
Proceedings of

SAT COMPETITION 2016
Solver and Benchmark Descriptions

Tomáš Balyo, Marijn J. H. Heule, and Matti Järvisalo (editors)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/43338638?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

University of Helsinki
Department of Computer Science
Series of Publications B
Report B-2016-1

ISSN 1458-4786
ISBN 978-951-51-2345-9 (PDF)
Helsinki 2016

2

PREFACE

The area of Boolean satisfiability (SAT) solving has seen tremendous progress over the
last years. Many problems (e.g., in hardware and software verification) that seemed to be
completely out of reach a decade ago can now be handled routinely. Besides new algorithms
and better heuristics, refined implementation techniques turned out to be vital for this
success. To keep up the driving force in improving SAT solvers, SAT solver competitions
provide opportunities for solver developers to present their work to a broader audience and
to objectively compare the performance of their own solvers with that of other state-of-the-
art solvers.

SAT Competition 2016 (SC 2016), an open competitive event for SAT solvers, was organized
as a satellite event of the 19th International Conference on Theory and Applications of
Satisfiability Testing (SAT 2016), Bordeaux, France. SC 2016 stands in the tradition of
the previously organized main competitive events for SAT solvers: the SAT Competitions
held 2002-2005, biannually during 2007-2013, and 2014; the SAT-Races held in 2006, 2008,
2010, and 2015; and SAT Challenge 2012.

SC 2016 consisted of several tracks, including a Main Track with subcategories and special
tracks for parallel solvers, incremental solvers, solvers specificially developed for Random
SAT, a Glucose Hack track, as well as a “No-Limits” track relaxing requirements on open
source solvers and allowing any type of solvers—including solver portfolios—to compete.

There were two ways of contributing to SC 2016: by submitting one or more solvers for
competing in one or more of the competition tracks, and by submitting interesting bench-
mark instances on which the submitted solvers could be evaluated on in the competition.
Following the tradition put forth by SAT Challenge 2012, the rules of SC 2016 invited all
contributors to submit a short, around 2-page long description as part of their contribu-
tion. This book contains these non-peer-reviewed descriptions in a single volume, providing
a way of consistently citing the individual descriptions.

We hope this compilation is of value to the research community at large both at present
and in the future, providing the reader new insights into the details of state-of-the-art
SAT solver implementations and the SC 2016 benchmarks, and also as a future historical
reference providing a snapshot of the SAT solver technology actively developed in 2016.

Matti Järvisalo

3

4

Contents

Preface . 3

Solver Descriptions

CSCCSat in SAT Competition 2016
Chuan Lou, Shaowei Cai, Wei Wu, and Kaile Su 10

DCCAlm in SAT Competition 2016
Chuan Lou, Shaowei Cai, and Kaile Su . 11

Glue_alt: Hacking Glucose by Applying At-Least-One Recently Used Rule to Learnt
Clause Management
Jingchao Chen . 12

ParaGlueminisat, tbParaGlueminsat
Seongsoo Moon and Mary Inaba . 14

PolyPower: Random-SAT track participant in SAT Competition 2016 (PolyPower v1.0
and v2.0)
Sixue Liu and Periklis A. Papakonstantinou . 16

Scavel_SAT
Yang Xu . 18

AICR_PeneLope 2016
Hitoshi Togasaki . 20

AmPharoS, An Adaptive Parallel Solver
Gilles Audemard, Jean-Marie Lagniez, Nicolas Szczepanski, and Sébastien Tabary 22

“Beans and Eggs”: Proteins for Glucose 3.0
Markus Iser . 24

CBPeneLoPe2016, CCSPeneLoPe2016, Gulch at the SAT Competition 2016
Tomohiro Sonobe . 25

CHBR_glucose
Seongsoo Moon and Inaba Mary . 27

The CryptoMiniSat 5 set of solvers at SAT Competition 2016
Mate Soos . 28

COMiniSatPS the Chandrasekhar Limit and GHackCOMSPS
Chanseok Oh . 29

BreakIDCOMiniSatPS
Jo Devriendt and Bart Bogaerts . 31

Dissolve in the SAT Competition 2016
Julien Henry, Aditya Thakur, Nick Kidd, and Thomas Reps 33

5

Glucose_nbSat
Chu Min Li, Fan Xiao, and Ruchu Xu . 35

dimetheus
Oliver Gableske . 37

Sequential and Parallel Glucose Hacks
Thorsten Ehlers and Dirk Nowotka . 39

Glucose and Syrup in the SAT’16
Gilles Audemard and Laurent Simon . 40

GlucosePLE
Aolong Zha . 42

GlueMinisat 2.2.10-81
Hidetomo Nabeshima, Koji Iwanuma, and Katsumi Inoue 43

Splatz, Lingeling, Plingeling, Treengeling, YalSAT Entering the SAT Competition 2016
Armin Biere . 44

StocBCD: a Stochastic Local Search solver Based on Blocked Clause Decomposition
Jingchao Chen . 46

Improving abcdSAT by At-Least-One Recently Used Clause Management Strategy
Jingchao Chen . 48

MapleGlucose and MapleCMS
Jia Hui Liang, Vijay Ganesh, Krzysztof Czarnecki, and Pascal Poupart 50

MapleCOMSPS, MapleCOMSPS_LRB, MapleCOMSPS_CHB
Jia Hui Liang, Chanseok Oh, Vijay Ganesh, Krzysztof Czarnecki, and Pascal
Poupart . 52

multi-SAT: An Adaptive SAT Solver
Saijad Siddiqi and Jinbo Huang . 54

Riss 6 Solver and Derivatives
Norbert Manthey, Aaron Stephan, and Elias Werner 56

Benchmark Descriptions

Generating the Uniform Random Benchmarks
Marijn J. H. Heule . 59

Using Algorithm Configuration Tools to Generate Hard Random Satisfiable Benchmarks
Tomáš Balyo . 60

Avoiding Monochromatic Solutions of a+ b = c and a2 + b2 = c2

Marijn J. H. Heule . 63
CNF From Tools Driven By SAT Solvers

Norbert Manthey . 64
Collection of Combinational Arithmetic Miters Submitted to the SAT Competition 2016

Armin Biere . 65
Documentation of some combinatorial benchmarks

Jan Elfers and Jakob Nordström . 67
Community Attachment Instances: Benchmarks Description

Jesús Giráldez-Cru and Jordi Levy . 70
SAT-Encodings of Sorting Networks

Thorsten Ehlers and Dirk Nowotka . 72

6

An Interlocking Safety Proof Applied to the French Rail Network
Damien Ledoux . 73

Industrial Combinational Equivalence Checking Benchmark Suite
Valeriy Balabanov . 74

Solver Index . 75
Benchmark Index . 76
Author Index . 77

7

8

SOLVER DESCRIPTIONS

CSCCSat in SAT Competition 2016
Chuan Luo∗†, Shaowei Cai‡, Wei Wu§, Kaile Su¶‖

∗Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
†School of Electronics Engineering and Computer Science, Peking University, Beijing, China

‡Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing, China
§Center for Quantum Computation and Intelligent Systems, University of Technology, Sydney, Sydney, Australia

¶Department of Computer Science, Jinan University, Guangzhou, China
‖Institute for Integrated and Intelligent Systems, Griffith University, Brisbane, Australia
{chuanluosaber, shaoweicai.cs, william.third.wu}@gmail.com; k.su@griffith.edu.au

Abstract—This document describes local search SAT solver
CSCCSat.

I. INTRODUCTION

Recently, a diversification strategy called configuration
checking (CC) [1] has been proposed for handling the cycling
problem, which is a serious issue in local search algorithms.
In the context of SAT, there are two CC heuristics, i.e., the
neighboring variables based configuration checking (NVCC)
heuristic [2], [3], [4] and the clause states based configuration
checking (CSCC) heuristic [5], [6], [7]. The CSCC heuristic
has resulted in several efficient local search algorithms for
SAT, such as FrwCB [6], [7] and DCCASat [8].

The CSCCSat solver is a local search solver, which is on the
basis of the clause states based configuration checking (CSCC)
heuristic. The CSCCSat solver is a combination of FrwCB and
DCCASat. The CSCCSat solver won the ‘3rd Place Award’ in
the random SAT track of SAT Competition 2014.

II. SPECIAL ALGORITHMS, DATA STRUCTURES, AND
OTHER FEATURES

The notation r denotes the clause-to-variable ratio of an
SAT instance. The procedures of CSCCSat can be found in the
solver description submitted to SAT Competition 2014 [9], and
are described as follows. For random 3-SAT with r ≤ 4.24,
FrwCB is called; for random 3-SAT with r > 4.24, DCCASat
is called. For random 4-SAT with r ≤ 9.35, FrwCB is called;
for random 4-SAT with r > 9.35, DCCASat is called. For
random 5-SAT with r ≤ 20.1, FrwCB is called; for random
5-SAT with r > 20.1, DCCASat is called. For random 6-
SAT with r ≤ 41.2, FrwCB is called; for random 6-SAT with
r > 41.2, DCCASat is called. For random 7-SAT with r ≤ 80,
FrwCB is called; for random 7-SAT with r > 80, DCCASat
is called.

III. IMPLEMENTATION DETAILS

The CSCCSat solver is implemented in programming lan-
guage C/C++, and is developed on the basis of FrwCB and
DCCASat.

IV. SAT COMPETITION 2016 SPECIFICS

The CSCCSat solver is submitted to Random SAT track,
SAT Competition 2016. The command line of CSCCSat is
described as follows.

./CSCCSat <instance> <seed>

REFERENCES

[1] S. Cai, K. Su, and A. Sattar, “Local search with edge weighting and
configuration checking heuristics for minimum vertex cover,” Artificial
Intelligence, vol. 175, no. 9-10, pp. 1672–1696, 2011.

[2] S. Cai and K. Su, “Local search with configuration checking for SAT,”
in Proc. of ICTAI 2011, 2011, pp. 59–66.

[3] ——, “Configuration checking with aspiration in local search for SAT,”
in Proc. of AAAI 2012, 2012, pp. 434–440.

[4] ——, “Local search for boolean satisfiability with configuration checking
and subscore,” Artificial Intelligence, vol. 204, pp. 75–98, 2013.

[5] C. Luo, K. Su, and S. Cai, “Improving local search for random 3-SAT
using quantitative configuration checking,” in Proc. of ECAI 2012, 2012,
pp. 570–575.

[6] C. Luo, S. Cai, W. Wu, and K. Su, “Focused random walk with
configuration checking and break minimum for satisfiability,” in Proc.
of CP 2013, 2013, pp. 481–496.

[7] C. Luo, S. Cai, K. Su, and W. Wu, “Clause states based configuration
checking in local search for satisfiability,” IEEE Transactions on Cyber-
netics, vol. 45, no. 5, pp. 1014–1027, 2015.

[8] C. Luo, S. Cai, W. Wu, and K. Su, “Double configuration checking in
stochastic local search for satisfiability,” in Proc. of AAAI 2014, 2014,
pp. 2703–2709.

[9] ——, “CSCCSat2014 in SAT competition 2014,” in Proc. of SAT Com-
petition 2014: Solver and Benchmark Descriptions, 2014, pp. 25–26.

Proceedings of SAT Competition 2016: Solver and Benchmark Descriptions, volume B-2016-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2016. ISBN 978-951-51-2345-9.

10

DCCAlm in SAT Competition 2016
Chuan Luo∗†, Shaowei Cai‡, Kaile Su§¶

∗Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
†School of Electronics Engineering and Computer Science, Peking University, Beijing, China

‡Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing, China
§Department of Computer Science, Jinan University, Guangzhou, China

¶Institute for Integrated and Intelligent Systems, Griffith University, Brisbane, Australia
{chuanluosaber, shaoweicai.cs}@gmail.com; k.su@griffith.edu.au

Abstract—This document describes local search SAT solver
DCCAlm.

I. INTRODUCTION

The DCCASat solver [1] and the WalkSATlm solver [2],
[3] show efficiency in solving random k-SAT instances at
phase transition and large-scale random k-SAT instances,
respectively.

The DCCASat solver benefits from the DCCA heuristic,
which hierarchically combines neighboring variables based
configuration checking (NVCC) [4], [5], [6] and clause
states based configuration checking (CSCC) [7], [8], [9]. The
WalkSATlm solver improves the original WalkSAT algorithm
[10] by incorporating the multi-level make property [2], [3].

The DCCAlm solver is a combination of DCCASat and
WalkSATlm. The main procedures of DCCAlm can be de-
scribed as follows. For solving an SAT instance, DCCAlm first
decides the type of this instance. Then based on the properties
of the instance, DCCAlm calls either DCCASat or WalkSATlm
to solve the instance.

II. SPECIAL ALGORITHMS, DATA STRUCTURES, AND
OTHER FEATURES

The notation r denotes the clause-to-variable ratio of an
SAT instance. The procedures of DCCAlm are described as
follows. For random 3-SAT with r ≤ 4.24, WalkSATlm is
called; for random 3-SAT with r > 4.24, DCCASat is called.
For random 4-SAT with r ≤ 9.35, WalkSATlm is called; for
random 4-SAT with r > 9.35, DCCASat is called. For random
5-SAT with r ≤ 20.1, WalkSATlm is called; for random 5-
SAT with r > 20.1, DCCASat is called. For random 6-SAT
with r ≤ 41.2, WalkSATlm is called; for random 6-SAT with
r > 41.2, DCCASat is called. For random 7-SAT with r ≤
80, WalkSATlm is called; for random 7-SAT with r > 80,
DCCASat is called.

III. IMPLEMENTATION DETAILS

The DCCAlm solver is implemented in programming lan-
guage C/C++, and is developed on the basis of DCCASat and
WalkSATlm.

IV. SAT COMPETITION 2016 SPECIFICS

The DCCAlm solver is submitted to Random SAT track,
SAT Competition 2016. The command line of DCCAlm is
described as follows.

./DCCAlm <instance> <seed>

REFERENCES

[1] C. Luo, S. Cai, W. Wu, and K. Su, “Double configuration checking in
stochastic local search for satisfiability,” in Proc. of AAAI 2014, 2014,
pp. 2703–2709.

[2] S. Cai, K. Su, and C. Luo, “Improving WalkSAT for random k-
satisfiability problem with k > 3,” in Proc. of AAAI 2013, 2013, pp.
145–151.

[3] S. Cai, C. Luo, and K. Su, “Improving WalkSAT by effective tie-
breaking and efficient implementation,” The Computer Journal, vol. 58,
no. 11, pp. 2864–2875, 2015.

[4] S. Cai and K. Su, “Local search with configuration checking for SAT,”
in Proc. of ICTAI 2011, 2011, pp. 59–66.

[5] ——, “Configuration checking with aspiration in local search for SAT,”
in Proc. of AAAI 2012, 2012, pp. 434–440.

[6] ——, “Local search for boolean satisfiability with configuration check-
ing and subscore,” Artificial Intelligence, vol. 204, pp. 75–98, 2013.

[7] C. Luo, K. Su, and S. Cai, “Improving local search for random 3-SAT
using quantitative configuration checking,” in Proc. of ECAI 2012, 2012,
pp. 570–575.

[8] C. Luo, S. Cai, W. Wu, and K. Su, “Focused random walk with
configuration checking and break minimum for satisfiability,” in Proc.
of CP 2013, 2013, pp. 481–496.

[9] C. Luo, S. Cai, K. Su, and W. Wu, “Clause states based configuration
checking in local search for satisfiability,” IEEE Transactions on Cyber-
netics, vol. 45, no. 5, pp. 1014–1027, 2015.

[10] B. Selman, H. A. Kautz, and B. Cohen, “Noise strategies for improving
local search,” in Proc. of AAAI 1994, 1994, pp. 337–343.

Proceedings of SAT Competition 2016: Solver and Benchmark Descriptions, volume B-2016-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2016. ISBN 978-951-51-2345-9.

11

Glue alt: Hacking Glucose by Applying
At-Least-One Recently Used Rule to Learnt Clause

Management
Jingchao Chen

School of Informatics, Donghua University
2999 North Renmin Road, Songjiang District, Shanghai 201620, P. R. China

chen-jc@dhu.edu.cn

Abstract—Glue alt is a hack version that is built on the top of
Glucose 3.0. It improves Glucose in the following components:
phase selection and learnt clause database reduction, which are
important elements in CDCL (Conflict Driven, Clause Learning)
solvers.

I. INTRODUCTION

Glue alt is a hack version of Glucose 3.0 [1] . Compared
with Glucose, Glue alt adds at-least-one recently used strat-
egy, bit-encoding phase selection strategy, and dynamic core
and local learnt clause management strategy. In the subsequent
sections, these strategies will be introduced.

II. AT-LEAST-ONE RECENTLY USED POLICY

In the search process, CDCL (Conflict Driven, Clause
Learning) solvers need to maintain the learnt clause database.
This database maintenance should be similar to cache re-
placement in CPU cache management or page replacement in
a computer operating system. There are many cache (page)
replacement algorithms. For example, Least Recently Used
(LRU), Most Recently Used (MRU), Pseudo-LRU (PLRU),
Least-Frequently Used (LFU), Second Chance FIFO, Random
Replacement (RR), Not Recently Used (NRU) [2] etc. Our
at-least-one recently used (ALORU) algorithm is similar to
NRU page replacement algorithm. ALORU algorithm favours
keeping learnt clauses in database that have been recently used
at least one time. If a learnt clause has not so far involved in
any conflict analysis since it was generated, it will be discarded
first. Implementing ALORU algorithm is very simple. When
a conflict clause (called also learnt clause) is generated, its
LBD (literal block distance) is usually set to the number
of different decision levels involved in it. However, ALORU
algorithm sets the initial LBD of a conflict clause to +∞,
not actual LBD value. In details, in the search procedure
of Glucose, ALORU algorithm replaces ”setLBD(nblevels)”
with ”setLBD(0x3fffffff)”. Since any LBD never exceeds
0x3fffffff, we denote +∞ with 0x3fffffff. If a learnt clause
involves in a conflict analysis, Procedure analyze in Glue alt
sets its LBD value to the actual value.

III. BIT-ENCODING PHASE SELECTION STRATEGY

The bit-encoding phase selection strategy was proposed in
2014 [3], which is suitable for SAT instances. Its basic idea is

that the phase of the n-th decision variable is the (n mod 4)-th
of m, where m is a counter which is increased one every time
it is used. In general, the decision levels where this strategy is
applied are limited to 12. Furthermore, this strategy requires
that the number of conflicts is less than 2×106. Implementing
this strategy is also simple. In the procedure pickBranchLit
of Glucose, the following statements are added.

if(bN >= 0) {
int L=decisionLevel();
if(L < 12) polarity[next] = (bN >>(L % 4)) & 1;

}

In the procedure solve of Glucose, before statement “while
(status == l Undef)”, statement “bN=-1” is added. After this
“while”, the following statement is added.

bN = conflicts > 2e6 || conflicts > 3e5 &&
nVars() > 1e6? -1 : bN+1;

IV. DYNAMIC CORE AND LOCAL LEARNT CLAUSE
MANAGEMENT

Like SWDiA5BY [4], glue alt classifies also learnt clauses
into two categories: core and local. However, the classification
of SWDiA5BY is static, while our classification is dynamic.
In SWDiA5BY, the maximum LBD of core learnt clauses is
fixed to a constant 5. However, in glue alt, the maximum LBD
of core learnt clauses is not fixed. Glue alt divides the whole
search process two stages. When the number of conflicts is less
than 2×106, it is considered as the first stage. Otherwise, it is
considered as the second stage. In the first stage, the maximum
LBD of core learnt clauses is limited to 2. At this stage, core
learnt clauses are kept indefinitely, unless eliminated when
they are satisfied. In the second stage, the maximum LBD of
core learnt clauses is limited to 5. This stage does not ensure
that core learnt clauses are kept indefinitely. When clause
database is reduced, we move 5000 core learnt clauses with
LBD larger than or equal to 3 to local learnt clause database.

Whether the first or second stage, the number of local learnt
clauses is maintained roughly between 10000 and 20000.
That is, once the number of local learnt clauses reaches
20000, glue alt will halve the number of the clauses. And
the clauses with the smallest activity scores are removed first.

Proceedings of SAT Competition 2016: Solver and Benchmark Descriptions, volume B-2016-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2016. ISBN 978-951-51-2345-9.

12

The computation of clause activity scores is consistent with
MiniSat.

V. CONCLUSIONS

Glue alt modified Glucose in three different ways, and
resulted in two new ideas: learnt clause dynamic classification
and at-least-one recently used notion. These new notions
should have vitality.

REFERENCES

[1] G. Audemard, L. Simon:Predicting learnt clauses quality in modern sat
solvers, in proceedings of IJCAI, 2009, pp. 399–404.

[2] Amit S. Chavan, Kartik R. Nayak, Keval D. Vora, Manish D. Purohit,
Pramila M. Chawan: A Comparison of Page Replacement Algorithms,
IACSIT, vol.3, no.2, April 2011.

[3] J.C. Chen:A bit-encoding phase selection strategy for satisfiability solver-
s,in Proceedings of Theory and Applications of Models of Computation
(TAMC’14), ser. LNCS, vol. 8402, 2014, pp. 158–167.

[4] C., Oh: MiniSat HACK 999ED, MiniSat HACK 1430ED, and SWDi-
A5BY, in Proceedings of the SAT Competition 2014, pp. 46–47.

13

ParaGlueminisat, tbParaGlueminsat
Seongsoo Moon

Graduate School of Information Science and Technology,
The University of Tokyo, Japan

Inaba Mary
Graduate School of Information Science and Technology,

The University of Tokyo, Japan

Abstract—We briefly introduce our solver, ParaGlueminisat,
and tbParaGlueminisat submitted to SAT competition 2016.
These are parallel version of Glueminisat with several deter-
ministic policies.

I. INTRODUCTION

Diversification of search space has contributed to the rapid
progress in SAT solving, and appears to be one of the
most important keys in modern SAT solvers. It also plays
an important role in portfolio-based parallel SAT solving.
However, in portfolio solvers, maintenance of diversification
among solvers is not that simple, especially for massively
parallel machines. In this description we implements parallel
version of glueminisat with several policies to diversify or
intensify search space.

Details of our algorithm will be pressed. [1]

II. PROPOSAL OF POLARITIES TO SEARCH SPACE INDEX
(PSSI)

Many state-of-the-art solvers are using phase saving to reuse
its previous phase for intensive search after restarts. This phase
has a strong relationship with learned clauses found from the
current worker. However, clauses imported from other workers
may doesn’t fit current phase. By changing only a small part
of the phase, we expect to maintain intensive search and may
have an opportunity to use exported clauses.
For this, we convert the current phase to PSSI. First, divide the
variable set into k-blocks (B1, B2, ..., Bk). Second, calculate
the ratio (r1, r2, ..., rk) of variables currently allocated to
TRUE, and divide the ratio into uniform m sections uniformly,
and each section having a value between 0 on the far left to
m - 1 on the far right. For each block Bi, ratio is converted
to integer bi. For Bi, bi = p if p/m ≤ ri < (p + 1)/m where
p ∈ {0, 1, ..., m−1}. After calculating each bi, calculate PSSI
(Polarity Search Space Index).

PSSI =
∑k

i=1 bi × mi−1

Since PSSI is now only an integer, we can then easily though
roughly compare the areas in the search space among the
workers. Let’s explain this with a simple example. Consider a
problem with n variables x1, x2, x3 and xn. Solve this problem
using the parallel SAT solver with 2 workers w1 and w2. Let’s
call pi the current phase of wi. If we simply calculate the
hamming distance between workers, it takes only O(n) time.
However, to compute the distance between workers, they have
to be synchronized, and this method would be unwieldy when
the number of workers is increased.

When p1 = 0, 1, 1, ..., 0 has been already visited and we fail to
find a model, then we will want w1 and w2 to avoid the same
status in the future. However, memoization for this needs a lot
of memory. We do not compare these directly because of the
synchronization problem, and we want to take into account
past PSSI results.

III. WALK TOWARDS SPARSELY VISITED AREAS USING
HISTORY MAP

Using PSSIs we diversify the areas of the search space.
Each worker calculates PSSI periodically, and we accumulate
these data as a history map of PSSIs. Our main idea is to
avoid the areas frequently visited, and to walk towards the
sparsely visited areas. The history map is an 1-dimension array
consisting of the PSSI counts. Each element counts how many
times this area is visited. We can walk from the current area
to the sparsely visited area by sharing the history map among
workers and changing a phase dynamically. In this situation,
we can not anticipate whether we will reach the sparsely
visited area. It depends on the block division policy and the
structure of the problem. Therefore we call this sparsely visited
area the target area.
Algorithm 1 and 2 describe the pseudo-code of the SaSS
(Sparsely visited area walking on Search Space) heuristic. In
Alg. 1, after every c conflicts (line 1), each worker calculates
the current area as PSSI (line 2), updates the history map of the
PSSIs (shared for all workers) and gets a target area as a PSSI
(line 3). If the target area is different from the current area (line
4), it changes polarities to walk towards the target area (line
5). A block is picked by calculating the bitwise XOR of p
and p′, and each variable’s polarity is updated. If the selected
block is Bi, then each variable’s polarity is allocated to TRUE
bi in m. In Alg 2, we get a target area using a history map.
It updates history map (line2), but doesn’t change the area
in the early stages (line 3, 4). When the early stages end, it
searchs the target area based on the current area (line 5). It
checks areas within the hamming distance d from the current
area, and the one with the minimal count in the history map
is picked as the target area.

IV. PARAGLUEMINISAT

In CHB [2], each variable has Q score, and is updated using
Equation as follows based on reinforcement learning.

Q[v] = (1 − α)Q[v] + αrv

Proceedings of SAT Competition 2016: Solver and Benchmark Descriptions, volume B-2016-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2016. ISBN 978-951-51-2345-9.

14

Algorithm 1 SaSS heuristic: changeCurrentArea()
1: if conflicts % interval == 0 then
2: p := getCurrArea();
3: p′ := updateHistoryMap(p);
4: if p != p′ then
5: changeBlockPolarities(p, p′);

Algorithm 2 SaSS heuristic: updateHistoryMap(p)
Input: PSSI p
Output: PSSI p′

1: p′ := p;
2: historyMap[p′]++;
3: if p′ < c-threshold × thread number then
4: return p′;
5: p′ := checkNearestAreas(p, d);
6: return p′;

We’ve selected several parameters those would change run-
ning time a lot to tune CHB and tested. The initial value of
α is set to 0.4 in original CHB, and we changed this to 0.7
based on our tests. We’ve noticed CHB works very well with
small problems, but VSIDS performs better than CHB for big
problems. So, we divided problems for 2 groups by the number
of variables. As default decision heuristic, our program choose
VSIDS. If the number of variables is under 15000, CHB is
activated and used behalf of VSIDS.

V. TBPARAGLUEMINSAT

Ties happen frequently in VSIDS. To break these, we update
VSIDS scores after we obtain learned clauses. After a clause
is obtained, we add 1 / (LBD of a clause) for each variables
in that clause.

REFERENCES

[1] Moon, S., Inaba, M. Dynamic strategy to diversify search using a history
map in parallel solving. LION 2016. (in press).

[2] Hui Liang, J., Ganesh, V., Poupart, P., Czarnecki, K. Exponential Recency
Weighted Average Branching Heuristic for SAT Solvers Proceedings of
the Thirtieth AAAI Conference on Artificial Intelligence, 2016.

15

PolyPower: Random-SAT track participant in SAT
Competition 2016

(PolyPower v1.0 and v2.0)
Sixue Liu

Institute for Interdisciplinary Information Sciences
Tsinghua University

Beijing, China

Periklis A. Papakonstantinou
School of Management Science and Information Systems

Rutgers University
New Jersey, USA

Abstract—This document describes the SAT solver “Poly-
Power”, which is based on a new proposed theory for local search,
with novel implementation and clause selection scheme.

I. INTRODUCTION

Recently, a new theory for heuristics in SAT solving was
proposed for the choices of the valuation function in WalkSAT
[1]. This relies on the analysis of the break values: given a
CNF and a complete assignment, the number of clauses turn
to unsatisfied after flipping a variable. As a result, choosing
a polynomial as the break valuation function is always better
for any large enough uniform random k-CNF near the phase
transition points (threshold) 1. We also adopt separated-non-
caching technology in the implementation to speed it up [2].
Additionally, a new clause selection scheme called tbfs is
proposed, leading to a improvement for some categories of
instances.

II. MAIN TECHNIQUES

Solver PolyPower is under the WalkSAT framework: start
by a random complete assignment, in each step choose an
unsatisfied clause c randomly or according to some rule.
Within this clause c, if there exists 0-break variables then
flip it2, otherwise choose one variable v with probability
p(v) = f(break(v))P

v2c
f(break(v))

and flip v. Here the break valuation

function is defined as:

f(x) = (((x� 1)

2 + 2)2 + �)�1

 and � are two parameters for PolyPower and will be adapted
for different k-CNF and ratios.

Solver PolyPower adopts separated-non-caching technol-
ogy for 3-SAT and 4-SAT, this separates the non-caching
process in the break value calculation, resulted in an earlier
termination of finding 0-break variables, which gives us a
roughly 20% speed up.

Instead of randomly select an unsatisfied clause in each
step, a new clause selection scheme tbfs is introduced: all the

1Rigourously it should be at the anticipated phase transition points,
however this statement is also supported by our empirical study.

2Variable with break value of 0.

unsatisfied clauses are stored in an array U , new unsatisfied
clauses are added to the end of U , and new satisfied clause
are removed from the U , but keep the original order. In clause
selection, tbfs first moves the first t clauses in U to the end
of U , then choose the t + 1 one. In other word, tbfs is similar
to a “breadth-first-search” except the moving t clauses to the
end operation. Empirical study shows that 3-SAT with ratio
lower than threshold and 4-SAT benefit from tbfs with t = 4
distinctively.

III. MAIN PARAMETERS

ratio  � clause selection

3-SAT

[4.2,1) 2 �0.08 random

[4.1, 4.2) 2 �0.08 tbfs

(0, 4.1) 2.3 �0.1 tbfs

4-SAT

[9.7,1) 4.0 0.06 tbfs

[8.8, 9.7) 4.0 �0.1 tbfs

(0, 8.8) 4.2 �0.1 tbfs

5-SAT

[20.5,1) 5.0 �0.17 random

[18, 20.5) 4.6 �0.2 random

(0, 18) 5.0 �1.1 random

6-SAT

[40,1) 6.0 0.2 random

[34, 40) 6.4 �0.2 random

(0, 34) 6.4 �0.4 random

7-SAT

[80,1) 7.0 0.35 random

[66, 80) 7.0 �1.5 random

(0, 66) 7.0 �1.8 random

TABLE I
PARAMETERS SETTING OF POLYPOWER

The parameters setting of PolyPower is reported in Table 1.
Note that the thresholds are contained in every first row of each
k-SAT, and the optimal parameters found for these intervals
are as same as for the thresholds: r3 = 4.267, r4 = 9.931,
r5 = 21.117, r6 = 43.37, r7 = 87.79 for 3-SAT to 7-SAT
respectively.

Proceedings of SAT Competition 2016: Solver and Benchmark Descriptions, volume B-2016-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2016. ISBN 978-951-51-2345-9.

16

IV. IMPLEMENTATION DETAILS AND SAT COMPETITION
2016 SPECIFICS

The current version of PolyPower is an incomplete solver
designed for exact-k-SAT only3, and 3  k  7. For
3-SAT and 4-SAT, we adopt separated-non-caching in the
implementation, while for 5-SAT and 6-SAT XOR-caching is
adopted, and caching without XOR for 7-SAT.

Regarding tbfs scheme, we implement this using an array
with dynamic size. Since moving new satisfied clause out of
U causes empty slots in U , a garbage collection mechanism is
required: when the size of array exceed the pre-set threshold,
carry out defragmentation. We set this threshold value and
design defragmentation delicately to make sure the amortized
time complexity of tbfs is affordable per step.

Solver PolyPower is implemented in programming lan-
guage C++, and compiled by “g++ polypower.cpp -O3 -static
-o polypower”. PolyPower is submitted to random SAT Track
of SAT Competition 2016. The command line to run it is
described as follows:

./PolyPower <instance filename> <seed>

The second argument “seed” is optional, and if not specified,
the current system time is chosen as the initial seed. PolyPower
2.0 differs from PolyPower 1.0 in only minor code differences
that we expect to only slightly affect the performance – we
expect these minor changes to benefit PolyPower 2.0.

V. AVAILABILITY

The PolyPower solver is open source and publicly available
for only research purposes.

ACKNOWLEDGMENTS

Many thanks to Spiros Papadimitriou from Rutgers (MSIS),
and Wei Xu from Tsinghua (at Andrew Yao’s institute) for
providing us with the necessary computational power.

REFERENCES

[1] S. Liu and P. A. Papakonstantinou, “Local search for hard sat formulas:
the strength of the polynomial law,” in Proceedings of the 30th AAAI
Conference on Artificial Intelligence (AAAI 2016). AAAI Press, 2016.

[2] S. Liu, “An efficient implementation for walksat,”
CoRR, vol. abs/1510.07217, 2015. [Online]. Available:
http://arxiv.org/abs/1510.07217

3Each clause has exactly k literals.

17

Scavel SAT
Yang Xu

Southwest Jiaotong University
Chengdu, China

Abstract—Scavel SAT is submitted to SAT Competition 2016.
It is based on logic deduction, and proposes a new branching
heuristics.

I. INTRODUCTION

In this short paper, we present a derived version of MiniSat
called Scavel SAT. Scavel SAT is developed from the code
source of MiniSat 2.2.0 [1] with the bit-encoding phase
selection strategy [2], while there is a significant change in
Scavel SAT by applying a kind of logic deduction compared
with MiniSat 2.2.0. Specifically, based on this logic deduc-
tion, we can (i) obtain a set of partial assignment argument
sequences; and (ii) obtain a new learning clause that is then
added to the original CNF formula. The principle of this logic
deduction applied in Scavel SAT is summarized in Section II.

II. LOGIC DEDUCTION

Resolution principle [3] is one of the most important
methods for validating the unsatisfiability of logical formulas.
Due to its simplicity, soundness and completeness, it has
been adopted by most popular modern automated deduction
systems. For further improving the efficiency of resolution,
many refined resolution methods have been proposed such
as linear resolution, semantic resolution, and lock resolution,
etc. In this section, some preliminary concepts about binary
resolution and linear resolution are reviewed firstly. A new
way of deriving a local satisfiable assignment for a given
clause set is then proposed by using the linear logic resolution
deduction.

Definition 2.1 [3] Let C1 and C2 be clauses and L1 a
propositional variable. The clause R(C1, C2) = C

′
1 ∨ C

′
2 is

called a resolvent of clauses C1 = L1∨C
′
1 and C2 = ¬L1∨C

′
2.

Definition 2.2 [3] Let S be a clause set. ω = {C1, C2, . . . , Ck}
is called a resolution deduction from S to Ck, if
Ci (i = 1, · · · , k) is either a clause in S, or the resolvent of
Cj and Cr(j < i, r < i).

Definition 2.3 [3] Let S be a clause set, C0 a clause in S,
ω = {C1, C2, . . . , Ck} is called a linear resolution deduction
from S to Ck with the top clause C0 if it satisfies:

1) Ci+1 is the resolvent of Ci (a center clause) and Bi (a
side clause), where i = 0, 1, . . . , n− 1.

2) Bi ∈ S or Bi = Cj(j < i).

Remark 2.1 In fact, linear resolution deduction provides a
special and simple resolution deduction structure now that we
just need to choose the side clauses.

Using the logic deduction, i.e., a linear resolution deduction
method, we can derive a local satisfiable assignment for a
given clause set S following the algorithm below:

Algorithm 1:
Step 1: firstly we choose a clause C0 in S as the top clause;
Step 2: get a linear resolution deduction of S with the

top clause C0 where any complementary pair should not be
appeared in all side clauses.

Therefore, for the given clause set S, there are two possible
cases as below:

1) if an empty clause is derived from S using the above
linear resolution, then S is unsatisfiable.

2) otherwise, we can obtain a local satisfiable assignment
for S that are the resolvent literals in all side clauses,
that is, (B01, B11, . . . , Bi1) , where Bi1 is the resolvent
literals in Bi.

Based on the local satisfiable assignment of S, we can
construct or extend it to a global satisfiable assignment for
S by using Algorithm 1.

In MiniSat, a decision variable p can be derived through
the function pickBranchLit(), therefore we can start the logic
linear resolution deduction from p. Since p is not a clause, in
order to better combine the linear resolution deduction with
the MiniSat decision variable selection strategy, we assume
that p is from the tautology {p,¬p}, and the resolvent R of
contains ¬p as a consequence.

Following several linear resolutions, we can obtain a set
of local/partial assignment argument sequences. Then a new
learning clause can be obtained that is then added to the
original CNF formula in MiniSat. Due to the soundness and
completeness of linear resolution, the Scavel SAT is also
sound and complete.

III. SAT COMPETITION 2016 SPECIFICS

We submit Scavel SAT to the main track of SAT Compe-
tition2016.

ACKNOWLEDGMENT

Our work is partially supported by the National Nat-
ural Science Foundation of China (Grant No. 11526171,

Proceedings of SAT Competition 2016: Solver and Benchmark Descriptions, volume B-2016-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2016. ISBN 978-951-51-2345-9.

18

61305074, 61175055 and 61100046), and the Fundamen-
tal Research Funds for the Central Universities of China
(GrantNo. A0920502051305-24, 2682015CX060).

REFERENCES

[1] N. Eénand and N. Sörensson, “An extensible sat-solver,” in SAT, pp. 502–
518, 2003.

[2] J. Chen, “A bit-encoding phase selection strategy for satisfiability solvers,”
in in Proceedings of Theory and Applications of Models of Computa-
tion(TAMC14), ser. LNCS, vol. 8402, Chennai, India, 2014, pp. 158–167.

[3] C. L. Chang and R. C. T. Lee, Symbolic logic and mechanical theorem
proving. USA: Academic Press, 1997.

19

AICR PeneLope 2016
Hitoshi Togasaki

The University of Tokyo
Tokyo, Japan

Abstract—In this paper, we show that simple introduction of
our solver AICR PeneLope 2016 submitted to SAT Competition
2016. We implemented Activate Idle Clause Restart(AICR) in
PeneLope 2014(submitted SAT Competition 2014).

I. INTRODUCTION

Portfolio algorithm is mainstream of parallel SAT Solvers.
In Portfolio, to maintain diversification, Each worker choose
different search strategy and parameter. Portfolio SAT Solvers
solve problems efficiently by sharing useful learnt clauses.
Search diversification and intensification are one of the most
important factor for SAT Solving[1]. For this problem, we
extract the areas of search space relatively not searched by
using imported clause.

II. ACTIVATE IDLE CLAUSE RESTART

Learnt clause sharing among workers is a fundamental task
in the parallel SAT solvers. Learnt clauses not only prevent
reappearances of the same conflits but also accelerate pruning
of search spaces. In order to reduce communication costs,
workers share only useful learnt clauses[2], i.e., clauses with
short length or a low LBD value However, the workers not
always utilize the imported learnt clauses. We define a learnt
clause imported from other worker and never used in the
search of the worker as a “idle clause” in this paper. In this
context, a worker “uses” a clause if this clause appears in the
propagation phase. The idle clauses are related with search
spaces where the worker does not conduct the search. By
forcing the workers to assign values so that the idle clauses
become unit, we can change the search spaces of the workers.
Especially, it is important that the idle clauses are relevant
to the search spaces where the worker does not conduct the
search but other wokers do.

We show the pseudocodes of our proposal in Algorithm 1
and 2. The main function is in Algorithm 1. This function
is called for every restart. The input of this function is a list
of worker IDs. The worker activates the idle clauses from the
workers with IDs in this list. In addition, we select the clauses
with a low LBD value (i.e., lower than average LBD value
of imported). For each selected idle clause, we increase the
VSIDS score of each variable in the clause according to the
“BUMP RATIO” constant and add to “idle clause vars” sets.
Note that the “BUMP RATIO” is always 1 in the original
VSIDS. In this function, the polarity (true or false) is also
assigned so that the literals in the target clause become false.

The decision fucntion is in Algorithm 2. This function is
called for every decision. We select a variable with the highest
VSIDS score, and call this v. If v is included in the “idle clause

vars” set, we allocate each variable to make idle clause false,
and erase v from “idle clause vars” set.

Algorithm 1 ActivateIdleClauseRestart
Input: tid⇐ target worker IDs

1: ICV ars⇐ ∅
2: for clause ∈ learnt clauses do
3: if clause is imported clause from workers with ID ∈ tid

and is idle and its LBD value is less than the average
LBD values of imported then

4: for v ∈ clause do
5: if v 6∈ ICV ars then
6: ICV ars⇐ ICV ars ∪ v
7: ICPolarity[v] ⇐ not sign(v)
8: BumpV SIDS(v,BUMP RATIO)
9: end if

10: end for
11: end if
12: end for

Algorithm 2 Idle Clause based Decision
1: v ⇐ argmaxV SIDS
2: if v ∈ ICV ars then
3: ICV ars ⇐ ICV ars \ v
4: decision(v, ICPolarity[v])
5: else
6: decision(v, Polarity[v])
7: end if

III. AICR PENELOPE

We implemented AICR in PeneLope[3](version 2014) and
modified the parameter(related threads). We submitted two
solvers AICR PeneLope(threads 24 and 48) and set parameter
for ‘BUMP RATIO=100‘and tid(below).
Letting p as the number of workers, the ID of workers ranges
from 0, to p− 1. For each worker with ID i,

• Pairwise: tid ⇐ {i + 1} if i is even, otherwise tid ⇐
{i− 1}

REFERENCES

[1] L. Guo, Y. Hamadi, S. Jabbour, and L. Sais, “Diversification and intensi-
fication in parallel sat solving,” in Proceedings of the 16th International
Conference on Principles and Practice of Constraint Programming, ser.
CP’10. Berlin, Heidelberg: Springer-Verlag, 2010, pp. 252–265.

Proceedings of SAT Competition 2016: Solver and Benchmark Descriptions, volume B-2016-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2016. ISBN 978-951-51-2345-9.

20

[2] G. Audemard, J.-M. Lagniez, B. Mazure, and L. Saı̈s, On Freezing
and Reactivating Learnt Clauses. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2011, pp. 188–200.

[3] G. Audemard, B. Hoessen, S. Jabbour, J.-M. Lagniez, and C. Piette,
Revisiting Clause Exchange in Parallel SAT Solving. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2012, pp. 200–213.

21

AmPharoS, An Adaptive Parallel Solver
Gilles Audemard, Jean-Marie Lagniez, Nicolas Szczepanski, Sébastien Tabary

Univ. Lille-Nord de France
CRIL/CNRS UMR8188

Abstract—We present AMPHAROS, a new parallel SAT solver
based on the divide and conquer paradigm. This solver, designed
to work on a great number of cores, runs workers on sub-
formulas restricted to cubes. In addition to classical clause
sharing, it also exchange extra information associated to cubes.

I. MODUS OPERANDI

AMPHAROS is a parallel distributed SAT solver that uses
the divided and conquer approach. All details of AMPHAROS
are available here [1].

Even if AMPHAROS is a divide and conquer based solver,
it is important to stress that, contrary to [2], it does not use the
work stealing strategy. In our case, the division is performed
in a classical way as in [3], [4]. More precisely, our approach
generates guiding paths, restricted to cubes, that cover all
the search space. This way, the outcome of the division is
a tree where nodes are variables and the left (resp. right)
edge corresponds to the assignment of the variable to true
(resp. false). Then, solvers operate on leaves (represented by
the symbol NIL) and solve (under assumptions) the initial
formula restricted to a cube which corresponds to the path
from the root to the related leaf. Fig. 1 shows an example
of a tree containing three open leaves (cubes [x1,¬x2, x4],
[x1,¬x2,¬x4] and [¬x1,¬x3]), two closed branches (already
proven unsatisfiable) and four solvers (S1 . . . S4) working on
these leaves.

x1

x2

UNSAT

NIL NIL

x4

x3

UNSAT NIL

S1 S2

S3

S4

Fig. 1. AMPHAROS architecture.

In our architecture, solvers choose by themselves which
cubes they try to solve. Then, solvers can work on the same
cube (as solvers S1 and S2 in Fig. 1a) and can stop working
before finding a solution or a contradiction. In AMPHAROS,
each time a solver shares information or asks to solve a
new cube, it communicates with a dedicated worker, called

MANAGER. Its main mission is to manage the cubes and
the communication between the solvers (here CDCL solvers).
Thus, when a solver decides to stop solving a given cube
(without having solved the instance), it can ask the MANAGER
to enlarge this one. Indeed, cubes that seem difficult to solve
are extended. This is done by adding to each leaf a counter
increased each time a solver is not able to solve it in a given
amount of conflicts.

Another situation where a solver stops, is once a branch is
proved to be unsatisfiable. In this case, a message informs the
MANAGER and the tree is updated in consequence. In both
cases, when a solver stops it goes through the tree and starts
solving a new cube (potentially the same). The end of the
solving process finally occurs either when a cube is proved to
be satisfiable or when the tree is proved to be unsatisfiable.

Different knowledge sharing are achieved during the solv-
ing process. First, classical learnt clauses that appear to be
good with respect to LBD measure [5]. Note that solvers
communicate learnt clauses to the MANAGER that takes over
distibution to other solvers. AMPHAROS shares also assumtive
unit literals, that is, literals that are unit with respect to the
current cube. This allows to reduce communications and to
be sure that learnt clauses that have a key role under such
assumptions are effectivelly shared.

Finally, AMPHAROS contains a strategy that permit to
intensify or diversify the search. This is done by measuring the
number of subsumed clauses that MANAGER recovers. This
can be summarized here:

Few subsumed Clauses Many subsumed clauses

Reduce extension
Increase the number of imported
clauses

Favour extension
Limit the number of imported
clauses

Intensification Diversification

Results (cactus plots, scatter plots, . . .) and further explana-
tions are available in http://www.cril.univ-artois.fr/ampharos/.

II. ALGORITHM AND IMPLEMENTATION DETAILS

AMPHAROS uses Open MPI library to ensure communica-
tion. It uses 3 different CDCL solvers: GLUCOSE [5], MINISAT
[6] and MINISATPSM [7].

REFERENCES

[1] G. Audemard, J.-M. Lagniez, N. Szczepanski, and S. Tabary, “An adaptive
parallel sat solver,” in Proc of International Conference on Principles and
Practice of Constraint Programming, 2016, p. To appear.

Proceedings of SAT Competition 2016: Solver and Benchmark Descriptions, volume B-2016-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2016. ISBN 978-951-51-2345-9.

22

[2] T. Schubert, M. Lewis, and B. Becker, “Pamiraxt: Parallel SAT solving
with threads and message passing,” Journal on Satisfiability, Boolean
Modeling and Computation, vol. 6, no. 4, pp. 203–222, 2009.

[3] G. Audemard, B. Hoessen, S. Jabbour, and C. Piette, “An effective dis-
tributed d&c approach for the satisfiability problem,” in 22nd Euromicro
International Conference on Parallel, Distributed, and Network-Based
Processing, 2014, pp. 183–187.

[4] G. Chu, P. J. Stuckey, and A. Harwood, “Pminisat: a parallelization of
minisat 2.0,” SAT Race, Tech. Rep., 2008.

[5] G. Audemard and L. Simon, “Predicting learnt clauses quality in modern
sat solvers,” in IJCAI, 2009.

[6] N. Eén and N. Sörensson, “An extensible SAT-solver,” in SAT, 2003, pp.
502–518.

[7] G. Audemard, J. Lagniez, B. Mazure, and L. Sais, “On freezing and
reactivating learnt clauses,” in International Conference on Theory and
Applications of Satisfiability Testing, 2011, pp. 188–200.

23

“Beans and Eggs”
Proteins for Glucose 3.0

Markus Iser
Karlsruhe Institute of Technology

Karlsruhe, Germany

Abstract—This document describes the Glucose 3.0 Hack
“Beans and Eggs” that combines a gate recognition algorithm
with the variable selection heuristic.

I. INTRODUCTION

This system description describes the “Beans and Eggs”
hack of Glucose 3.0 ([1], [2]). The hack includes application of
the gate-recognition algorithm that has been presented in [3].
Based on the result of gate structure analysis, we use a variant
of input branching ([4], [5]).

We use a slim version of gate-recognition [3] as a prepro-
cessor. The recognition result is used to initialize the activity
values of the input variables. In this context an input variable
is any variable that our algorithm did not recognized as being
the output of a gate. Note that if no gate is recognized, every
variable is treated as input variable.

II. IMPLEMENTATION DETAILS

Given the input formula F , our slim version of the gate-
recognition algorithm uses the unit clauses U ⊆ F to start its
recursion. If there are no unit clauses, no recognition takes
place; i.e we got rid of the clause-selection loop and heuristic
we described in [3].

The recursive part of the gate-recognition is displayed in
Algorithm 1. For every u ∈ U we enter the recursion by
invocation of extractGates(u, F \ U).

Algorithm 1: extractGates(o, F)
Data: F : CNF formula, o : output literal
Result: C : subset of F that is part of the gate structure

1 C ← ∅
2 if blockedSet(o, Fo, Fo) then
3 if ¬inp[o] ∨ fullEnc(o, Fo ∪ Fo) then
4 C ← C ∪ {Fo ∪ Fo}
5 output[o]← true
6 for p ∈ literals(Fo)\{o} do
7 inp[p]← true
8 if inp[o] then inp[p]← true

9 for p ∈ literals(Fo)\{o} do
10 C ← C ∪ extractGates(p, F \ C)

11 return C

For the non-monotonic case, i.e. when both implications in a
Tseitin encoding are needed, we utilize a simple pattern-based
recognition that is capable of n-ary and, or and binary xor
detection.

A. Activity Initialization

Let h(v) be the number of occurrences of the variable v
and m = max

v∈V
(h(v)) be its maximum. We bump each input

variable v by the scaled value h(v)
m ≤ 1.

for v ∈ vars(F) do
if ¬output[v] ∧ ¬output[v] then

varBumpActivity(v, h(v)
m);

We hereby establish a pre-ordering of variables that favours
frequent input variables. The ordering blurs rapidly as activity-
values are adjusted during the solving process.

III. AVAILABILITY

The hack is available at the website http://baldur.
iti.kit.edu/sat-competition-2016.

ACKNOWLEDGMENT

The author would like to thank Felix Kutzner for many
fruitful related discussions.

REFERENCES

[1] G. Audemard and L. Simon, “Predicting learnt clauses quality in modern
SAT solvers,” in IJCAI 2009, Proceedings of the 21st International Joint
Conference on Artificial Intelligence, Pasadena, California, USA, July
11-17, 2009, 2009, pp. 399–404.

[2] N. Eén and N. Sörensson, “An extensible SAT-solver,” in Theory and
Applications of Satisfiability Testing, 6th International Conference, SAT
2003. Santa Margherita Ligure, Italy, May 5-8, 2003 Selected Revised
Papers, 2003, pp. 502–518.

[3] M. Iser, N. Manthey, and C. Sinz, “Recognition of nested gates in CNF
formulas,” in Theory and Applications of Satisfiability Testing - SAT 2015
- 18th International Conference, Austin, TX, USA, September 24-27, 2015,
Proceedings, 2015, pp. 255–271.

[4] M. Järvisalo and T. A. Junttila, “Limitations of restricted branching in
clause learning,” in Principles and Practice of Constraint Programming -
CP 2007, 13th International Conference, CP 2007, Providence, RI, USA,
September 23-27, 2007, Proceedings, 2007, pp. 348–363.

[5] M. Iser, M. Taghdiri, and C. Sinz, “Optimizing minisat variable orderings
for the relational model finder kodkod - (poster presentation),” in Theory
and Applications of Satisfiability Testing - SAT 2012 - 15th International
Conference, Trento, Italy, June 17-20, 2012. Proceedings, 2012, pp. 483–
484.

Proceedings of SAT Competition 2016: Solver and Benchmark Descriptions, volume B-2016-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2016. ISBN 978-951-51-2345-9.

24

CBPeneLoPe2016, CCSPeneLoPe2016, Gulch at
the SAT Competition 2016

Tomohiro Sonobe
National Institute of Informatics, Japan

JST, ERATO, Kawarabayashi Large Graph Project, Japan
Email: tominlab@gmail.com

Abstract—In this description, we provide a brief introduction
of our solvers: PeneLoPe2016, CCSPeneLoPe2016, and Gulch.
PeneLoPe2016 and CCSPeneLoPe2016 are based on the parallel
SAT solver PeneLoPe. Gulch is based on Glucose version 3.

I. PENELOPE2016

PeneLoPe2016 is a parallel portfolio SAT solver based on
PeneLoPe [3] and a new version of ones submitted in the
SAT Competition 2014 and SAT Race 2015. PeneLoPe2016
implements community branching [9], a diversification [7]
technique using community structure of SAT instances [1].
The community branching assigns a different set of variables
(community) to each worker and forces them to select these
variables as decision variables in early decision levels, aiming
to avoid overlaps of search spaces between the workers more
vigorously than the existing diversification methods.

In order to create communities, we construct a graph where
a vertex corresponds to a variable and an edge corresponds
to a relation between two variables in the same clause,
proposed as Variable Incidence Graph (VIG) in [1]. After that,
we apply Louvain method [5], one of the modularity-based
community detection algorithms, to identify communities of
a VIG. Variables in a community have strong relationships,
and a distributed search for different communities can benefit
the whole search. Recently, interesting works based on the
community structure or from a point of view of graph theory
are introduced [2], [6].

The differences between PeneLoPe2016 and previous ver-
sions are as follows.

• Community based learnt clause sharing
• Changes of some parameters
• Refactoring for some parts of the program

A. Community-Based Learnt Clause Sharing

In the previous version of PeneLoPe2016, we used the
default function of original PeneLoPe for learnt clause sharing
between workers. However, there are so many learnt clauses
that are imported but deleted without being used (“used”
stands for being used in BCP). Importing such clauses results
in vain hence we should cease importing them to reduce
various costs (e.g., memory consumption, lock waiting time).
One of the reasons why such clauses can be deleted is that
the worker searches in different regions (or simply already

satisfies these clauses). Using the community branching, the
workers can be forced to search specific areas (based on
the assigned communities). Thus, the most likely used learnt
clauses are ones that include the variables belonging to the
assigned communities.

We propose a new method for clause sharing in parallel
SAT solvers, community-based learnt clause sharing (CLCS).
The CLCS conducts the community detection algorithm on
the VIG of target SAT instance. Then, this method restricts
the sharing of each learnt clause to workers that conducts the
search for the variables related with communities in the target
learnt clause. By combining the community branching, the
CLCS distributes the target clauses to the workers with related
communities. For example, if a learnt clause (a∨b∨c) is to be
shared among the workers, and the variable a and b belong to a
community C1 and the variable c belongs to a community C2,
this clause is distributed only to the workers that are assigned
the community C1 or C2 by the community branching.

II. CCSPENELOPE2016

CCSPeneLoPe2016 is a parallel portfolio solver based on
PeneLoPe. The features of CCSPeneLoPe2016 are as follows.

• Conflict history-based branching heuristic (CHB) [8] for
some workers

• CLCS prioritizing high VSIDS or CHB scores
The CHB is good at cryptographic instances in [8]. In

CCSPeneLoPe2016, some workers use this heuristic with
different sets of its parameters. For the CLCS, each worker
calculates an average activity score (VSIDS or CHB) of
variables for each community and chooses the highest scored
community as a “desired community”. The CLCS distributes
the target clause to the workers that desire to share that
clause (i.e., including the variables that belong to the desired
community).

III. GULCH

Gulch is a sequential solver based on Glucose version 3
[4]. The decision heuristic of Gulch is based on the CHB.
In preliminary experiments, we confirmed that CHB was not
good at some types of unsatisfiable instances. To mitigate
this issue, we add a simple heuristic based on the number
of variables and clauses. This heuristic switches the CHB and
VSIDS alternately for every K restarts, and randomized the

Proceedings of SAT Competition 2016: Solver and Benchmark Descriptions, volume B-2016-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2016. ISBN 978-951-51-2345-9.

25

activity scores. In Gulch, K is set to 1024, and 128 in the
“agile” version of Gulch. In the “once” version of Gulch, the
switching from CHB to VSIDS is conducted only once after
50 seconds passes.

IV. ACKNOWLEDGMENT

This work was supported by JSPS KAKENHI Grant Num-
ber 15K16057.

REFERENCES

[1] Carlos Ansótegui, Jesús Giráldez-Cru, and Jordi Levy. The community
structure of SAT formulas. In Theory and Applications of Satisfiability
Testing, SAT’12, pages 410–423, 2012.

[2] Carlos Ansótegui, Jesús Giráldez-Cru, Jordi Levy, and Laurent Simon.
Using community structure to detect relevant learnt clauses. In Theory
and Applications of Satisfiability Testing, SAT’15, pages 238–254, 2015.

[3] Gilles Audemard, Benoı̂t Hoessen, Saı̈d Jabbour, Jean-Marie Lagniez,
and Cédric Piette. Revisiting clause exchange in parallel sat solving. In
Theory and Applications of Satisfiability Testing, SAT’12, pages 200–213,
2012.

[4] Gilles Audemard and Laurent Simon. Predicting learnt clauses quality
in modern SAT solvers. In International Joint Conference on Artificial
Intelligence, IJCAI’09, pages 399–404, 2009.

[5] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne
Lefebvre. Fast unfolding of communities in large networks. Journal of
Statistical Mechanics: Theory and Experiment, 2008(10):10008, 2008.

[6] Jesús Giráldez-Cru and Jordi Levy. A modularity-based random SAT
instances generator. In International Joint Conference on Artificial
Intelligence, IJCAI’15, 2015.

[7] Long Guo, Youssef Hamadi, Said Jabbour, and Lakhdar Saı̈s. Diversi-
fication and intensification in parallel SAT solving. In Principles and
practice of constraint programming, CP’10, pages 252–265, 2010.

[8] Jia Hui Liang, Vijay Ganesh, Pascal Poupart, and Krzysztof Czarnecki.
Exponential recency weighted average branching heuristic for SAT
solvers. In AAAI Conference on Artificial Intelligence, AAAI’16, 2016.

[9] Tomohiro Sonobe, Shuya Kondoh, and Mary Inaba. Community branch-
ing for parallel portfolio SAT solvers. In Theory and Applications of
Satisfiability Testing, SAT’14, pages 188–196, 2014.

26

CHBR glucose
Seongsoo Moon

Graduate School of Information Science and Technology,
The University of Tokyo, Japan

Inaba Mary
Graduate School of Information Science and Technology,

The University of Tokyo, Japan

Abstract—We briefly introduce our solver CHBR glucose,
CHBR glucose tuned, tb glucose and tc glucose submitted
to SAT-Competition 2016. All solvers are based on glu-
cose3.0, and CHB, introduced at AAAI 2016, is imple-
mented in CHBR glucose, CHBR glucose tuned, and tc glucose.
CHBR glucose tuned is for entering the Glocose Hack track in
the SAT Competition 2016.

I. INTRODUCTION

Decision heuristic is one of the most important elements
in modern SAT solvers. The most prominent method is
VSIDS[1]. There were lots of attempts to surpass VSIDS [2]
[3] [4], but VSIDS is still most popular decision heuristic
because of its robustness.

Recently new branching heuristic CHB[5] was provised and
it showed significant improvements for some benchmarks.

In our program, we implemented CHB and select decision
heuristic between VSIDS and CHB dynamically.

When a variable is selected by the score of VSIDS a lot
of ties happened. We added some scores to VSIDS to reduce
ties, and select more valuable variable from ties.

II. CHB TUNED

In CHB, each variable has Q score, and is updated using
Equation as follows based on reinforcement learning.

Q[v] = (1 − α)Q[v] + αrv

We’ve selected several parameters those would change run-
ning time a lot to tune CHB and tested. The initial value of
α is set to 0.4 in original CHB, and we changed this to 0.7
based on our tests.

III. CHBR GLUCOSE

We’ve noticed CHB works very well with small problems,
but VSIDS performs better than CHB for big problems. So,
we divided problems for 2 groups by the number of variables.
As default decision heuristic, our program choose VSIDS. If
the number of variables is under 15000, CHB is activated and
used behalf of VSIDS.

IV. CHBR GLUCOSE TUNED

We’ve tuned CHB parameters based on 24 combination
tests. Some instances work better than default parameter
values. We’ve changed initial value of α, minimum of α, and
multiplier for small problems.

if(2000 < numberofvariables < 7000)
α = 0.4, αmin = 0.03,multiplier = 0.5

V. TB GLUCOSE

Ties happen frequently in VSIDS. To break these, we update
VSIDS scores after we obtain learned clauses. After a clause
is obtained, we add 1 / (LBD of a clause) for each variables
in that clause. We call this TBVSIDS.

VI. TC GLUCOSE

This is a hybrid version of CHBR glucose and tb glucose.
We use TBVSIDS as a default decision heuristic and use CHB
when the number of variables is under 15000.

REFERENCES

[1] Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S. Chaff:
Engineering an Efficient SAT Solver. In Proceedings of the 38th Design
Automation Conference, pp 530–535, 2001.

[2] Dershowitz, Nachum and Hanna, Ziyad and Nadel, Alexander. A
Clause-Based Heuristic for SAT Solvers. Theory and Applications of
Satisfiability Testing, pp 46–60, 2005.

[3] Goldberg, Evgueni and Novikov, Yakov. BerkMin: A Fast and Robust
Sat-Solver. Design, Automation, and Test in Europe, pp 465–478, 2008.

[4] L.Ryan. Efficient algorithms for clause-learning SAT solvers. Matser’s
thesis, Simon Fraser University, 2004.

[5] Hui Liang, J., Ganesh, V., Poupart, P., Czarnecki, K. Exponential Recency
Weighted Average Branching Heuristic for SAT Solvers Proceedings of
the Thirtieth AAAI Conference on Artificial Intelligence, 2016.

[6] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E. Fast unfold-
ing of communities in large networks. Journal of Statistical Mechanics:
Theory and Experiment. (2008).

Proceedings of SAT Competition 2016: Solver and Benchmark Descriptions, volume B-2016-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2016. ISBN 978-951-51-2345-9.

27

The CryptoMiniSat 5 set of solvers at SAT
Competition 2016

Mate Soos

I. Introduction

This paper presents the conflict-driven clause-learning
SAT solver CryptoMiniSat v5 (CMS5) as submitted to SAT
Competition 2016. CMS5 aims to be a modern, open-source
SAT solver that allows for multi-threaded in-processing
techniques while still retaining a strong CDCL component.
In this description only the features relative to CMS4.4,
the previous year’s submission, are explained. Please refer
to the previous years’ description for details. In general,
CMS5 is a in-processing SAT solver that usues optimized
datastructures and finely-tuned timeouts to have good con-
trol over both memory and time usage of simplification
steps.

A. Removal of uneeded code

Over the years, many lines of code has been added to
CMS that in the end didn’t help and often was detrimental
to both maintinability and efficiency of the solver. Many
such additions have now been removed. This simplifies
understanding and developing the system. Further, it allows
the system to be more lean especially in the tight loops
such as propagation and conflict analysis where most of the
time is spent.

B. Integration of ideas from COMiniSatPS

Some of the ideas from COMiniSatPS[1] have been in-
cluded into CMS. In particular, the clause cleaning system
employed and the switching restart have both made their
way into CMS.

C. On-the-fly Gaussian Elimination

On-the-fly Gaussian elimination is again part of Crypto-
MiniSat. This is explicitly disabled for the compeititon, but
the code is available and well-tested. This allows for special
uses of the solver that other solvers, without on-the-fly
Gaussian elimination, are not capable of.

D. Clause usefulness guessing

Besides glues and clause activites, CMS5 also tries to
guess clause usefulness based on the trail size, the backjump
level and the activity of the variables in the ancestor of
the learnt clause. Although this is at a very early stage of
development, it has been found to be helpful.

E. Auto-tuning

The version ’autotune’ reconfigures itself after about
160K conflicts. The configuration picked is one of 2 dif-
ferent setups that vary many different parameters of the
solving such as learnt clause removal strategy, restart strat-
egy, and in-processing strategies. CMS5 was run on all

SAT Comp’09 + 11 + 13 + 14 + 15 problems with both
configurations, extracting relevant information from the
all problems after they have been solved and simplified for
160K conflicts. configurations were then given to a machine
learning algorithm (C5.0[2]) which built a decision tree
from this data. This decision tree was then translated into
C++ and compiled into the CMS5 source code.

References

[1] Oh, C.: MiniSat HACK 999ED, MiniSat HACK 1430ED and
SWDiA5BY. In: SAT Competition 2014 Booklet. (201)

[2] Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA (1993)

Proceedings of SAT Competition 2016: Solver and Benchmark Descriptions, volume B-2016-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2016. ISBN 978-951-51-2345-9.

28

COMiniSatPS the Chandrasekhar Limit and
GHackCOMSPS

Chanseok Oh
Google

New York, NY, USA

Abstract—COMiniSatPS is a patched MiniSat generated by
applying a series of small diff patches to the last available version
(2.2.0) of MiniSat that was released several years ago. The essence
of the patches is to include only minimal changes necessary to
make MiniSat sufficiently competitive with modern SAT solvers.
One important goal of COMiniSatPS is to provide these changes
in a highly accessible and digestible form so that the necessary
changes can be understood easily to benefit wide audiences,
particularly starters and non-experts in practical SAT. As such,
the changes are provided as a series of incrementally applicable
diff patches, each of which implements one feature at a time.
COMiniSatPS has many variations. The variations are official
successors to an early prototype code-named SWDiA5BY that
saw great successes in the past SAT-related competitive events.

I. INTRODUCTION

It has been shown in many of the past SAT-related com-
petitive events that very simple solvers with tiny but criti-
cal changes (e.g, MiniSat [1] hack solvers) can be impres-
sively competitive or even outperform complex state-of-the-
art solvers [2]. However, the original MiniSat itself is vastly
inferior to modern SAT solvers in terms of actual performance.
This is no wonder as it has been many years since the
last 2.2.0 release of MiniSat. To match the performance of
modern solvers, MiniSat needs to be modified to add some of
highly effective techniques of recent days. Fortunately, small
modifications are enough to bring up the performance of any
simple solver to the performance level of modern solvers.
COMiniSatPS1 adopts only simple but truly effective ideas that
can make MiniSat sufficiently competitive with recent state-
of-the-art solvers. In the same minimalistic spirit of MiniSat,
COMiniSatPS prefers simplicity over complexity to reach out
to wide audiences. As such, the solver is provided as a series
of incremental patches to the original MiniSat. Each small
patch adds or enhances one feature at a time and produces
a fully functional solver. Each patch often changes solver
characteristics fundamentally. This form of source distribution
by patches would benefit a wide range of communities as it is
easy to isolate, study, implement, and adopt the ideas behind
each incremental change. The goal of COMiniSatPS is to
lower the entering bar so that anyone interested can implement
and test their new ideas easily on a simple solver guaranteed
with exceptional performance.

The patches first transform MiniSat into Glucose [3] and
then into SWDiA5BY. Subsequently, the patches implement

1Source is available at http://www.cs.nyu.edu/∼chanseok/cominisatps/.

new techniques described in [4] and [2] to generate the current
form of COMiniSatPS.

II. COMINISATPS THE CHANDRASEKHAR LIMIT

Differences from the last year’s COMiniSatPS Main Se-
quence [5] are as follows:

• Always performs pre-processing.
• Applies a small patch implementing what we call Incre-

mentally Relaxed Bounded Variable Elimination2 which
was first proposed by GlueMiniSat last year [6].

• LBD [3] of new learned clauses is one less than what
it used to be. Code that compares LBD values has been
modified accordingly in a few locations.

• Performs on-the-fly failed literal detection through ad-
vanced stamping [7], however, very sparingly. It may
be triggered only when learning unit clauses. We ref-
erenced the implementation of Lingeling [8]. This is the
only feature that resulted in a complex implementation
which unfortunately contradicts the minimalistic spirit of
COMiniSatPS.

III. INCREMENTAL SAT SOLVING

Nothing has changed since last year except that solvers now
use a sane strategy and a reasonable parameter value; solvers
submitted to SAT Race 2015 last year intentionally used an
unreasonable strategy for demonstration purposes. Specifically,
in this year’s solvers, mid-tier and local learned clauses are not
purged but preserved after each incremental run.

A. 2Sun

Like the last year’s 1Sun version, the 2Sun version does
not employ the hybrid restart strategy of COMiniSatPS. Incre-
mental variable elimination [9] is turned off for small problem
instances.

B. 2Sun nopre

Incremental variable elimination is always turned off. The
threshold for purging core learned clauses after each incremen-
tal run has been slightly relaxed: when the size (not LBD) is
greater than 8 (increased from 5).

2The authors of GlueMiniSat call this feature Incremental Variable Elimi-
nation. However, we avoid the original term because we have been using it
to refer to variable elimination in the context of incremental SAT.

Proceedings of SAT Competition 2016: Solver and Benchmark Descriptions, volume B-2016-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2016. ISBN 978-951-51-2345-9.

29

IV. GHACKCOMSPS

This solver implements many of the core features of CO-
MiniSatPS on top of Glucose 3.0: 1) the 3-tiered learned
clause management; 2) the hybrid restart strategy; and 3) the
alternating variable decay factors (but without the separate
activity score sets or variable priority queues). There are
several other minor changes too. GHackCOMSPS qualifies as
a Glucose hack.

V. AVAILABILITY AND LICENSE

Source is available for download for all the versions in this
paper. COMiniSatPS uses the same MIT license as MiniSat’s.

ACKNOWLEDGMENT

We thank specifically the authors of Glucose, GlueMiniSat,
Lingeling, and MiniSat.

REFERENCES

[1] N. Eén and N. Sörensson, “An extensible SAT-solver,” in SAT, 2003.
[2] C. Oh, “Improving SAT solvers by exploiting empirical characteristics of

CDCL,” Ph.D. dissertation, New York University, 2016.
[3] G. Audemard and L. Simon, “Predicting learnt clauses quality in modern

SAT solvers,” in IJCAI, 2009.
[4] C. Oh, “Between SAT and UNSAT: The fundamental difference in CDCL

SAT,” in SAT, 2015.
[5] ——, “Patching MiniSat to deliver performance of modern SAT solvers,”

in SAT-RACE, 2015.
[6] H. Nabeshima, K. Iwanuma, and K. Inoue, “GlueMiniSat 2.2.10 & 2.2.10-

5,” in SAT-RACE, 2015.
[7] M. Heule, M. Järvisalo, and A. Biere, “Efficient CNF simplification based

on binary implication graphs,” in SAT, 2011.
[8] A. Biere, “Lingeling, Plingeling and Treengeling entering the SAT

Competition 2013,” in SAT-COMP, 2013.
[9] J. Ezick, J. Springer, T. Henretty, and C. Oh, “Extreme SAT-based

constraint solving with R-Solve,” in HPEC, 2014.

30

BreakIDCOMiniSatPS
Jo Devriendt

University of Leuven
Leuven, Belgium

Bart Bogaerts
Aalto University
Espoo, Finland

Abstract—BreakIDCOMiniSatPS combines the COMiniSatPS
SAT solver with the symmetry breaking preprocessor BreakID.

I. INTRODUCTION

Many real-world problems exhibit symmetry, but the SAT
competition and SAT race seldomly feature solvers who are
able to exploit symmetry properties. This discrepancy can be
explained by the assumption that for most of the problems
in these competitions, symmetry exploitation is not worth the
incurred overhead.

We tested this hypothesis in 2013’s SAT competition and
2015’s SAT race, and now participate again 2016’s SAT
competition. Symmetry is broken in the spirit of Shatter [1]. As
symmetry breaking preprocessor we use BreakID [2] version
2.2, a slightly more efficient version of BreakID than the 2.0
version used in last year’s SAT race. As SAT solver we use
COMiniSatPS [3], with the same source as the COMiniSatPS
competition submission without symmetry breaking. We ex-
pect COMiniSatPS to be more effective than the Glucose [4]
solver used in last year’s SAT race.

II. MAIN TECHNIQUES

The workflow of BreakIDCOMiniSatPS is straightforward:

1) BreakID uses Saucy [5] to enumerate symmetry gener-
ators for an input CNF theory.

2) BreakID analyzes these generators for certain properties,
and constructs effective symmetry breaking clauses.

3) COMiniSatPS solves the resulting CNF theory, consist-
ing of the original clauses and the symmetry breaking
clauses.

III. MAIN PARAMETERS

The main user-provided parameters control:

• How much time should be allocated to Saucy for symme-
try detection. This does not limit further analysis of these
generators to construct symmetry breaking clauses. Given
a time limit of 5000 seconds to solve one CNF instance,
Saucy gets 200 seconds to detect symmetry generators.

• How large the symmetry breaking sentences are allowed
to grow, measured in the number of auxiliary variables
introduced by a symmetry breaking formula. We limit
this to 50 auxiliary variables.

IV. SPECIAL ALGORITHMS, DATA STRUCTURES, AND
OTHER FEATURES

In comparison with Shatter, BreakID offers the following
improvements:

• A more efficient clausal encoding of the Lex-Leader
symmetry breaking formula [6].

• Detection of row interchangeability symmetry groups,
which can be broken completely.

• Construction of binary symmetry breaking clauses, which
potentially break much symmetry at little cost.

• Construction of a more suitable variable ordering with
which to break symmetry.

• A limit on the size of a symmetry breaking formula.
• A time limit on Saucy’s symmetry detection routine.

Lastly, Saucy requires a slightly cleaned CNF as input, so
the BreakID preprocessor also employs a small preprocessing
step:

• Removing duplicate and tautological clauses from the
input CNF theory.

V. IMPLEMENTATION DETAILS

BreakID was written from scratch in C++. We refer to the
webpages of Saucy and COMiniSatPS for their implementa-
tion details.

VI. SAT COMPETITION 2016 SPECIFICS

BreakIDCOMiniSatPS participates in the No-Limit track
since BreakID does not support outputting DRAT proofs of
unsatisfiability. The compiler used is the one provided by the
competition organizers.

VII. AVAILABILITY

Source code and documentation for BreakID is available
under a non-commercial license [7].

ACKNOWLEDGMENT

We would like to thank the authors of Saucy for providing
the source code to Saucy. Thanks also go to the authors
of MiniSat [8], Glucose and COMiniSatPS for making their
solvers publically available.

Proceedings of SAT Competition 2016: Solver and Benchmark Descriptions, volume B-2016-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2016. ISBN 978-951-51-2345-9.

31

REFERENCES

[1] F. A. Aloul, K. A. Sakallah, and I. L. Markov, “Efficient symmetry
breaking for Boolean satisfiability,” IEEE Transactions on Computers,
vol. 55, no. 5, pp. 549–558, 2006.

[2] J. Devriendt, B. Bogaerts, M. Bruynooghe, and M. Denecker, “Improved
static symmetry breaking for sat,” to appear in the proceedings of SAT’16,
2016.

[3] C. Oh, “Improving sat solvers by exploiting empirical
characteristics of cdcl,” PhD thesis, New York University,
cs.nyu.edu/media/publications/oh chanseok.pdf, 2016.

[4] G. Audemard and L. Simon, “Predicting learnt clauses quality in modern
SAT solvers,” in IJCAI, 2009, pp. 399–404.

[5] H. Katebi, K. A. Sakallah, and I. L. Markov, “Symmetry and satisfiability:
An update,” in SAT, 2010, pp. 113–127.

[6] J. M. Crawford, M. L. Ginsberg, E. M. Luks, and A. Roy, “Symmetry-
Breaking Predicates for Search Problems,” in Principles of Knowledge
Representation and Reasoning. Morgan Kaufmann, 1996, pp. 148–159.

[7] J. Devriendt and B. Bogaerts, “BreakID, a symmetry breaking preproces-
sor for sat solvers,” bitbucket.org/krr/breakid, 2015.

[8] N. Eén and N. Sörensson, “An extensible SAT-solver,” 2003, pp. 502–518.

32

Dissolve in the SAT Competition 2016
Julien Henry

University of Wisconsin-Madison
Aditya Thakur

Google, Inc.
Nick Kidd
Google, Inc.

Thomas Reps
University of Wisconsin-Madison

Grammatech, Inc.

Abstract—Dissolve is a distributed SAT solver that uses a
search-space partitioning and merging mechanism to divide the
work and to share information among a pool of sequential CDCL
solvers. Learnt clauses are shared among solvers, and partitioning
evolves over time as a function of the current states of the solvers.

I. INTRODUCTION

Dissolve is a new distributed solver that is being entered
into the SAT competition for the first time in 2016. It is
designed to work with any underlying sequential CDCL SAT
solver that implements a small API. The implementation uses
Glucose 3.0 [1], which is itself based on Minisat [2]. Each
sequential solver communicates with a master solver written
in the Go programming language. In essence, the algorithm
implemented in Dissolve explores the search space using an
approach to search-space exploration that was inspired by
Stålmarck’s method [3]:

• split the problem into subproblems
• learn as much as possible about the subproblems that is

relevant to the original problem instance within a limited
period of time

• merge the knowledge from all instances, and restart with
a new and different split.

Dissolve uses a pool of CDCL SAT solvers, each of which
processes queries that it receives from the master solver.
Because each query is the conjunction of the original formula
with a partial assignment to a subset of k variables, the solvers
can maintain their state across queries: the k input assignments
are treated as the first k decisions and everything that is learnt
holds for the original formula. Solver state includes learnt
clauses, polarities, VSIDS information, LBD values, etc. In
the competition, we use a pool of 48 sequential Glucose 3.0
solvers—one for each logical CPU of a single node of the
competition server. These solvers never stay idle: even if one
does not receive a query from the master solver (which can
happen for short periods of time), it initiates a search (seeded
with the next random value). This activity is useful because
the solver will start the next query with a “better” initial state.

II. MAIN PARAMETERS

Sequential solvers have their own performance-sensitive pa-
rameters. For the competition, we used the default parameters
of Glucose 3.0. Below, we discuss the parameters of the master
solver.

1) Splitting strategy: One of the most important parameters
in Dissolve is the number of variables k that we use for the
splits. We call a round the solving of the 2k SAT queries
obtained by selecting a vector of k variables from the original
formula and assigning them all possible combinations of truth
values. The selection of the variables used for splitting is done
by a vote among all solvers. Every solver returns a sequence
of the first 100 decision variables that would have been chosen
in the sequential case (using the pickBranchLit method
from Minisat). The first one is assigned a vote 100, the second
99, etc. The k variables with the highest total score are those
selected for the next round. The first round does not split
with k variables; instead, each sequential solver is run on
the original formula with a different random seed. In the
competition, we used a value of k = 5, each round consisting
of 32 queries. This means that different rounds can be solved
in parallel at the same time.

2) Merging strategy: SAT queries that are sent to the
various sequential solvers do not usually run until they finish;
instead, they return once a budget limit has been reached. The
budget can be based either on the number of propagations, the
number of conflicts, or a timeout limit. For the competition,
we set a timeout of 5 seconds or 2.107 propagations, whatever
comes first. When the budget limit is reached, the sequential
solver returns the list of the N most-useful clauses it has learnt.
We chose N to be equal to min(1000, 100000/2k).

A UBTree (Unlimited Branching Tree) [4] is a data structure
for storing a set of clauses that allows subsumption checking to
be performed relatively inexpensively. In Dissolve, the master
solver inserts clauses into three different UBTrees, depending
on their importance: Dissolve’s sequential solvers report small
clauses (size ≤ 2), important clauses (the 100 best clauses
according to Glucose’s heuristic based on LBD), and other
clauses.

When a sequential solver returns SAT, the master solver
interrupts all computations and returns SAT. When a solver
returns from a query with an UNSAT answer, it also returns
a conflict clause. If the conflict clause is empty, the master
solver returns UNSAT and the problem is solved. If the conflict
clause is not empty, the master solver cancels the queries that
the given conflict clause implies are UNSAT.

3) Clause sharing: When a new query is sent to a se-
quential solver, the master solver also sends a set of at most
50,000 learnt clauses that the given sequential solver has not
yet received. Up to 50,000 learnt clauses are sent using the
priorities small, important, other. To avoid the accumulation of
too many clauses, the master solver’s clauses are incorporated

Proceedings of SAT Competition 2016: Solver and Benchmark Descriptions, volume B-2016-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2016. ISBN 978-951-51-2345-9.

33

by each sequential solver after discarding as many clauses
in its local database as the number of master-solver clauses
received.

4) Random seeds: With each new query, a sequential solver
also receives a new unique random seed to replace the previous
one.

III. IMPLEMENTATION DETAILS

Dissolve has been implemented to be run in a distributed
setting (i.e., on a cloud-computing platform), and some of
our design decisions have been made with that goal in mind.
Consequently, Dissolve relies on heavier-weight communica-
tion mechanisms than the threads and shared memory of a
shared-memory multicore machine. In particular, all informa-
tion between the master solver and the sequential solvers is
exchanged using the Google protocol-buffer binary format.
While other parallel solvers exchange learnt clauses at very
high rates, Dissolve exchanges information only every couple
of seconds. Because we wish Dissolve to be able to scale
to a large number of slave sequential solvers, we designed
it to use low-cost approaches to (a) problem splitting, (b)
obtaining learnt clauses that can be used unconditionally for
all solvers, (c) merging learnt clauses plus heuristic-search
information from the different slave sequential solvers, and
(d) propagating information from the master to the slaves—
while simultaneously attaining near-100% CPU utilization.
(The tuning and evaluation of Dissolve on a cloud-computing
platform is underway.)

IV. RELATED WORK

The algorithm used in Dissolve has similarities with the
Cube-and-Conquer approach of Heule et al. [5]. One of the
main differences is that the algorithm in Dissolve performs
merging and readjusts the splitting variables in subsequent
rounds based on the sequential solvers’ states. The algorithm
in Dissolve is also related to previous work by Hyvärinen et
al. [6], [7], [8], but adopts different approaches and heuristics
for splitting, merging, and sharing learnt clauses. (See Section
III.)

V. SAT COMPETITION 2016 SPECIFICS

To make sure that all sequential solvers have been started
and are listening to the network for new queries, we allow a
fixed time of 1.5s seconds before the solving of a benchmark
actually starts, which means that solving even very simple
benchmarks takes at least 1.5 seconds.

REFERENCES

[1] G. Audemard and L. Simon, “Lazy clause exchange policy for parallel
SAT solvers,” in SAT, 2014.

[2] N. Eén and N. Sörensson, “An extensible sat-solver,” in SAT, 2003.
[3] M. Sheeran and G. Stålmarck, “A tutorial on Stålmarck’s proof procedure

for propositional logic,” FMSD, vol. 16, no. 1, pp. 23–58, 2000.
[4] J. Hoffmann and J. Koehler, “A new method to index and query sets,” in

IJCAI, 1999, pp. 462–467.
[5] M. Heule, O. Kullmann, S. Wieringa, and A. Biere, “Cube and conquer:

Guiding CDCL SAT solvers by lookaheads,” in HVC, 2011, pp. 50–65.
[6] A. E. J. Hyvärinen, T. A. Junttila, and I. Niemelä, “Partitioning SAT

instances for distributed solving,” in LPAR, 2010, pp. 372–386.

[7] ——, “Grid-based SAT solving with iterative partitioning and clause
learning,” in CP, 2011, pp. 385–399.

[8] A. E. J. Hyvärinen and N. Manthey, “Designing scalable parallel SAT
solvers,” in SAT, 2012, pp. 214–227.

34

Glucose nbSat
Chu Min LI∗†, Fan Xiao∗ and Ruchu XU∗

∗Huazhong University of Science and Technology, China
†MIS,Universit de Picardie Jules Verne, France

Abstract—This document describes the SAT solver “Glu-
coseNBSAT”, a solver based on glucose 3.0. We present a new
measure called nbSAT based on the saved assignment to predict
the usefulness of a learnt clause when reducing clause database.

I. INTRODUCTION

In this paper, we present a versions based on Glucose called
Glucose nbSat . Glucose nbSat is developed from the code
source of Glucose-3.0[1], [2] by implementing a significant
change in the learnt clause database management and a limited
redundant clause simplification and removing.

II. MAIN FEATURES OF GLUCOSE

Glucose is a very efficient CDCL-based complete SAT
solver. It is always one of the awarded winning SAT solvers
in SAT competitions (challenge, race) since 2009. The main
features of Glucose and its updated versions include a mea-
surement of learnt clause usefulness called LBD and used
in the cleaning of the learnt clause database. In the recent
versions of Glucose such as Glucose-3.0, once the number of
clauses learnt since the last database cleaning reaches 2000 +
300*x, where x is the number of database cleanings performed
so far, the cleaning process is fired (i.e., the learnt clauses are
sorted in the decreasing order of their LBD, and the first half
of learnt clauses are removed except binary clauses, clauses
whose LBD value is equal to 2, and the clauses that are reasons
of the current partial assignment. In addition, Glucose-3.0 uses
a very aggressive restart strategy [3], in such a way that the
solver is very frequently restarted.

Our new learnt clause database management is based on the
above features of Glucose-3.0.

III. CLEANING LEARNT CLAUSE DATABASE AT THE ROOT
OF A SEARCH TREE

A CDCL based SAT solver usually uses the restart mecha-
nism [4], every restart constructing a binary search tree from
scratch. In Glucose, as well as in most CDCL-based solvers,
a learnt clause database cleaning process can be fired inside
a binary search tree. Two observations can be made about
this strategy: (1) there are locked clauses, i.e. clauses that
are reasons of the current partial assignment, that cannot be
removed, (2) the part of the tree before the cleaning and the
part of the tree after the cleaning are constructed with very
different learnt clause databases.

Glucose nbSat differs from Glucose in that Glucose nbSat
cleans the learnt clause database always at the beginning of
each restart, i.e., at the root of the search tree that is going to be

constructed, when the number of learnt clauses becomes bigger
or equal to 2000 + 300*x since the last database cleaning.
In this way, clauses satisfied by variables fixed at the root
are simply removed, as well as the literals falsified in the
remaining clauses. Note that no clause is locked at the root of
a search tree. Moreover, since the cleaning is not done inside
the search tree, the search tree is constructed with the same
incremental learnt clause database.

Compared with Glucose, the database cleaning is delayed in
Glucose nbSat, because it is not fired as soon as the number
of the newly learnt clauses reaches a limit, but should wait
for the next restart. However the delay is not important, since
Glucose nbSat performs fast restart as Glucose.

IV. USING A NEW MEASUREMENT TO PREDICT THE
LEARNT CLAUSE USEFULNESS

Modern CDCL-based SAT solvers usually save the last
truth value of each variable when backtracking. When a free
variable is picked as a decision variable, it is assigned the
saved value. It is easy to see that at least one clause in which
literals are all falsified by the saved assignment will become
unit and change the saved value of a variable during unit
propagation. More generally, a clause has more chance to
become unit if the number of literals satisfied by the current
saved truth value is smaller. On the contrary, those clauses
with many literals satisfied by the saved truth value have little
chance to become unit and should be removed.

Based on the above observation, we introduce a new mea-
surement to predict the usefulness of a learnt clause, namely
the number of literals satisfied by the saved assignment,
denoted by nbSat, and implement the following learnt clause
database cleaning strategy in Glucose nbSat:

1) compute the number of literals satisfied by the saved
assignment for each learnt clause, denoted by nbSat;

2) Sort all learnt clauses in the decreasing order of their
nbSat value, breaking ties using the decreasing order of
their LBD value. The remaining ties are broken using
the clause activity value as in Glucose.

3) Remove the first half of learnt clauses (i.e. those with
bigger nbSat values), by keeping binary clauses and
clauses whose LBD is 2 as in Glucose.

Note that the saved assignment changes frequently during
search. The measurement nbSat works only when the learnt
clause database cleaning is fired frequently, because otherwise,
it does not reflect the current search state after many conflicts.
This is not a problem with Glucose nbSat, because Glu-
cose nbSat cleans the database frequently as Glucose, making

Proceedings of SAT Competition 2016: Solver and Benchmark Descriptions, volume B-2016-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2016. ISBN 978-951-51-2345-9.

35

it relevant to use the nbSat measurement in the database
cleaning.

V. OTHER EMBEDDED TECHNIQUES

When a learnt clause is in the first half after all learnt
clauses are sorted in the decreasing order of their nbSat
value, i.e., when it is going to be removed by the database
cleaning process, we check if it subsumes an original clause
or if it can be resolved with an original clause to produce a
resolvent that subsumes the original clause. In the first case,
the learnt clause replaces the original clause and will never be
removed. In the second case, the produced resolvent replaces
the original clause and will never be removed.

Example. Let x1∨x2∨x3∨x4 be an original clause, and
x̄2∨x3∨x4 be a learnt clause, then the resolvent x1∨x3∨x4

is added as an original clause that is never removed, and
x1∨x2∨x3∨x4 is removed.

The above process is also applied to simplify the set of
original clauses as a preprocessing in Glucose nbSat. More
concretely, the original clauses are sorted in the decreasing
order of their size: c1, c2, ..., cm. Each ci (1≤i≤m) is checked
if there is a ck (k<i) such that ci subsumes ck or if ci and ck
can be resolved to produce a resolvent that subsumes ck. In
both cases, ck is removed. The resolvent in the second case is
inserted in the set of original clauses.

REFERENCES

[1] G. Audemard and L. Simon, “Glucose: a solver that predicts learnt clauses
quality,” IJCAI’09, 2009.

[2] ——, “Glucose in the sat 2014 competition,” in Proceedings of the 2014
SAT competition, 2014.

[3] ——, “Refining restarts strategies for sat and unsat formulae,” in Proceed-
ings of the 22nd International Conference on Principles and Practice of
Constraint Programming (CP-12), 2012.

[4] C. P. Gomes, B. Selman, and K. Henry, “Boosting combinatorial search
through randomization,” in Proc. AAAI-98, Madison, WI, July 1998.

36

dimetheus
Oliver Gableske

oliver@gableske.net

Abstract—This document describes the dimetheus SAT
solver as submitted to the random SAT track of the SAT
Competition 2016.

I. INTRODUCTION

Please note that this article must be understood as a rather
brief overview of the dimetheus SAT solver. Additional
information regarding its functioning, a comprehensive quick-
start guide, as well as the source-code of the latest version of
the solver can be found on the authors website.1 Additionally,
the author elaborates on the theoretical background of the
solver in his Ph.D. thesis [1] which can be found online.2 A
preliminary overview of the applied techniques can be found
in [2], [3].

This article will first cover the main techniques that the
solver applies in Section II. Afterwards, a brief overview of the
parameter settings are discussed in Section III. This is followed
by a brief explanation of the programming language and
the compiler relevant parameters in Section IV. Additionally,
several SAT Competition relevant details are discussed in
Section V. The article is concluded by a few remarks on the
availability and the license of the solver in Section VI.

II. MAIN TECHNIQUES

The dimetheus solver runs in various phases as depicted
in Figure 1.

Fig. 1. A flow chart that visualizes the execution of dimetheus.

1https://www.gableske.net/dimetheus
2https://www.gableske.net/diss

In each phase, the solver must fulfill a pre-defined task. The
first four of theses phases (reset, params, guidance, startup) are
not discussed here in detail. At the end of the startup phase
the solver has loaded the formula and is able to work with it.

The classify phase will then determine what type of CNF
formula the solver must solve. Since the solver is submitted
to the random SAT track of the SAT Competition it will
determine what type of random formula it has to solve (e.g., it
will determine the size of the formula, the clause lengths, the
ratio). The classifier then reports to the adapt phase for what
type of formula the solver must adapt its internal parameters
(e.g., a uniform random 3-CNF formula with 50000 variables
and a ratio of 4.2). The adapter will then enforce a Specific
parameter setting that is known to work well when solving
this type of formula.

Afterwards, preprocessing is performed. The preprocessing
is kept very simple and includes pure literal elimination and
the removal of duplicate clauses.

This is followed by the search phase in which the solver tries
to find a satisfying assignment for the formula (inprocessing
is turned off when the solver solves random formulas). The
approach that the solver applies is best understood as bias-
based decimation followed by stochastic local search. The
bias-based decimation applies a Message Passing algorithm to
calculate biases for individual variables. These biases indicate
how likely it is to observe a variable assigned to one or zero
when taking into account the models of the formula. For more
information see [1]. Afterwards, a fraction of the variables
with the largest bias are assigned and unit propagation (UP) is
performed which then leads to a simplified remaining formula.
The bias calculation and the UP-based assignment of variables
with the largest bias is repeated until one of two cases occurs.
First, a model is found. In this case the solver merely outputs
the model and terminates. Second, UP runs into a conflict. In
this case the solver will undo all assignments and initializes an
SLS solver. The starting assignment for the SLS is comprised
of all the assignments made until the confilct arose as well
as random assignments to the remaining variables. From this
point onwards the SLS takes place until either a time-out is
hit or a model is found. The dimetheus solver, as it runs in
the SAT Competition 2016, is therefore an incomplete solver
that cannot detect unsatisfiability.

III. MAIN PARAMETERS

The solver is started with the two following parameters.
-formula STRING: The STRING points to the file
that contains the formula in DIMACS CNF input
format.

Proceedings of SAT Competition 2016: Solver and Benchmark Descriptions, volume B-2016-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2016. ISBN 978-951-51-2345-9.

37

-classifyInputDomain 10: This tells the classifier that
it can assume the formula to be a random formula
when determining what specific type of formula it
is.

As mentioned in the previous section, the solver will determine
an optimal parameter setting based on the provided formula-
type information. The parameter adapter will then internally
tune a wide variety of parameters that are explained in [1].
Unfortunately, it is not possible to correctly explain the abun-
dance of parameters here which is why the reader is addressed
to the given reference for details.

IV. IMPLEMENTATION DETAILS

The dimetheus solver is implemented in C. The Message
Passing algorithm that is applied to calculate the biases is an
interpolation of Belief Propagation and Survey Propagation
[1], [4]. The SLS serach follows the probSAT approach [5].

V. SAT COMPETITION 2016 SPECIFICS

The dimetheus solver was submitted to the
random SAT track. It was compiled on the StarExec
Cluster using gcc with the compile flags -std=c99
-O3 -static -fexpensive-optimizations
-flto -fwhole-program -march=native -Wall
-pedantic. The result is a 64-bit binary.

VI. AVAILABILITY AND LICENSE INFORMATION

The dimetheus solver is publicly available and can
be downloaded from https://www.gableske.net/dimetheus. The
solver is provided under the Creative-Commons Non-
Commercial No-Derivs license version 4.0.

ACKNOWLEDGMENTS

The author would like to thank Marijn Heule and Uwe
Schöning for their continuous support.

REFERENCES

[1] O. Gableske, “Sat solving with message passing,” Ph.D. dissertation, Ulm
University, Germany, May 2016.

[2] ——, “An ising model inspired extension of the product-based mp
framework for sat,” Theory and Application of Satisfiability Testing, vol.
LNCS 8561, pp. 367–383, 2014.

[3] ——, “On the interpolation of product-based message passing heuristics
for sat,” Theory and Application of Satisfiability Testing, vol. LNCS 7962,
pp. 293–308, 2013.

[4] A. Braunstein, M. Mézard, and R. Zecchina, “Survey propagation: an al-
gorithm for satisfiability,” Journal of Random Structures and Algorithms,
vol. 27, pp. 201–226, 2005.

[5] A. Balint and U. Schöning, “Choosing probability distributions for
stochastic local search and the role of make versus break,” Theory and
Application of Satisfiability Testing, vol. LNCS 7137, pp. 16–29, 2012.

38

Sequential and Parallel Glucose Hacks
Thorsten Ehlers
Kiel University
Kiel, Germany

Dirk Nowotka
Kiel University
Kiel, Germany

Abstract—This document describes the SAT solvers we sub-
mitted to the SAT Competition 2016.

I. INTRODUCTION

We submit a solver to the Glucose Hack Track. As this
seems to performed quite well on easy benchmarks in our
tests, we also submit it to the agile track. Furthermore, we
submit a parallel version of Glucose to the parallel track.

II. GLUCOSE HACK TRACK

For the glucose hack track, we applied two small, but useful
changes.

What does LBD mean if the value is large?

The literal block distance (LBD) has become one of the
most important measures for learnt clause quality [1]. How-
ever, there are different opinions about the reasons for this. We
found experimentally that for values of LBD larger than 2, a
trivial measure like clause size worked astonishingly well on
the benchmarks of the SAT competition 2015. Therefore, we
swith the clause deletion strategy, and sort clauses according
to their size. We are curious to see how this performs on this
year’s benchmarks.

A. Delete Everything!

Glucose 3.0 never deletes clauses of LBD≤ 2. Although this
appears to be a great decision in general, it may be somewhat
misleading, e.g. if a clause is learnt which subsumes an LBD2-
clause. Therefore, we seek to delete clauses if they have not
been used for a long time. This is, we simply delete clauses
if their activity drops to zero. With the standard value for cla-
decay, 0.999, this is too aggressive, therefore we increased it
to 0.9999.

B. Don’t restart too early!

In [2], Audemard et. al suggest to block restarts if the solver
seems to be close to finding a SAT-answer. This decision
is based on the average trail size on which conflicts occur.
On some benchmarks, this does not work well, if many unit
clauses are found at decision level 0. Therefore, we adjust
this measure, and consider the difference between trail size
and trail size on decision level 0, i.e. “trail.size()-trail lim[0]”.
This lead to a significant improvement on satisfiable formulas
in our experiments.

III. PARALLEL TRACK

We submit a glucose-hack to the parallel track. In con-
trast to our massively-parallel solver TopoSAT [3], this is
a way simpler solver. Similar to Plingeling, we organise
our processes such that one of them organises the search,
wheras all others peform a portfolio search. Learnt clauses
are shared among all solver, if their LBD is at most 5, and
the size at most 100 literals. As the “master”-process tends
to be idle for small numbers of processes, we apply some
simple inprocessing-techniques as unhiding and failed literal
branching here. Furthermore, we implement an option to split
the solvers in two groups, one which is tuned for UNSAT
instances, and the other one for SAT instances. For SAT
instances, we apply the above mentioned adjustment of the
restart blocking technique of glucose. Furthermore, we only
import clauses of LBD at most 2. In the UNSAT case, the
solvers import all clauses they receive.

IV. AVAILABILITY

The solver sources are submitted, and will become publicly
available after the submission deadline.

REFERENCES

[1] G. Audemard and L. Simon, “Predicting learnt clauses quality in modern
SAT solvers,” in IJCAI 2009, Proceedings of the 21st International Joint
Conference on Artificial Intelligence, Pasadena, California, USA, July
11-17, 2009, C. Boutilier, Ed., 2009, pp. 399–404.

[2] ——, “Refining restarts strategies for SAT and UNSAT,” in Principles and
Practice of Constraint Programming - 18th International Conference, CP
2012, Québec City, QC, Canada, October 8-12, 2012. Proceedings, ser.
Lecture Notes in Computer Science, M. Milano, Ed., vol. 7514. Springer,
2012, pp. 118–126.

[3] T. Ehlers, D. Nowotka, and P. Sieweck, “Communication in massively-
parallel SAT solving,” in 26th IEEE International Conference on Tools
with Artificial Intelligence, ICTAI 2014, Limassol, Cyprus, November 10-
12, 2014. IEEE Computer Society, 2014, pp. 709–716.

Proceedings of SAT Competition 2016: Solver and Benchmark Descriptions, volume B-2016-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2016. ISBN 978-951-51-2345-9.

39

Glucose and Syrup in the SAT’16

Gilles Audemard
Univ. Lille-Nord de France

CRIL/CNRS UMR8188
audemard@cril.fr

Laurent Simon
Univ. Bordeaux

LABRI
lsimon@labri.fr

Abstract—Glucose is a CDCL solver heavily based on Minisat,
with a special focus on removing useless clauses as soon as
possible, and an original restart scheme. Syrup is the parallel
version of Glucose, with a lazy clauses exchanges policy. In the
2015 version of these solvers, we proposed a genuine version and
an “adaptative” version of each of these solvers. The adaptative
versions use a set of particular parameters and techniques to
adress some outliers benchmarks that can be found in typical
competitions sets.

I. INTRODUCTION

Since 2009, Glucose enters SAT competitions/races [1],
[2]... Glucose is based on minisat [3] and depends heavily on
the concept of Literal Block Distance, a measure that is able to
estimate the quality of learnt clauses [4]. Indeed, learnt clauses
removal, restarts, small modifications of the VSIDS heuristic
are based on the concept of LBD. The core engine of Glucose
(and Syrup) is 7 years old.

This year Glucose continue to adapt its strategy depending
the kind of instances solved. Furthermore, we also propose a
new phase saving strategy that focus on conflicting variables
when restarting.

II. ADAPTATIVE SOLVER

Selected benchmarks of the SAT competition come from
many distinct domains. For example, in 2014, industrial
benchmarks can be assigned in (at least) nine families like
argumentation, io, crypto, diagnosis... It seems unrealistic to
design one strategy that will be efficient on all the benchmarks.
For instance, Glucose is known to perform better on UNSAT
than on SAT instances. On the other side, it is known that long
runs (without restarts) are efficient in case of some families of
SAT instances.

A. Adaptation in Glucose

A number of recent solvers includes, directly or not,
automatic adaptations to benchmarks. In our approach, we used
our set of experimental data to classify some strategies adapted
to outliers benchmarks. We took 2632 benchmarks from all the
competition, and selected only 1164 interesting ones (bench-
marks that needed at least one minute to be solved). We ran
a set of Glucose “hacks” on this set of problems and tried
to detect some simple measures that identified families of
problems. We tried to consider only some “semantic” measure
instead of syntactic measures on the initial formula. Glucose
is run during 10,000 conflicts with its default parameters, then
we may switch to some particular behavior if our indicators

say so. We searched for simplicity. We identifed 4 outliers
signatures.

• The number of decisions divided by the number of
conflicts. This allows us to identify 123 problems over
the 1164, containing bivium, hitag, gss, homer, ctl and
longmult series of problems. If this number is low, we
switch the reduction learnt clauses strategy by using
the one proposed by Chanseok Oh [5].

• The number of conflicts without decision (when a
conflict is directly reached after a conflict analysis). If
this number is low, this is typically a nossum crypto
problem. We identified 66 problems from the 1164
ones like that. For these problems, we used a Luby
restart policy, and a much less agressive var decay.
In the contrary, if this number is important, then we
use the Chanseok Oh policy [5] to reduce the learnt
clause database, a much less agressive var decay, and
a limited randomization on the first descent after each
restart [6]. In this last case, we typically identified
vmpc problems.

• The number of “pure” glue clauses (glue clauses of
size > 2). A large number is a typical signature of
SAT dat problems (we identified 31 of them with that,
over the 1164). In this case, we observed that a much
more aggressive var decay may pay.

We observed an important increasing of Glucose perfor-
mances on the last competitions by using this. In the SAT
competition 2014, among the 300 instances of the application
category, glucose adjust its parameters on 58 instances and
benefits are clears.

III. PLAYING WITH THE PHASE

Phase saving is an essential component of a SAT solver.
We refine this notion by saving in a different data-structure
the phase of propagated variables that effectively participate
to conflict. Then, on restart, until the next conflict, we use
this polarity. The main goal is to reach a conflict as soon as
possible. Combined with the online modifications of Glucose,
this tecnhique reveals efficient [7].

IV. SPECIFICITIES OF THE PARALLEL VERSION

We use the 24 cores available this year. Adaptive versions
of Glucose is enabled on half of cores.

Proceedings of SAT Competition 2016: Solver and Benchmark Descriptions, volume B-2016-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2016. ISBN 978-951-51-2345-9.

40

V. INCREMENTAL TRACK

Glucose also entered the incremental part of the SAT-Race.
In this case, it uses dedicated data-structures and techniques
introduced in [8]. Unfortunately, in the incremental track, the
rules were not in favor of our specialized data structure. It
was not possible to know the initial variables and the variables
added for the search (commonly called the “assumptions”, for
example variables added to simulate clauses removals). Thus,
all the strategies proposed in [8] are useless here.

VI. ALGORITHM AND IMPLEMENTATION DETAILS

Glucose uses a special data structure for binary clauses, and
a very limited self-subsumption reduction with binary clauses,
when the learnt clause is of interesting LBD.

REFERENCES

[1] G. Audemard and L. Simon, “Glucose: a solver that predicts learnt
clauses quality,” SAT Competition, pp. 7–8, 2009.

[2] ——, “Glucose 2.3 in the sat 2013 competition,” Proceedings of SAT
Competition, pp. 42–43, 2013.

[3] N. Eén and N. Sörensson, “An extensible SAT-solver,” in SAT, 2003, pp.
502–518.

[4] G. Audemard and L. Simon, “Predicting learnt clauses quality in modern
sat solvers,” in IJCAI, 2009.

[5] C. Oh, “gluh: Modified version of gluclose 2.1,” SAT COMPETITION
2013, p. 48, 2013.

[6] J. Chen, “A bit-encoding phase selection strategy for satisfiability
solvers,” in Theory and Applications of Models of Computation - 11th
Annual Conference, TAMC 2014, Chennai, India, April 11-13, 2014.
Proceedings, 2014, pp. 158–167.

[7] G. Audemard and L. Simon, “Extreme Cases in SAT,” in 19th In-
ternational Conference on Theory and Applications of Satisfiability
Testing(SAT’13), 2013, p. To appear.

[8] G. Audemard, J.-M. Lagniez, and L. Simon, “Improving glucose for
incremental sat solving with assumptions: Application to mus extrac-
tion,” in 16th International Conference on Theory and Applications of
Satisfiability Testing(SAT’13), 2013, pp. 309–317.

41

GlucosePLE
Aolong Zha

Kyushu University, Japan
aolong.zha@inf.kyushu-u.ac.jp

Abstract—GlucosePLE is a CDCL solver heavily based on
glucose 3.0, with a special focus on the strategy of pure literal
elimination. Frequent execution of pure literal extraction would
lead to an excessive computing cost. For solving this problem,
we define a dynamic adjustment approach that can optimize the
execution frequency of our algorithm.

I. INTRODUCTION

Glucose [1] is an open-source CDCL-based SAT solver [2]
[3] that has achieved numerous excellent performance in past
SAT Competition. In the major solving procedure of glucose
based solvers, variable assignment essentially happens in two
different situations: the one consists of the identification of unit
clauses and the creation of the associated implications which
carries out Boolean Constraint Propagation (BCP); the other
one is decision assignment which picks an unassigned literal
by a decision strategy, called Variable State Independent De-
caying Sum (VSIDS) heuristic. With defining p() as the priority
evaluation of variable assignment, we can obviously know that
p(BCP) > p(VSIDS). We consider that pure literal elimination
(PLE) [4] as the third situation of variable assignment which
has a higher priority than decision assignment, but lower than
BCP. In general, we have p(BCP) > p(PLE) > p(VSIDS).

II. MAIN TECHNIQUES

With a standard structure of occurrence vector for each
literal, which is recorded by the ID of clauses where the
literal occurs, we introduce an algorithm that can be easily
implemented to extract the pure literals within linear time in
number of variables.

We perform pure literal extraction for variable decision. If
we succeed in extracting pure literals, we manipulate them
as decision variables and give each literal a value of 1. We
introduce our algorithm into glucose 3.0. The extended solver
carries out PLE by setting a new decision level for each of
extracted pure literals, then skip the VSIDS heuristic and run
the decision assignment. However, we are well aware of that
pure literal extraction will keep a high execution frequency in
solving process, which might reduce the efficiency of solving.

III. DYNAMIC ADJUSTMENT APPROACH

We define an approach that can effectively utilize the
features of instance and current states to set an optimal
frequency. Assume that in unit time (∆time) the Decision
Level increases (∆DecisionLvl) by 100, without considering
the circumstances under backtracking [5], we should make
the extraction frequency to be less than or equal to 100.
We let the Difficulty Coefficient be (nVars ∗ nClauses), and

the Computing Coefficient be (∆propagation / ∆time). The
dynamic adjustment approach sets an optimal frequency as
follows:

frequency =
Computing Coefficient
Difficulty Coefficient

∗∆DecisionLvl

=
(∆propagation/∆time)

(nV ars ∗ nClauses)
∗∆DecisionLvl

In this competition, we set unit time to one second
(∆time = 1).

ACKNOWLEDGMENT

I wish to express my gratitude to R. Hasegawa, H. Fujita,
M. Koshimura for valuable advices and comments.

REFERENCES

[1] G. Audemard and L. Simon, “Predicting learnt clauses quality in modern
sat solvers.” in IJCAI, vol. 9, 2009, pp. 399–404.

[2] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik,
“Chaff: Engineering an efficient sat solver,” in Proceedings of the 38th
annual Design Automation Conference. ACM, 2001, pp. 530–535.

[3] N. Eén and N. Sörensson, “An extensible sat-solver,” in Theory and
applications of satisfiability testing. Springer, 2004, pp. 502–518.

[4] J. Johannsen, “The complexity of pure literal elimination,” in SAT 2005.
Springer, 2006, pp. 89–95.

[5] A. Biere, M. Heule, and H. van Maaren, Handbook of satisfiability. ios
press, 2009, vol. 185.

Proceedings of SAT Competition 2016: Solver and Benchmark Descriptions, volume B-2016-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2016. ISBN 978-951-51-2345-9.

42

GLUEM INI SAT 2.2.10-81
Hidetomo Nabeshima

University of Yamanashi, JAPAN
Koji Iwanuma

University of Yamanashi, JAPAN
Katsumi Inoue

National Institute of Informatics, JAPAN

Abstract—GLUEM INI SAT 2.2.10-81 is a SAT solver based on
M INI SAT 2.2 and the LBD evaluation criteria of learned clauses.
New features of 2.2.10-81 are an inprocessing technique based
on at-most-one constraints and the support of the UNSAT
certification in binary DRAT format.

I. I NTRODUCTION

GLUEM INI SAT is a SAT solver based onM INI SAT 2.2 [1]
and the LBD evaluation criteria of learned clauses [2]. One
of the feature ofGLUEM INI SAT is the on-the-fly lazy simpli-
fication techniques based on binary resolvents [3], which are
inprocessing techniques and are executed frequently during the
search process of the satisfiability checking. These techniques
try to identify the truth value of variables and to detect
equivalent literals, and to simplify (learned) clauses by binary
self-subsuming resolution. These were introduced from 2.2.7
and some of them are refined and extended in 2.2.10.

The version 2.2.10 was submitted to SAT Race 2015 [4].
New features of 2.2.10-81 are an inprocessing technique based
on at-most-one constraints and the support of the UNSAT
certification in binary DRAT format.

II. M AIN TECHNIQUES

A feature of 2.2.10-81 is a simplification technique based
on at-most-one constraints which are automatically extracted
by two ways. First is the extraction of pairwise encoding
of at-most-one constraints. This extraction is executed at the
end of preprocessing with the help of an efficient maximal
clique enumerator called MACE [5]. Second is the semantic
extraction based on binary resolvents and executed periodi-
cally during solving. For example, if we havel1 + l2 + l3 ≤ 1
and the binary implications∀i(¬l4 → li) are detected in
the process of unit propagations, then we can extend it to
l1 + l2 + l3 + l4 ≤ 1. The extracted at-most-one constraints
are used for the identification of the truth value of variables.
For example, if we havel1 + l2 + l3 + l4 ≤ 1 and the binary
resolventl1 ∨ l2 is detected, thenl3 = l4 = falseholds.

III. SAT COMPETITION 2016 SPECIFICS

GLUEM INI SAT 2.2.10-81 is submitted to Main, Agile and
No-limits tracks.

• Main track : To reduce the generation and verification
cost of UNSAT proof, every lazy simplification tech-
niques [3] and the simplification technique based on at-
most-one constraints are disabled.

• Agile track : The incremental variable elimination [4]
and the simplification technique based on at-most-one

constraints are disabled since sometimes these take time
compared with other simplification techniques.

• No-limits track : Every techniques are enabled.

IV. AVAILABILITY

GLUEM INI SAT is developed based onM INI SAT 2.2. Per-
missions and copyrights ofGLUEM INI SAT are exactly the
same asM INI SAT. GLUEM INI SAT can be downloaded at
http://glueminisat.nabelab.org/. MACE is available for only
academic use and refer [5] for details.

ACKNOWLEDGMENT

This research is supported in part by Grant-in-Aid for
Scientific Research (No. 26330248 and 16H02803) from Japan
Society for the Promotion of Science and by Kayamori Foun-
dation of Informational Science Advancement.

REFERENCES

[1] N. Eén and N. S̈orensson, “An extensible SAT-solver,” inProceedings
of the 6th International Conference on Theory and Applications of
Satisfiability Testing (SAT 2003), LNCS 2919, 2003, pp. 502–518.

[2] G. Audemard and L. Simon, “Predicting learnt clauses quality in modern
SAT solvers,” inProceedings of IJCAI-2009, 2009, pp. 399–404.

[3] H. Nabeshima, K. Iwanuma, and K. Inoue, “On-the-fly lazy clause
simplification based on binary resolvents,” inICTAI. IEEE, 2013, pp.
987–995.

[4] ——, “ GLUEM INI SAT 2.2.10 & 2.2.10-5,” 2015, SAT Race 2015 Solver
Description.

[5] T. Uno, “MACE: Maximal clique enumerator, ver 2.0,” http://research.
nii.ac.jp/∼uno/code/mace.html.

Proceedings of SAT Competition 2016: Solver and Benchmark Descriptions, volume B-2016-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2016. ISBN 978-951-51-2345-9.

43

Splatz, Lingeling, Plingeling, Treengeling, YalSAT
Entering the SAT Competition 2016

Armin Biere
Institute for Formal Models and Verification

Johannes Kepler University Linz

Abstract—This paper serves as solver description for our new
SAT solver Splatz and further documents the versions of our
other solvers submitted to the SAT Competition 2016, which are
Lingeling, its two parallel variants Treengeling and Plingeling,
and our local search solver YalSAT.

LINGELING

Our sequential solver Lingeling version bbc was submitted
to all but the RandomSAT track. For the Main track we linked
it with our Druplig library to print proof traces. For the other
tracks the library was not included. This results in two different
solvers according to the competition rules. In essence the same
effect could have been achieved by changing command line
options, but would result in a small overhead for those checks
that skip trace generation.

This version bbc of the submission is in essence the same as
version bal of Lingeling submitted to the SAT Race 2015 last
year. It incorporates insights from [1], [2] and is described in
the corresponding SAT Race 2015 solver description [3]. There
is a small improvement in cardinality reasoning. Another
new technique, which resets the reduce interval is disabled.
The same applies to restart blocking and parameter selection
through bucket classification, using a k-means classifier, which
all do not seem to pay off, and are disabled.

As Lingeling has many preprocessing and inprocessing
algorithms implemented we expect certain benchmarks to be
uniquely solved by it. Because of this feature the amount of
time Lingeling is allowed to spend in preprocessing and inpro-
cessing is high. As a consequence this high effort parameter
setting used in the submission may not work well for the Agile
track even though it could be tuned to do so. It should be
beneficial for long runs in the other tracks though.

Since proof trace generation through Druplig is still not
completely implemented for all preprocessing and inprocess-
ing techniques yet, only a subset of techniques is enabled in
the Main track. For instance cardinality and XOR reasoning
are disabled in the Main track.

PLINGELING, TREENGELING

The parallel solvers Plingeling and Treengeling are based
on Lingeling and use exactly the same version bbc as the
submitted sequential version. The front-ends have not changed.

Further, as before, the submitted Treengeling solver links
to YalSAT version 03r, which is run during inprocessing in a

Supported by FWF, NFN Grant S11408-N23 (RiSE).

small fraction of parallel Lingeling instances. This is expected
to be beneficial for crafted instances used in past competitions.

YALSAT

To the RandomSAT track we submitted our sequential
local search solver YalSAT version 03r. Even though we
experimented with focusing on eagerly flipping break zero
variables, the submitted version 03r does not incorporate
algorithmic nor heuristic changes and should behave as the
previous version 03l used in 2014 [4].

Since YalSAT solves some hard satisfiable crafted but
also application instances used in past competitions, we also
submitted it to the other tracks (Agile,Main,NoLimit). As
YalSAT does not use any preprocessing nor any portfolio
style combination with a CDCL solver, we do not expect top-
class performance in the RandomSAT track, compared to other
participating solvers.

The main purpose of submitting YalSAT is to see whether
a local search solver can solve some interesting non-random
benchmarks, for which other solvers have a hard time to solve
them and on the other hand determine its base performance
for the random track.

SPLATZ

First, it is pretty challenging to make changes to Lingeling
and thus new ideas are hard to add and explore. Further, as
in SAT solving, we argue that restarts are valuable and might
trigger new ideas. Finally, it is important to consolidate already
existing ideas in order to understand their effectiveness.

This lead to the development of our new SAT solver Splatz,
with version 03v submitted to the competition. This solver
is developed from scratch in C++. It is a sequential stand-
alone SAT solver, with static data-structures, non-reentrant and
without API nor incremental usage. However, it is much better
documented than say Lingeling and contains many cross-
references and explanations.

More specifically, we wanted to implement a new solver,
which first has a slightly less optimized, but easier to change
clause storage and watching mechanism than Lingeling. This
enabled us to implement an inprocessing version of blocked
clause decomposition and SAT sweeping, which was left as
future work in [5].

The decision heuristics uses stamping based VMTF instead
of VSIDS as proposed in [1]. Restart scheduling follows [2].

Proceedings of SAT Competition 2016: Solver and Benchmark Descriptions, volume B-2016-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2016. ISBN 978-951-51-2345-9.

44

As in the submitted version of Lingeling we further replaced
Glucose style restart blocking by delaying restarts, which
works as follows. Assume a restart is supposed to occur.
This is called “forced” in Glucose terminology, and according
to [2] is triggered if the fast moving glucose level average is
above the slow moving average. If in this situation the current
decision level is smaller than 50% of the (exponential moving)
backjump level average, then restarting is delayed.

We also made the subsumption phase, usually interleaved
with bounded variable elimination [6], more efficient by incor-
porating ideas from [7]. This allows to apply subsumption and
shrinking to learned clauses as well. The major benefit is that
this in turn allows to remove subsumed (and shrink) “sticky”
clauses. As in Glucose [8] these sticky clauses, or low glucose
level (LBD) clauses, are clauses which are never removed
during learned clause cleaning (also called “reduction”), for
instance clauses of glucose level 2. In MiniSAT [9] subsumed
learned clauses become inactive and thus by activity based
clause cleaning get removed automatically.

On the other side we realized that using a static limit on
the glucose level to determine which clauses are sticky, can be
replaced by a dynamic limit, by measuring the average glucose
level and size of clauses resolved during conflict analysis.
Clauses are considered important and become sticky if their
glucose level and size is below these measured averages.

This new solver is lacking preprocessing and inprocessing
techniques implemented in Lingeling, which we consider to
be useful and eventually should be added. Thus the perfor-
mance of Splatz is not expected to match the performance of
Lingeling yet.

A (probably partial) list of implemented data-structures and
algorithms is provided here:

• arena based memory allocation for clauses and watchers
• blocking literals (BLIT)
• special handling of binary clause watches
• literal-move-to-front watch replacement (LMTF)
• learned clause minimization
• on-the-fly hyper-binary resolution (HBR)
• learning additional units and binary clauses
• on-the-fly self-subsuming resolution (OTFS)
• decision only clauses (DECO)
• failed literal probing on binary implication graph roots
• eager recent learned clause subsumption
• stamping based VMTF instead of VSIDS
• subsumption for both irredundant and learned clauses
• blocked clause decomposition (BCD) enabling . . .
• . . . SAT sweeping for backbones and equivalences
• equivalent literal substitution (ELS)
• bounded variable elimination (BVE)
• blocked clause elimination (BCE)
• dynamic sticky clause reduction
• exponential moving average based restart scheduling
• delaying restarts
• trail reuse

For details about these and other ideas implemented in the
solver, which due to space constraints can not all be discussed
nor referenced here, we recommend to consult the source code
and its documentation with more references and explanations.

LICENSE

The default license of YalSAT, Lingeling, Plingeling and
Treengeling did not change. It allows the use of these solvers
for research and evaluation but not in a commercial setting
nor as part of a competition submission without explicit
permission by the copyright holder. For the new solver Splatz
we use an MIT style license which is far less restrictive.

REFERENCES

[1] A. Biere and A. Fröhlich, “Evaluating CDCL variable scoring schemes,”
in Theory and Applications of Satisfiability Testing - SAT 2015 - 18th
International Conference, Austin, TX, USA, September 24-27, 2015,
Proceedings, ser. Lecture Notes in Computer Science, M. Heule and
S. Weaver, Eds., vol. 9340. Springer, 2015, pp. 405–422.

[2] ——, “Evaluating CDCL restart schemes,” in Proceedings POS-15. Sixth
Pragmatics of SAT workshop, 2015, to be published.

[3] A. Biere, “Lingeling and friends entering the SAT Race 2015,” Johannes
Kepler University, Linz, Austria, FMV Report Series Technical Report
15/2, April 2015.

[4] ——, “Yet another local search solver and Lingeling and friends entering
the SAT Competition 2014,” in Proc. of SAT Competition 2014, ser.
Department of Computer Science Series of Publications B, A. Belov,
M. J. H. Heule, and M. Järvisalo, Eds., vol. B-2014-2. University of
Helsinki, 2014, pp. 39–40.

[5] M. Heule and A. Biere, “Blocked clause decomposition,” in Logic for
Programming, Artificial Intelligence, and Reasoning - 19th International
Conference, LPAR-19, Stellenbosch, South Africa, December 14-19, 2013.
Proceedings, ser. Lecture Notes in Computer Science, K. L. McMillan,
A. Middeldorp, and A. Voronkov, Eds., vol. 8312. Springer, 2013, pp.
423–438.

[6] N. Eén and A. Biere, “Effective preprocessing in SAT through variable
and clause elimination,” in Theory and Applications of Satisfiability
Testing, 8th International Conference, SAT 2005, St. Andrews, UK, June
19-23, 2005, Proceedings, ser. Lecture Notes in Computer Science,
F. Bacchus and T. Walsh, Eds., vol. 3569. Springer, 2005, pp. 61–75.

[7] R. J. Bayardo and B. Panda, “Fast algorithms for finding extremal sets,”
in Proceedings of the Eleventh SIAM International Conference on Data
Mining, SDM 2011, April 28-30, 2011, Mesa, Arizona, USA. SIAM /
Omnipress, 2011, pp. 25–34.

[8] G. Audemard and L. Simon, “Predicting learnt clauses quality in modern
SAT solvers,” in IJCAI 2009, Proceedings of the 21st International Joint
Conference on Artificial Intelligence, Pasadena, California, USA, July
11-17, 2009, C. Boutilier, Ed., 2009, pp. 399–404.

[9] N. Eén and N. Sörensson, “An extensible sat-solver,” in Theory and
Applications of Satisfiability Testing, 6th International Conference, SAT
2003. Santa Margherita Ligure, Italy, May 5-8, 2003 Selected Revised
Papers, ser. Lecture Notes in Computer Science, E. Giunchiglia and
A. Tacchella, Eds., vol. 2919. Springer, 2003, pp. 502–518.

45

StocBCD: a Stochastic Local Search solver Based
on Blocked Clause Decomposition

Jingchao Chen
School of Informatics, Donghua University

2999 North Renmin Road, Songjiang District, Shanghai 201620, P. R. China
chen-jc@dhu.edu.cn

Abstract—StocBCD is a simple stochastic local search (SLS)
solver. This solver sets an initial assignment of the input formula
according to blocked sets obtained blocked clause decomposition
(BCD). Its search is based on probability distributions similar to
probSAT [2]. In addition, we speed up the search progress by
block flipping heuristic.

I. INTRODUCTION

The StocBCD solver consists mainly of three phases such
as initialization, local search, block flipping. The initialization
phase sets an initial assignment for the formula to be solved.
The local search phase flips a variable randomly selected from
unsatisfied clauses according to a probability distribution. The
local search is trapped often in a deep local minima. To escape
from such a local minima, we set up the block flipping phase.

II. INITIALIZATION TECHNIQUES

Many stochastic local search (SLS) solvers start with a
random assignment. However, StocBCD does not like this.
It sets up an assignment in the order of blocked clauses. The
notion about blocked clauses may be described as follows.

Given a CNF formula F , a clause C, a literal l ∈ C is said
to block C w.r.t. F if (i) C is a tautology w.r.t. l, or (ii) for
each clause C ′ ∈ F with l̄ ∈ C ′, C ′⊗lC is a tautology. In
this case, the clause C is called a blocked clause.

Any CNF formula can be decomposed into two blocked
subsets such that both can be eliminated into a empty set by
blocked clause elimination (BCE). On the other hand, any
blocked set is satisfiable. Based on the two properties, we
decide to use blocked clause decomposition (BCD) technique
to do the initialization. At first, we decompose the formula
into two blocked subsets: large subset L and small subset S,
which is done by the LessInterfereBCD algorithm [1] recently
proposed. Then we append S to L. In the reverse order of
clause elimination obtained by BCE, we generate a number
for each blocked clause. The number of the clause eliminated
before is larger than the number of one eliminated after. The
number of a clause in L precedes that of a clause in S. Under
such assumption, let L ∧ S = C1 ∧ C2 ∧ · · · ∧ Cn, where
Ci (i = 1, 2, . . . , n) is a clause. According to this order of
clauses, an initial assignment (which is assumed to be stored
in array value) is set as follows.

Algorithm initialize assignment
for i = 1 to n do

for each literal x in clause Ci do
if value[x] is undefined then value[x]← 1

III. LOCAL SEARCH TECHNIQUES

Here we recall briefly the local search technique of the
probSAT solver [3]. ProbSAT is a SLS solver that uses only
the break values of a variable. It flips variable v according
to probability f(v,a)∑

x∈UC
f(x,a)

, where a denotes the current

assignment, UC is the set of unsatisfiable clauses, and f(x, a)
is a probability distribution function, which is defined as an
exponential or a polynomial shape as shown below.

f(x,a) = (cb)
−break(x,a)

f(x,a) = (ϵ + break(x,a))−cb

where break(x,a) denotes the number of clauses which be-
come false by flipping variable x under the current assignment
a. StocBCD is also based on probability f(v,a)∑

x∈UC
f(x,a)

to

flip variable v. However, StocBCD uses different f(x, a). In
details, its f(x, a) is defined as

f(x,a) = (cb)
−break(x,a) × blocking(x)

f(x,a) = (ϵ + break(x,a))−cb × blocking(x)

where

blocking(x) =





1 x is not a blocking literal
0.92 x ∈ L and x ∈ S
1.2 x ∈ L or x ∈ S

Function blocking(x) is actually a weight function, which
is set to larger value if x is a blocking literal in only one
blocked subset, and smaller value if x is a blocking literal in
both blocked subsets. This may be based on the fact that the
blocking literal that occurs in only one blocked subset should
be a critical literal, and more important than the other literals.

IV. PARAMETER DYNAMIC SETTINGS

Like probSAT, StocBCD sets ϵ to 0.9. However, parameter
cb setting is different. ProbSAT sets up statically parameter
cb, while stocBCD does dynamically it. The following table
shows dynamic formulas for parameter cb.

Proceedings of SAT Competition 2016: Solver and Benchmark Descriptions, volume B-2016-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2016. ISBN 978-951-51-2345-9.

46

s cb[0] cb[t] ϵ
3 2.30 2.3-0.085t 0.9
4 2.95 3.05-0.0625t -
5 3.88 3.95-0.075t -
6 4.831 4.831+0.092t -
7 5.825 6.2-0.205t -

≥ 8 5.4 5.8-0.15t -

where s is the size of the longest clause in CNF formula F .
Let #flip denote the total number of flipping. When #flip <
5 × 108, parameter cb is set to cb[0]. Otherwise, cb is set to
cb[t], where t = #flip

2×108 mod 4. The dynamic change period is
4.

V. BLOCK FLIPPING HEURISTIC

Here we present a block flipping heuristic to escape from
local minima. When the total number of unsatisfied clauses is
one, we generate n bit patterns every 12 variables. In general,
n ≤ 100. Let D(a, k, p) denote the difference between the
number of unsatisfied clauses under assignment a and the
number of unsatisfied clauses when the value of the (k + i)-th
variable become the i-th bit value of p, where 1 ≤ i ≤ 12,
and the values of the remaining variables are consistent with
assignment a. The algorithm for generating n closest bit
patterns may be described as follows.

Algorithm build bit pattern
for i = 0 to #var

12
do

for p = 0 to 4096 do
if p < n then pat[i][p]← p
else if D(a, 12i, p) < max{D(a, 12i, pat[i][j])}

then Let D(a, 12i, pat[i][k]) is max
pat[i][k]← p

Using pattern pat, every 3 × 107 flips, we carry out block
flipping according to the following algorithm.

Algorithm block flip(k)
for i = 0 to #var

12
do

p← pat[i][k]
for j = 0 to 12 do

if value[v(12i+j)] ̸= j-th bit of p
then flip variable v(12i+j)

VI. CONCLUSIONS

StocBCD adopted a few new heuristics, including BCD-
based initialization, BCD-based probability distribution com-
putation, block flipping, dynamic parameter setting etc. Based
on our experimental observation, these new techniques were
efficient. However, it is not clear whether they are suitable for
the benchmarks of the SAT competition 2016.

REFERENCES

[1] J.C. Chen: Fast Blocked Clause Decomposition with High Quality, 2015,
http://arxiv.org/abs/1507.00459

[2] A. Balint, U. Schning: Choosing Probability Distributions for Stochastic
Local Search and the Role of Make versus Break Lecture Notes in
Computer Science, 2012, Volume 7317, Theory and Applications of
Satisfiability Testing - SAT 2012, pp. 16-29

[3] A. Balint, U. Schning: ProbSAT and pprobSAT, Proceedings of the SAT
Competition 2014, pp. 37–38.

47

Improving abcdSAT by At-Least-One Recently
Used Clause Management Strategy

Jingchao Chen
School of Informatics, Donghua University

2999 North Renmin Road, Songjiang District, Shanghai 201620, P. R. China
chen-jc@dhu.edu.cn

Abstract—We improve further the 2015 version of abcdSAT
by various heuristics such as at-least-one recently used strategy,
learnt clause database approximation reduction etc. Based on the
requirement of different tracks at the SAT Competition 2016,
we develop three versions of abcdSAT: drup, inc and lim, which
participate in the competition of main (agile), incremental library
and no-limit track, respectively.

I. INTRODUCTION

The abcdSAT solver submitted to the SAT Competition
2016 is the improved version of abcdSAT 2015 [1], which
are built on the top of Glucose 2.3 [6], [7]. Here we provide
three versions of abcdSAT: drup, inc and lim, which are
submitted to main (agile) track, incremental library track
and no-limit track, respectively. The main techniques use by
the three versions include at-least-one recently used strategy,
learnt clause database approximation reduction, recursive s-
plitting solving, decision variable selection based on blocked
clause decomposition [2], [3], bit-encoding phase selection [4],
simplification such as lifting, probing, distillation, elimination,
hyper binary resolution etc. Of course, all the simplification
techniques used here are the existing techniques, so we will
omit the description on them.

II. AT-LEAST-ONE RECENTLY USED STRATEGY

In the search process of CDCL (Conflict Driven, Clause
Learning) solvers, the learnt clause database is required to
be maintained. Based on our experimental observation, the
clause database maintenance is actually similar to cache re-
placement in CPU cache management or page replacement in
a computer operating system. There are many cache (page)
replacement algorithms. For example, Least Recently Used
(LRU), Most Recently Used (MRU), Pseudo-LRU (PLRU),
Least-Frequently Used (LFU), Second Chance FIFO, Random
Replacement (RR), Not Recently Used (NRU) [9] etc. Our
At-Least-One Recently Used (ALORU) algorithm is similar
to NRU page replacement algorithm, but different from the
clause freezing mechanism proposed by Audemard et al [8].
ALORU favours keeping learnt clauses in database that have
been recently used at least one time. If a learnt clause has not
so far involved in any conflict analysis since it was generated,
it will be discarded first. Implementing ALORU is very simple.
When a conflict clause (called also learnt clause) is generated,
its LBD (Literal Block Distance, for its definition, see [7]) is
usually set to the number of different decision levels involved

in it. However, ALORU sets the initial LBD of a conflict
clause to +∞, not actual current LBD. In details, in the
search procedure, ALORU replaces “setLBD(nblevels)” with
“setLBD(0x3fffffff)”. Since any LBD in real instances that
can be solved never exceeds 0x3fffffff, we denote +∞ with
0x3fffffff. If a learnt clause involves in a conflict analysis, the
procedure for conflict analysis sets its LBD to the actual value.

III. LEARNT CLAUSE DATABASE APPROXIMATION
REDUCTION

The target of learnt clause database reduction is two fold:
remove useless clauses and avoid the expansion of database.
Almost all the existing reduction algorithms in CDCL solvers
are to sort learnt clauses according to the score (e.g. LBD)
of clauses, then remove a given number of clauses in the
sorted order. This can be viewed as exact reduction. Our
approximation reduction is different from the exact reduction.
It has no sorting, and replaces sorting with selection. In details,
our approximation reduction finds firstly the clause with the
k-th smallest (or largest) score, where k is the number of
clauses to be removed. Secondly, it removes k clauses with
the score less than or equal to the k-th smallest score. Notice,
the clauses with the score equal to that of the k-th clause are
not often unique. And the clauses with the score less than to
the k-th smallest score are not necessarily removed. Therefore,
the parameter k is an approximation value or estimate, not
exact. Due to this reason, we call reduction implemented by
finding the k-th item approximation reduction. Here we choose
QUICKSELECT or Hoare’s FIND algorithm [10] to find the
k-th item.

If all database reductions are done in this approximation
way, solving is not the most efficient. Therefore, we apply the
approximation reduction when the number of conflicts is larger
than 300000 for special CNF instances. In the other cases, we
apply still the exact approximation.

IV. DYNAMIC CORE AND LOCAL LEARNT CLAUSE
MANAGEMENT

Like SWDiA5BY [11], glue alt classifies also learnt clauses
into two categories: core and local. However, the classification
of SWDiA5BY is static, while our classification is dynamic.
In SWDiA5BY, the maximum LBD of core learnt clauses is
fixed to a constant 5. However, in abcdSAT, the maximum
LBD of core learnt clauses is not fixed. AbcdSAT divides

Proceedings of SAT Competition 2016: Solver and Benchmark Descriptions, volume B-2016-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2016. ISBN 978-951-51-2345-9.

48

the whole search process two stages. When the number of
conflicts is less than 2×106, it is considered as the first stage.
Otherwise, it is considered as the second stage. In the first
stage, the maximum LBD of core learnt clauses is limited to
2. At this stage, core learnt clauses are kept indefinitely, unless
eliminated when they are satisfied. In the second stage, the
maximum LBD of core learnt clauses is limited to 5. This stage
does not ensure that core learnt clauses are kept indefinitely.
When local learnt clause database is reduced, we move 5000
core learnt clauses with LBD larger than or equal to 3 to local
learnt clause database.

Whether the first or second stage, the number of local learnt
clauses is maintained roughly between 9000 and 24000. That
is, once the number of local learnt clauses reaches a upper
bound, say 18000, abcdSAT will halve the number of the
clauses. And the clauses with the smallest activity scores are
removed first. The computation of clause activity scores here
is consistent with MiniSat.

V. RECURSIVE SPLITTING SOLVING

Any CNF formula F can be split into two subproblems
F ∪ {x} and F ∪ {¬x}, where x is a variable in F . We
can obtain the solution the original problem by solving each
subproblem. Solving subproblem in the same way results in
a recursive solving algorithm. In general, we limit recursive
depth to 10. Here is the pseudo-code of this recursive solving
framework.

Algorithm SplitSolve(F , level)
if level ≥ 10 then return abcdSAT(F , 2× 106)
⟨ret,F ′⟩ ← abcdSAT(F , 500)
if ret = SAT or UNSAT then return ret
x ← GetBranchVariable(F ′)
SplitSolve(F ′ ∪ {x}, level + 1)
SplitSolve(F ′ ∪ {¬x}, level + 1)

The 2nd parameter of abcdSAT in the above algorithm
denotes the limit of the number of conflicts. abcdSAT(F , 500)
means that it searches a solution of F until the number of
conflicts reaches 500. Procedure GetBranchVariable selects a
branch variable according to the rule given in [12].

This solving framework is suitable for small formulas.

VI. ABCDSAT drug

Because each solver participating in the main track is
required to provide a DRUP proof in UNSAT case, we add a
DRUP patch in the original abcdSAT. In addition to this patch,
abcdSAT drug adds learnt clause database approximation
reduction, at-least-one recently used strategy, but excludes
XOR and cardinality constraint simplification. In particular,
XOR simplification is difficult to provide a DRUP proof. The
splitting and merging technique used in the original abcdSAT
cannot provide a DRUP proof. So abcdSAT drug simplifies
it into recursive splitting solving technique given in previous
section.

VII. ABCDSAT inc

The solver submitted to the incremental library track is
called abcdSAT inc. This version has no DRUP patch. The
main difference between abcdSAT inc and abcdSAT drug is
that abcdSAT inc adopts dynamic core and local learnt clause
management policy, while abcdSAT drug adopts Glucose-style
learnt clause management policy.

VIII. ABCDSAT lim

This is the version submitted to the no-limit track. AbcdSAT
lim not only includes various techniques given above, but also
XOR and cardinality constraint simplification. With respect
to learnt clause management, what abcdSAT lim adopts is
Glucose-style learnt clause management policy. For a few
special instances, abcdSAT lim switches to Lingeling 587f [13]
to solve them. When the average LBD score of an instance to
be solved is small, say less than 16, this version uses splitting
and merging (reconstructing) strategy described in [5], rather
than recursive splitting solving strategy mentioned above.

REFERENCES

[1] J.C. Chen: MiniSAT BCD and abcdSAT: solvers based on blocked clause
decomposition, in Proceedings of the SAT Competition 2015

[2] J.C. Chen: Fast Blocked Clause Decomposition with High Quality, 2015,
http://arxiv.org/abs/1507.00459

[3] Chen, J.C.: Improving SAT Solvers via Blocked Clause Decomposition,
2016, http://arxiv.org/abs/1604.00536

[4] J.C. Chen:A bit-encoding phase selection strategy for satisfiability solver-
s,in Proceedings of Theory and Applications of Models of Computation
(TAMC’14), ser. LNCS 8402, 2014, pp. 158–167.

[5] J.C. Chen: Glue lgl split and GlueSplit clasp with a Split and Merging
Strategy, in Proceedings of the SAT Competition 2014, pp. 37–39.

[6] G. Audemard and L. Simon, Glucose 2.3 in the sat 2013 competition,in
Proceedings of the SAT Competition 2013, pp. 40–41.

[7] G. Audemard, L. Simon:Predicting learnt clauses quality in modern sat
solvers, in proceedings of IJCAI, 2009, pp. 399–404.

[8] G. Audemard, J.M. Lagniez, B. Mazure, L. Saı̈s:On freezing and reacti-
vating learnt clauses, in Proceedings of SAT 2011, ser. LNCS, vol. 6695,
pp. 188–200.

[9] Amit S. Chavan, Kartik R. Nayak, Keval D. Vora, Manish D. Purohit,
Pramila M. Chawan: A comparison of page replacement algorithms,
IACSIT, vol.3, no.2, April 2011.

[10] C. Hoare, Algorithm 63 (PARTITION), Algorithm 64 (QUICKSORT)
and Algorithm 65 (FIND). Communications of the ACM 1961,4(7), pp.
321–322.

[11] C., Oh: MiniSat HACK 999ED, MiniSat HACK 1430ED, and SWDi-
A5BY, in Proceedings of the SAT Competition 2014, pp. 46–47.

[12] J.C. Chen: Building a hybrid sat solver via conflict-driven, look-ahead
and xor reasoning techniques,in Proceedings of SAT 2009, ser. LNCS,
vol. 5584, pp. 298–311.

[13] A. Biere: Lingeling, plingeling and treengeling. [Online]. Available:
http://fmv.jku.at/lingeling/

49

MapleGlucose and MapleCMS
Jia Hui Liang, Vijay Ganesh, Krzysztof Czarnecki, Pascal Poupart

University of Waterloo
Waterloo, Canada

Abstract—This document describes the SAT solvers MapleGlu-
cose and MapleCMS, two solvers implementing our machine
learning branching heuristic called the learning rate branching
heuristic (LRB).

I. INTRODUCTION

A good branching heuristic is vital to the performance
of a SAT solver. Glancing at the results of the previous
competitions, it is clear that the VSIDS branching heuristic
is the defacto branching heuristic among the top performing
solvers. We are submitting two unique solvers with a new
branching heuristic called the learning rate branching heuris-
tic (LRB) [1].

Our intuition is that SAT solvers need to prune the search
space as quickly as possible, or more specifically, learn a high
quantity of high quality learnt clauses. In this perspective,
branching heuristics can be viewed as a bi-objective problem
to select the branching variables that will simultaneously
maximize both the quantity and quality of the learnt clauses
generated. To simplify the optimization, we assumed that the
first-UIP clause learning scheme will generate good quality
learnt clauses. Thus we reduced the two objectives down to
just one, that is, we attempt to maximize the quantity of learnt
clauses.

II. LEARNING RATE BRANCHING

We define a concept called learning rate to measure the
quantity of learnt clauses generated by each variable. The
learning rate is defined as the following conditional proba-
bility, see our SAT 2016 paper for a detailed description [1].

learningRate(x) = P(Participates(x) |
Assigned(x) ∧ SolverInConflict)

If the learning rate of every variable was known, then
the branching heuristic should branch on the variable with
the highest learning rate. The learning rate is too difficult
and too expensive to compute at each branching, so we
cheaply estimate the learning rate using multi-armed bandits, a
special class of reinforcement learning. Essentially, we observe
the number of learnt clauses each variable participates in
generating, under the condition that the variable is assigned
and the solver is in conflict. These observations are averaged
using an exponential moving average to estimate the current
learning rate of each variable. This is implemented using the
well-known exponential recency weighted average algorithm
for multi-armed bandits [2] with learning rate as the reward.

Lastly, we extended the algorithm with two new ideas. The
first extension is to encourage branching on variables that
occur frequently on the reason side of the conflict analysis
and adjacent to the learnt clause during conflict analysis. The
second extension is to encourage locality of the branching
heuristic [3] by decaying unplayed arms, similar to the decay
reinforcement model [4], [5]. We call the final branching
heuristic with these two extensions the learning rate branching
heuristic.

III. MAPLEGLUCOSE

MapleGlucose is a hack version of the Glucose 3.0 [6]
solver. The solver simply runs LRB for the first 2500 seconds,
then switches to VSIDS for the remaining time.

IV. MAPLECMS

MapleCMS is a version of CryptoMiniSat where VSIDS is
completely replaced with LRB.

V. SAT COMPETITION 2016 SPECIFICS

1) Both solvers are participating in the Main, Agile, and
No-Limits tracks.

2) In addition, MapleGlucose is participating in the Glu-
cose Hack Subtrack.

3) We used the same LRB parameters as presented in our
paper [1].

VI. AVAILABILITY

MapleGlucose and MapleCMS use the same licenses as
Glucose and CryptoMiniSat respectively.

ACKNOWLEDGMENT

We thank Gilles Audemard and Laurent Simon, the authors
of Glucose. Additionally, we thank Mate Soos, the author of
CryptoMiniSat.

REFERENCES

[1] J. H. Liang, V. Ganesh, P. Poupart, and K. Czarnecki, “Learning Rate
Based Branching Heuristic for SAT Solvers,” in Proceedings of the 19th
International Conference on Theory and Applications of Satisfiability
Testing, ser. SAT’16, 2016.

[2] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
MIT press Cambridge, 1998, vol. 1, no. 1.

[3] J. H. Liang, V. Ganesh, E. Zulkoski, A. Zaman, and K. Czarnecki,
“Understanding VSIDS Branching Heuristics in Conflict-Driven Clause-
Learning SAT Solvers,” in Hardware and Software: Verification and
Testing. Springer, 2015, pp. 225–241.

[4] I. Erev and A. E. Roth, “Predicting How People Play Games: Rein-
forcement Learning in Experimental Games with Unique, Mixed Strategy
Equilibria,” American Economic Review, vol. 88, no. 4, pp. 848–881,
1998.

Proceedings of SAT Competition 2016: Solver and Benchmark Descriptions, volume B-2016-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2016. ISBN 978-951-51-2345-9.

50

[5] E. Yechiam and J. R. Busemeyer, “Comparison of basic assumptions
embedded in learning models for experience-based decision making,”
Psychonomic Bulletin & Review, vol. 12, no. 3, pp. 387–402.

[6] G. Audemard and L. Simon, “Glucose in the SAT 2014 Competition,” in
Proceedings of SAT Competition 2014, 2014, p. 31.

51

MapleCOMSPS, MapleCOMSPS LRB,
MapleCOMSPS CHB

Jia Hui Liang∗‡, Chanseok Oh†‡, Vijay Ganesh∗, Krzysztof Czarnecki∗, Pascal Poupart∗
∗ University of Waterloo, Waterloo, Canada

† Google, New York, United States
‡ Joint first authors

Abstract—This document describes the SAT solvers Maple-
COMSPS, MapleCOMSPS LRB, and MapleCOMSPS CHB,
three solvers implementing our machine learning branching
heuristics called the learning rate branching heuristic (LRB) and
conflict history-based branching heuristic (CHB).

I. INTRODUCTION

A good branching heuristic is vital to the performance
of a SAT solver. Glancing at the results of the previous
competitions, it is clear that the VSIDS branching heuristic
is the defacto branching heuristic among the top performing
solvers. We are submitting two unique solvers with a new
branching heuristic called the learning rate branching heuris-
tic (LRB) [1] and another solver with the conflict history-based
branching heuristic (CHB) [2].

Our intuition is that SAT solvers need to prune the search
space as quickly as possible, or more specifically, learn a high
quantity of high quality learnt clauses. In this perspective,
branching heuristics can be viewed as a bi-objective problem
to select the branching variables that will simultaneously
maximize both the quantity and quality of the learnt clauses
generated. To simplify the optimization, we assumed that the
first-UIP clause learning scheme will generate good quality
learnt clauses. Thus we reduced the two objectives down to
just one, that is, we attempt to maximize the quantity of learnt
clauses.

II. LEARNING RATE BRANCHING

We define a concept called learning rate to measure the
quantity of learnt clauses generated by each variable. The
learning rate is defined as the following conditional proba-
bility, see our SAT 2016 paper for a detailed description [1].

learningRate(x) = P(Participates(x) |
Assigned(x) ∧ SolverInConflict)

If the learning rate of every variable was known, then
the branching heuristic should branch on the variable with
the highest learning rate. The learning rate is too difficult
and too expensive to compute at each branching, so we
cheaply estimate the learning rate using multi-armed bandits, a
special class of reinforcement learning. Essentially, we observe
the number of learnt clauses each variable participates in
generating, under the condition that the variable is assigned

and the solver is in conflict. These observations are averaged
using an exponential moving average to estimate the current
learning rate of each variable. This is implemented using the
well-known exponential recency weighted average algorithm
for multi-armed bandits [3] with learning rate as the reward.

Lastly, we extended the algorithm with two new ideas. The
first extension is to encourage branching on variables that
occur frequently on the reason side of the conflict analysis
and adjacent to the learnt clause during conflict analysis. The
second extension is to encourage locality of the branching
heuristic [4] by decaying unplayed arms, similar to the decay
reinforcement model [5], [6]. We call the final branching
heuristic with these two extensions the learning rate branching
heuristic.

III. CONFLICT HISTORY-BASED BRANCHING

The conflict history-based branching heuristic (CHB) pre-
cedes our LRB work. CHB also applies the exponential
recency weighted average algorithm where the reward is
the reciprocal of the number of conflicts since the assigned
variable last participated in generating a learnt clause. See our
paper for more details [2].

IV. SOLVERS

All the solvers are modifications of COMiniSatPS [7]. We
used the same COMiniSatPS version that also participates in
the competition [8]. However, we changed VSIDS slightly
for our MapleCOMSPS solvers: during conflict analysis, if
decision levels of variables are greater (resp., less) than a
backtrack level, such variables get more (resp., less) bumps
to activity scores. MapleCOMSPS and MapleCOMSPS CHB
also disable on-the-fly failed literal detection [9].

A. MapleCOMSPS

The difference from COMiniSatPS is that, basically, it runs
LRB for the first 2500 seconds, then switches to VSIDS for the
remaining time. (However, it still runs VSIDS first for the first
10000 conflicts for initialization purposes as in COMiniSatPS.)
The solver employs Luby restarts and Glucose-style restarts
for LRB and VSIDS, respectively.

Proceedings of SAT Competition 2016: Solver and Benchmark Descriptions, volume B-2016-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2016. ISBN 978-951-51-2345-9.

52

B. MapleCOMSPS LRB

The difference from COMiniSatPS is that it regularly
switches between LRB and VSIDS, in the almost same manner
that COMiniSatPS switches between the no-restart phase and
the Glucose-restart phase [10], [11]. However, unlike the orig-
inal COMiniSatPS, we allocate equal amounts of time to LRB
and VSIDS. The solver employs Luby restarts and Glucose-
style restarts for LRB and VSIDS, respectively. LRB’s locality
extension (i.e., decaying unplayed arms) is disabled.

C. MapleCOMSPS CHB

The difference from COMiniSatPS is that it regularly
switches between CHB and VSIDS, in the similar manner
as MapleCOMSPS LRB. The solver employs Glucose-style
restarts for both CHB and VSIDS.

V. SAT COMPETITION 2016 SPECIFICS

1) The three solvers are participating in the Main, Agile,
and No-Limits tracks.

2) We used the same LRB and CHB parameters as pre-
sented in our papers [1], [2].

VI. AVAILABILITY

MapleCOMSPS, MapleCOMSPS LRB, MapleCOM-
SPS CHB use the same licenses as COMiniSatPS (MIT
license).

ACKNOWLEDGMENT

We thank Gilles Audemard and Laurent Simon, the authors
of Glucose.

REFERENCES

[1] J. H. Liang, V. Ganesh, P. Poupart, and K. Czarnecki, “Learning Rate
Based Branching Heuristic for SAT Solvers,” in Proceedings of the 19th
International Conference on Theory and Applications of Satisfiability
Testing, ser. SAT’16, 2016.

[2] ——, “Exponential Recency Weighted Average Branching Heuristic for
SAT Solvers,” in Proceedings of AAAI-16, 2016.

[3] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
MIT press Cambridge, 1998, vol. 1, no. 1.

[4] J. H. Liang, V. Ganesh, E. Zulkoski, A. Zaman, and K. Czarnecki,
“Understanding VSIDS Branching Heuristics in Conflict-Driven Clause-
Learning SAT Solvers,” in Hardware and Software: Verification and
Testing. Springer, 2015, pp. 225–241.

[5] I. Erev and A. E. Roth, “Predicting How People Play Games: Reinforce-
ment Learning in Experimental Games with Unique, Mixed Strategy
Equilibria,” American Economic Review, vol. 88, no. 4, pp. 848–881,
1998.

[6] E. Yechiam and J. R. Busemeyer, “Comparison of basic assumptions
embedded in learning models for experience-based decision making,”
Psychonomic Bulletin & Review, vol. 12, no. 3, pp. 387–402.

[7] C. Oh, “Improving SAT Solvers by Exploiting Empirical Characteristics
of CDCL,” Ph.D. dissertation, New York University, 2016.

[8] ——, “COMiniSatPS the Chandrasekhar Limit and GHackCOMSPS,”
in SAT Competition, 2016.

[9] M. Heule, M. Järvisalo, and A. Biere, “Efficient CNF Simplification
based on Binary Implication Graphs,” in Proceedings of the 14th
International Conference on Theory and Applications of Satisfiability
Testing, ser. SAT’11, 2011.

[10] C. Oh, “Between SAT and UNSAT: The fundamental difference in
CDCL SAT,” in Proceedings of the 18th International Conference on
Theory and Applications of Satisfiability Testing, ser. SAT’15, 2015.

[11] ——, “Patching MiniSat to Deliver Performance of Modern SAT
Solvers,” in SAT Race, 2015.

53

multi-SAT: An Adaptive SAT Solver
Sajjad Siddiqi

Jubail University College
Jubail Industrial City, Saudi Arabia

siddiqis@ucj.edu.sa

Jinbo Huang
Australian National University

Canberra, Australia
jinbo.huang@anu.edu.au

Abstract—Mainstream clause learning SAT solvers use decision
heuristics that are based on incrementing the scores of variables
involved in the learning of conflict clauses. Such a decision
strategy emphasizes locality, and accounts for much of the success
of modern SAT solvers. However, in some cases the resulting bias
toward limited portions of the search space can be detrimental
to efficient solutions. The present work has originated on the
assumption that efficient solutions can be extended to a greater
class of problems if the decision strategy is made more adaptive.
In other words, bias in different directions may be beneficial
for different types of problems. In this spirit, we propose a new
decision framework for SAT that incorporates multiple decision
heuristics (for both the initial ordering of variables and their
dynamic reordering), periodic assessment of their effectiveness
during search, and mechanism to switch on the fly between them
based upon the outcomes of their assessments. Incorporating this
framework we build a solver named MULTI-SAT based upon
GLUCOSE 2.0 [1] and submit to the random satisfied benchmarks
track of SAT Competition 2016 for evaluation.

I. DETAILED DESCRIPTION

It is well known that a decision heuristic may perform well
on only a class of problems and no heuristic is expected to
work well on all problems. The motivation behind this work
is to somehow combine the strengths of different heuristics
into a single solver to solve more problems. Since each
heuristic is expected to perform well on a particular set of
problems, maintaining a reasonably good set of heuristics may
enable efficient solutions of a larger set than an ordinary SAT
solver can achieve. The same idea has previously motivated
researchers to develop portfolio-based SAT solvers [2], [3],
[4], which maintain portfolio of several SAT solvers and select
the best solver to run on an input problem using a heuristic
that is driven by features of the input problem, where such
a heuristic is empirically constructed. The work presented in
this paper is similar in several ways to porfolio approach but
is fundamentally different in terms of selection heuristic.

The new adaptive framework, builds upon the ideas pre-
sented in [5], which can maintain a set of decision heuristics
each with particular schemes for initial and dynamic variable
ordering. The framework allows switching amongst the de-
cision heuristics on the fly based upon an estimate of how
good the heuristic is expected to perform on a particular SAT
instance at a particular time. For this purpose it periodically
performs sample executions of each individual heuristic on
the given instance and estimates which heuristic is likely
to be more effective at a particular time in the varying
search conditions. Several criteria can be used to measure the

effectiveness of a particular heuristic. We use a simple criteria
based upon known idea of satisfaction power described as the
tendency of a heuristic toward satisfying the clauses in current
clause database), and a measure of solver progress [6] (used
in the restart strategy of GLUCOSE 2.0).

Given a set of heuristics, the adaptive mechanism works
as follows. Since it is impossible to know in advance which
heuristic would perform best on a particular SAT instance.
Therefore sample executions of all heuristics are performed
periodically and predictions about their effectiveness are made.
For this purpose, at the beginning and at certain normal restarts
the solver goes into an assessment mode in which a sample
execution of every decision heuristic is performed. During
assessment mode a decision heuristic is allowed to run for only
c number of conflicts and then a restart is forced. At the restart
the control is switched to the next heuristic. The assessment
mode is finished once all heuristics have been executed, at
which place the best heuristic is selected (according to criteria
mentioned above) and executed for a number of conflicts
determined by the heuristic’s own restart policy.

Our implementation mechanism allows that the scores,
phases, and statistics maintained by decision heuristics are
isolated from each other. The execution of a particular heuristic
does not directly change the scores, phases, and statistics
maintained by other heuristics. Also, when a heuristic is
executed another time during search it uses its old scores
that were saved during its last execution. However, the clause
database and the inference engine of the solver are shared by
all heuristics. As a result, when a heuristic decides to perform
clause database reduction it may delete clauses learnt by other
heuristics.

We have incorporated 10 arbitrary decision heuristics. A
decision heuristic for satisfiability is characterised by partic-
ular schemes for initial and dynamic variable ordering, phase
saving / selection, score decaying, restarts, clause learning,
and clause database reduction. Variations in these schemes
lead to different decision heuristics. However, in the current
implementation all heuristics, although somewhat independent
from each other, work in the same way in all aspects as the
default heuristic in GLUCOSE with just two modifications.

1) Every heuristic differs from others in only the initial
variable ordering.

2) Every heuristic, in addition to its normal schedule for
restarts, forces a solver restart after every time clause
database is reduced. At this forced restart new samples

Proceedings of SAT Competition 2016: Solver and Benchmark Descriptions, volume B-2016-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2016. ISBN 978-951-51-2345-9.

54

of the decision heuristics are also taken in view of the
potentially significant change in the search conditions
due to the clause database reduction (modern SAT
solvers often employ an aggressive clause deletion pol-
icy). These samples are taken in addition to the normal
sampling strategy of the solver (described above).

Initial variable orders are generated using simple topology-
based methods by performing depth-first traversals of the CNF
graph [7]. Such schemes tend to keep the variables that are
topologically close to each other together in the variable order.
By using different initial variable orders in different heuristics,
we hope that even only the differences in the initial variable
orders will lead each heuristic to different portions of the
search space and will help break the bias generated by a single
initial variable order in a traditional solver.

REFERENCES

[1] G. Audemard and L. Simon, “Predicting learnt clauses quality in modern
sat solvers,” in Proceedings of the 21st International Joint Conference
on Artificial Intelligence (IJCAI). San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 2009, pp. 399–404.

[2] K. Leyton-Brown, E. Nudelman, G. Andrew, J. McFadden, and
Y. Shoham, “Boosting as a metaphor for algorithm design,” in Proceed-
ings of the Ninth International Conference on Principles and Practice of
Constraint Programming (CP), 2003, pp. 899–903.

[3] ——, “A portfolio approach to algorithm selection,” in Proceedings of
the 18th International Joint Conference on Artificial Intelligence (IJCAI),
2003, pp. 1542–1543.

[4] G. D. Liberto, S. Kadioglu, K. Leo, and Y. Malitsky, “DASH: dynamic
approach for switching heuristics,” CoRR, vol. abs/1307.4689, 2013.

[5] O. Shacham and K. Yorav, “Adaptive application of SAT solving tech-
niques,” Electronic Notes in Theoretical Computer Science, vol. 144,
no. 1, pp. 35–50, 2006.

[6] G. Audemard and L. Simon, “Refining restarts strategies for SAT and
UNSAT,” in Proceedings of the 18th International Conference on Princi-
ples and Practice of Constraint Programming (CP). Berlin, Heidelberg:
Springer-Verlag, 2012, pp. 118–126.

[7] M. Rice and S. Kulhari, “A survey of static variable ordering heuristics
for efficient BDD/MDD construction,” University of California Technical
Report 2008, 2008.

55

Riss 6 Solver and Derivatives
Norbert Manthey, Aaron Stephan and Elias Werner

Knowledge Representation and Reasoning Group
TU Dresden, Germany

Abstract—The sequential SAT solver RISS combines the
Minisat-style solving engine of GLUCOSE 2.2 with a state-of-the-
art preprocessor COPROCESSOR and adds many modifications
to the search process. RISS allows to use inprocessing based
on COPROCESSOR. Based on this RISS, we create a parallel
portfolio solver PRISS, which allows clause sharing among the
incarnations, as well as sharing information about equivalent
literals.

I. INTRODUCTION

The CDCL solver RISS is a highly configurable SAT solver
based on MINISAT [1] and GLUCOSE 2.2 [2], [3]. Many
search algorithm extensions have been added, and RISS is
equipped with the preprocessor COPROCESSOR [4]. Finally,
RISS supports automated configuration selection based on
CNF formulas features, emitting DRAT proofs for many tech-
niques, and incremental solving. The parallel solver PRISS is a
portfolio solver that allows to use COPROCESSOR for formula
simplification commonly for all solver incarnations, provides
inprocessing for all solver incarnations, and can handle sharing
of sets of equivalent literals.

This document mentions only the differences to RISS 5.05
that has been submitted to SAT Race 2015. Most differences
come from bug fixes, where the bugs have been found with
SPYBUG [5], and from disabling techniques that cannot print
(short) DRAT proofs for their reasoning.

II. MODIFICATIONS OF THE SEARCH

RISS 5.05 used a vivification based learned clause mini-
mization. As it turned out to be ineffective for formulas of
more recent years, this minimization is disabled by default.
Furthermore, the input formula is scanned for being easily
solvable by assigning all variables > or assigning all variables
⊥. Otherwise, both the activity and the polarity information
to perform search decisions are pre-initialized: the activity
per variable decreases linearly, and the initial polarity is set
according to the Jeroslow-Wang score.

III. MODIFICATIONS OF COPROCESSOR

To be able to emit DRAT proofs many simplification
techniques of Coprocessor had to be disabled, among them
reasoning with XORs and cardinality constraints [6]. However,
we added lazy hyper binary resolution, as used in ABCDSAT,
to the portfolio of simplification techniques.

IV. CONFIGURATION SELECTION

The machine learning front end is based on the feature
extraction routines implemented in RISS [7]. Compared to
RISS 5.05 we included only configurations that allow to print
DRAT proofs. The used configurations have been picked by
hand, or have been produced by running SMAC [8] on sets
of formulas that are known to be challenging for RISS.

The knowledge base for prediction is integrated into the
solver. From the features and measured times that are avail-
able, we use the information gain ratio to select improtant
features and remove redundancy. Next, with principal compo-
nent analysis we further reduce the dimension of the feature
space, where during training the information loss has to be
small. Additionally more redundancy in form of correlation
between the features is removed. Based on the features, we
perform a k-nearest neighbor search.

The implementation of PCA is based on two external
libraries: Libpca1 and armadillo2.

V. INCREMENTAL SAT SOLVING WITH RISS

The two configurations that have been submitted for the
incremental track: RISS 5.21 uses formula simplification only
during the first incremental call, while RISS 6 uses inprocess-
ing with very long intermediate intervals, starting after the first
5000 conflicts.

VI. SAT COMPETITION SPECIFICS

RISS and COPROCESSOR are implemented in C++. The DS
version of RISS implements watch lists based on an own
allocator – as also done in LINGELING – so that garbage
collection on watch lists is possible. PRISS implements the
parallel code for multi-core architectures with the pthreads
library.

The solvers are submitted to all tracks that are offered,
except the random SAT track.

VII. AVAILABILITY

All tools in the solver collection are available for research.
The source of the solver will be made publicly available
under the LGPL v2 license after the competition at http:
//tools.computational-logic.org.

1http://sourceforge.net/projects/libpca/
2http://arma.sourceforge.net/

Proceedings of SAT Competition 2016: Solver and Benchmark Descriptions, volume B-2016-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2016. ISBN 978-951-51-2345-9.

56

ACKNOWLEDGMENT

The author would like to thank the developers of GLU-
COSE 2.2 and MINISAT 2.2. The computational resources to
develop, evaluate and configure the SAT solver have been
provided by the ZIH of TU Dresden. This project is supported
by the DFG grant HO 1294/11-1.

REFERENCES

[1] N. Eén and N. Sörensson, “An extensible SAT-solver,” in SAT 2003, ser.
LNCS, E. Giunchiglia and A. Tacchella, Eds., vol. 2919. Heidelberg:
Springer, 2004, pp. 502–518.

[2] G. Audemard and L. Simon, “Predicting learnt clauses quality in modern
SAT solvers,” in IJCAI 2009, C. Boutilier, Ed. Pasadena: Morgan
Kaufmann Publishers Inc., 2009, pp. 399–404.

[3] ——, “Refining restarts strategies for sat and unsat,” in CP’12, 2012, pp.
118–126.

[4] N. Manthey, “Coprocessor 2.0 – a flexible CNF simplifier,” in SAT 2012,
ser. LNCS, A. Cimatti and R. Sebastiani, Eds., vol. 7317. Heidelberg:
Springer, 2012, pp. 436–441.

[5] N. Manthey and M. Lindauer, “Spybug: Automated bug detection in the
configuration space of SAT solvers,” in SAT, 2014, accepted.

[6] A. Biere, D. Le Berre, E. Lonca, and N. Manthey, “Detecting cardinality
constraints in CNF,” in Theory and Applications of Satisfiability Testing –
SAT 2014, ser. Lecture Notes in Computer Science, C. Sinz and U. Egly,
Eds., vol. 8561. Springer International Publishing, 2014, pp. 285–301.
[Online]. Available: http://dx.doi.org/10.1007/978-3-319-09284-3 22

[7] E. Alfonso and N. Manthey, “New CNF features and formula classifica-
tion,” in POS-14, ser. EPiC Series, D. L. Berre, Ed., vol. 27. EasyChair,
2014, pp. 57–71.

[8] F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Sequential model-based
optimization for general algorithm configuration,” in LION, ser. LNCS,
2011, vol. 6683, pp. 507–523.

57

BENCHMARK DESCRIPTIONS

Generating the Uniform Random Benchmarks
Marijn J. H. Heule

Department of Computer Science,
The University of Texas at Austin, United States

Abstract—The uniform random k-SAT instances described here,
together with the hard satisfiable random instances described on
pages 60–62 of this compilation, constitute the benchmark set of
the Random Track of SAT Competition 2016.

INTRO

This description explains how the benchmarks were created
of the uniform random categories of the SAT Competition
2016. These categories consists of uniform random k-SAT
instances with k ∈ 3, 4, 5, 6, 7 – Boolean formulas for which
all clauses have length k. For each k the same number of
benchmarks have been generated.

GENERATING THE SATISFIABLE BENCHMARKS

The satisfiable uniform random k-SAT benchmarks are gen-
erated for two different sizes: medium and huge. The medium-
sized benchmarks have a clause-to-variable ratio equal to the
phase-transition ratio1. The number of variables differs for all
the benchmarks. The huge random benchmarks have a few
million clauses and are therefore as large as some of the
application benchmarks. For the huge benchmarks, the ratio
ranges from far from the phase-transition ratio to relatively
close, while for each k the number of variables is the same.
Table I shows the details.

No filtering was applied to construct the competition suite.
As a consequence, a significant fraction (about 50%) of the
medium-sized generated benchmarks is unsatisfiable.

TABLE I
PARAMETERS OF GENERATING THE SATISFIABLE BENCHMARKS

k medium (40) huge (20)

3
r = 4.267
n ∈ {5000, 5200, . . . , 12800}

r ∈ {3.86, 3.88, . . . , 4.24}
n = 1, 000, 000

5
r = 21.117
n ∈ {200, 210, . . . , 590}

r ∈ {16, 16.2, . . . , 19.8}
n = 250, 000

7
r = 87.79
n ∈ {90, 92, . . . , 168}

r ∈ {55, 56, . . . , 74}
n = 50, 000

1The observed clause-to-variable ratio for which 50% of the uniform
random formulas are satisfiable. For most algorithms, formula generated closer
to the phase-transition ratio are harder to solve.

Proceedings of SAT Competition 2016: Solver and Benchmark Descriptions, volume B-2016-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2016. ISBN 978-951-51-2345-9.

59

1

Using Algorithm Configuration Tools to Generate
Hard Random Satisfiable Benchmarks

Tomáš Balyo
Karlsruhe Institute of Technology (KIT)

Karlsruhe, Germany
tomas.balyo@kit.edu

Abstract—The benchmarks described here, together with the
uniform random k-SAT instances described on page 59 of this
compilation, constitute the benchmark set of the Random Track of
SAT Competition 2016.

Tools for optimizing algorithm parameters have been success-
fully used to speed up local search satisfiability (SAT) solvers
and other search algorithms by orders of magnitude. In this
paper we show that such tools are also very useful for generating
hard SAT formulas with a planted solution. Our experiments
with state-of-the-art local search SAT solvers show, that using
this approach we can randomly generate satisfiable formulas
significantly harder than uniform random formulas of the same
size from the phase-transition region or formulas generated by
previous approaches. Additionally we show how to generate small
satisfiable formulas that are hard to solve by CDCL solvers. The
generation of difficult compact formulas with a planted solution
is useful for benchmarking SAT solving algorithms and also has
cryptographic applications.

I. INTRODUCTION

One of the most popular class of randomly generated
satisfiability (SAT) benchmarks is uniform random 3SAT
formulas with a variable-clause ratio corresponding to the
phase-transition threshold [1]. This ratio causes that half
of the generated formulas is satisfiable. These formulas are
considered very hard to solve relative to their size and are often
used to evaluate the performance of SAT solvers, in particular
local search SAT solvers [2] (the satisfiable instances).

However, there are methods that can generate even harder
instances having the same or smaller size. These methods have
additional advantages such as always generating a satisfiable
instance and the possibility to hide a predefined solution in the
formula. The main motivation for hard satisfiable benchmarks
is to evaluate, compare and improve SAT solvers (local search
solvers in particular) but generators of hard satisfiable formulas
with a predefined solution can also be used in cryptography as
one-way functions [3] (for example a password can be coded
as the solution of randomly generated formula, which is easy
to verify but hard to find).

In this paper we describe a new method that allows us to
generate hard satisfiable formulas with a predefined solution.
We will focus on 3SAT formulas, however the method can be
easily generalized to generate formulas with arbitrary clause
lengths. We provide experimental results to demonstrate the
hardness of the generated formulas for both CDCL and local-
search SAT solvers. We can generate instances especially
difficult for stochastic local search algorithms [2]. In particular,

cdc-generate (vars, φ)
CDC0 F := ∅
CDC1 while |F | < r ∗ vars do
CDC2 C = generateRandom3Clause(vars)
CDC3 i = numberOfSatLiterals(C,φ)
CDC4 if i > 0 then
CDC5 with probability pi do F = F ∪ {C}
CDC6 return F

Fig. 1. Pseudo-code of a CDC algorithm which has 2 inputs (the number
of variables and a truth assignment) and parameters pi and r. It produces a
random 3SAT formula with the given number of variables that is satisfied by
the given assignment.

we obtained satisfiable 3SAT formulas with as few as 60
variables that cannot be solved by state-of-the-art local search
SAT solvers such as ProbSAT [4] and Dimetheus [5] in 10
minutes.

II. RELATED WORK

A commonly used method (at SAT competitions and in
local-search solver papers) for generating hard random satisfi-
able formulas is to generate uniform random formulas from the
SAT phase-transition [1] region and filter out the unsatisfiable
instances [6]1 This method generates small and hard instances,
but it has several disadvantages. We cannot generate a formula
with a predefined solution and we need to be able to solve the
formulas in order to filter out the unsatisfiable instances.

A simple approach to generate a formula with a given
solution φ is to generate random clauses while filtering out
those that are not satisfied by φ until we reach the desired
amount of clauses [7]. This approach, called the 1-hidden
algorithm, has the disadvantage that the generated formulas
are easy to solve, especially by local search solvers [7]. The
hardness can be increased by hiding 2 or more solutions [7].

Another typical approach is to use a clause distribution
control (CDC) algorithm [8]. A CDC algorithm for generating
k-SAT formulas has k+1 parameters 0 < p1, . . . , pk < 1 and
r ∈ R. It is outlined in Figure 1. The parameter r represents
the clause/variable ratio and each pi is the probability that

1The filtering is usually done by running a local search SAT solver with
a large time limit and removing the instances it cannot solve. This has the
obvious problem that only instances that local search can solve are selected
as benchmarks (which are then mostly used to evaluate other local search
solvers).

Proceedings of SAT Competition 2016: Solver and Benchmark Descriptions, volume B-2016-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2016. ISBN 978-951-51-2345-9.

60

2

a clause which has exactly i satisfied literals under a given
assignment φ gets into the formula. Implementations of the
CDC algorithm define the values of pi and r differently.
For example the q-hidden algorithm defines pi = qi for a
parameter q [9] and the generator of Barthel et al. [8] uses the
diluted spin-glass model to theoretically compute good values
of pi.

A more detailed overview of algorithms for generating
random formulas with hidden solutions can be found in a
recent paper by Liu et al.[10].

III. OUR APPROACH

Similar to previous successful generators [8], [9], [10] our
method is also based on the clause distribution control (CDC)
approach. The difference is that to obtain the values of the
parameters pi and r we use an automatic software parameter
optimization tool instead of analyzing theoretical models.

Parameter optimization tools have been used successfully to
improve performance of SAT solvers, especially local search
solvers [11]. In a sense, in this paper, we use these tools for the
opposite purpose – to slow down SAT solvers (by generating
hard benchmarks). For our experiments we use the 2.10.03
version of the parameter optimization tool SMAC [12].

IV. OBTAINING THE CDC PARAMETERS

Using SMAC we optimized a shell script that evaluates
a given configuration for a particular solver. The evaluation
algorithm is outlined in Figure 2 and its goal, in essence, is to
compute how many formulas can be solved until they become
too hard to solve. The evaluation algorithm relies on the fact
that formulas get harder with a larger size (more variables and
clauses) for any given configuration.

For each formula size (number of variables) starting from
20 and increasing by 5 until 600 eight formulas are generated
using the CDC algorithm (Figure 1)2. These 8 instances are
then solved in parallel3 by the SAT solver (with a time limit of
1 minute). If at least half (4) of the instances is solved then we
continue to the next size otherwise we return the total number
of solved formulas so far as the score of this configuration.
Lower score means the configuration gives harder instances
which means that the configuration is better for our purposes.
The SMAC tool is then used to find the values of pi and r
with a minimal score.

V. SAT COMPETITION 2016 BENCHMARKS

Using four representative state-of-the-art SAT solvers –
two local search solvers: ProbSAT [4] (version SC13.2) and
Dimetheus [5] (version 2.100.994) and two CDCL solvers:
Lingeling [13] (version bal) and Glucose [14] (version 4.0) –
we obtained the following configuration of the CDC parame-
ters: c1 = 0.414, c2 = 0.028, c3 = 0.503 and cr = 4.408571.
We generated 60 instances, 10 for each of the following
number of variables: 350, 400, ..., 600

2The planted solution is generated randomly.
3Each core of the computer is running one solver-benchmark pair.

evaluate-configuration (c1, c2, c3, cr)
SC0 score := 0
SC1 for vars ∈ {20, 25, . . . , 600} do
SC2 solved := 0
SC3 repeat 8 times:
SC4 F = cdc-generate(vars, c1, c2, c3, cr)
SC5 if F is solved in 1 minute then solved++
SC6 score := score+ solved
SC7 if solved < 4 then break
SC8 return score

Fig. 2. Pseudo-code of a configuration evaluation algorithm which has 4
inputs – p1, p2, p3 and r. Its goal is to estimate the size of the largest formula
that can be solved under one minute for a given configuration using a particular
SAT solver.

VI. CONCLUSION

A random SAT formula generator algorithm can be automat-
ically configured to generate very hard instances in the same
way as the SAT solvers are tuned. Our method can generate
formulas with a planted solution that are small in size and hard
to solve by several state-of-the-art SAT solvers. A generator
of such formulas is useful not only for benchmarking SAT
solving algorithms but also in cryptographic applications.

ACKNOWLEDGMENT

This research was partially supported by DFG project SA
933/11-1

REFERENCES

[1] I. P. Gent and T. Walsh, “The sat phase transition,” in ECAI, vol. 94.
PITMAN, 1994, pp. 105–109.

[2] B. Selman, H. J. Levesque, D. G. Mitchell et al., “A new method for
solving hard satisfiability problems.” in AAAI, vol. 92, 1992, pp. 440–
446.

[3] C. H. Papadimitriou, Computational complexity. John Wiley and Sons
Ltd., 2003.

[4] A. Balint and U. Schöning, “Choosing probability distributions for
stochastic local search and the role of make versus break,” in SAT, ser.
LNCS, A. Cimatti and R. Sebastiani, Eds., vol. 7317. Springer, 2012,
pp. 16–29.

[5] O. Gableske, “Solver description of dimetheus v. 1.700 for the sat
competition 2013,” Proceedings of SAT Competition 2013, p. 30, 2013.

[6] O. Kullmann, “The sat 2005 solver competition on random instances,”
Journal on Satisfiability, Boolean Modeling and Computation, vol. 2,
pp. 61–102, 2006.

[7] D. Achlioptas, H. Jia, and C. Moore, “Hiding satisfying assignments:
two are better than one,” Journal of Artificial Intelligence Research, pp.
623–639, 2005.

[8] W. Barthel, A. K. Hartmann, M. Leone, F. Ricci-Tersenghi, M. Weigt,
and R. Zecchina, “Hiding solutions in random satisfiability problems: A
statistical mechanics approach,” Physical review letters, vol. 88, no. 18,
p. 188701, 2002.

[9] H. Jia, C. Moore, and D. Strain, “Generating hard satisfiable formulas by
hiding solutions deceptively.” in Proceedings of the National Conference
on Artificial Intelligence, vol. 20, no. 1. Menlo Park, CA; Cambridge,
MA; London; AAAI Press; MIT Press; 1999, 2005, p. 384.

[10] R. Liu, W. Luo, and L. Yue, “Hiding multiple solutions in a hard 3-sat
formula,” Data & Knowledge Engineering, vol. 100, pp. 1–18, 2015.

[11] F. Hutter, H. H. Hoos, K. Leyton-Brown, and T. Stuetzle, “ParamILS:
an automatic algorithm configuration framework,” Journal of Artificial
Intelligence Research, vol. 36, pp. 267–306, October 2009.

[12] F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Sequential model-
based optimization for general algorithm configuration,” in Learning
and Intelligent Optimization. Springer, 2011, pp. 507–523.

61

3

[13] A. Biere, “Lingeling, plingeling and treengeling entering the sat compe-
tition 2013.” in In Proceedings of SAT Competition 2013, A. Balint,
A. Belov, M. J. H. Heule, M. Järvisalo (editors), vol. B-2013-1 of
Department of Computer Science Series of Publications B pages 51-
52, University of Helsinki, 2013., 2013.

[14] G. Audemard and L. Simon, “Predicting learnt clauses quality in modern
sat solvers.” in IJCAI, vol. 9, 2009, pp. 399–404.

62

Avoiding Monochromatic Solutions
of a + b = c and a2 + b2 = c2

Marijn J. H. Heule

Department of Computer Science,
The University of Texas at Austin, United States

INTRO

No satisfiable crafted benchmarks were submitted to SAT
Competition 2016. The organizers therefore generated some
interesting hard satisfiable (and some similar unsatisfiable)
benchmarks based on problems in Ramsey Theory.

GENERATING SCHUR BENCHMARKS

The well-known Schur theorem [1] states that it is impossi-
ble to color the natural numbers {1, 2, . . . } with a finite num-
ber of colors such that there exist no monochromatic solutions
of the equation a + b = c. The largest monochromatic-free
colorings for k < 5 colors are known. The best known lower
bound of monochromatic-free colorings using five colors is for
{1, . . . , 160}. Yet finding a monochromatic-free coloring of
{1, . . . , 160} is hard for SAT solvers. The problem gets easier
for most solvers if the problem is restricted as follows: the
first n numbers cannot be colored with the fifth color. Up to
n = 43, all these benchmarks are satisfiable. The competition
suite has 24 satisfiable benchmarks of the problem that differ
only in the restriction (20 ≤ n ≤ 43). Also included in the
suite are 24 problems of coloring {1, . . . , 161} with five colors
and the same restrictions. All these benchmarks are expected
to be unsatisfiable. For all 48 problems we added symmetry-
breaking predicates to make them easier.

GENERATING PYTHAGOREAN TRIPLES BENCHMARKS

The Pythagorean Triples problem deals with avoiding
monochromatic solutions of the equation a2 + b2 = c2. It has
recently been shown [2] that the numbers {1, . . . , 7824} can be
colored with red and blue such that for all Pythagorean triples
(a, b, c) with a2 + b2 = c2 and c ≤ 7824 holds that a, b, or c
is colored red and a, b, or c is colored blue. This is impossible
for the numbers {1, . . . , 7825}. Let F7824 denote the formula
encoding the existence of a valid 2-coloring of {1, . . . , 7824},
i.e, no monochromatic Pythagorean triple. This formula uses
variables xi. If xi is assigned to true/false, then i is colored
red/blue, respectively. Solving F7824 is hard, in particular for
CDCL solvers.

The backbone of a formula is the set of literals that is
assigned to true in all solutions. First, we break the symmetry
in F7824 by adding the unit clause (x2520) resulting in the
formula F ∗

7824. The backbone of F ∗
7824 consists of 2304

backbone literals. Adding backbone literals to F ∗
7824 makes

it easier to solve. After the addition of about 20 backbone
literals, the problem F ∗

7824 becomes reasonably easy.
The competition suite consists of 21 benchmarks of F ∗

7824

with a different number of backbone literals added. For each
i ∈ {0, . . . , 20} there is a benchmark of F ∗

7824 with i backbone
literals. By construction, all these benchmarks are satisfiable.

REFERENCES

[1] I. Schur, “Über die Kongruenz xm+ym = zm (mod p),” Jahresbericht
der Deutschen Mathematikervereinigung, vol. 25, pp. 114–117, 1917.

[2] M. J. H. Heule, O. Kullmann, and V. W. Marek, Solving and Verifying
the Boolean Pythagorean Triples Problem via Cube-and-Conquer.
Cham: Springer International Publishing, 2016, pp. 228–245. [Online].
Available: http://dx.doi.org/10.1007/978-3-319-40970-2 15

Proceedings of SAT Competition 2016: Solver and Benchmark Descriptions, volume B-2016-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2016. ISBN 978-951-51-2345-9.

63

CNF From Tools Driven By SAT Solvers
Norbert Manthey

Knowledge Representation and Reasoning Group
TU Dresden, Germany

Abstract—Many tools utilize SAT solvers to solve higher level
problems. The set of submitted formulas has been created by
using a hand picked set of tools.

I. HARDWARE MODEL CHECKING WITH SHIFTBMC

The formulas encode hardware model checking problems.
The original circuit description in the AIGER format is given
to the SHIFTBMC (http://tools.computational-logic.org/) tool
which applies circuit simplifications with the ABC toolkit.
Next, the transition formula in CNF is furthermore simplified
with COPROCESSOR. The encoded formula represents the
model checking problem for a single step.

The submitted formulas are considered being difficult. In
the hardware model checking competition in 2014 none of
the submitted tools for the deep bound track have been able
to return a result for this problems.

II. SOFTWARE MODEL CHECKING WITH CBMC

The submitted formulas have been encoded by the soft-
ware verification tool CBMC (www.cprover.org/cbmc). All
model checking tasks have been taken from the concurrency
track of the Competition of Software Verification (SV-COMP)
2015. The corresponding C benchmarks can be found at
https://github.com/sosy-lab/sv-benchmarks/tree/master/c/.

The CNF files have been generated by calling CBMC with

./cbmc <benchmark> --unwind 2 --dimacs

The used version of CBMC is version 5.3. Glucose 3.0 was
used to determine the satisfiability for the formulas, where the
resource limits 6.5GB memory and a 1h timeout have been
applied. From the set of generated CNF files we randomly
selected 45 satisfiable formulas, 45 unsatisfiable benchmarks,
and we added at most 10 formulas that could not be solved
in the time limit. The formulas should be labeled as software
verification.

III. SAT MODULO THEORY

The submitted formulas have been encoded from prob-
lems specified in SMT. All benchmarks have been taken
from the quantifier free bit vector track of the SMT li-
brary. The corresponding SMT benchmarks can be found at
”http://www.cs.nyu.edu/ barrett/smtlib/QF BV rest.zip”. Two
SMT solvers have been used to generate CNF files: CVC4
(https://github.com/lianah/cvc4) and STP (https://github.com/
stp/stp).

The CVC4 CNF files have been generated by calling CVC4
with

./cvc4 --bitblast=eager
--bvminisat-dump-dimacs <benchmark>

The used version of CVC4 is ”cvc4 1.5-prerelease (git branch
bvminisat-dump-cnf)”.

The STP CNF files have been generated by calling STP
with

./stp-2.1.2 --output-CNF
--exit-after-CNF $f <benchmark>

While STP usually created multiple CNF files, for the given
benchmark and call only a single CNF was generated per SMT
benchmark. The used version of STP is ”stp-2.1.2”.

Glucose 3.0 was used to determine the satisfiability for the
formulas, where the resource limits 6.5GB memory and a 1h
timeout have been applied. For each set of submitted formulas
we randomly selected 45 satisfiable formulas, 45 unsatisfiable
benchmarks, and we added at most 10 formulas that could not
be solved in the time limit. The submission of the formulas
contains hardware verification problems as well as software
verification problems.

ACKNOWLEDGMENT

The computational resources to preselect the formulas have
been provided by the ZIH of TU Dresden. This project is
supported by the DFG grant HO 1294/11-1.

Proceedings of SAT Competition 2016: Solver and Benchmark Descriptions, volume B-2016-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2016. ISBN 978-951-51-2345-9.

64

Collection of Combinational Arithmetic Miters
Submitted to the SAT Competition 2016

Armin Biere
Institute for Formal Models and Verification

Johannes Kepler University Linz

Abstract—In this short note we present a collection of bench-
marks submitted to the SAT Competition 2016. Most of them
stem from other sources, some crafted ones are new, but all
present equivalence checking problems (miters) for arithmetic
circuits, such as multipliers.

INTRODUCTION

Two invited talks by Anna Slobodova and Aaron Tomb, as
well as a tutorial by Priyank Kalla in Austin as part of SAT’16
and FMCAD’15 argued, that checking arithmetic miters is
still a challenge, both in hardware and software verification,
even after more than 20 years after the Pentium FDIV bug.
As a consequence even today, verifying arithmetic circuits
requires cumbersome manual case splitting or simply gives
up on obtaining a formal proof and uses simulation instead.

The reason is that these circuits do not have internal equiv-
alence points, i.e., in essence only the outputs are pair-wise
equivalent. It is further conjectured that resolution is not strong
enough to obtain polynomial proofs even for such simple tasks
as checking commutativity of bit-vector multiplication after
bit-blasting and CNF encoding.

In order to help trying to attack this challenge we collected
existing arithmetic miters and also generated some new crafted
benchmarks. All the submitted benchmarks are published at
http://fmv.jku.at/datapath. The README files available there
give more information on how exactly the benchmarks were
derived. The benchmark archive also contains structural ver-
sions for some of the benchmarks in various formats beside
CNF in DIMACS format.

CRAFTED MITERS

The CRAFTED benchmark set contains the old subset
LINVRINV, which was suggested by Stephen Cook during
his invited talk at SAT’04, for which we previously already
submitted a C generator to the competition. Pre-generated
CNFs up to square matrix size 7 are included, which are
still considered to be really challenging. The structure of the
propositional arithmetic in this benchmark subset has some
flavor or multiplier miters, but might need even more powerful
reasoning. The remaining benchmark subsets in the CRAFTED
set, check simple properties of bit-vector multiplication for
various bit-widths, more precisely, commutativity x ·y = y ·x,
associativity x·(y ·z) = (x·y)·z, and distributivity x·(y+z) =
x · y + x · z, as well as the property x · (x+ 1) = x · x+ x.

Supported by FWF, NFN Grant S11408-N23 (RiSE).

We consider these problems as crafted, since bit-vector
rewriting can prove them trivially. However, disabling rewrit-
ing and bit-blasting them to AIGs with Boolector [1], then
encoding them into CNF, produces pretty challenging bench-
marks too. We included SMT, AIG and of course CNF
versions of these benchmarks up to the bit-width, for which
we do not know of any known technique which can solve
the CNF versions in a reasonable amount of time (16 bits for
commutativity and associativity, 12 bits for distributivity and
24 bits for the last property).

Note however, that these benchmarks, as well as probably
most of the benchmarks in this submission, have nice linear
parallel speed-ups using cube-and-conquer solving [2]. So we
expect Treengeling [3] to be able to go a few bits further than
other solvers, particularly sequential ones, depending on the
number of processor cores.

EPFL MITERS

The benchmark set EPFL was generated by Mathias Soeken
using ABC [4]. These 10 miters check correctness of the
smallest optimized variant of circuits in the ”The EPFL
Combinational Benchmark Suite” [5]. Only arithmetic circuits
were used for generating miters in this submission. A few
benchmarks are considered trivial, most of them challenging.
This original set of optimized circuits is still evolving and
might be good a source for more miter benchmarks.

MULTIPLIER MITERS BY MATTI JÄRVISALO

The benchmark set JARVISALO was submitted to the SAT
Competition 2007 before by Matti Järvisalo [6] and has been
used in the competition for quite some time (file name prefix
”eqatreebraun”). It consists of miters for checking equivalence
of one particular optimized multiplier architecture against a
reference multiplier. We only include these because they model
the same problem as other benchmarks in this submission.

I. FMCAD 2015 EXAMPLE BY PRIYANK KALLA

Syntactically different polynomials modulo 2n might still
represent the same function. One of them might have less
coefficient bits. This in turn might yield a more compact
circuit implementation. Checking equivalence of the original
circuit versus the optimized implementation again produces
a miter. The single benchmark we have in this benchmark
set KALLAFMCAD15 is from an example given by Priyank
Kalla in his Tutorial at FMCAD’16 [7] on implementing

Proceedings of SAT Competition 2016: Solver and Benchmark Descriptions, volume B-2016-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2016. ISBN 978-951-51-2345-9.

65

F = 1/2
√
a2 + b2 by the polynomial of its Taylor expansion

on x = a2 + b2, where x is a bit-vector of size 16.
This setting might yield more interesting benchmarks and

the same applies to similar problems in the context of verifying
arithmetic circuits for signal processing, such as considering
Galois field multipliers.

II. MULTIPLIER MITERS FROM ARIST KOJEVNIKOV

There exists a generator suite to produce an actually quite
large set of multiplier miters, which was published already in
2005 by Arist Kojevnikov. This was used for developing and
benchmarking a boolean algebraic solver [8]. These generator
scripts produce ISCAS miters, which we translated to AIGs
and then to CNF. We generated benchmarks for bit-widths
4,8,9-16,32,64,128, and generated 144 miters per bit-width.
We also included buggy multipliers, which yield satisfiable
miters all having ”bg” in their file name. Some of the miters
compare structurally very similar (or even identical) circuits.
Those are then much simpler. The other correct miters with
high bit-widths are a real challenge.

III. MITERS FROM KAISERSLAUTERN

The first benchmark set WEDLER from the group of Wolf-
gang Kunz in Kaiserslautern, is based on miters in SMT
format as used in an ASPDAC’08 paper on bit-level arithmetic
circuit verification [9]. We obtained the actual SMT files
from Markus Wedler. These only include miters for their own
generated multipliers and not the industrial IBM multipliers,
which were used in addition in that paper. These generated
benchmarks have further been used already in many papers
on arithmetic circuit verification. The 108 SMT files have
different combinations of operand size and output sizes, and
also differ w.r.t. signedness and whether Booth encoding was
used. The SMT files were bit-blasted again with Boolector [1]
to obtain CNF files.

The other benchmark set WIELAND from Kaiserslautern
is related to their CAV’08 paper [10], which uses algebraic
word-level techniques. These benchmarks were submitted to
the SMT-LIB [11], and we simply bit-blasted them with
Boolector [1]. This set consists of three generic miters over
the bit-widths 4,8,16,32,48,64, thus 18 benchmarks altogether.

IV. CONCLUSION

We consider the effort of collecting a meaningful set of
arithmetic problems encoded in CNF as not finished yet. For
instance, we tried to obtain some more multiplier miters used
in a recent DATE’16 paper [12], but the original multiplier
designs are not publicly available. Furthermore, some of
the sources of benchmarks used above might yield more
benchmarks. Then there are these challenges mentioned in his
invited talk by Aaron Tomb last year, and already discussed
above, in the context of verifying correctness of the implemen-
tation of cryptographic functions. Some of them are already
available as SMT-LIB [11] benchmarks. Finally, benchmarks
in the context of verifying floating point operations might be
interesting too.

REFERENCES

[1] A. Niemetz, M. Preiner, and A. Biere, “Boolector 2.0,” JSAT, vol. 9,
pp. 53–58, 2015.

[2] M. Heule, O. Kullmann, S. Wieringa, and A. Biere, “Cube and conquer:
Guiding CDCL SAT solvers by lookaheads,” in Hardware and Software:
Verification and Testing - 7th International Haifa Verification Confer-
ence, HVC 2011, Haifa, Israel, December 6-8, 2011, Revised Selected
Papers, ser. Lecture Notes in Computer Science, K. Eder, J. Lourenço,
and O. Shehory, Eds., vol. 7261. Springer, 2011, pp. 50–65.

[3] A. Biere, “Lingeling and friends entering the SAT Race 2015,” Johannes
Kepler University, Linz, Austria, FMV Report Series Technical Report
15/2, April 2015.

[4] R. K. Brayton and A. Mishchenko, “ABC: an academic industrial-
strength verification tool,” in Computer Aided Verification, 22nd In-
ternational Conference, CAV 2010, Edinburgh, UK, July 15-19, 2010.
Proceedings, ser. Lecture Notes in Computer Science, T. Touili, B. Cook,
and P. Jackson, Eds., vol. 6174. Springer, 2010, pp. 24–40.

[5] L. Amarú, P.-E. Gaillardon, and G. De Micheli, “The epfl combinational
benchmark suite,” in Proceedings of the 24th International Workshop on
Logic & Synthesis (IWLS), no. EPFL-CONF-207551, 2015.

[6] M. Järvisalo, “Equivalence checking hardware multiplier designs,” 2007,
sAT Competition 2007 benchmark description. Available at http://www.
satcompetition.org/2007/contestants.html.

[7] P. Kalla, “Formal verification of arithmetic datapaths using algebraic
geometry and symbolic computation,” in Formal Methods in Computer-
Aided Design, FMCAD 2015, Austin, Texas, USA, September 27-30,
2015., R. Kaivola and T. Wahl, Eds. IEEE, 2015, p. 2.

[8] E. Hirsch, D. Itsykson, A. Kojevnikov, A. Kulikov, and S. Nikolenko,
“Report on the mixed boolean-algebraic solver,” Citeseer, Tech. Rep.,
2005.

[9] U. Krautz, M. Wedler, W. Kunz, K. Weber, C. Jacobi, and M. Pflanz,
“Verifying full-custom multipliers by boolean equivalence checking and
an arithmetic bit level proof,” in Proceedings of the 13th Asia South
Pacific Design Automation Conference, ASP-DAC 2008, Seoul, Korea,
January 21-24, 2008, C. Kyung, K. Choi, and S. Ha, Eds. IEEE, 2008,
pp. 398–403.

[10] O. Wienand, M. Wedler, D. Stoffel, W. Kunz, and G. Greuel, “An
algebraic approach for proving data correctness in arithmetic data paths,”
in Computer Aided Verification, 20th International Conference, CAV
2008, Princeton, NJ, USA, July 7-14, 2008, Proceedings, ser. Lecture
Notes in Computer Science, A. Gupta and S. Malik, Eds., vol. 5123.
Springer, 2008, pp. 473–486.

[11] C. Barrett, P. Fontaine, and C. Tinelli, “The SMT-LIB Standard: Version
2.5,” Department of Computer Science, The University of Iowa, Tech.
Rep., 2015, available at www.SMT-LIB.org.

[12] A. A. R. Sayed-Ahmed, D. Große, U. Kühne, M. Soeken, and R. Drech-
sler, “Formal verification of integer multipliers by combining gröbner
basis with logic reduction,” in 2016 Design, Automation & Test in
Europe Conference & Exhibition, DATE 2016, Dresden, Germany,
March 14-18, 2016, L. Fanucci and J. Teich, Eds. IEEE, 2016, pp.
1048–1053.

66

Documentation of some combinatorial benchmarks
Jan Elffers and Jakob Nordström

Let us start by making a general comment. The parameter
ranges for the combinatorial benchmarks were chosen to
insure reasonable CNF sizes and to allow most of them to
be solved under some settings of the CDCL algorithm. In
particular, we want to emphasize that all of these instances
have short resolution proofs that can in principle be found
by CDCL without any preprocessing, and often even without
any restarts given an appropriate (fixed) variable order. More
specifically, all formulas except the relativized pigeonhole
principle formulas have resolution proofs in size linear in
the number of clauses (with reasonably small multiplicative
constants), and this last formula family has proofs of size
scaling like nk, which is still a reasonably small polynomial
for small, constant k.

Thus, one way of viewing our contributed bencharmks is
as a challenge to CDCL to be competitive with resolution:
Can CDCL solvers produce proofs of unsatisfiability that
are somewhat close to the short proofs that do exist, as the
theoretical results in [1], [2] suggest, or are there formulas that
are very easy in theory but very hard in practice?

In what follows, we give a brief description of each family
and provide pointers to references that discuss them in more
detail. Many, though not all, of these instances were generated
using the tool CNFgen [3], [4].

I. TSEITIN FORMULAS (TSEITINGRID〈r〉)
Tseitin formulas [5] encode systems of linear equation

over GF(2) (i.e., XOR constraints) generated from connected
graphs G = (V,E) with charge function χ : V → {0, 1}.
Every edge e ∈ E corresponds to a variable xe, and for every
vertex v ∈ V there is an equation

∑
e3v xe ≡ χ(v) (mod 2)

encoded in CNF, yielding an unsatisfiable formula if and only
if

∑
v∈V χ(v) 6≡ 0 (mod 2). When G has bounded degree

and is well-connected, the formula is exponentially hard for
resolution [6].

We study Tseitin formulas on long, narrow grid graphs,
where every vertex has edges horizontally and vertically to
its 4 neighbours, and where edges “wrap around” so that
the topmost and bottommost rows are connected, as are the
rightmost and leftmost columns. For the right settings of
parameters, Tseitin formulas over such graphs have been
proven to exhibit strong size-space trade-offs for resolution [7],
[8]. These parameter settings are not appropriate for practical
experiments, however. Instead, we fix the number of rows
to a small constant r ∈ {4, 5, 6, 7} and vary the number of
columns n to scale the size of the instances. Formula sizes
and number of variables in this family scale linearly with n,
as does the size of minimal resolution proofs. Even tree-like
resolution, corresponding to DPLL without clause learning,

can refute these formulas efficiently, although at the cost of a
small polynomial blow-up depending on r.

II. ORDERING PRINCIPLE FORMULAS (POP)

Ordering principle formulas claim that there is a finite set
{e1, . . . , en} with an ordering � such that no element ej is
minimal with respect to this ordering, where variables xi,j ,
i 6= j ∈ [n], encode ei � ej . One can generate two variants of
formulas in this family encoding that the ordering is partial
(pop) and total (lop), respectively, where the latter formula
is a strict superset of the former. For the SAT competition,
only pop formulas were used.

These formulas were conjectured to be hard in [9] but were
later shown to have resolution proofs of size linear in the
formula size [10]. Ordering formulas have clauses of size n−1,
but if they are converted to 3-CNF in some appropriate way,
they can be shown to require large width [11]. Combining
this with the size-width lower bounds in [12], it follows that
ordering principle formulas are exponentially hard for tree-like
resolution and DPLL.

III. PEBBLING FORMULAS (PEB-PYROFPYR-NEQ-3)

Pebbling formulas [12] are generated from directed acyclic
graphs (DAGs) G = (V,E), with vertices v ∈ V identified
with variables xv , and contain clauses saying that (a) sources s
are true (a unit clause xs) and (b) truth propagates through
the DAG (clauses

∨`
i=1 xui

∨ xv for each non-source v with
predecessors u1, . . . , u`) but (c) sinks z are false (a unit
clause xz). As just described, pebbling formulas are trivially
refuted by unit propagation, but they become more interesting
if we replace every variable x by some suitably chosen
Boolean function f(x1, . . . , xd) for new variables x1, . . . , xd,
where f should have the property that no single variable can
fix the value of f . Strong space lower bounds and size-space
trade-offs for these formulas were shown in [13], [14].

Although from a theoretical point of view any function f
that satisfies the properties above yields formulas with similar
properties, in practice there can be significant differences. A
fairly extensive experimental evaluation of pebbling formulas
with different substitution functions was performed in [15].
Guided by that work, we use not-all-equal (NEQ) over 3 vari-
ables as the substitution function in our experiments. As
the base graph, we used “pyramids of pyramids,” which are
defined as follows. A pyramid graph of height n consists of
n + 1 layers i = 0, 1, . . . , n with i + 1 vertices in layer i,
and with edges from vertices j and j + 1 in layer i to vertex
j in layer i − 1. In a pyramid of pyramids, each vertex in
the pyramid of height n is itself blown up to a pyramid of
height n.

Proceedings of SAT Competition 2016: Solver and Benchmark Descriptions, volume B-2016-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2016. ISBN 978-951-51-2345-9.

67

All pebbling formulas, even after substitution with Boolean
functions of constant arity, have resolution proofs of size linear
in the formula size and of constant width, but are exponentially
hard for tree-like resolution [16] (for the right kind of graphs
and substitution functions, such as the ones we use here).

IV. STONE FORMULAS
(STONE-WIDTH3CHAIN-NMARKERS)

Stone formulas are also generated from DAGs and are
similar in flavour to pebbling formulas, but here we think of
every vertex of the graph as containing a stone or marker,
where every marker has colour red or blue and (a) stones on
sources are blue and (b) a non-source with all predecessors
blue also has a blue stone, but (c) sinks have red stones.
This family of formulas have been used to separate general
resolution from so-called regular resolution [17], which is a
subsystem of resolution that is strong enough to capture the DP
algorithm using variable elimination [18]. Stone formulas have
also been investigated as candidates for showing that CDCL
without restarts cannot simulate the full power of resolution,
but the results so far have been inconclusive. It was shown
in [19] that a model of CDCL without restarts can decide
these formulas in principle, but this model of CDCL seems
too general to yield any compelling practical conclusions.

The parameters for which the theoretical results in [17]
hold yield far too large formulas to be manageable in practice
(a graph over n vertices requires m = 3n stones, and so we
instead generate scaled down versions for which there are
no theoretical guarantees. We use the chain/road graphs (as
described in [15], [20]) of length n with n stones. These
formulas have resolution proofs in size linear in the formula
size. As mentioned above, for the right kind of parameters
they are hard for regular resolution, and hence also for tree-
like resolution, but the concrete parameter values that we use
are not strong enough to provide such theoretical lower bound
guarantees.

V. SUBSET CARDINALITY FORMULAS
FIXEDBANDWIDTH-EQ

These formulas are variations of benchmarks suggested
in [21], [22]. To generate subset cardinality formulas, con-
sider a 0/1 n × n matrix A = (ai,j) and identify positions
ai,j = 1 with variables xi,j . If we write Ri = {j | ai,j=1}
and Cj = {i | ai,j=1} to denote the positions of 1s/variables
in row i and column j, respectively, the subset cardinality for-
mula over A encodes the cardinality constraints

∑
j∈Ri

xi,j ≥
|Ri|/2 and

∑
i∈Cj

xi,j ≤ |Ci|/2 for all i, j ∈ [n]. In the
case when all rows and columns have 2k variables, except
for one row and column that have 2k + 1 variables, the
formula is unsatisfiable, but is hard for resolution if the
positions of the variables are “scattered enough” [23]. It can
be shown (see [24]) that this holds even if we strengthen the
cardinality constraints to equalities

∑
j∈Ri

xi,j = d|Ri|/2e
and

∑
i∈Cj

xi,j = b|Ci|/2c. The clauses in the latter formula
are a strict superset of the clauses in the former. We refer to
these two variants of the formulas as geq and eq versions,

respectively. For the SAT competition only eq versions were
used. Formula sizes and number of variables scale linearly
with n.

We want to generate easy instances of these formulas,
however. It is not hard to show—as observed in [22]—that
if one fixes a 0/1 pattern for the first row and just shifts this
pattern down the diagonal, then the resulting formulas have
linear-size resolution proofs. The formulas remain easy even
for tree-like resolution, albeit with a polynomial blow-up. We
use the fixed bandwidth pattern 11010001 with 1s in positions
2i for i = 0, 1, 2, 3 suggested in [22], and then flip one 0
somewhere to 1 to obtain an unsatisfiable instance.

VI. EVEN COLOURING FORMULAS (ECGRID〈r〉)
Even colouring formulas [25] are defined on connected

graphs G = (V,E) with all vertices of constant, even degree.
Edges e ∈ E correspond to variables xe, and for all vertices
v ∈ V constraints

∑
e3v xe = deg(v)/2 assert that there is

a 0/1-colouring such that each vertex has an equal number
of incident 0- and 1-edges. The formula is satisfiable if and
only if the total number of edges is even. For suitably chosen
graphs these formulas are empirically hard for CDCL. We are
not aware of any formal resolution size lower bounds, and a
naive application of the standard lower bound techniques does
not work. It does not obviously seem out of reach to establish
exponential lower bounds with some extra effort to develop a
variation of existing techniques, however.

We generate our even colouring formulas not for hard
graphs, however, but again for grids with “wrap-around”
edges, where we subdivide one edge into a degree-2 vertex to
get an odd number of edges. There are reasons to believe that
for grids with similar parameters as those in [8] one should get
obtain strong size-space trade-offs, just as for Tseitin formula,
but we have no formal proof for this. As for our Tseitin
benchmarks, we instead fix the number of rows to be a small
constant (r = 6 for the formulas used) and then scale the
formulas by varying the number of columns. Formula sizes and
number of variables scale linearly with n. Again, the formulas
have linear-size resolution proofs and polynomial-size tree-like
resolution proofs.

VII. RELATIVIZED PHP FORMULAS (RPHP〈k〉)
Relativized pigeonhole principle (PHP) formulas, which

have been studied in [26], [27], are a variant of the well-
known pigeonhole principle formulas with a twist to scale
down the hardness from exponential to polynomial. These
formulas claim that k pigeons (where we let k be a small
constant) can fly into k−1 holes via n “resting places,” where
n is the parameter used to scale the formulas. There are clauses
enforcing that pigeons fly into the resting places in a one-to-
one fashion and continue from resting places to holes in a
one-to-one fashion. For constant k, formula sizes and number
of variables scale like n2. It was shown in [27] that these
formulas require resolution proofs of size roughly nk, and
such proofs can be found even in tree-like resolution.

68

REFERENCES

[1] A. Atserias, J. K. Fichte, and M. Thurley, “Clause-learning algorithms
with many restarts and bounded-width resolution,” Journal of Artificial
Intelligence Research, vol. 40, pp. 353–373, Jan. 2011, preliminary
version in SAT ’09.

[2] K. Pipatsrisawat and A. Darwiche, “On the power of clause-learning
SAT solvers as resolution engines,” Artificial Intelligence, vol. 175, pp.
512–525, Feb. 2011, preliminary version in CP ’09.

[3] “CNFgen formula generator and tools,” https://github.com/
MassimoLauria/cnfgen.

[4] M. Lauria, J. Elffers, J. Nordström, and M. Vinyals, “CNFgen: a
generator of crafted CNF formulas,” 2016, manuscript in preparation.

[5] G. Tseitin, “On the complexity of derivation in propositional calculus,”
in Structures in Constructive Mathematics and mathematical Logic, Part
II, A. O. Silenko, Ed. Consultants Bureau, New York-London, 1968,
pp. 115–125.

[6] A. Urquhart, “Hard examples for resolution,” Journal of the ACM,
vol. 34, no. 1, pp. 209–219, Jan. 1987.

[7] P. Beame, C. Beck, and R. Impagliazzo, “Time-space tradeoffs in
resolution: Superpolynomial lower bounds for superlinear space,” in Pro-
ceedings of the 44th Annual ACM Symposium on Theory of Computing
(STOC ’12), May 2012, pp. 213–232.

[8] C. Beck, J. Nordström, and B. Tang, “Some trade-off results for poly-
nomial calculus,” in Proceedings of the 45th Annual ACM Symposium
on Theory of Computing (STOC ’13), May 2013, pp. 813–822.

[9] B. Krishnamurthy, “Short proofs for tricky formulas,” Acta Informatica,
vol. 22, no. 3, pp. 253–275, Aug. 1985.

[10] G. Stålmarck, “Short resolution proofs for a sequence of tricky formu-
las,” Acta Informatica, vol. 33, no. 3, pp. 277–280, May 1996.

[11] M. L. Bonet and N. Galesi, “Optimality of size-width tradeoffs for
resolution,” Computational Complexity, vol. 10, no. 4, pp. 261–276, Dec.
2001, preliminary version in FOCS ’99.

[12] E. Ben-Sasson and A. Wigderson, “Short proofs are narrow—resolution
made simple,” Journal of the ACM, vol. 48, no. 2, pp. 149–169, Mar.
2001, preliminary version in STOC ’99.

[13] E. Ben-Sasson and J. Nordström, “Short proofs may be spacious: An
optimal separation of space and length in resolution,” in Proceedings of
the 49th Annual IEEE Symposium on Foundations of Computer Science
(FOCS ’08), Oct. 2008, pp. 709–718.

[14] ——, “Understanding space in proof complexity: Separations and trade-
offs via substitutions,” in Proceedings of the 2nd Symposium on Inno-
vations in Computer Science (ICS ’11), Jan. 2011, pp. 401–416.

[15] M. Järvisalo, A. Matsliah, J. Nordström, and S. Živný, “Relating proof
complexity measures and practical hardness of SAT,” in Proceedings
of the 18th International Conference on Principles and Practice of
Constraint Programming (CP ’12), ser. Lecture Notes in Computer
Science, vol. 7514. Springer, Oct. 2012, pp. 316–331.

[16] E. Ben-Sasson, R. Impagliazzo, and A. Wigderson, “Near optimal
separation of tree-like and general resolution,” Combinatorica, vol. 24,
no. 4, pp. 585–603, Sep. 2004.

[17] M. Alekhnovich, J. Johannsen, T. Pitassi, and A. Urquhart, “An expo-
nential separation between regular and general resolution,” Theory of
Computing, vol. 3, no. 5, pp. 81–102, May 2007, preliminary version
in STOC ’02.

[18] M. Davis and H. Putnam, “A computing procedure for quantification
theory,” Journal of the ACM, vol. 7, no. 3, pp. 201–215, 1960.

[19] S. R. Buss and L. Kołodziejczyk, “Small stone in pool,” Logical Methods
in Computer Science, vol. 10, Jun. 2014.

[20] S. M. Chan, M. Lauria, J. Nordström, and M. Vinyals, “Hardness of
approximation in PSPACE and separation results for pebble games (Ex-
tended abstract),” in Proceedings of the 56th Annual IEEE Symposium on
Foundations of Computer Science (FOCS ’15), Oct. 2015, pp. 466–485.

[21] I. Spence, “sgen1: A generator of small but difficult satisfiabil-
ity benchmarks,” Journal of Experimental Algorithmics, vol. 15, pp.
1.2:1.1–1.2:1.15, Mar. 2010.

[22] A. Van Gelder and I. Spence, “Zero-one designs produce small hard
SAT instances,” in Proceedings of the 13th International Conference
on Theory and Applications of Satisfiability Testing (SAT ’10), ser.
Lecture Notes in Computer Science, vol. 6175. Springer, Jul. 2010,
pp. 388–397.

[23] M. Mikša and J. Nordström, “Long proofs of (seemingly) simple for-
mulas,” in Proceedings of the 17th International Conference on Theory

and Applications of Satisfiability Testing (SAT ’14), ser. Lecture Notes
in Computer Science, vol. 8561. Springer, Jul. 2014, pp. 121–137.

[24] ——, “A generalized method for proving polynomial calculus degree
lower bounds,” in Proceedings of the 30th Annual Computational Com-
plexity Conference (CCC ’15), ser. Leibniz International Proceedings in
Informatics (LIPIcs), vol. 33, Jun. 2015, pp. 467–487.

[25] K. Markström, “Locality and hard SAT-instances,” Journal on Satisfia-
bility, Boolean Modeling and Computation, vol. 2, no. 1-4, pp. 221–227,
2006.

[26] A. Atserias, M. Müller, and S. Oliva, “Lower bounds for DNF-
refutations of a relativized weak pigeonhole principle,” in Proceedings
of the 28th Annual IEEE Conference on Computational Complexity
(CCC ’13), Jun. 2013, pp. 109–120.

[27] A. Atserias, M. Lauria, and J. Nordström, “Narrow proofs may be
maximally long,” ACM Transactions on Computational Logic, vol. 17,
pp. 19:1–19:30, May 2016, preliminary version in CCC ’14.

69

Community Attachment Instances
Benchmarks Description

Jesús Giráldez-Cru and Jordi Levy
Artificial Intelligence Research Institute (IIIA-CSIC)

Bellaterra, Catalonia, Spain
{jgiraldez,levy}@iiia.csic.es

Abstract—We describe a family of random SAT instances gen-
erated with the Community Attachment model. This model allows
the generation of highly modular instances, a very characteristic
feature of most application SAT benchmarks.

INTRODUCTION

It is well-known that random k-CNF and industrial SAT
instances have a very distinct nature. While random formulas
can be easily generated on demand, the set of industrial
instances, which encode real-world problems, is reduced.
Moreover, solving a set of industrial benchmarks often has
a high cost. This has important impacts on the process of
developing and testing new SAT solving techniques. For this
reason, the generation of random instances that realistically
model application problems has been proposed as an important
challenge [1], [2], [3].

An important feature shared by the majority of real-world
SAT instances is the community structure. It has been shown
that most industrial SAT formulas exhibit a clear community
structure, or high modularity Q [4]. This means that, represent-
ing formulas as graphs, we can find a partition of the formula
into communities with many edges between nodes of the same
community (i.e., many clauses relating variables of the same
community), and few edges connecting distinct communities.
This property is very characteristic in real-world problems in
contrast to randomly generated instances, where modularity
is very low. In the context of SAT, it has been shown that
the community structure is correlated with the runtime of
CDCL SAT solvers [5], [6]. Moreover, it has been also used
to improve the performance of some solvers [7], [8], [9], [10].

COMMUNITY ATTACHMENT MODEL

Recently, it has been proposed a new model of generation
of random SAT instances, called Community Attachment. This
model allows the generation, with high probability, of random
SAT instances with clear community structure. Notice that
this kind of instances are very unlikely to be produced by
the classical random model. This model is published in:

• [11] J.Giráldez-Cru and J. Levy. Generating SAT in-
stances with community structure. Artificial Intelli-
gence 2016. DOI: http://dx.doi.org/10.1016/j.artint.2016.
06.001.

• [12] J.Giráldez-Cru and J. Levy. A modularity-based
random SAT instances generator. Proc. of the 24th In-

ternational Joint Conference on Artificial Intelligence
(IJCAI’15), pp. 1952–1958

As in the classical random model, the Community Attach-
ment model is parametric in the number of variables n, the
number of clauses m, and the clause size k. Additionally, it is
also parametric in a probability P and a partition C of the set
of variables. In this model all variables of a clause belong to
the same community with probability P , and with probability
1 − P they all belong to distinct communities. In particular,
the probability P is taken as:

P = Q+
1

c
(1)

where Q is the modularity, and c = |C| is the number of
communities.

In the previous equation, when the value of Q is high, the
(expected) modularity of the instance is very close to this
value. Therefore, for a high value of modularity, the resulting
formula is more adequate to model industrial problems than
classical random k-CNF formulas. Interestingly, this model
also generates SAT instances very similar to the ones pro-
duced by the classical random model when the value of the
modularity is low.

We recall that industrial SAT instances are characterized
by a high modularity Q > 0.7 in most cases, while the
modularity of random SAT formulas is very small Q ≈ 0.3.
Moreover, the number of communities c is usually in the
interval (10, 100) [4].

This generator is publicly available in http://www.iiia.
csic.es/∼jgiraldez/software. We address the reader to refer-
ences [12], [11] for further details about the Community
Attachment model.

SET OF SUBMITTED INSTANCES

Using the Community Attachment model described in the
previous section, we generate a family of pseudo-industrial
random SAT instances using the following parameters:

• Number of variables n = 2200
• Number of clauses m = 9086
• Clause size k = 3
• Modularity Q = 0.8
• Number of communities c = 40

We remark that the phase transition point of this family
(Q = 0.8) was experimentally found for this clause/variable
ratio m/n = 9086/2200 = 4.13.

Proceedings of SAT Competition 2016: Solver and Benchmark Descriptions, volume B-2016-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2016. ISBN 978-951-51-2345-9.

70

Finally, we remark that when the value of modularity Q used
to generate the family of instances is very high, there exist a
small subset of instances having a very small refutation. This
happens because most of the clauses relate variables of the
same community, and hence it is more likely to find a small
unsatisfiable set of clauses which only contains variables of
one or few communities. Therefore, it is recommendable to
filter this family in order to remove those easy instances.

REFERENCES

[1] B. Selman, H. A. Kautz, and D. A. McAllester, “Ten challenges in
propositional reasoning and search,” in Proc. of the 15th International
Joint Conference on Artificial Intelligence (IJCAI’1997), 1997, pp. 50–
54.

[2] H. A. Kautz and B. Selman, “Ten challenges redux: Recent progress in
propositional reasoning and search,” in Proc. of the 9th International
Conference on Principles and Practice of Constraint Programming
(CP’2003), 2003, pp. 1–18.

[3] R. Dechter, Constraint Processing. Morgan Kaufmann, 2003.
[4] C. Ansótegui, J. Giráldez-Cru, and J. Levy, “The community structure

of SAT formulas,” in Proc. of the 15th Int. Conf. on Theory and
Applications of Satisfiability Testing (SAT’12), 2012, pp. 410–423.

[5] Z. Newsham, V. Ganesh, S. Fischmeister, G. Audemard, and L. Simon,
“Impact of community structure on SAT solver performance,” in Proc.
of the 17th Int. Conf. on Theory and Applications of Satisfiability Testing
(SAT’14), 2014, pp. 252–268.

[6] Z. Newsham, W. Lindsay, V. Ganesh, J. H. Liang, S. Fischmeister,
and K. Czarnecki, “SATGraf: Visualizing the evolution of SAT formula
structure in solvers,” in Proc. of the 18th Int. Conf. on Theory and
Applications of Satisfiability Testing (SAT’15), 2015, pp. 62–70.

[7] R. Martins, V. M. Manquinho, and I. Lynce, “Community-based parti-
tioning for maxsat solving,” in Proc. of the 16th Int. Conf. on Theory
and Applications of Satisfiability Testing (SAT’13), 2013, pp. 182–191.

[8] T. Sonobe, S. Kondoh, and M. Inaba, “Community branching for parallel
portfolio SAT solvers,” in Proc. of the 17th Int. Conf. on Theory and
Applications of Satisfiability Testing (SAT’14), 2014, pp. 188–196.

[9] M. Neves, R. Martins, M. Janota, I. Lynce, and V. M. Manquinho,
“Exploiting resolution-based representations for MaxSAT solving,” in
Proc. of the 18th Int. Conf. on Theory and Applications of Satisfiability
Testing (SAT’15), 2015, pp. 272–286.

[10] C. Ansótegui, J. Giráldez-Cru, J. Levy, and L. Simon, “Using community
structure to detect relevant learnt clauses,” in Proc. of the 18th Int. Conf.
on Theory and Applications of Satisfiability Testing (SAT’15), 2015, pp.
238–254.

[11] J. Giráldez-Cru and J. Levy, “Generating SAT instances with
community structure,” Artificial Intelligence, 2016. [Online]. Available:
http://dx.doi.org/10.1016/j.artint.2016.06.001

[12] J. Giráldez-Cru and J. Levy, “A modularity-based random SAT instances
generator,” in Proc. of the 24th Int. Joint Conf. on Artificial Intelligence
(IJCAI’15), 2015, pp. 1952–1958.

[13] A. Biere, “Lingeling essentials, A tutorial on design and implementation
aspects of the the SAT solver Lingeling,” in Proc. of Pragmatics of SAT
(POS’2014), 2014.

[14] G. Audemard and L. Simon, “Predicting learnt clauses quality in modern
SAT solvers,” in Proc. of the 21st International Joint Conference on
Artificial Intelligence (IJCAI’2009), 2009, pp. 399–404.

71

SAT-Encodings of Sorting Networks
Thorsten Ehlers and Dirk Nowotka

Department of Computer Science
University of Kiel

Email: {the,dn}@informatik.uni-kiel.de

Abstract—We suggest some benchmarks based on a proposi-
tional encoding of sorting networks.

I. INTRODUCTION

Sorting networks are a representation of data-oblivious
sorting algorithms [1]. These algorithms perform a sequence
of comparisons which only depends on the length of the input,
and is independent of the actual data to sort. This makes
them attractive for parallel implementations, as comparisons
on disjoint elements of the input can be performed in parallel.
Figure 1 shows a sorting network for 5 inputs. The horizontal
lines, denoted channels, transport values from the left-hand
side to the right-hand side. Whenever two of them are con-
nected by a vertical line, denoted comparator, the values on
the channels are compared, and swapped, if necessary. The
depth of a sorting network is the number of parallel sorting
steps required to sort every input.

1

2

3

4

5

1

3

2

5

4

2

5

1

3

4

3

5

4

2

1

5

3

4

2

1

5

4

3

2

1

Fig. 1. A sorting network on 5 channels, sorting the input (5, 4, 3, 2, 1).

Although optimal asymptotic bounds on the depth of sorting
networks are known, it is hard to find concrete bounds on the
optimal depth. Recent work [2], [3], [4] has used SAT-solvers
to engage this problem. This is made possible by the zero-one-
principle, which claims that it is sufficient to consider binary
input sequences [1].

II. ENCODING & OPTIMISATIONS

A good encoding for sorting networks with bounded depth
was given by Bundala and Zavodny in [2], together with a
symmetry break on the first two layers. This was sufficient
to prove optimal bounds on 11 to 16 channels. Codish, Cruz-
Filipe and Schneider-Kamp introduced symmetry breaks on
the last two layers [3]. Ehlers and Müller suggested an im-
proved encoding, and used symmetries on the first two layers
to minimise the number of variables in the SAT formulas,
proving optimality for 17 channels [4].

III. HARDNESS

The set of benchmarks follows this history. We consider
networks on 13, 16 and 17 channels. The prefix of the bench-
marks names are ”snw n d”, where n denotes the number
of channels, and d the number of layers. The formulas with
infixes ”13 8”, ”16 8” and ”17 9” are unsatisfiable, all others
are satisfiable. Furthermore, we use the following infixes to
indicate which optimisations was used.

• CCS: Symmetry breaks due to Codish, Cruz-Filipe and
Schneider-Kamp [3] were enabled.

• Enc: Improved encoding as in [4] used, which allows for
more propagations, and reduces the number of clauses.

• preOpt: Symmetries were used to minimise the number
of variables in the encoding [4].

• pre: A preprocessing step (Failed Literal Branching)
was applied to the formula [4]. Interestingly, this easy
preprocessing seems to have a big impact on solver
performance.

The hardness of the resulting formulas depends on the set of
optimisations used, ranging from trivial to hard.

We used different solvers when trying to find new bounds.
Interestingly, Glucose and Lingeling were competitive on easy
instances, whereas they were outperformed by MiniSAT 2.20
on harder instances. Therefore, it will be interesting to see
how the solvers in the SAT Competition perform on them.
The formula ”17 9” corresponds to the easiest case we had to
solve in [4], it took MiniSAT 2.20 roughly 6 hours to solve it.

ACKNOWLEDGMENT

This work is funded by the German Federal Ministry of
Education and Research, combined project 01IH15006A.

REFERENCES

[1] D. E. Knuth, The Art of Computer Programming, Volume 3: (2Nd Ed.)
Sorting and Searching. Redwood City, CA, USA: Addison Wesley
Longman Publishing Co., Inc., 1998.

[2] D. Bundala and J. Zavodny, “Optimal sorting networks,” in LATA 2014,
Madrid, Spain, March 10-14, 2014. Proc., ser. LNCS, A. H. Dediu,
C. Martı́n-Vide, J. L. Sierra-Rodrı́guez, and B. Truthe, Eds., vol. 8370.
Springer, 2014, pp. 236–247.

[3] M. Codish, L. Cruz-Filipe, and P. Schneider-Kamp, “Sorting networks:
The end game,” in LATA 2015, Nice, France, March 2-6, 2015, Proc., ser.
LNCS, A. H. Dediu, E. Formenti, C. Martı́n-Vide, and B. Truthe, Eds.,
vol. 8977. Springer, 2015, pp. 664–675.

[4] T. Ehlers and M. Müller, “New bounds on optimal sorting networks,” in
CiE 2015, Bucharest, Romania, June 29 - July 3, 2015. Proc., ser. LNCS,
A. Beckmann, V. Mitrana, and M. I. Soskova, Eds., vol. 9136. Springer,
2015, pp. 167–176.

Proceedings of SAT Competition 2016: Solver and Benchmark Descriptions, volume B-2016-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2016. ISBN 978-951-51-2345-9.

72

An Interlocking Safety Proof Applied to the French
Rail Network

Damien Ledoux
SNCF Reseau

Saint-Denis, France
damien.ledoux@reseau.sncf.fr

I. INTRODUCTION

SNCF Reseau is the owner of the French rail network and
manages the circulation of all trains on the national grid.
The system is characterised by critical systems that interact
in a non-deterministic environment where qualified operators
apply operating rules and regulations.

Global system safety is therefore based on both:

• The correctness and adequacy of operational rules and
regulations; and

• The absence of safety failures in critical systems (inter-
locking systems, centralized control systems, etc.).

In order to continue to ensure a high level of safety, SNCF has
for many years been interested in the use of formal methods.
In particular, SAT solver technology has become a very active
field of academic research. Interest in these techniques is partly
due to their effectiveness in solving industrial problems, and
partly to their ease of use. Proof engines that are based on such
techniques make it possible to largely automate the proof of
a safety property. Either the proof exists (in which case the
property is valid), or a counter example is found (if a system
execution leads to the violation of a property). These counter-
examples are very useful for system development.

II. THE BENCHMARK

This benchmark provides a safety proof for an interlocking
system of approximately 100 routes, 25 signals and 35 points.

It is based on:
• A model of interlocking;
• An environment model that expresses safety properties

(trains, points, signals, procedures, etc.);
• Two generic safety properties designed to ensure that:

– There are no derailments by moving points; and
– There are no head-on collisions between two trains.

The first step of the proof verifies that no property is falsified.
This is achieved by a BMC with a depth of 10 (in this exam-
ple). This corresponds to the files ”sncf ixl bmc depth*.cnf”.
Assuming the previous step completes successfully, the induc-
tion proof is run on the set of safety properties. The induction
proof is divided into two stages corresponding to the files:

• ”sncf ixl proof induction base.cnf” (base case);
• ”sncf ixl proof induction step.cnf” (inductive step).

If all instances return UNSAT then safety properties are proven
for the entire interlocking model.

Proceedings of SAT Competition 2016: Solver and Benchmark Descriptions, volume B-2016-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2016. ISBN 978-951-51-2345-9.

73

Industrial Combinational Equivalence Checking
Benchmark Suite

Valeriy Balabanov
Calypto Systems Division, Mentor Graphics, Fremont, USA

balabasik@gmail.com

Abstract—This document describes the benchmark suite sub-
mitted to the main track of SAT competitions 2016.

I. INTRODUCTION

Combinational equivalence checking (CEC) is a problem of
verifying functional equivalence of two combinational circuits.
The need in CEC may emerge for various reasons. Most com-
monly the golden specification (spec) is verified against the
synthesized/simplified version of itself. Boolean satisfiability
problem (SAT) and CEC could be interchangeably reduced to
each other, and therefore CEC benchmarks are of a direct rel-
evance to the SAT community. For more recent advancements
in the state of the art in combinational equivalence checking
please refer to [1], [2].

II. BENCHMARK SUITE DESCRIPTION

This benchmark suite contains 45 CEC problems repre-
sented in the “dimacs” format. Most of the problems in the
suite come from the domain of the bit-vector arithmetics,
have medium to hard complexity, and are believed to be
unsatisfiable. Benchmarks have 36000 variables and 135000
clauses on average (ranging from 1377 to 170852 variables,
and 5289 to 659936 clauses).

III. AVAILABILITY

Benchmarks are publicly available from the competitions
website. They could be used by the research community for
non-profit purposes.

REFERENCES

[1] E. I. Goldberg, M. R. Prasad, and R. K. Brayton, “Using SAT for
combinational equivalence checking,” in Proceedings of the Conference
on Design, Automation and Test in Europe, DATE 2001, Munich,
Germany, March 12-16, 2001, 2001, pp. 114–121. [Online]. Available:
http://dx.doi.org/10.1109/DATE.2001.915010

[2] A. Mishchenko, S. Chatterjee, R. K. Brayton, and N. Eén,
“Improvements to combinational equivalence checking,” in 2006
International Conference on Computer-Aided Design, ICCAD 2006, San
Jose, CA, USA, November 5-9, 2006, 2006, pp. 836–843. [Online].
Available: http://doi.acm.org/10.1145/1233501.1233679

Proceedings of SAT Competition 2016: Solver and Benchmark Descriptions, volume B-2016-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2016. ISBN 978-951-51-2345-9.

74

Solver Index

abcdSAT, 48
AICR_PeneLope 2016, 20
AmPharoS, 22

BreakIDCOMiniSatPS, 31

CBPeneLoPe2016, 25
CCSPeneLoPe2016, 25
CHBR_glucose, 27
COMiniSatPS the Chandrasekhar

Limit, 29
CryptoMiniSat v5 (CMS5), 28
CSCCSat, 10

DCCAlm, 11
dimetheus, 37
Dissolve, 33

GHackCOMSPS, 29
gluco_par, 39
Glucose, 40
Glucose 3.0 Hack “Beans and Eggs”,

24
glucose_hack_kiel, 39
Glucose_nbSat, 35
GlucosePLE, 42
Glue_alt, 12
GlueMinisat 2.2.10-81, 43
Gulch, 25

Lingeling, 44

MapleCMS, 50
MapleCOMSPS, 52
MapleCOMSPS_CHB, 52
MapleCOMSPS_LRB, 52
MapleGlucose, 50
multi-SAT, 54

ParaGlueminisat, 14
Plingeling, 44
PolyPower v1.0, 16
PolyPower v2.0, 16
Priss 6, 56

Riss 6, 56

Scavel_SAT, 18

Splatz, 44
StocBCD, 46
Syrup, 40

tbParaGlueminisat, 14
Treengeling, 44

YalSAT, 44

75

Benchmark Index

Combinational equivalence check-
ing, 74

Commmunity attachment, 70

Even colouring, 67

Hardware model checking, 64

Interlocking safety of railway net-
works, 73

Miters, 65

Ordering principle, 67

Pebbling formulas, 67
Pythagorean triples, 63

Random satisfiable benchmarks
by algorithm configura-
tion, 60

Relativized PHP, 67

SAT modulo theories, 64
Software model checking, 64
Sorting networks, 72
Stone formulas, 67
Subset cardinality, 67

Tseitin formulas, 67

Uniform random k-SAT, 59

76

Author Index

Audemard, Gilles, 22, 40

Balabanov, Valeriy, 74
Balyo, Tomáš, 60
Biere, Armin, 44, 65
Bogaerts, Bart, 31

Cai, Shaowei, 10, 11
Chen, Jingchao, 12, 46, 48
Czarnecki, Krzysztof, 50, 52

Devriendt, Jo, 31

Ehlers, Thorsten, 39, 72
Elfers, Jan, 67

Gableske, Oliver, 37
Ganesh, Vijay, 50, 52
Giráldez-Cru, Jesús, 70

Henry, Julien, 33
Heule, Marijn J. H., 59, 63
Huang, Jinbo, 54

Inoue, Katsumi, 43
Iser, Markus, 24
Iwanuma, Koji, 43

Kidd, Nick, 33

Lagniez, Jean-Marie, 22
Ledoux, Damien, 73
Levy, Jordi, 70
Li, Chu Min, 35
Liang, Jia Hui, 50, 52
Liu, Sixue, 16
Lou, Chuan, 10, 11

Manthey, Norbert, 56, 64
Mary, Inaba, 14, 27
Moon, Seongsoo, 14, 27

Nabeshima, Hidetomo, 43
Nordström, Jakob, 67
Nowotka, Dirk, 39, 72

Oh, Chanseok, 29, 52

Papakonstantinou, Periklis A., 16

Poupart, Pascal, 50, 52

Reps, Thomas, 33

Siddiqi, Saijad, 54
Simon, Laurent, 40
Sonobe, Tomohiro, 25
Soos, Mate, 28
Stephan, Aaron, 56
Su, Kaile, 10, 11
Szczepanski, Nicolas, 22

Tabary, Sébastien, 22
Thakur, Aditya, 33
Togasaki, Hitoshi, 20

Werner, Elias, 56
Wu, Wei, 10

Xiao, Fan, 35
Xu, Ruchu, 35
Xu, Yang, 18

Zha, Aolong, 42

77

