq is a crucial element of the sRNA regulation network, it is assumed that 

apart from its direct effect, it can also affect the expression of genes through changes in 
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abundance and activity of other regulators. The study III reported differential expression of 

several regulators (Table 3, study III). In accordance with changes in the abundance of these 

regulators, the alteration in expression of their target genes were also observed. Analysis 

revealed differential expression of genes belonging to the RpoS, RovA and OmpR regulons 

(Patten et al., 2004, Cathelyn et al., 2007, Hu et al., 2009). This study also revealed a significant 

derepression of RovM regulator in YeO3-hfq::Km mutant (Fig. 2, study III).  

Study III also affirmed the requirement of Hfq presence for proper expression of the RpoS sigma 

factor in Y. enterocolitica. The decrease in abundance of RpoS factor was also observed 

previously in different bacterial species like E. coli and S. enterica upon the Hfq depletion 

(Brown & Elliott, 1996, Muffler et al., 1996). RpoS confers the optimal growth during the 

stationary phase and under stress conditions (Tanaka et al., 1993, Badger & Miller, 1995) and 

therefore reduction in its activity can contribute to increased susceptibility of YeO3-hfq::Km 

mutant to environmental stresses. Out of four sRNA species known to regulate the translation 

of RpoS in E. coli, namely DsrA, RprA, ArcZ and OxyS (Sledjeski et al., 1996, Zhang et al., 1998, 

Majdalani et al., 2002, Mandin & Gottesman, 2010), study III identified two homologues in the 

genome of Y. enterocolitica (RprA and ArcZ). sRNAs are known to enhance the translation of 

RpoS by binding to the 5’ leader region of the mRNA what results in better availability of the 

Shine-Dalgarno site (Brown & Elliott, 1997). The analysis of sRNA expression in YeO3-hfq::Km 

mutant revealed alterations in abundance in RprA. Moreover, it is known that these sRNA 

species require binding to Hfq for full functionality (Sledjeski et al., 1996, Zhang et al., 1998, 

Majdalani et al., 2002, Mandin & Gottesman, 2010). Therefore, it is assumed that the loss of Hfq 

in Y. enterocolitica disrupts the sRNA regulation pathway and results in lower abundance of 

RpoS protein. 

In line with the results obtained for other pathogenic Yersinia species, the loss of hfq in Y. 

enterocolitica resulted in a growth defect. The growth curves of YeO3-hfq::Km showed similar 

pattern as serotype O:8, displaying an intermediate phenotype between strongly impaired 

characteristics of Y. pestis and the marginally affected Y. pseudotuberculosis (Geng et al., 2009, 

Schiano et al., 2010, Kakoschke et al., 2014). Furthermore, in coherence with results obtained 

for the serotype O:8, alterations in the bacterial metabolism, including changes in the utilization 

of mannitol that resulted in different growth on CIN agar and mannitol plates were observed 

(Kakoschke et al., 2014). Moreover, study III showed that Hfq of Y. enterocolitica O:3 is involved 

in resistance to environmental stresses, including elevated temperature and acidic 
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environment. Similar to the case of serotype O:8, alterations in expression of urease genes were 

observed (Kakoschke et al., 2014). In addition, YeO3-hfq::Km displayed impairment in motility 

and biofilm formation.  

The mouse infection experiments conducted in study III showed that the YeO3-hfq::Km 

bacteria, similarly to other Yersinia hfq mutants (Geng et al., 2009, Schiano et al., 2010) were 

characterized by decreased virulence. Virulence is a remarkably multifactorial feature of Y. 

enterocolitica and therefore it is believed that different alterations caused by the loss of hfq can 

contribute to impairment in virulence. Although rpoS mutant was not attenuated in mouse 

infection experiments (Badger & Miller, 1995), the repression of rpoS may have a synergistic 

effect. In order to pass through the stomach during the course of infection, Y. enterocolitica must 

be able to survive in low pH environment (De Koning-Ward & Robins-Browne, 1995, 

Gripenberg-Lerche et al., 2000), therefore reduction in the urease activity is likely one of the 

shortcomings that attenuates YeO3-hfq::Km in the oral infection model. Furthermore, the 

motility was also implicated in bacterial virulence (Young et al., 2000). Interestingly, two out of 

three mice infected intraperitoneally with the YeO3-hfq::Km or YeO3-rovM-hfq::Km mutant 

died prematurely. The decreased resistance to SDS, increased release of the LPS molecule to the 

culture supernatant together with alterations in the abundance of membrane proteins indicate 

that the structure of the bacterial outer membrane of hfq mutant might be compromised. The 

importance of Hfq and sRNAs regulation for the biogenesis of the outer membrane was 

previously established (Guillier et al., 2006, Van Puyvelde et al., 2013). Therefore in the study 

III it is suggested, that the death observed in mice infected intraperitoneally with either YeO3-

hfq::Km or YeO3-rovM-hfq::Km occurred due to the septic shock caused by the alterations in the 

structure of lipid A molecule and/or the increased release of the LPS from the mutant bacterial 

cells.  

Taken together, study III demonstrated that the loss of Hfq in Y. enterocolitica leads to profound 

changes in the transcriptome and proteome affirming the importance of Hfq for gene regulation 

control. The YeO3-hfq::Km mutant showed alterations in abundance of several transcriptional 

regulators and sRNA species. Moreover, the loss of Hfq resulted in highly pleiotropic changes 

in the phenotype including abrogation of virulence. 
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6.5. RovM 

In study III of this thesis it was shown that some of the phenotypic features of YeO3-hfq::Km 

mutant are due to derepression of RovM regulator. Inactivation of the rovM gene in the hfq 

mutant resulted in full or partial restoration of several characteristics.  

Knocking out rovM gene in YeO3-hfq::Km mutant resulted in increased growth rate, even 

though did not restore it to the level presented by the wild type bacteria. Moreover, the colony 

morphology observed before by Kakoschke et al. (Kakoschke et al., 2014), was fully reversed 

after the loss of RovM. In turn, overexpression of rovM in YeO3/pMMB207-rovM resulted in the 

same colony morphology on CIN agar and mannitol plates, strongly implicating the role of RovM 

in the regulation of mannitol metabolism in Y. enterocolitica.  

Study III showed also that in contrast to majority of the LysR-type regulators, but similar to 

rovM of Y. pseudotuberculosis and hexA, the YeO3 rovM was also under positive autoregulation 

(Harris et al., 1998, Heroven & Dersch, 2006). Moreover, most of the LysR-type regulators 

interact with effectors that ultimately steer their regulatory propensities. Therefore it is 

possible that RovM in Y. enterocolitica also requires additional cofactors for its full function 

(Schell, 1993). Additionally, the expression of rovM in Y. pseudotuberculosis is regulated by the 

Csr system (Heroven et al., 2008).  

Furthermore, study III demonstrated that RovM functions as a motility regulator that represses 

the flagella biosynthesis. It is likely, that in line with the results obtained in E. coli, this takes 

place through binding of RovM to flhDC promoter region (Blumer et al., 2005). Study III showed 

that RovM influences the biosynthesis of flagellin and the YeO3- rovM mutant is hypermotile. 

However, the knock-out of rovM in hfq negative background did not restore full motility, and 

the overexpression in pMMB207-rovM did not result in total abrogation of motility. Therefore 

it is believed that other factors still influence the motility in this system. In Y. enterocolitica YenS 

sRNA was found to be a positive regulator of motility that acts through the modulation of YenI 

production. Interestingly, the interplay between the levels of yenI and yenS may lead to either 

hypo- or hypermotility. (Tsai & Winans, 2011). 

In contrast to previous findings in E. coli (Peterson et al., 2006), overexpression of RovM in 

YeO3 increased the RpoS levels in the stationary phase cells. Yet, the overexpression of RovM 

did not increase the abundance of RpoS in the YeO3-hfq::Km strain (Fig. 6, study III). Therefore, 

in study III it was concluded that in Y. enterocolitica RovM positively regulates the levels of RpoS 
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in Hfq-dependent manner. It was previously observed that sRNAs allow proper translation of 

RpoS (described in subchapter 6.4), therefore the positive regulation of RovM might be visible 

only when certain sRNA species are functional. 

In line with previous results obtained for Y. pseudotuberculosis and Y. enterocolitica O:8, RovM 

represses the expression of rovA also in Y. enterocolitica O:3 (Heroven & Dersch, 2006, Lawrenz 

& Miller, 2007). In Y. enterocolitica serotype O:8 it controls the expression of inv, however, in 

serotype O:3 this regulation is prevented due to presence of an insertion sequence in the inv 

regulatory region (Uliczka et al., 2011). 

Taken together, in the study III of this thesis the effect of RovM overexpression in the hfq 

negative background was analyzed. Inactivation of rovM in the YeO3-hfq::Km mutant prevented 

the subsequent overexpression of this regulator and allowed to elucidate the role of RovM in 

the Hfq deficient strain. This study demonstrated that the growth defect, mannitol utilization 

and motility alterations observed for YeO3-hfq::Km were mediated by the overexpression of 

RovM. 
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7. CONCLUSIONS AND FUTURE CONSIDERATIONS 

In conclusion, all four studied genes, ybeY, rfaH, hfq and rovM, had a profound impact on gene 

regulation of Y. enterocolitica O:3. The deletion of hfq and ybeY genes caused wide disturbances 

in gene expression and highly pleiotropic effects. Both the mutants presented significant 

growth defects and impairment of many physiological functions, as well as deterioration of 

features related to virulence and survival inside of the host organism. On the other hand, RfaH 

was shown to function as a highly specific antiterminator in Y. enterocolitica O:3 that affects 

only the expression of LPS O-antigen and OC gene clusters and most likely leads to an indirect 

response to rough phenotype. The RovM regulator was characterized by highest specificity, and 

affected the expression of 24 genes in Y. enterocolitica O:3.  

The conducted experiments demonstrated that the studied mutations (ybeY, rfaH and hfq) 

compromised the bacterial virulence. The mutants showed significant decrease in resistance to 

different environmental conditions that are normally encountered during the course of 

infection. Moreover, the loss of studied genes resulted also in growth defect, impairment of 

motility and biofilm formation, changes in carbohydrates metabolism, and alterations in 

production of different virulence factors that also contributes to vitality and ability to establish 

infection in host organism. 

Due to the fact that all the mutant strains demonstrated compromised virulence, the studied 

proteins might be regarded as potential targets for new drug development. Furthermore, the 

strains with established avirulence might be used as sources for vaccines. This thesis revealed 

the general function of RfaH in Y. enterocolitica O:3, yet the role of RfaH in the in vivo regulation 

of LPS expression is still unknown. The potential role of RfaH in in vivo controlling of tissue- 

and temperature-specific expression of LPS should be further investigated. The future 

experiments should be also aimed at explaining the details of the mechanism behind the 

overexpression of pYV genes in YeO3- ybeY mutant. 

Moreover, the results of high-throughput analyses can be further used in studies aiming at 

deciphering the role of yet unknown genes and proteins. This study revealed a large number of 

uncharacterized genes that stay under the YbeY, RfaH, Hfq and RovM regulation. They 

involvement in the regulatory pathways, as well as potential role is an interesting research 

question.    
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