-

-
brought to you by .. CORE

View metadata, citation and similar papers at core.ac.uk
provided by Helsingin yliopiston digitaalinen arkisto

Proceedings of
SAT COMPETITION 2016

Solver and Benchmark Descriptions

Tomés Balyo, Marijn J. H. Heule, and Matti Jarvisalo (editors)

https://core.ac.uk/display/43338638?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

UNIVERSITY OF HELSINKI
DEPARTMENT OF COMPUTER SCIENCE
SERIES OF PUBLICATIONS B

REPORT B-2016-1

ISSN 1458-4786
ISBN 978-951-51-2345-9 (PDF)
HELSINKI 2016

PREFACE

The area of Boolean satisflability (SAT) solving has seen tremendous progress over the
last years. Many problems (e.g., in hardware and software verification) that seemed to be
completely out of reach a decade ago can now be handled routinely. Besides new algorithms
and better heuristics, refined implementation techniques turned out to be vital for this
success. To keep up the driving force in improving SAT solvers, SAT solver competitions
provide opportunities for solver developers to present their work to a broader audience and
to objectively compare the performance of their own solvers with that of other state-of-the-
art solvers.

SAT Competition 2016 (SC 2016), an open competitive event for SAT solvers, was organized
as a satellite event of the 19th International Conference on Theory and Applications of
Satisfiability Testing (SAT 2016), Bordeaux, France. SC 2016 stands in the tradition of
the previously organized main competitive events for SAT solvers: the SAT Competitions
held 2002-2005, biannually during 2007-2013, and 2014; the SAT-Races held in 2006, 2008,
2010, and 2015; and SAT Challenge 2012.

SC 2016 consisted of several tracks, including a Main Track with subcategories and special
tracks for parallel solvers, incremental solvers, solvers specificially developed for Random
SAT, a Glucose Hack track, as well as a “No-Limits” track relaxing requirements on open
source solvers and allowing any type of solvers—including solver portfolios—to compete.

There were two ways of contributing to SC 2016: by submitting one or more solvers for
competing in one or more of the competition tracks, and by submitting interesting bench-
mark instances on which the submitted solvers could be evaluated on in the competition.
Following the tradition put forth by SAT Challenge 2012, the rules of SC 2016 invited all
contributors to submit a short, around 2-page long description as part of their contribu-
tion. This book contains these non-peer-reviewed descriptions in a single volume, providing
a way of consistently citing the individual descriptions.

We hope this compilation is of value to the research community at large both at present
and in the future, providing the reader new insights into the details of state-of-the-art
SAT solver implementations and the SC 2016 benchmarks, and also as a future historical
reference providing a snapshot of the SAT solver technology actively developed in 2016.

Matt: Jarvisalo

Contents

Preface 3

Solver Descriptions

CSCCSat in SAT Competition 2016

Chuan Lou, Shaower Cai, Wer Wu, and Kaile Su 10
DCCAlIm in SAT Competition 2016
Chuan Lou, Shaower Cai, and Kaile Su 11

Glue alt: Hacking Glucose by Applying At-Least-One Recently Used Rule to Learnt
Clause Management

Jingchao Chen e e e 12
ParaGlueminisat, tbParaGlueminsat

Seongsoo Moon and Mary Inaba 14
PolyPower: Random-SAT track participant in SAT Competition 2016 (PolyPower v1.0

and v2.0)

Stzue Liu and Periklis A. Papakonstantinou 16
Scavel SAT

Yang Xu o . e e 18
AICR_ PeneLope 2016

Hitosht Togasaki o . i i e 20

AmPharoS, An Adaptive Parallel Solver
Gilles Audemard, Jean-Marie Lagniez, Nicolas Szczepanski, and Sébastien Tabary 22
“Beans and Eggs”: Proteins for Glucose 3.0

Markus Iser e 24
CBPeneLoPe2016, CCSPenel.oPe2016, Gulch at the SAT Competition 2016

Tomohiro Sonobe e e e e 25
CHBR _glucose

Seongsoo Moon and Inaba Mary e 27
The CryptoMiniSat 5 set of solvers at SAT Competition 2016

Mate Soos e 28
COMiniSatPS the Chandrasekhar Limit and GHackCOMSPS

Chanseok Oh e e 29
BreakIDCOMiniSatPS

Jo Devriendt and Bart Bogaerts e 31
Dissolve in the SAT Competition 2016

Julien Henry, Aditya Thakur, Nick Kidd, and Thomas Reps 33

Glucose nbSat

Chu Min Li, Fan Xia0, and Ruchu Xu
dimetheus

Oliwver Gableske e
Sequential and Parallel Glucose Hacks

Thorsten Ehlers and Dirk Nowotka
Glucose and Syrup in the SAT’16

Gilles Audemard and Laurent Simono
GlucosePLE

Aolong Zha e
GlueMinisat 2.2.10-81

Hidetomo Nabeshima, Koji Iwanuma, and Katsumt Inoue
Splatz, Lingeling, Plingeling, Treengeling, YalSAT Entering the SAT Competition 2016

Arman Biere L e
StocBCD: a Stochastic Local Search solver Based on Blocked Clause Decomposition

Jingchao Chen e e e
Improving abcdSAT by At-Least-One Recently Used Clause Management Strategy

Jingchao Chen e e e
MapleGlucose and MapleCMS

Jia Hui Liang, Viyay Ganesh, Krzysztof Czarneck:, and Pascal Poupart.
MapleCOMSPS, MapleCOMSPS LRB, MapleCOMSPS CHB

Jia Hur Liang, Chanseok Oh, Viyay Ganesh, Krzysztof Czarnecki, and Pascal

Poupart e e
multi-SAT: An Adaptive SAT Solver

Sayad Siddiqi and Jinbo Huang. e
Riss 6 Solver and Derivatives

Norbert Manthey, Aaron Stephan, and Elias Werner

Benchmark Descriptions

Generating the Uniform Random Benchmarks

Maryn J. H. Heule e e
Using Algorithm Configuration Tools to Generate Hard Random Satisfiable Benchmarks

Tomds Balyo e e e e e e
Avoiding Monochromatic Solutions of a + b = ¢ and a? + b? = ¢?

Maryn J. H. Heule e
CNF From Tools Driven By SAT Solvers

Norbert Manthey e e e e
Collection of Combinational Arithmetic Miters Submitted to the SAT Competition 2016

Arman Biere L e
Documentation of some combinatorial benchmarks

Jan Elfers and Jakob Nordstrom v i i
Community Attachment Instances: Benchmarks Description

Jesus Girdldez-Cru and Jorde Levy
SAT-Encodings of Sorting Networks

Thorsten Ehlers and Dirk Nowotka

An Interlocking Safety Proof Applied to the French Rail Network

Damien LedouT oo e 73
Industrial Combinational Equivalence Checking Benchmark Suite

Valeriy Balabanov e e e e 74
Solver Index L e 75
Benchmark Index e 76
Author Index e e e 77

SOLVER DESCRIPTIONS

Proceedings of SAT Competition 2016: Solver and Benchmark Descriptions, volume B-2016-1 of Department of Computer Science Series of Publications

B, University of Helsinki 2016. ISBN 978-951-51-2345-9.

CSCCSat in SAT Competition 2016

Chuan Luo*f, Shaowei Caif, Wei Wu?, Kaile Su¥l
*Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
fSchool of Electronics Engineering and Computer Science, Peking University, Beijing, China
iKey Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing, China
§Center for Quantum Computation and Intelligent Systems, University of Technology, Sydney, Sydney, Australia
ﬂDepartment of Computer Science, Jinan University, Guangzhou, China
Institute for Integrated and Intelligent Systems, Griffith University, Brisbane, Australia
{chuanluosaber, shaoweicai.cs, william.third.wu} @ gmail.com; k.su@griffith.edu.au

Abstract—This document describes local search SAT solver
CSCCSat.

I. INTRODUCTION

Recently, a diversification strategy called configuration
checking (CC) [1] has been proposed for handling the cycling
problem, which is a serious issue in local search algorithms.
In the context of SAT, there are two CC heuristics, i.e., the
neighboring variables based configuration checking (NVCC)
heuristic [2], [3], [4] and the clause states based configuration
checking (CSCC) heuristic [5], [6], [7]. The CSCC heuristic
has resulted in several efficient local search algorithms for
SAT, such as FrwCB [6], [7] and DCCASat [8].

The CSCCSat solver is a local search solver, which is on the
basis of the clause states based configuration checking (CSCC)
heuristic. The CSCCSat solver is a combination of FrwCB and
DCCASat. The CSCCSat solver won the ‘3rd Place Award’ in
the random SAT track of SAT Competition 2014.

II. SPECIAL ALGORITHMS, DATA STRUCTURES, AND
OTHER FEATURES

The notation r denotes the clause-to-variable ratio of an
SAT instance. The procedures of CSCCSat can be found in the
solver description submitted to SAT Competition 2014 [9], and
are described as follows. For random 3-SAT with r < 4.24,
FrwCB is called; for random 3-SAT with r» > 4.24, DCCASat
is called. For random 4-SAT with r < 9.35, FrwCB is called;
for random 4-SAT with » > 9.35, DCCASat is called. For
random 5-SAT with r < 20.1, FrwCB is called; for random
5-SAT with r > 20.1, DCCASat is called. For random 6-
SAT with » < 41.2, FrwCB is called; for random 6-SAT with
r > 41.2, DCCASat is called. For random 7-SAT with r» < 80,
FrwCB is called; for random 7-SAT with r > 80, DCCASat
is called.

III. IMPLEMENTATION DETAILS

The CSCCSat solver is implemented in programming lan-
guage C/C++, and is developed on the basis of FrwCB and
DCCASat.

10

IV. SAT COMPETITION 2016 SPECIFICS

The CSCCSat solver is submitted to Random SAT track,
SAT Competition 2016. The command line of CSCCSat is
described as follows.

./CSCCSat <instance> <seed>

REFERENCES

[1] S. Cai, K. Su, and A. Sattar, “Local search with edge weighting and
configuration checking heuristics for minimum vertex cover,” Artificial
Intelligence, vol. 175, no. 9-10, pp. 1672-1696, 2011.

S. Cai and K. Su, “Local search with configuration checking for SAT,”
in Proc. of ICTAI 2011, 2011, pp. 59-66.

, “Configuration checking with aspiration in local search for SAT,”
in Proc. of AAAI 2012, 2012, pp. 434-440.

, “Local search for boolean satisfiability with configuration checking
and subscore,” Artificial Intelligence, vol. 204, pp. 75-98, 2013.

C. Luo, K. Su, and S. Cai, “Improving local search for random 3-SAT
using quantitative configuration checking,” in Proc. of ECAI 2012, 2012,
pp. 570-575.

C. Luo, S. Cai, W. Wu, and K. Su, “Focused random walk with
configuration checking and break minimum for satisfiability,” in Proc.
of CP 2013, 2013, pp. 481-496.

C. Luo, S. Cai, K. Su, and W. Wu, “Clause states based configuration
checking in local search for satisfiability,” IEEE Transactions on Cyber-
netics, vol. 45, no. 5, pp. 1014-1027, 2015.

C. Luo, S. Cai, W. Wu, and K. Su, “Double configuration checking in
stochastic local search for satisfiability,” in Proc. of AAAI 2014, 2014,
pp. 2703-2709.

, “CSCCSat2014 in SAT competition 2014,” in Proc. of SAT Com-
petition 2014: Solver and Benchmark Descriptions, 2014, pp. 25-26.

[2]

[7]

[8]

[

Proceedings of SAT Competition 2016: Solver and Benchmark Descriptions, volume B-2016-1 of Department of Computer Science Series of Publications

B, University of Helsinki 2016. ISBN 978-951-51-2345-9.

DCCAIm in SAT Competition 2016

Chuan Luo*T, Shaowei Cai*, Kaile Su®¥
*Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
fSchool of Electronics Engineering and Computer Science, Peking University, Beijing, China
iKey Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing, China
§Department of Computer Science, Jinan University, Guangzhou, China
Tnstitute for Integrated and Intelligent Systems, Griffith University, Brisbane, Australia
{chuanluosaber, shaoweicai.cs}@gmail.com; k.su@griffith.edu.au

Abstract—This document describes local search SAT solver
DCCAlm.

I. INTRODUCTION

The DCCASat solver [1] and the WalkSATIm solver [2],
[3] show efficiency in solving random k-SAT instances at
phase transition and large-scale random k-SAT instances,
respectively.

The DCCASat solver benefits from the DCCA heuristic,
which hierarchically combines neighboring variables based
configuration checking (NVCC) [4], [5], [6] and clause
states based configuration checking (CSCC) [7], [8], [9]. The
WalkSATIm solver improves the original WalkSAT algorithm
[10] by incorporating the multi-level make property [2], [3].

The DCCAIm solver is a combination of DCCASat and
WalkSATIm. The main procedures of DCCAIm can be de-
scribed as follows. For solving an SAT instance, DCCAlm first
decides the type of this instance. Then based on the properties
of the instance, DCCAlm calls either DCCASat or WalkSATIm
to solve the instance.

II. SPECIAL ALGORITHMS, DATA STRUCTURES, AND
OTHER FEATURES

The notation r denotes the clause-to-variable ratio of an
SAT instance. The procedures of DCCAIlm are described as
follows. For random 3-SAT with r < 4.24, WalkSATIm is
called; for random 3-SAT with » > 4.24, DCCASat is called.
For random 4-SAT with » < 9.35, WalkSATIm is called; for
random 4-SAT with r > 9.35, DCCASat is called. For random
5-SAT with » < 20.1, WalkSATIm is called; for random 5-
SAT with r > 20.1, DCCASat is called. For random 6-SAT
with » < 41.2, WalkSATIm is called; for random 6-SAT with
r > 41.2, DCCASat is called. For random 7-SAT with r» <
80, WalkSATIm is called; for random 7-SAT with » > 80,
DCCASat is called.

III. IMPLEMENTATION DETAILS

The DCCAIm solver is implemented in programming lan-
guage C/C++, and is developed on the basis of DCCASat and
WalkSATIm.

11

IV. SAT COMPETITION 2016 SPECIFICS

The DCCAIm solver is submitted to Random SAT track,
SAT Competition 2016. The command line of DCCAIm is
described as follows.

./DCCA1lm <instance> <seed>

REFERENCES

[1]1 C. Luo, S. Cai, W. Wu, and K. Su, “Double configuration checking in
stochastic local search for satisfiability,” in Proc. of AAAI 2014, 2014,
pp. 2703-2709.

S. Cai, K. Su, and C. Luo, “Improving WalkSAT for random k-
satisfiability problem with k > 3,” in Proc. of AAAI 2013, 2013, pp.
145-151.

S. Cai, C. Luo, and K. Su, “Improving WalkSAT by effective tie-
breaking and efficient implementation,” The Computer Journal, vol. 58,
no. 11, pp. 2864-2875, 2015.

S. Cai and K. Su, “Local search with configuration checking for SAT,”
in Proc. of ICTAI 2011, 2011, pp. 59-66.

, “Configuration checking with aspiration in local search for SAT,”
in Proc. of AAAI 2012, 2012, pp. 434-440.

, “Local search for boolean satisfiability with configuration check-
ing and subscore,” Artificial Intelligence, vol. 204, pp. 75-98, 2013.
C. Luo, K. Su, and S. Cai, “Improving local search for random 3-SAT
using quantitative configuration checking,” in Proc. of ECAI 2012, 2012,
pp. 570-575.

C. Luo, S. Cai, W. Wu, and K. Su, “Focused random walk with
configuration checking and break minimum for satisfiability,” in Proc.
of CP 2013, 2013, pp. 481-496.

C. Luo, S. Cai, K. Su, and W. Wu, “Clause states based configuration
checking in local search for satisfiability,” IEEE Transactions on Cyber-
netics, vol. 45, no. 5, pp. 1014-1027, 2015.

B. Selman, H. A. Kautz, and B. Cohen, “Noise strategies for improving
local search,” in Proc. of AAAI 1994, 1994, pp. 337-343.

[2]

[3]

[4]
[5]

[6]
[7]

[8]

[9]

[10]

Proceedings of SAT Competition 2016: Solver and Benchmark Descriptions, volume B-2016-1 of Department of Computer Science Series of Publications

B, University of Helsinki 2016. ISBN 978-951-51-2345-9.

Glue_alt: Hacking Glucose by Applying
At-Least-One Recently Used Rule to Learnt Clause
Management

Jingchao Chen
School of Informatics, Donghua University
2999 North Renmin Road, Songjiang District, Shanghai 201620, P. R. China
chen-jc@dhu.edu.cn

Abstract—Glue_alt is a hack version that is built on the top of
Glucose 3.0. It improves Glucose in the following components:
phase selection and learnt clause database reduction, which are
important elements in CDCL (Conflict Driven, Clause Learning)
solvers.

I. INTRODUCTION

Glue_alt is a hack version of Glucose 3.0 [1] . Compared
with Glucose, Glue_alt adds at-least-one recently used strat-
egy, bit-encoding phase selection strategy, and dynamic core
and local learnt clause management strategy. In the subsequent
sections, these strategies will be introduced.

II. AT-LEAST-ONE RECENTLY USED PoOLICY

In the search process, CDCL (Conflict Driven, Clause
Learning) solvers need to maintain the learnt clause database.
This database maintenance should be similar to cache re-
placement in CPU cache management or page replacement in
a computer operating system. There are many cache (page)
replacement algorithms. For example, Least Recently Used
(LRU), Most Recently Used (MRU), Pseudo-LRU (PLRU),
Least-Frequently Used (LFU), Second Chance FIFO, Random
Replacement (RR), Not Recently Used (NRU) [2] etc. Our
at-least-one recently used (ALORU) algorithm is similar to
NRU page replacement algorithm. ALORU algorithm favours
keeping learnt clauses in database that have been recently used
at least one time. If a learnt clause has not so far involved in
any conflict analysis since it was generated, it will be discarded
first. Implementing ALORU algorithm is very simple. When
a conflict clause (called also learnt clause) is generated, its
LBD (literal block distance) is usually set to the number
of different decision levels involved in it. However, ALORU
algorithm sets the initial LBD of a conflict clause to +oo,
not actual LBD value. In details, in the search procedure
of Glucose, ALORU algorithm replaces “’setLBD(nblevels)”
with “setLBD(0x3fffffff)”. Since any LBD never exceeds
Ox3fffftff, we denote +oo with Ox3fffffff. If a learnt clause
involves in a conflict analysis, Procedure analyze in Glue_alt
sets its LBD value to the actual value.

III. BIT-ENCODING PHASE SELECTION STRATEGY

The bit-encoding phase selection strategy was proposed in
2014 [3], which is suitable for SAT instances. Its basic idea is

12

that the phase of the n-th decision variable is the (n mod 4)-th
of m, where m is a counter which is increased one every time
it is used. In general, the decision levels where this strategy is
applied are limited to 12. Furthermore, this strategy requires
that the number of conflicts is less than 2 x 105, Implementing
this strategy is also simple. In the procedure pickBranchLit
of Glucose, the following statements are added.

if(bN >=0) {

int L=decisionLevel();

if(L < 12) polarity[next] = (bN >>(L % 4)) & 1;
¥

In the procedure solve_ of Glucose, before statement “while
(status == |_Undef)”, statement “bN=-1" is added. After this
“while”, the following statement is added.

bN = conflicts > 2¢6 || conflicts > 3e5 &&
nVars() > 1e67 -1 : bN+1;

IV. DYNAMIC CORE AND LOCAL LEARNT CLAUSE
MANAGEMENT

Like SWDiAS5BY [4], glue_alt classifies also learnt clauses
into two categories: core and local. However, the classification
of SWDiASBY is static, while our classification is dynamic.
In SWDIiAS5BY, the maximum LBD of core learnt clauses is
fixed to a constant 5. However, in glue_alt, the maximum LBD
of core learnt clauses is not fixed. Glue_alt divides the whole
search process two stages. When the number of conflicts is less
than 2 x 108, it is considered as the first stage. Otherwise, it is
considered as the second stage. In the first stage, the maximum
LBD of core learnt clauses is limited to 2. At this stage, core
learnt clauses are kept indefinitely, unless eliminated when
they are satisfied. In the second stage, the maximum LBD of
core learnt clauses is limited to 5. This stage does not ensure
that core learnt clauses are kept indefinitely. When clause
database is reduced, we move 5000 core learnt clauses with
LBD larger than or equal to 3 to local learnt clause database.

Whether the first or second stage, the number of local learnt
clauses is maintained roughly between 10000 and 20000.
That is, once the number of local learnt clauses reaches
20000, glue_alt will halve the number of the clauses. And
the clauses with the smallest activity scores are removed first.

The computation of clause activity scores is consistent with
MiniSat.

V. CONCLUSIONS

Glue_alt modified Glucose in three different ways, and
resulted in two new ideas: learnt clause dynamic classification
and at-least-one recently used notion. These new notions
should have vitality.

REFERENCES

[11 G. Audemard, L. Simon:Predicting learnt clauses quality in modern sat
solvers, in proceedings of IJCAI, 2009, pp. 399-404.

[2] Amit S. Chavan, Kartik R. Nayak, Keval D. Vora, Manish D. Purohit,
Pramila M. Chawan: A Comparison of Page Replacement Algorithms,
TACSIT, vol.3, no.2, April 2011.

[3] J.C. Chen:A bit-encoding phase selection strategy for satisfiability solver-
s,in Proceedings of Theory and Applications of Models of Computation
(TAMC’14), ser. LNCS, vol. 8402, 2014, pp. 158-167.

[4] C., Oh: MiniSat HACK 999ED, MiniSat HACK 1430ED, and SWDi-
ASBY, in Proceedings of the SAT Competition 2014, pp. 46-47.

13

Proceedings of SAT Competition 2016: Solver and Benchmark Descriptions, volume B-2016-1 of Department of Computer Science Series of Publications

B, University of Helsinki 2016. ISBN 978-951-51-2345-9.

ParaGlueminisat, tbParaGlueminsat

Seongsoo Moon
Graduate School of Information Science and Technology,
The University of Tokyo, Japan

Abstract—We briefly introduce our solver, ParaGlueminisat,
and tbParaGlueminisat submitted to SAT competition 2016.
These are parallel version of Glueminisat with several deter-
ministic policies.

I. INTRODUCTION

Diversification of search space has contributed to the rapid
progress in SAT solving, and appears to be one of the
most important keys in modern SAT solvers. It also plays
an important role in portfolio-based parallel SAT solving.
However, in portfolio solvers, maintenance of diversification
among solvers is not that simple, especially for massively
parallel machines. In this description we implements parallel
version of glueminisat with several policies to diversify or
intensify search space.

Details of our algorithm will be pressed. [1]

II. PROPOSAL OF POLARITIES TO SEARCH SPACE INDEX
(PSSI)

Many state-of-the-art solvers are using phase saving to reuse

its previous phase for intensive search after restarts. This phase
has a strong relationship with learned clauses found from the
current worker. However, clauses imported from other workers
may doesn’t fit current phase. By changing only a small part
of the phase, we expect to maintain intensive search and may
have an opportunity to use exported clauses.
For this, we convert the current phase to PSSI. First, divide the
variable set into k-blocks (B1, Ba, ..., Br). Second, calculate
the ratio (ri,re,...,7;) of variables currently allocated to
TRUE, and divide the ratio into uniform m sections uniformly,
and each section having a value between O on the far left to
m - 1 on the far right. For each block B;, ratio is converted
to integer b;. For B;, b; = p if p/m < r; < (p+1)/m where
p € {0,1,...,m—1}. After calculating each b;, calculate PSSI
(Polarity Search Space Index).

PSSI=YF b x mi~!

Since PSSI is now only an integer, we can then easily though
roughly compare the areas in the search space among the
workers. Let’s explain this with a simple example. Consider a
problem with n variables x1, x2, 3 and x,,. Solve this problem
using the parallel SAT solver with 2 workers w; and ws. Let’s
call p; the current phase of w;. If we simply calculate the
hamming distance between workers, it takes only O(n) time.
However, to compute the distance between workers, they have
to be synchronized, and this method would be unwieldy when
the number of workers is increased.

14

Inaba Mary
Graduate School of Information Science and Technology,
The University of Tokyo, Japan

When p; =0, 1, 1, ..., 0 has been already visited and we fail to
find a model, then we will want w; and ws to avoid the same
status in the future. However, memoization for this needs a lot
of memory. We do not compare these directly because of the
synchronization problem, and we want to take into account
past PSSI results.

III. WALK TOWARDS SPARSELY VISITED AREAS USING
HISTORY MAP

Using PSSIs we diversify the areas of the search space.

Each worker calculates PSSI periodically, and we accumulate
these data as a history map of PSSIs. Our main idea is to
avoid the areas frequently visited, and to walk towards the
sparsely visited areas. The history map is an 1-dimension array
consisting of the PSSI counts. Each element counts how many
times this area is visited. We can walk from the current area
to the sparsely visited area by sharing the history map among
workers and changing a phase dynamically. In this situation,
we can not anticipate whether we will reach the sparsely
visited area. It depends on the block division policy and the
structure of the problem. Therefore we call this sparsely visited
area the target area.
Algorithm 1 and 2 describe the pseudo-code of the SaSS
(Sparsely visited area walking on Search Space) heuristic. In
Alg. 1, after every c¢ conflicts (line 1), each worker calculates
the current area as PSSI (line 2), updates the history map of the
PSSIs (shared for all workers) and gets a target area as a PSSI
(line 3). If the target area is different from the current area (line
4), it changes polarities to walk towards the target area (line
5). A block is picked by calculating the bitwise XOR of p
and p/, and each variable’s polarity is updated. If the selected
block is B;, then each variable’s polarity is allocated to TRUE
b; in m. In Alg 2, we get a target area using a history map.
It updates history map (line2), but doesn’t change the area
in the early stages (line 3, 4). When the early stages end, it
searchs the target area based on the current area (line 5). It
checks areas within the hamming distance d from the current
area, and the one with the minimal count in the history map
is picked as the target area.

IV. PARAGLUEMINISAT

In CHB [2], each variable has @ score, and is updated using
Equation as follows based on reinforcement learning.

Q] = (1 - a)Qv] + ar,

Algorithm 1 SaSS heuristic: changeCurrentArea()

1: if conflicts % interval == 0 then
2: p = getCurrArea();

3: p! = updateHistoryMap(p);

4: if p != p/ then

5 changeBlockPolarities(p, p/);

Algorithm 2 SaSS heuristic: updateHistoryMap(p)
Input: PSSI p

Output: PSSI pr

pl = p;

. historyMap|p/]++;

. if pr < c-threshold X thread number then
return p/;

. pl := checkNearestAreas(p, d);

: return p/;

We’ve selected several parameters those would change run-
ning time a lot to tune CHB and tested. The initial value of
« is set to 0.4 in original CHB, and we changed this to 0.7
based on our tests. We’ve noticed CHB works very well with
small problems, but VSIDS performs better than CHB for big
problems. So, we divided problems for 2 groups by the number
of variables. As default decision heuristic, our program choose
VSIDS. If the number of variables is under 15000, CHB is
activated and used behalf of VSIDS.

V. TBPARAGLUEMINSAT

Ties happen frequently in VSIDS. To break these, we update
VSIDS scores after we obtain learned clauses. After a clause
is obtained, we add 1 / (LBD of a clause) for each variables
in that clause.

REFERENCES

[1] Moon, S., Inaba, M. Dynamic strategy to diversify search using a history
map in parallel solving. LION 2016. (in press).

[2] Hui Liang, J., Ganesh, V., Poupart, P., Czarnecki, K. Exponential Recency
Weighted Average Branching Heuristic for SAT Solvers Proceedings of
the Thirtieth AAAI Conference on Artificial Intelligence, 2016.

15

Proceedings of SAT Competition 2016: Solver and Benchmark Descriptions, volume B-2016-1 of Department of Computer Science Series of Publications

B, University of Helsinki 2016. ISBN 978-951-51-2345-9.

PolyPower: Random-SAT track participant in SAT
Competition 2016
(PolyPower v1.0 and v2.0)

Sixue Liu
Institute for Interdisciplinary Information Sciences
Tsinghua University
Beijing, China

Abstract—This document describes the SAT solver ‘Poly-
Power”’, which is based on a new proposed theory for local search,
with novel implementation and clause selection scheme.

I. INTRODUCTION

Recently, a new theory for heuristics in SAT solving was
proposed for the choices of the valuation function in WalkSAT
[1]. This relies on the analysis of the break values: given a
CNF and a complete assignment, the number of clauses turn
to unsatisfied after flipping a variable. As a result, choosing
a polynomial as the break valuation function is always better
for any large enough uniform random k-CNF near the phase
transition points (threshold) '. We also adopt separated-non-
caching technology in the implementation to speed it up [2].
Additionally, a new clause selection scheme called thfs is
proposed, leading to a improvement for some categories of
instances.

II. MAIN TECHNIQUES

Solver PolyPower is under the WalkSAT framework: start
by a random complete assignment, in each step choose an
unsatisfied clause ¢ randomly or according to some rule.
Within this clause ¢, if there exists O-break variables then
flip it?, otherwise choose one variable v with probability

p(v) = % and flip v. Here the break valuation

function is (féﬁned as:

f@)=(((z =12 +2)°+8)~"

k and (3 are two parameters for PolyPower and will be adapted
for different k-CNF and ratios.

Solver PolyPower adopts separated-non-caching technol-
ogy for 3-SAT and 4-SAT, this separates the non-caching
process in the break value calculation, resulted in an earlier
termination of finding O-break variables, which gives us a
roughly 20% speed up.

Instead of randomly select an unsatisfied clause in each
step, a new clause selection scheme 7bfs is introduced: all the

IRigourously it should be at the anticipated phase transition points,
however this statement is also supported by our empirical study.
2Variable with break value of 0.

16

Periklis A. Papakonstantinou

School of Management Science and Information Systems

Rutgers University
New Jersey, USA

unsatisfied clauses are stored in an array U, new unsatisfied
clauses are added to the end of U, and new satisfied clause
are removed from the U, but keep the original order. In clause
selection, tbfs first moves the first ¢ clauses in U to the end
of U, then choose the ¢t + 1 one. In other word, bfs is similar
to a “breadth-first-search” except the moving ¢ clauses to the
end operation. Empirical study shows that 3-SAT with ratio
lower than threshold and 4-SAT benefit from tbfs with ¢t = 4
distinctively.

III. MAIN PARAMETERS

ratio K B8 clause selection
[4.2,00) —0.08 random
3SAT | [4.1,42) | 2 | —0.08 tbfs
(0,4.1) | 23 | —0.1 thfs
(9.7, 00) 4.0 0.06 tbfs
4-SAT | [8.8,9.7) | 40 | —0.1 thfs
(0,8.8) 4.2 —-0.1 tbfs
[20.5,00) | 5.0 | —0.17 random
5-SAT | [18,20.5) | 4.6 | —0.2 random
(0,18) 50 | —-1.1 random
[40,00) | 6.0 0.2 random
6-SAT [34,40) | 6.4 | —0.2 random
(0,34) 6.4 | —0.4 random
[80, c0) 7.0 0.35 random
7-SAT [66,80) | 7.0 | —1.5 random
(0,66) 70| —1.8 random
TABLE 1

PARAMETERS SETTING OF POLYPOWER

The parameters setting of PolyPower is reported in Table 1.
Note that the thresholds are contained in every first row of each
k-SAT, and the optimal parameters found for these intervals
are as same as for the thresholds: r3 = 4.267, r4 = 9.931,
rs = 21.117, r¢ = 43.37, r7 = 87.79 for 3-SAT to 7-SAT
respectively.

IV. IMPLEMENTATION DETAILS AND SAT COMPETITION
2016 SPECIFICS

The current version of PolyPower is an incomplete solver
designed for exact-k-SAT on1y3, and 3 < k < 7. For
3-SAT and 4-SAT, we adopt separated-non-caching in the
implementation, while for 5-SAT and 6-SAT XOR-caching is
adopted, and caching without XOR for 7-SAT.

Regarding tbfs scheme, we implement this using an array
with dynamic size. Since moving new satisfied clause out of
U causes empty slots in U, a garbage collection mechanism is
required: when the size of array exceed the pre-set threshold,
carry out defragmentation. We set this threshold value and
design defragmentation delicately to make sure the amortized
time complexity of 7bfs is affordable per step.

Solver PolyPower is implemented in programming lan-
guage C++, and compiled by “g++ polypower.cpp -O3 -static
-0 polypower”. PolyPower is submitted to random SAT Track
of SAT Competition 2016. The command line to run it is
described as follows:

./PolyPower <instance filename> <seed>

The second argument “seed” is optional, and if not specified,
the current system time is chosen as the initial seed. PolyPower
2.0 differs from PolyPower 1.0 in only minor code differences
that we expect to only slightly affect the performance — we
expect these minor changes to benefit PolyPower 2.0.

V. AVAILABILITY

The PolyPower solver is open source and publicly available
for only research purposes.

ACKNOWLEDGMENTS

Many thanks to Spiros Papadimitriou from Rutgers (MSIS),
and Wei Xu from Tsinghua (at Andrew Yao’s institute) for
providing us with the necessary computational power.

REFERENCES

[1] S. Liu and P. A. Papakonstantinou, “Local search for hard sat formulas:
the strength of the polynomial law,” in Proceedings of the 30th AAAI
Conference on Artificial Intelligence (AAAI 2016). AAAI Press, 2016.

[2] S. Liu, “An efficient implementation for walksat,”
CoRR, vol. abs/1510.07217, 2015. [Online]. Available:
http://arxiv.org/abs/1510.07217

3Each clause has exactly k literals.

17

Proceedings of SAT Competition 2016: Solver and Benchmark Descriptions, volume B-2016-1 of Department of Computer Science Series of Publications

B, University of Helsinki 2016. ISBN 978-951-51-2345-9.

Scavel SAT

Yang Xu
Southwest Jiaotong University
Chengdu, China

Abstract—Scavel_SAT is submitted to SAT Competition 2016.
It is based on logic deduction, and proposes a new branching
heuristics.

I. INTRODUCTION

In this short paper, we present a derived version of MiniSat
called Scavel_SAT. Scavel_SAT is developed from the code
source of MiniSat 2.2.0 [1] with the bit-encoding phase
selection strategy [2], while there is a significant change in
Scavel_SAT by applying a kind of logic deduction compared
with MiniSat 2.2.0. Specifically, based on this logic deduc-
tion, we can (i) obtain a set of partial assignment argument
sequences; and (ii) obtain a new learning clause that is then
added to the original CNF formula. The principle of this logic
deduction applied in Scavel_SAT is summarized in Section II.

II. LoGgic DEDUCTION

Resolution principle [3] is one of the most important
methods for validating the unsatisfiability of logical formulas.
Due to its simplicity, soundness and completeness, it has
been adopted by most popular modern automated deduction
systems. For further improving the efficiency of resolution,
many refined resolution methods have been proposed such
as linear resolution, semantic resolution, and lock resolution,
etc. In this section, some preliminary concepts about binary
resolution and linear resolution are reviewed firstly. A new
way of deriving a local satisfiable assignment for a given
clause set is then proposed by using the linear logic resolution
deduction.

Definition 2.1 [3] Let C; and C5 be clauses and L; a
propositional variable. The clause R(Cy,Cs) = Cy V C is
called a resolvent of clauses C1 = L1VCy and Cy = =LV C,.

Definition 2.2 [3] Let S be a clause set. w = {C,Cs, ..., Cy}
is called a resolution deduction from S to Cj, if
Ci(i=1,--- k) is either a clause in S, or the resolvent of
Cj and C.(j < 1,7 <i).

Definition 2.3 [3] Let S be a clause set, Cy a clause in S,
w={C1,Cy,...,Cy} is called a linear resolution deduction
from S to C}, with the top clause Cj if it satisfies:

1) Cy41 is the resolvent of C; (a center clause) and B; (a
side clause), where 1 = 0,1,...,n — 1.
2) BieSor B, =C;(j <i).

18

Remark 2.1 In fact, linear resolution deduction provides a
special and simple resolution deduction structure now that we
just need to choose the side clauses.

Using the logic deduction, i.e., a linear resolution deduction
method, we can derive a local satisfiable assignment for a
given clause set S following the algorithm below:

Algorithm 1:
Step 1: firstly we choose a clause Cj in S as the top clause;
Step 2: get a linear resolution deduction of S with the
top clause Cy where any complementary pair should not be
appeared in all side clauses.

Therefore, for the given clause set S, there are two possible
cases as below:

1) if an empty clause is derived from S using the above
linear resolution, then S is unsatisfiable.

2) otherwise, we can obtain a local satisfiable assignment
for S that are the resolvent literals in all side clauses,
that is, (Bo1, B11,-- ., Bi1) , where B is the resolvent
literals in B;.

Based on the local satisfiable assignment of S, we can
construct or extend it to a global satisfiable assignment for
S by using Algorithm 1.

In MiniSat, a decision variable p can be derived through
the function pickBranchLit(), therefore we can start the logic
linear resolution deduction from p. Since p is not a clause, in
order to better combine the linear resolution deduction with
the MiniSat decision variable selection strategy, we assume
that p is from the tautology {p, —p}, and the resolvent R of
contains —p as a consequence.

Following several linear resolutions, we can obtain a set
of local/partial assignment argument sequences. Then a new
learning clause can be obtained that is then added to the
original CNF formula in MiniSat. Due to the soundness and
completeness of linear resolution, the Scavel SAT is also
sound and complete.

III. SAT COMPETITION 2016 SPECIFICS

We submit Scavel_SAT to the main track of SAT Compe-
tition2016.

ACKNOWLEDGMENT

Our work is partially supported by the National Nat-
ural Science Foundation of China (Grant No. 11526171,

61305074, 61175055 and 61100046), and the Fundamen-
tal Research Funds for the Central Universities of China
(GrantNo. A0920502051305-24, 2682015CX060).

REFERENCES

[1] N. Eénand and N. Sorensson, “An extensible sat-solver,” in SAT, pp. 502—
518, 2003.

[2] J. Chen, “A bit-encoding phase selection strategy for satisfiability solvers,”
in in Proceedings of Theory and Applications of Models of Computa-
tion(TAMC14), ser. LNCS, vol. 8402, Chennai, India, 2014, pp. 158-167.

[3] C. L. Chang and R. C. T. Lee, Symbolic logic and mechanical theorem
proving. USA: Academic Press, 1997.

19

Proceedings of SAT Competition 2016: Solver and Benchmark Descriptions, volume B-2016-1 of Department of Computer Science Series of Publications

B, University of Helsinki 2016. ISBN 978-951-51-2345-9.

AICR_PeneLope 2016

Hitoshi Togasaki
The University of Tokyo
Tokyo, Japan

Abstract—In this paper, we show that simple introduction of
our solver AICR_PeneLope 2016 submitted to SAT Competition
2016. We implemented Activate Idle Clause Restart(AICR) in
PeneLope 2014(submitted SAT Competition 2014).

I. INTRODUCTION

Portfolio algorithm is mainstream of parallel SAT Solvers.
In Portfolio, to maintain diversification, Each worker choose
different search strategy and parameter. Portfolio SAT Solvers
solve problems efficiently by sharing useful learnt clauses.
Search diversification and intensification are one of the most
important factor for SAT Solving[1]. For this problem, we
extract the areas of search space relatively not searched by
using imported clause.

II. ACTIVATE IDLE CLAUSE RESTART

Learnt clause sharing among workers is a fundamental task
in the parallel SAT solvers. Learnt clauses not only prevent
reappearances of the same conflits but also accelerate pruning
of search spaces. In order to reduce communication costs,
workers share only useful learnt clauses[2], i.e., clauses with
short length or a low LBD value However, the workers not
always utilize the imported learnt clauses. We define a learnt
clause imported from other worker and never used in the
search of the worker as a “idle clause” in this paper. In this
context, a worker “uses” a clause if this clause appears in the
propagation phase. The idle clauses are related with search
spaces where the worker does not conduct the search. By
forcing the workers to assign values so that the idle clauses
become unit, we can change the search spaces of the workers.
Especially, it is important that the idle clauses are relevant
to the search spaces where the worker does not conduct the
search but other wokers do.

We show the pseudocodes of our proposal in Algorithm 1
and 2. The main function is in Algorithm 1. This function
is called for every restart. The input of this function is a list
of worker IDs. The worker activates the idle clauses from the
workers with IDs in this list. In addition, we select the clauses
with a low LBD value (i.e., lower than average LBD value
of imported). For each selected idle clause, we increase the
VSIDS score of each variable in the clause according to the
“BUMP_RATIO” constant and add to “idle clause vars” sets.
Note that the “BUMP_RATIO” is always 1 in the original
VSIDS. In this function, the polarity (true or false) is also
assigned so that the literals in the target clause become false.

The decision fucntion is in Algorithm 2. This function is
called for every decision. We select a variable with the highest
VSIDS score, and call this v. If v is included in the “idle clause

20

vars” set, we allocate each variable to make idle clause false,
and erase v from “idle clause vars” set.

Algorithm 1 ActivateldleClauseRestart
Input: tid < target worker IDs
1: ICVars <0
2: for clause € learnt clauses do
3: if clause is imported clause from workers with ID € tid
and is idle and its LBD value is less than the average
LBD values of imported then

4: for v € clause do

5: if v ¢ ICVars then

6: ICVars < ICVarsUw

7: ICPolarity[v] < not sign(v)

8: BumpV SIDS(v, BUMP_RATIO)
9: end if

10: end for

11: end if

12: end for

Algorithm 2 Idle Clause based Decision
I: v < argmax VSIDS
2: if v € ICVars then
33 ICVars < ICVars \ v
4: decision(v, IC Polarity[v])
5: else
6: decision(v, Polarity[v])
7: end if

III. AICR_PENELOPE

We implemented AICR in PeneLope[3](version 2014) and
modified the parameter(related threads). We submitted two
solvers AICR_PeneLope(threads 24 and 48) and set parameter
for ‘BUMP_RATIO=100‘and tid(below).

Letting p as the number of workers, the ID of workers ranges
from 0, to p — 1. For each worker with ID ¢,

o Pairwise: tid < {i + 1} if ¢ is even, otherwise tid <

{i—1}
REFERENCES

[1] L. Guo, Y. Hamadi, S. Jabbour, and L. Sais, “Diversification and intensi-
fication in parallel sat solving,” in Proceedings of the 16th International
Conference on Principles and Practice of Constraint Programming, ser.
CP’10. Berlin, Heidelberg: Springer-Verlag, 2010, pp. 252-265.

[2] G. Audemard, J.-M. Lagniez, B. Mazure, and L. Sais, On Freezing
and Reactivating Learnt Clauses. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2011, pp. 188-200.

[3] G. Audemard, B. Hoessen, S. Jabbour, J.-M. Lagniez, and C. Piette,
Revisiting Clause Exchange in Parallel SAT Solving. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2012, pp. 200-213.

21

Proceedings of SAT Competition 2016: Solver and Benchmark Descriptions, volume B-2016-1 of Department of Computer Science Series of Publications

B, University of Helsinki 2016. ISBN 978-951-51-2345-9.

AmPharoS, An Adaptive Parallel Solver

Gilles Audemard, Jean-Marie Lagniez, Nicolas Szczepanski, Sébastien Tabary
Univ. Lille-Nord de France
CRIL/CNRS UMRS188

Abstract—We present AMPHAROS, a new parallel SAT solver
based on the divide and conquer paradigm. This solver, designed
to work on a great number of cores, runs workers on sub-
formulas restricted to cubes. In addition to classical clause
sharing, it also exchange extra information associated to cubes.

I. MobUS OPERANDI

AMPHAROS is a parallel distributed SAT solver that uses
the divided and conquer approach. All details of AMPHAROS
are available here [1].

Even if AMPHAROS is a divide and conquer based solver,
it is important to stress that, contrary to [2], it does not use the
work stealing strategy. In our case, the division is performed
in a classical way as in [3], [4]. More precisely, our approach
generates guiding paths, restricted to cubes, that cover all
the search space. This way, the outcome of the division is
a tree where nodes are variables and the left (resp. right)
edge corresponds to the assignment of the variable to true
(resp. false). Then, solvers operate on leaves (represented by
the symbol NIL) and solve (under assumptions) the initial
formula restricted to a cube which corresponds to the path
from the root to the related leaf. Fig. 1 shows an example
of a tree containing three open leaves (cubes [z1, 2,24,
[x1, 22, 4] and [—x1, —w3)), two closed branches (already
proven unsatisfiable) and four solvers (57 ...S;) working on
these leaves.

UNSAT

NIL NIL.

Fig. 1.

AMPHAROS architecture.

In our architecture, solvers choose by themselves which
cubes they try to solve. Then, solvers can work on the same
cube (as solvers S; and S5 in Fig. la) and can stop working
before finding a solution or a contradiction. In AMPHAROS,
each time a solver shares information or asks to solve a
new cube, it communicates with a dedicated worker, called

22

MANAGER. Its main mission is to manage the cubes and
the communication between the solvers (here CDCL solvers).
Thus, when a solver decides to stop solving a given cube
(without having solved the instance), it can ask the MANAGER
to enlarge this one. Indeed, cubes that seem difficult to solve
are extended. This is done by adding to each leaf a counter
increased each time a solver is not able to solve it in a given
amount of conflicts.

Another situation where a solver stops, is once a branch is
proved to be unsatisfiable. In this case, a message informs the
MANAGER and the tree is updated in consequence. In both
cases, when a solver stops it goes through the tree and starts
solving a new cube (potentially the same). The end of the
solving process finally occurs either when a cube is proved to
be satisfiable or when the tree is proved to be unsatisfiable.

Different knowledge sharing are achieved during the solv-
ing process. First, classical learnt clauses that appear to be
good with respect to LBD measure [5]. Note that solvers
communicate learnt clauses to the MANAGER that takes over
distibution to other solvers. AMPHAROS shares also assumtive
unit literals, that is, literals that are unit with respect to the
current cube. This allows to reduce communications and to
be sure that learnt clauses that have a key role under such
assumptions are effectivelly shared.

Finally, AMPHAROS contains a strategy that permit to
intensify or diversify the search. This is done by measuring the
number of subsumed clauses that MANAGER recovers. This
can be summarized here:

Few subsumed Clauses Many subsumed clauses

Reduce extension Favour extension
Increase the number of imported Limit the number
clauses clauses

of imported

Intensification Diversification

Results (cactus plots, scatter plots, ...) and further explana-
tions are available in http://www.cril.univ-artois.fr/ampharos/.

II. ALGORITHM AND IMPLEMENTATION DETAILS

AMPHAROS uses Open MPI library to ensure communica-
tion. It uses 3 different CDCL solvers: GLUCOSE [5], MINISAT
[6] and MINISATPSM [7].

REFERENCES

[1] G. Audemard, J.-M. Lagniez, N. Szczepanski, and S. Tabary, “An adaptive
parallel sat solver,” in Proc of International Conference on Principles and
Practice of Constraint Programming, 2016, p. To appear.

(2]

(3]

[4

=

(5]
(6]
(7]

T. Schubert, M. Lewis, and B. Becker, “Pamiraxt: Paralle] SAT solving
with threads and message passing,” Journal on Satisfiability, Boolean
Modeling and Computation, vol. 6, no. 4, pp. 203-222, 2009.

G. Audemard, B. Hoessen, S. Jabbour, and C. Piette, “An effective dis-
tributed d&c approach for the satisfiability problem,” in 22nd Euromicro
International Conference on Parallel, Distributed, and Network-Based
Processing, 2014, pp. 183-187.

G. Chu, P. J. Stuckey, and A. Harwood, “Pminisat: a parallelization of
minisat 2.0,” SAT Race, Tech. Rep., 2008.

G. Audemard and L. Simon, “Predicting learnt clauses quality in modern
sat solvers,” in IJCAI, 2009.

N. Eén and N. Sorensson, “An extensible SAT-solver,” in SAT, 2003, pp.
502-518.

G. Audemard, J. Lagniez, B. Mazure, and L. Sais, “On freezing and
reactivating learnt clauses,” in International Conference on Theory and
Applications of Satisfiability Testing, 2011, pp. 188-200.

23

Proceedings of SAT Competition 2016: Solver and Benchmark Descriptions, volume B-2016-1 of Department of Computer Science Series of Publications

B, University of Helsinki 2016. ISBN 978-951-51-2345-9.

“Beans and Eggs”
Proteins for Glucose 3.0

Markus Iser
Karlsruhe Institute of Technology
Karlsruhe, Germany

Abstract—This document describes the Glucose 3.0 Hack
“Beans and Eggs” that combines a gate recognition algorithm
with the variable selection heuristic.

I. INTRODUCTION

This system description describes the “Beans and Eggs”
hack of Glucose 3.0 ([1], [2]). The hack includes application of
the gate-recognition algorithm that has been presented in [3].
Based on the result of gate structure analysis, we use a variant
of input branching ([4], [5]).

We use a slim version of gate-recognition [3] as a prepro-
cessor. The recognition result is used to initialize the activity
values of the input variables. In this context an input variable
is any variable that our algorithm did not recognized as being
the output of a gate. Note that if no gate is recognized, every
variable is treated as input variable.

II. IMPLEMENTATION DETAILS

Given the input formula F', our slim version of the gate-
recognition algorithm uses the unit clauses U C F' to start its
recursion. If there are no unit clauses, no recognition takes
place; i.e we got rid of the clause-selection loop and heuristic
we described in [3].

The recursive part of the gate-recognition is displayed in
Algorithm 1. For every v € U we enter the recursion by
invocation of extractGates(u, F'\ U).

Algorithm 1: extractGates(o, F)

Data: F : CNF formula, o : output literal

Result: C : subset of F that is part of the gate structure
1 C 0
2 if blockedsSet (o, F5, F,) then
3 if —inp[o] V fullEnc (o, F5U F,) then
4 C+ CU{F;UF,}
5 output[o] « true
6
7
8

for p € literals (F5) \{o} do

L

9 for p € literals (F5) \{o} do
10 L C + C U extractGates (p, F\ C)

inp[p] « true
if inp[o] then inp[p] < true

1 return C

-

24

For the non-monotonic case, i.e. when both implications in a
Tseitin encoding are needed, we utilize a simple pattern-based
recognition that is capable of n-ary and, or and binary xor
detection.

A. Activity Initialization
Let h(v) be the number of occurrences of the variable v

and m = ma&c(h(v)) be its maximum. We bump each input
veE

variable v by the scaled value % <1.

for v € vars(F') do
if —output[v] A moutput[v] then
h(v) .
)3

m

varBumpActivity (v,

We hereby establish a pre-ordering of variables that favours
frequent input variables. The ordering blurs rapidly as activity-
values are adjusted during the solving process.

III. AVAILABILITY

The hack is available at the website http://baldur.
iti.kit.edu/sat-competition—-2016.

ACKNOWLEDGMENT

The author would like to thank Felix Kutzner for many
fruitful related discussions.

REFERENCES

[11 G. Audemard and L. Simon, “Predicting learnt clauses quality in modern
SAT solvers,” in IJCAI 2009, Proceedings of the 21st International Joint
Conference on Artificial Intelligence, Pasadena, California, USA, July
11-17, 2009, 2009, pp. 399-404.

N. Eén and N. Sorensson, “An extensible SAT-solver,” in Theory and
Applications of Satisfiability Testing, 6th International Conference, SAT
2003. Santa Margherita Ligure, Italy, May 5-8, 2003 Selected Revised
Papers, 2003, pp. 502-518.

M. Iser, N. Manthey, and C. Sinz, “Recognition of nested gates in CNF
formulas,” in Theory and Applications of Satisfiability Testing - SAT 2015
- 18th International Conference, Austin, TX, USA, September 24-27, 2015,
Proceedings, 2015, pp. 255-271.

M. Jarvisalo and T. A. Junttila, “Limitations of restricted branching in
clause learning,” in Principles and Practice of Constraint Programming -
CP 2007, 13th International Conference, CP 2007, Providence, RI, USA,
September 23-27, 2007, Proceedings, 2007, pp. 348-363.

M. Iser, M. Taghdiri, and C. Sinz, “Optimizing minisat variable orderings
for the relational model finder kodkod - (poster presentation),” in Theory
and Applications of Satisfiability Testing - SAT 2012 - 15th International
Conference, Trento, Italy, June 17-20, 2012. Proceedings, 2012, pp. 483—
484.

[2]

[3]

(4]

Proceedings of SAT Competition 2016: Solver and Benchmark Descriptions, volume B-2016-1 of Department of Computer Science Series of Publications

B, University of Helsinki 2016. ISBN 978-951-51-2345-9.

CBPenelLoPe2016, CCSPenelLoPe2016, Gulch at
the SAT Competition 2016

Tomohiro Sonobe
National Institute of Informatics, Japan
JST, ERATO, Kawarabayashi Large Graph Project, Japan
Email: tominlab@ gmail.com

Abstract—In this description, we provide a brief introduction
of our solvers: PeneLoPe2016, CCSPeneLoPe2016, and Gulch.
PeneLoPe2016 and CCSPeneL.oPe2016 are based on the parallel
SAT solver PeneLoPe. Gulch is based on Glucose version 3.

I. PENELOPE2016

PeneLoPe2016 is a parallel portfolio SAT solver based on
PenelLoPe [3] and a new version of ones submitted in the
SAT Competition 2014 and SAT Race 2015. PeneLoPe2016
implements community branching [9], a diversification [7]
technique using community structure of SAT instances [1].
The community branching assigns a different set of variables
(community) to each worker and forces them to select these
variables as decision variables in early decision levels, aiming
to avoid overlaps of search spaces between the workers more
vigorously than the existing diversification methods.

In order to create communities, we construct a graph where
a vertex corresponds to a variable and an edge corresponds
to a relation between two variables in the same clause,
proposed as Variable Incidence Graph (VIG) in [1]. After that,
we apply Louvain method [5], one of the modularity-based
community detection algorithms, to identify communities of
a VIG. Variables in a community have strong relationships,
and a distributed search for different communities can benefit
the whole search. Recently, interesting works based on the
community structure or from a point of view of graph theory
are introduced [2], [6].

The differences between PeneLoPe2016 and previous ver-
sions are as follows.

o Community based learnt clause sharing
o Changes of some parameters
« Refactoring for some parts of the program

A. Community-Based Learnt Clause Sharing

In the previous version of PeneLoPe2016, we used the
default function of original PeneLoPe for learnt clause sharing
between workers. However, there are so many learnt clauses
that are imported but deleted without being used (“used”
stands for being used in BCP). Importing such clauses results
in vain hence we should cease importing them to reduce
various costs (e.g., memory consumption, lock waiting time).
One of the reasons why such clauses can be deleted is that
the worker searches in different regions (or simply already

25

satisfies these clauses). Using the community branching, the
workers can be forced to search specific areas (based on
the assigned communities). Thus, the most likely used learnt
clauses are ones that include the variables belonging to the
assigned communities.

We propose a new method for clause sharing in parallel
SAT solvers, community-based learnt clause sharing (CLCS).
The CLCS conducts the community detection algorithm on
the VIG of target SAT instance. Then, this method restricts
the sharing of each learnt clause to workers that conducts the
search for the variables related with communities in the target
learnt clause. By combining the community branching, the
CLCS distributes the target clauses to the workers with related
communities. For example, if a learnt clause (a VbV c) is to be
shared among the workers, and the variable a and b belong to a
community C'; and the variable c belongs to a community Co,
this clause is distributed only to the workers that are assigned
the community C; or Cy by the community branching.

II. CCSPENELOPE2016

CCSPeneLoPe2016 is a parallel portfolio solver based on
PenelLoPe. The features of CCSPeneLoPe2016 are as follows.

o Conflict history-based branching heuristic (CHB) [8] for
some workers
o CLCS prioritizing high VSIDS or CHB scores

The CHB is good at cryptographic instances in [8]. In
CCSPenelLoPe2016, some workers use this heuristic with
different sets of its parameters. For the CLCS, each worker
calculates an average activity score (VSIDS or CHB) of
variables for each community and chooses the highest scored
community as a “desired community”. The CLCS distributes
the target clause to the workers that desire to share that
clause (i.e., including the variables that belong to the desired
community).

III. GULCH

Gulch is a sequential solver based on Glucose version 3
[4]. The decision heuristic of Gulch is based on the CHB.
In preliminary experiments, we confirmed that CHB was not
good at some types of unsatisfiable instances. To mitigate
this issue, we add a simple heuristic based on the number
of variables and clauses. This heuristic switches the CHB and
VSIDS alternately for every K restarts, and randomized the

activity scores. In Gulch, K is set to 1024, and 128 in the
“agile” version of Gulch. In the “once” version of Gulch, the
switching from CHB to VSIDS is conducted only once after
50 seconds passes.

IV. ACKNOWLEDGMENT

This work was supported by JSPS KAKENHI Grant Num-
ber 15K16057.

REFERENCES

[1] Carlos Ansétegui, Jesus Girdldez-Cru, and Jordi Levy. The community
structure of SAT formulas. In Theory and Applications of Satisfiability
Testing, SAT’12, pages 410423, 2012.

[2] Carlos Ansétegui, Jesus Girdldez-Cru, Jordi Levy, and Laurent Simon.
Using community structure to detect relevant learnt clauses. In Theory
and Applications of Satisfiability Testing, SAT’15, pages 238-254, 2015.

[3] Gilles Audemard, Benoit Hoessen, Said Jabbour, Jean-Marie Lagniez,
and Cédric Piette. Revisiting clause exchange in parallel sat solving. In
Theory and Applications of Satisfiability Testing, SAT’12, pages 200213,
2012.

[4] Gilles Audemard and Laurent Simon. Predicting learnt clauses quality
in modern SAT solvers. In International Joint Conference on Artificial
Intelligence, IJCAI’09, pages 399-404, 2009.

[5] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne
Lefebvre. Fast unfolding of communities in large networks. Journal of
Statistical Mechanics: Theory and Experiment, 2008(10):10008, 2008.

[6] Jesus Girdldez-Cru and Jordi Levy. A modularity-based random SAT
instances generator. In International Joint Conference on Artificial
Intelligence, IICAT’ 15, 2015.

[7] Long Guo, Youssef Hamadi, Said Jabbour, and Lakhdar Sais. Diversi-
fication and intensification in parallel SAT solving. In Principles and
practice of constraint programming, CP’10, pages 252-265, 2010.

[8] Jia Hui Liang, Vijay Ganesh, Pascal Poupart, and Krzysztof Czarnecki.
Exponential recency weighted average branching heuristic for SAT
solvers. In AAAI Conference on Artificial Intelligence, AAAI'16, 2016.

[9] Tomohiro Sonobe, Shuya Kondoh, and Mary Inaba. Community branch-
ing for parallel portfolio SAT solvers. In Theory and Applications of
Satisfiability Testing, SAT’ 14, pages 188-196, 2014.

26

Proceedings of SAT Competition 2016: Solver and Benchmark Descriptions, volume B-2016-1 of Department of Computer Science Series of Publications

B, University of Helsinki 2016. ISBN 978-951-51-2345-9.

CHBR_glucose

Seongsoo Moon
Graduate School of Information Science and Technology,
The University of Tokyo, Japan

Abstract—We briefly introduce our solver CHBR_glucose,
CHBR_glucose_tuned, tb_glucose and tc_glucose submitted
to SAT-Competition 2016. All solvers are based on glu-
cose3.0, and CHB, introduced at AAAI 2016, is imple-
mented in CHBR_glucose, CHBR_glucose_tuned, and tc_glucose.
CHBR_glucose_tuned is for entering the Glocose Hack track in
the SAT Competition 2016.

I. INTRODUCTION

Decision heuristic is one of the most important elements
in modern SAT solvers. The most prominent method is
VSIDS[1]. There were lots of attempts to surpass VSIDS [2]
[3] [4], but VSIDS is still most popular decision heuristic
because of its robustness.

Recently new branching heuristic CHB[5] was provised and
it showed significant improvements for some benchmarks.

In our program, we implemented CHB and select decision
heuristic between VSIDS and CHB dynamically.

When a variable is selected by the score of VSIDS a lot
of ties happened. We added some scores to VSIDS to reduce
ties, and select more valuable variable from ties.

II. CHB TUNED

In CHB, each variable has () score, and is updated using
Equation as follows based on reinforcement learning.

Q] = (1 - a)Qv] + ary

We’ve selected several parameters those would change run-
ning time a lot to tune CHB and tested. The initial value of
o is set to 0.4 in original CHB, and we changed this to 0.7
based on our tests.

III. CHBR_GLUCOSE

We’ve noticed CHB works very well with small problems,
but VSIDS performs better than CHB for big problems. So,
we divided problems for 2 groups by the number of variables.
As default decision heuristic, our program choose VSIDS. If
the number of variables is under 15000, CHB is activated and
used behalf of VSIDS.

IV. CHBR_GLUCOSE_TUNED

We’ve tuned CHB parameters based on 24 combination
tests. Some instances work better than default parameter
values. We’ve changed initial value of o, minimum of «, and
multiplier for small problems.

if(2000 < numbero fvariables < 7000)

a = 0.4, apmin = 0.03, multiplier = 0.5

27

Inaba Mary
Graduate School of Information Science and Technology,
The University of Tokyo, Japan

V.

Ties happen frequently in VSIDS. To break these, we update
VSIDS scores after we obtain learned clauses. After a clause
is obtained, we add 1 / (LBD of a clause) for each variables
in that clause. We call this TBVSIDS.

TB_GLUCOSE

VI. TC_GLUCOSE

This is a hybrid version of CHBR_glucose and tb_glucose.
We use TBVSIDS as a default decision heuristic and use CHB
when the number of variables is under 15000.

REFERENCES

[1] Moskewicz, M.W., Madigan, C.F.,, Zhao, Y., Zhang, L., Malik, S. Chaff:
Engineering an Efficient SAT Solver. In Proceedings of the 38th Design
Automation Conference, pp 530-535, 2001.

Dershowitz, Nachum and Hanna, Ziyad and Nadel, Alexander. A
Clause-Based Heuristic for SAT Solvers. Theory and Applications of
Satisfiability Testing, pp 46-60, 2005.

Goldberg, Evgueni and Novikov, Yakov. BerkMin: A Fast and Robust
Sat-Solver. Design, Automation, and Test in Europe, pp 465-478, 2008.
L.Ryan. Efficient algorithms for clause-learning SAT solvers. Matser’s
thesis, Simon Fraser University, 2004.

Hui Liang, J., Ganesh, V., Poupart, P., Czarnecki, K. Exponential Recency
Weighted Average Branching Heuristic for SAT Solvers Proceedings of
the Thirtieth AAAI Conference on Artificial Intelligence, 2016.
Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E. Fast unfold-
ing of communities in large networks. Journal of Statistical Mechanics:
Theory and Experiment. (2008).

(2]

[3]
(4]

[6]

Proceedings of SAT Competition 2016: Solver and Benchmark Descriptions, volume B-2016-1 of Department of Computer Science Series of Publications

B, University of Helsinki 2016. ISBN 978-951-51-2345-9.

The CryptoMiniSat 5

set, of solvers at SAT

Competition 2016

Mate Soos

I. INTRODUCTION

This paper presents the conflict-driven clause-learning
SAT solver CryptoMiniSat v5 (CMS5) as submitted to SAT
Competition 2016. CMS5 aims to be a modern, open-source
SAT solver that allows for multi-threaded in-processing
techniques while still retaining a strong CDCL component.
In this description only the features relative to CMS4.4,
the previous year’s submission, are explained. Please refer
to the previous years’ description for details. In general,
CMSS5 is a in-processing SAT solver that usues optimized
datastructures and finely-tuned timeouts to have good con-
trol over both memory and time usage of simplification
steps.

A. Removal of uneeded code

Over the years, many lines of code has been added to
CMS that in the end didn’t help and often was detrimental
to both maintinability and efficiency of the solver. Many
such additions have now been removed. This simplifies
understanding and developing the system. Further, it allows
the system to be more lean especially in the tight loops
such as propagation and conflict analysis where most of the
time is spent.

B. Integration of ideas from COMiniSatPS

Some of the ideas from COMiniSatPS[1] have been in-
cluded into CMS. In particular, the clause cleaning system
employed and the switching restart have both made their
way into CMS.

C. On-the-fly Gaussian Elimination

On-the-fly Gaussian elimination is again part of Crypto-
MiniSat. This is explicitly disabled for the compeititon, but
the code is available and well-tested. This allows for special
uses of the solver that other solvers, without on-the-fly
Gaussian elimination, are not capable of.

D. Clause usefulness guessing

Besides glues and clause activites, CMS5 also tries to
guess clause usefulness based on the trail size, the backjump
level and the activity of the variables in the ancestor of
the learnt clause. Although this is at a very early stage of
development, it has been found to be helpful.

E. Auto-tuning

The version ’autotune’ reconfigures itself after about
160K conflicts. The configuration picked is one of 2 dif-
ferent setups that vary many different parameters of the
solving such as learnt clause removal strategy, restart strat-
egy, and in-processing strategies. CMS5 was run on all

28

SAT Comp’09 + 11 + 13 + 14 + 15 problems with both
configurations, extracting relevant information from the
all problems after they have been solved and simplified for
160K conflicts. configurations were then given to a machine
learning algorithm (C5.0[2]) which built a decision tree
from this data. This decision tree was then translated into
C++ and compiled into the CMS5 source code.

REFERENCES

[1] Oh, C.: MiniSat HACK 999ED, MiniSat HACK 1430ED and
SWDiA5BY. In: SAT Competition 2014 Booklet. (201)

[2] Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA (1993)

Proceedings of SAT Competition 2016: Solver and Benchmark Descriptions, volume B-2016-1 of Department of Computer Science Series of Publications

B, University of Helsinki 2016. ISBN 978-951-51-2345-9.

COMiniSatPS the Chandrasekhar Limit and
GHackCOMSPS

Chanseok Oh
Google
New York, NY, USA

Abstract—COMiniSatPS is a patched MiniSat generated by
applying a series of small diff patches to the last available version
(2.2.0) of MiniSat that was released several years ago. The essence
of the patches is to include only minimal changes necessary to
make MiniSat sufficiently competitive with modern SAT solvers.
One important goal of COMiniSatPS is to provide these changes
in a highly accessible and digestible form so that the necessary
changes can be understood easily to benefit wide audiences,
particularly starters and non-experts in practical SAT. As such,
the changes are provided as a series of incrementally applicable
diff patches, each of which implements one feature at a time.
COMiniSatPS has many variations. The variations are official
successors to an early prototype code-named SWDiIA5BY that
saw great successes in the past SAT-related competitive events.

I. INTRODUCTION

It has been shown in many of the past SAT-related com-
petitive events that very simple solvers with tiny but criti-
cal changes (e.g, MiniSat [1] hack solvers) can be impres-
sively competitive or even outperform complex state-of-the-
art solvers [2]. However, the original MiniSat itself is vastly
inferior to modern SAT solvers in terms of actual performance.
This is no wonder as it has been many years since the
last 2.2.0 release of MiniSat. To match the performance of
modern solvers, MiniSat needs to be modified to add some of
highly effective techniques of recent days. Fortunately, small
modifications are enough to bring up the performance of any
simple solver to the performance level of modern solvers.
COMiniSatPS! adopts only simple but truly effective ideas that
can make MiniSat sufficiently competitive with recent state-
of-the-art solvers. In the same minimalistic spirit of MiniSat,
COMiniSatPS prefers simplicity over complexity to reach out
to wide audiences. As such, the solver is provided as a series
of incremental patches to the original MiniSat. Each small
patch adds or enhances one feature at a time and produces
a fully functional solver. Each patch often changes solver
characteristics fundamentally. This form of source distribution
by patches would benefit a wide range of communities as it is
easy to isolate, study, implement, and adopt the ideas behind
each incremental change. The goal of COMiniSatPS is to
lower the entering bar so that anyone interested can implement
and test their new ideas easily on a simple solver guaranteed
with exceptional performance.

The patches first transform MiniSat into Glucose [3] and
then into SWDiA5BY. Subsequently, the patches implement

I'Source is available at http://www.cs.nyu.edu/~chanseok/cominisatps/.

29

new techniques described in [4] and [2] to generate the current
form of COMiniSatPS.

II. COMINISATPS THE CHANDRASEKHAR LIMIT

Differences from the last year’s COMiniSatPS Main Se-
quence [5] are as follows:

o Always performs pre-processing.

o Applies a small patch implementing what we call Incre-
mentally Relaxed Bounded Variable Elimination®> which
was first proposed by GlueMiniSat last year [6].

e LBD [3] of new learned clauses is one less than what
it used to be. Code that compares LBD values has been
modified accordingly in a few locations.

o Performs on-the-fly failed literal detection through ad-
vanced stamping [7], however, very sparingly. It may
be triggered only when learning unit clauses. We ref-
erenced the implementation of Lingeling [8]. This is the
only feature that resulted in a complex implementation
which unfortunately contradicts the minimalistic spirit of
COMiniSatPS.

III. INCREMENTAL SAT SOLVING

Nothing has changed since last year except that solvers now
use a sane strategy and a reasonable parameter value; solvers
submitted to SAT Race 2015 last year intentionally used an
unreasonable strategy for demonstration purposes. Specifically,
in this year’s solvers, mid-tier and local learned clauses are not
purged but preserved after each incremental run.

A. 28un

Like the last year’s 1Sun version, the 2Sun version does
not employ the hybrid restart strategy of COMiniSatPS. Incre-
mental variable elimination [9] is turned off for small problem
instances.

B. 2Sun_nopre

Incremental variable elimination is always turned off. The
threshold for purging core learned clauses after each incremen-
tal run has been slightly relaxed: when the size (not LBD) is
greater than 8 (increased from 5).

2The authors of GlueMiniSat call this feature Incremental Variable Elimi-
nation. However, we avoid the original term because we have been using it
to refer to variable elimination in the context of incremental SAT.

IV. GHACKCOMSPS

This solver implements many of the core features of CO-
MiniSatPS on top of Glucose 3.0: 1) the 3-tiered learned
clause management; 2) the hybrid restart strategy; and 3) the
alternating variable decay factors (but without the separate
activity score sets or variable priority queues). There are
several other minor changes too. GHackCOMSPS qualifies as
a Glucose hack.

V. AVAILABILITY AND LICENSE

Source is available for download for all the versions in this
paper. COMiniSatPS uses the same MIT license as MiniSat’s.

ACKNOWLEDGMENT

We thank specifically the authors of Glucose, GlueMiniSat,
Lingeling, and MiniSat.

REFERENCES

[17 N. Eén and N. Sorensson, “An extensible SAT-solver,” in SAT, 2003.

[2] C. Oh, “Improving SAT solvers by exploiting empirical characteristics of
CDCL,” Ph.D. dissertation, New York University, 2016.

[3] G. Audemard and L. Simon, “Predicting learnt clauses quality in modern
SAT solvers,” in IJCAI, 2009.

[4] C. Oh, “Between SAT and UNSAT: The fundamental difference in CDCL
SAT,” in SAT, 2015.

, “Patching MiniSat to deliver performance of modern SAT solvers,”
in SAT-RACE, 2015.

[6] H.Nabeshima, K. Iwanuma, and K. Inoue, “GlueMiniSat 2.2.10 & 2.2.10-
5 in SAT-RACE, 2015.

[71 M. Heule, M. Jirvisalo, and A. Biere, “Efficient CNF simplification based
on binary implication graphs,” in SAT, 2011.

[8] A. Biere, “Lingeling, Plingeling and Treengeling entering the SAT
Competition 2013, in SAT-COMP, 2013.

[9] J. Ezick, J. Springer, T. Henretty, and C. Oh, “Extreme SAT-based
constraint solving with R-Solve,” in HPEC, 2014.

30

Proceedings of SAT Competition 2016: Solver and Benchmark Descriptions, volume B-2016-1 of Department of Computer Science Series of Publications

B, University of Helsinki 2016. ISBN 978-951-51-2345-9.

BreakIDCOMiniSatPS

Jo Devriendt
University of Leuven
Leuven, Belgium

Abstract—BreakIDCOMiniSatPS combines the COMiniSatPS
SAT solver with the symmetry breaking preprocessor BreakID.

I. INTRODUCTION

Many real-world problems exhibit symmetry, but the SAT
competition and SAT race seldomly feature solvers who are
able to exploit symmetry properties. This discrepancy can be
explained by the assumption that for most of the problems
in these competitions, symmetry exploitation is not worth the
incurred overhead.

We tested this hypothesis in 2013’s SAT competition and
2015’s SAT race, and now participate again 2016’s SAT
competition. Symmetry is broken in the spirit of Shatter [1]. As
symmetry breaking preprocessor we use BreakID [2] version
2.2, a slightly more efficient version of BreakID than the 2.0
version used in last year’s SAT race. As SAT solver we use
COMiniSatPS [3], with the same source as the COMiniSatPS
competition submission without symmetry breaking. We ex-
pect COMiniSatPS to be more effective than the Glucose [4]
solver used in last year’s SAT race.

II. MAIN TECHNIQUES

The workflow of BreakIDCOMiniSatPS is straightforward:

1) BreakID uses Saucy [5] to enumerate symmetry gener-
ators for an input CNF theory.

2) BreakID analyzes these generators for certain properties,
and constructs effective symmetry breaking clauses.

3) COMiniSatPS solves the resulting CNF theory, consist-
ing of the original clauses and the symmetry breaking
clauses.

III. MAIN PARAMETERS

The main user-provided parameters control:

« How much time should be allocated to Saucy for symme-
try detection. This does not limit further analysis of these
generators to construct symmetry breaking clauses. Given
a time limit of 5000 seconds to solve one CNF instance,
Saucy gets 200 seconds to detect symmetry generators.

o How large the symmetry breaking sentences are allowed
to grow, measured in the number of auxiliary variables
introduced by a symmetry breaking formula. We limit
this to 50 auxiliary variables.

31

Bart Bogaerts
Aalto University
Espoo, Finland

IV. SPECIAL ALGORITHMS, DATA STRUCTURES, AND
OTHER FEATURES

In comparison with Shatter, BreakID offers the following
improvements:

« A more efficient clausal encoding of the Lex-Leader
symmetry breaking formula [6].

o Detection of row interchangeability symmetry groups,

which can be broken completely.

« Construction of binary symmetry breaking clauses, which

potentially break much symmetry at little cost.

o Construction of a more suitable variable ordering with

which to break symmetry.

o A limit on the size of a symmetry breaking formula.

o A time limit on Saucy’s symmetry detection routine.
Lastly, Saucy requires a slightly cleaned CNF as input, so
the BreakID preprocessor also employs a small preprocessing
step:

« Removing duplicate and tautological clauses from the
input CNF theory.

V. IMPLEMENTATION DETAILS

BreakID was written from scratch in C++. We refer to the
webpages of Saucy and COMiniSatPS for their implementa-
tion details.

VI. SAT COMPETITION 2016 SPECIFICS

BreakIDCOMiniSatPS participates in the No-Limit track
since BreakID does not support outputting DRAT proofs of
unsatisfiability. The compiler used is the one provided by the
competition organizers.

VII. AVAILABILITY

Source code and documentation for BreakID is available
under a non-commercial license [7].

ACKNOWLEDGMENT

We would like to thank the authors of Saucy for providing
the source code to Saucy. Thanks also go to the authors
of MiniSat [8], Glucose and COMiniSatPS for making their
solvers publically available.

(1]

(2]

(3]

(4]
(5]
(6]

(71
(8]

REFERENCES

F. A. Aloul, K. A. Sakallah, and I. L. Markov, “Efficient symmetry
breaking for Boolean satisfiability,” IEEE Transactions on Computers,
vol. 55, no. 5, pp. 549-558, 2006.

J. Devriendt, B. Bogaerts, M. Bruynooghe, and M. Denecker, “Improved
static symmetry breaking for sat,” to appear in the proceedings of SAT’16,
2016.

C. Oh, “Improving sat solvers by exploiting empirical
characteristics of cdcl,” PhD thesis, New York University,
cs.nyu.edu/media/publications/oh_chanseok.pdf, 2016.

G. Audemard and L. Simon, “Predicting learnt clauses quality in modern
SAT solvers,” in IJCAI, 2009, pp. 399-404.

H. Katebi, K. A. Sakallah, and I. L. Markov, “Symmetry and satisfiability:
An update,” in SAT, 2010, pp. 113-127.

J. M. Crawford, M. L. Ginsberg, E. M. Luks, and A. Roy, “Symmetry-
Breaking Predicates for Search Problems,” in Principles of Knowledge
Representation and Reasoning. Morgan Kaufmann, 1996, pp. 148-159.
J. Devriendt and B. Bogaerts, “BreakID, a symmetry breaking preproces-
sor for sat solvers,” bitbucket.org/krr/breakid, 2015.

N. Eén and N. Sorensson, “An extensible SAT-solver,” 2003, pp. 502-518.

32

Proceedings of SAT Competition 2016: Solver and Benchmark Descriptions, volume B-2016-1 of Department of Computer Science Series of Publications

B, University of Helsinki 2016. ISBN 978-951-51-2345-9.

Dissolve in the SAT Competition 2016

Julien Henry
University of Wisconsin-Madison

Aditya Thakur
Google, Inc.

Abstract—Dissolve is a distributed SAT solver that uses a
search-space partitioning and merging mechanism to divide the
work and to share information among a pool of sequential CDCL
solvers. Learnt clauses are shared among solvers, and partitioning
evolves over time as a function of the current states of the solvers.

I. INTRODUCTION

Dissolve is a new distributed solver that is being entered
into the SAT competition for the first time in 2016. It is
designed to work with any underlying sequential CDCL SAT
solver that implements a small API. The implementation uses
Glucose 3.0 [1], which is itself based on Minisat [2]. Each
sequential solver communicates with a master solver written
in the Go programming language. In essence, the algorithm
implemented in Dissolve explores the search space using an
approach to search-space exploration that was inspired by
Stalmarck’s method [3]:

« split the problem into subproblems

e learn as much as possible about the subproblems that is
relevant to the original problem instance within a limited
period of time

« merge the knowledge from all instances, and restart with
a new and different split.

Dissolve uses a pool of CDCL SAT solvers, each of which
processes queries that it receives from the master solver.
Because each query is the conjunction of the original formula
with a partial assignment to a subset of k variables, the solvers
can maintain their state across queries: the & input assignments
are treated as the first k£ decisions and everything that is learnt
holds for the original formula. Solver state includes learnt
clauses, polarities, VSIDS information, LBD values, etc. In
the competition, we use a pool of 48 sequential Glucose 3.0
solvers—one for each logical CPU of a single node of the
competition server. These solvers never stay idle: even if one
does not receive a query from the master solver (which can
happen for short periods of time), it initiates a search (seeded
with the next random value). This activity is useful because
the solver will start the next query with a “better” initial state.

II. MAIN PARAMETERS

Sequential solvers have their own performance-sensitive pa-
rameters. For the competition, we used the default parameters
of Glucose 3.0. Below, we discuss the parameters of the master
solver.

33

Nick Kidd
Google, Inc.

Thomas Reps
University of Wisconsin-Madison
Grammatech, Inc.

1) Splitting strategy: One of the most important parameters
in Dissolve is the number of variables k that we use for the
splits. We call a round the solving of the 2* SAT queries
obtained by selecting a vector of k variables from the original
formula and assigning them all possible combinations of truth
values. The selection of the variables used for splitting is done
by a vote among all solvers. Every solver returns a sequence
of the first 100 decision variables that would have been chosen
in the sequential case (using the pickBranchLit method
from Minisat). The first one is assigned a vote 100, the second
99, etc. The k variables with the highest total score are those
selected for the next round. The first round does not split
with k variables; instead, each sequential solver is run on
the original formula with a different random seed. In the
competition, we used a value of k = 5, each round consisting
of 32 queries. This means that different rounds can be solved
in parallel at the same time.

2) Merging strategy: SAT queries that are sent to the
various sequential solvers do not usually run until they finish;
instead, they return once a budget limit has been reached. The
budget can be based either on the number of propagations, the
number of conflicts, or a timeout limit. For the competition,
we set a timeout of 5 seconds or 2.107 propagations, whatever
comes first. When the budget limit is reached, the sequential
solver returns the list of the NV most-useful clauses it has learnt.
We chose N to be equal to min(1000,100000/2%).

A UBTree (Unlimited Branching Tree) [4] is a data structure
for storing a set of clauses that allows subsumption checking to
be performed relatively inexpensively. In Dissolve, the master
solver inserts clauses into three different UBTrees, depending
on their importance: Dissolve’s sequential solvers report small
clauses (size < 2), important clauses (the 100 best clauses
according to Glucose’s heuristic based on LBD), and other
clauses.

When a sequential solver returns SAT, the master solver
interrupts all computations and returns SAT. When a solver
returns from a query with an UNSAT answer, it also returns
a conflict clause. If the conflict clause is empty, the master
solver returns UNSAT and the problem is solved. If the conflict
clause is not empty, the master solver cancels the queries that
the given conflict clause implies are UNSAT.

3) Clause sharing: When a new query is sent to a se-
quential solver, the master solver also sends a set of at most
50,000 learnt clauses that the given sequential solver has not
yet received. Up to 50,000 learnt clauses are sent using the
priorities small, important, other. To avoid the accumulation of
too many clauses, the master solver’s clauses are incorporated

by each sequential solver after discarding as many clauses
in its local database as the number of master-solver clauses
received.

4) Random seeds: With each new query, a sequential solver
also receives a new unique random seed to replace the previous
one.

III. IMPLEMENTATION DETAILS

Dissolve has been implemented to be run in a distributed
setting (i.e., on a cloud-computing platform), and some of
our design decisions have been made with that goal in mind.
Consequently, Dissolve relies on heavier-weight communica-
tion mechanisms than the threads and shared memory of a
shared-memory multicore machine. In particular, all informa-
tion between the master solver and the sequential solvers is
exchanged using the Google protocol-buffer binary format.
While other parallel solvers exchange learnt clauses at very
high rates, Dissolve exchanges information only every couple
of seconds. Because we wish Dissolve to be able to scale
to a large number of slave sequential solvers, we designed
it to use low-cost approaches to (a) problem splitting, (b)
obtaining learnt clauses that can be used unconditionally for
all solvers, (c) merging learnt clauses plus heuristic-search
information from the different slave sequential solvers, and
(d) propagating information from the master to the slaves—
while simultaneously attaining near-100% CPU utilization.
(The tuning and evaluation of Dissolve on a cloud-computing
platform is underway.)

IV. RELATED WORK

The algorithm used in Dissolve has similarities with the
Cube-and-Conquer approach of Heule et al. [5]. One of the
main differences is that the algorithm in Dissolve performs
merging and readjusts the splitting variables in subsequent
rounds based on the sequential solvers’ states. The algorithm
in Dissolve is also related to previous work by Hyvirinen et
al. [6], [7], [8], but adopts different approaches and heuristics
for splitting, merging, and sharing learnt clauses. (See Section
II1.)

V. SAT COMPETITION 2016 SPECIFICS

To make sure that all sequential solvers have been started
and are listening to the network for new queries, we allow a
fixed time of 1.5s seconds before the solving of a benchmark
actually starts, which means that solving even very simple
benchmarks takes at least 1.5 seconds.

REFERENCES

[1] G. Audemard and L. Simon, “Lazy clause exchange policy for parallel
SAT solvers,” in SAT, 2014.

N. Eén and N. Sorensson, “An extensible sat-solver,” in SAT, 2003.

M. Sheeran and G. Stalmarck, “A tutorial on Stalmarck’s proof procedure
for propositional logic,” FMSD, vol. 16, no. 1, pp. 23-58, 2000.

J. Hoffmann and J. Koehler, “A new method to index and query sets,” in
IJCAI, 1999, pp. 462-467.

M. Heule, O. Kullmann, S. Wieringa, and A. Biere, “Cube and conquer:
Guiding CDCL SAT solvers by lookaheads,” in HVC, 2011, pp. 50-65.
A. E. J. Hyvérinen, T. A. Junttila, and I. Niemeld, “Partitioning SAT
instances for distributed solving,” in LPAR, 2010, pp. 372-386.

(2]
(3]

(4]
(5]
(6]

34

(7]

, “Grid-based SAT solving with iterative partitioning and clause
learning,” in CP, 2011, pp. 385-399.

[8]1 A. E. J. Hyvirinen and N. Manthey, “Designing scalable parallel SAT
solvers,” in SAT, 2012, pp. 214-227.

Proceedings of SAT Competition 2016: Solver and Benchmark Descriptions, volume B-2016-1 of Department of Computer Science Series of Publications

B, University of Helsinki 2016. ISBN 978-951-51-2345-9.

Glucose nbSat

Chu Min LI*, Fan Xiao* and Ruchu XU*
*Huazhong University of Science and Technology, China
TMIS,Universit de Picardie Jules Verne, France

Abstract—This document describes the SAT solver “Glu-
coseNBSAT”, a solver based on glucose 3.0. We present a new
measure called nbSAT based on the saved assignment to predict
the usefulness of a learnt clause when reducing clause database.

I. INTRODUCTION

In this paper, we present a versions based on Glucose called
Glucose_nbSat . Glucose_nbSat is developed from the code
source of Glucose-3.0[1], [2] by implementing a significant
change in the learnt clause database management and a limited
redundant clause simplification and removing.

II. MAIN FEATURES OF GLUCOSE

Glucose is a very efficient CDCL-based complete SAT
solver. It is always one of the awarded winning SAT solvers
in SAT competitions (challenge, race) since 2009. The main
features of Glucose and its updated versions include a mea-
surement of learnt clause usefulness called LBD and used
in the cleaning of the learnt clause database. In the recent
versions of Glucose such as Glucose-3.0, once the number of
clauses learnt since the last database cleaning reaches 2000 +
300*x, where x is the number of database cleanings performed
so far, the cleaning process is fired (i.e., the learnt clauses are
sorted in the decreasing order of their LBD, and the first half
of learnt clauses are removed except binary clauses, clauses
whose LBD value is equal to 2, and the clauses that are reasons
of the current partial assignment. In addition, Glucose-3.0 uses
a very aggressive restart strategy [3], in such a way that the
solver is very frequently restarted.

Our new learnt clause database management is based on the
above features of Glucose-3.0.

III. CLEANING LEARNT CLAUSE DATABASE AT THE ROOT
OF A SEARCH TREE

A CDCL based SAT solver usually uses the restart mecha-
nism [4], every restart constructing a binary search tree from
scratch. In Glucose, as well as in most CDCL-based solvers,
a learnt clause database cleaning process can be fired inside
a binary search tree. Two observations can be made about
this strategy: (1) there are locked clauses, i.e. clauses that
are reasons of the current partial assignment, that cannot be
removed, (2) the part of the tree before the cleaning and the
part of the tree after the cleaning are constructed with very
different learnt clause databases.

Glucose_nbSat differs from Glucose in that Glucose_nbSat
cleans the learnt clause database always at the beginning of
each restart, i.e., at the root of the search tree that is going to be

35

constructed, when the number of learnt clauses becomes bigger
or equal to 2000 + 300*x since the last database cleaning.
In this way, clauses satisfied by variables fixed at the root
are simply removed, as well as the literals falsified in the
remaining clauses. Note that no clause is locked at the root of
a search tree. Moreover, since the cleaning is not done inside
the search tree, the search tree is constructed with the same
incremental learnt clause database.

Compared with Glucose, the database cleaning is delayed in
Glucose_nbSat, because it is not fired as soon as the number
of the newly learnt clauses reaches a limit, but should wait
for the next restart. However the delay is not important, since
Glucose_nbSat performs fast restart as Glucose.

IV. USING A NEW MEASUREMENT TO PREDICT THE
LEARNT CLAUSE USEFULNESS

Modern CDCL-based SAT solvers usually save the last
truth value of each variable when backtracking. When a free
variable is picked as a decision variable, it is assigned the
saved value. It is easy to see that at least one clause in which
literals are all falsified by the saved assignment will become
unit and change the saved value of a variable during unit
propagation. More generally, a clause has more chance to
become unit if the number of literals satisfied by the current
saved truth value is smaller. On the contrary, those clauses
with many literals satisfied by the saved truth value have little
chance to become unit and should be removed.

Based on the above observation, we introduce a new mea-
surement to predict the usefulness of a learnt clause, namely
the number of literals satisfied by the saved assignment,
denoted by nbSat, and implement the following learnt clause
database cleaning strategy in Glucose_nbSat:

1) compute the number of literals satisfied by the saved
assignment for each learnt clause, denoted by nbSat;
Sort all learnt clauses in the decreasing order of their
nbSat value, breaking ties using the decreasing order of
their LBD value. The remaining ties are broken using
the clause activity value as in Glucose.

Remove the first half of learnt clauses (i.e. those with
bigger nbSat values), by keeping binary clauses and
clauses whose LBD is 2 as in Glucose.

2)

3)

Note that the saved assignment changes frequently during
search. The measurement nbSat works only when the learnt
clause database cleaning is fired frequently, because otherwise,
it does not reflect the current search state after many conflicts.
This is not a problem with Glucose_nbSat, because Glu-
cose_nbSat cleans the database frequently as Glucose, making

it relevant to use the nbSat measurement in the database
cleaning.

V. OTHER EMBEDDED TECHNIQUES

When a learnt clause is in the first half after all learnt
clauses are sorted in the decreasing order of their nbSat
value, i.e., when it is going to be removed by the database
cleaning process, we check if it subsumes an original clause
or if it can be resolved with an original clause to produce a
resolvent that subsumes the original clause. In the first case,
the learnt clause replaces the original clause and will never be
removed. In the second case, the produced resolvent replaces
the original clause and will never be removed.

Example. Let x1VxoVzsVry be an original clause, and
ToVasgVr, be a learnt clause, then the resolvent x1VasVy
is added as an original clause that is never removed, and
T1VaaVrsVay is removed.

The above process is also applied to simplify the set of
original clauses as a preprocessing in Glucose_nbSat. More
concretely, the original clauses are sorted in the decreasing
order of their size: ¢y, ca, ..., ¢y. Each ¢; (1<i<m) is checked
if there is a ¢ (k<) such that ¢; subsumes ¢y or if ¢; and c;
can be resolved to produce a resolvent that subsumes ci. In
both cases, c;, is removed. The resolvent in the second case is
inserted in the set of original clauses.

REFERENCES

[11 G. Audemard and L. Simon, “Glucose: a solver that predicts learnt clauses
quality,” IJCAI’09, 2009.

, “Glucose in the sat 2014 competition,” in Proceedings of the 2014

SAT competition, 2014.

, “Refining restarts strategies for sat and unsat formulae,” in Proceed-
ings of the 22nd International Conference on Principles and Practice of
Constraint Programming (CP-12), 2012.

[4] C. P. Gomes, B. Selman, and K. Henry, “Boosting combinatorial search
through randomization,” in Proc. AAAI-98, Madison, WI, July 1998.

(2]
(3]

36

Proceedings of SAT Competition 2016: Solver and Benchmark Descriptions, volume B-2016-1 of Department of Computer Science Series of Publications

B, University of Helsinki 2016. ISBN 978-951-51-2345-9.

dimetheus

Oliver Gableske
oliver @gableske.net

Abstract—This document describes the dimetheus SAT
solver as submitted to the random SAT track of the SAT
Competition 2016.

1. INTRODUCTION

Please note that this article must be understood as a rather
brief overview of the dimetheus SAT solver. Additional
information regarding its functioning, a comprehensive quick-
start guide, as well as the source-code of the latest version of
the solver can be found on the authors website.! Additionally,
the author elaborates on the theoretical background of the
solver in his Ph.D. thesis [1] which can be found online.> A
preliminary overview of the applied techniques can be found
in [2], [3].

This article will first cover the main techniques that the
solver applies in Section II. Afterwards, a brief overview of the
parameter settings are discussed in Section III. This is followed
by a brief explanation of the programming language and
the compiler relevant parameters in Section IV. Additionally,
several SAT Competition relevant details are discussed in
Section V. The article is concluded by a few remarks on the
availability and the license of the solver in Section VI.

II. MAIN TECHNIQUES

The dimetheus solver runs in various phases as depicted
in Figure 1.

PREPROCESS

SEARCH

GUIDANCE

INPROCESS

y
Ll_‘

5| HANDLERESULT
>

SHUTDOWN

STARTUP |

CLASSIFY |

- NORMAL WAY OF EXECUTION
= IN CASE A SOLUTION IS FOUND
- IN CASE OF AN ERROR

Fig. 1. A flow chart that visualizes the execution of dimetheus.

Uhttps://www.gableske.net/dimetheus
Zhttps://www.gableske.net/diss

37

In each phase, the solver must fulfill a pre-defined task. The
first four of theses phases (reset, params, guidance, startup) are
not discussed here in detail. At the end of the startup phase
the solver has loaded the formula and is able to work with it.

The classify phase will then determine what type of CNF
formula the solver must solve. Since the solver is submitted
to the random SAT track of the SAT Competition it will
determine what type of random formula it has to solve (e.g., it
will determine the size of the formula, the clause lengths, the
ratio). The classifier then reports to the adapt phase for what
type of formula the solver must adapt its internal parameters
(e.g., a uniform random 3-CNF formula with 50000 variables
and a ratio of 4.2). The adapter will then enforce a Specific
parameter setting that is known to work well when solving
this type of formula.

Afterwards, preprocessing is performed. The preprocessing
is kept very simple and includes pure literal elimination and
the removal of duplicate clauses.

This is followed by the search phase in which the solver tries
to find a satisfying assignment for the formula (inprocessing
is turned off when the solver solves random formulas). The
approach that the solver applies is best understood as bias-
based decimation followed by stochastic local search. The
bias-based decimation applies a Message Passing algorithm to
calculate biases for individual variables. These biases indicate
how likely it is to observe a variable assigned to one or zero
when taking into account the models of the formula. For more
information see [1]. Afterwards, a fraction of the variables
with the largest bias are assigned and unit propagation (UP) is
performed which then leads to a simplified remaining formula.
The bias calculation and the UP-based assignment of variables
with the largest bias is repeated until one of two cases occurs.
First, a model is found. In this case the solver merely outputs
the model and terminates. Second, UP runs into a conflict. In
this case the solver will undo all assignments and initializes an
SLS solver. The starting assignment for the SLS is comprised
of all the assignments made until the confilct arose as well
as random assignments to the remaining variables. From this
point onwards the SLS takes place until either a time-out is
hit or a model is found. The dimetheus solver, as it runs in
the SAT Competition 2016, is therefore an incomplete solver
that cannot detect unsatisfiability.

III. MAIN PARAMETERS

The solver is started with the two following parameters.
-formula STRING: The STRING points to the file
that contains the formula in DIMACS CNF input
format.

-classifyInputDomain 10: This tells the classifier that
it can assume the formula to be a random formula
when determining what specific type of formula it
is.
As mentioned in the previous section, the solver will determine
an optimal parameter setting based on the provided formula-
type information. The parameter adapter will then internally
tune a wide variety of parameters that are explained in [1].
Unfortunately, it is not possible to correctly explain the abun-
dance of parameters here which is why the reader is addressed
to the given reference for details.

IV. IMPLEMENTATION DETAILS

The dimetheus solver is implemented in C. The Message
Passing algorithm that is applied to calculate the biases is an
interpolation of Belief Propagation and Survey Propagation
[1], [4]. The SLS serach follows the probSAT approach [5].

V. SAT COMPETITION 2016 SPECIFICS

The dimetheus solver was submitted to the
random SAT track. It was compiled on the StarExec
Cluster using gcc with the compile flags —std=c99
-03 -static —-fexpensive-optimizations
-flto —-fwhole-program -march=native -Wall
-pedantic. The result is a 64-bit binary.

VI. AVAILABILITY AND LICENSE INFORMATION
The dimetheus solver is publicly available and can
be downloaded from https://www.gableske.net/dimetheus. The
solver is provided under the Creative-Commons Non-
Commercial No-Derivs license version 4.0.
ACKNOWLEDGMENTS
The author would like to thank Marijn Heule and Uwe
Schoning for their continuous support.
REFERENCES
[1

(2]

—

O. Gableske, “Sat solving with message passing,” Ph.D. dissertation, Ulm

University, Germany, May 2016.

, “An ising model inspired extension of the product-based mp

framework for sat,” Theory and Application of Satisfiability Testing, vol.

LNCS 8561, pp. 367-383, 2014.

, “On the interpolation of product-based message passing heuristics
for sat,” Theory and Application of Satisfiability Testing, vol. LNCS 7962,
pp. 293-308, 2013.

[4] A. Braunstein, M. Mézard, and R. Zecchina, “Survey propagation: an al-
gorithm for satisfiability,” Journal of Random Structures and Algorithms,
vol. 27, pp. 201-226, 2005.

[5S] A. Balint and U. Schoning, “Choosing probability distributions for

stochastic local search and the role of make versus break,” Theory and

Application of Satisfiability Testing, vol. LNCS 7137, pp. 16-29, 2012.

(3]

38

Proceedings of SAT Competition 2016: Solver and Benchmark Descriptions, volume B-2016-1 of Department of Computer Science Series of Publications

B, University of Helsinki 2016. ISBN 978-951-51-2345-9.

Sequential and Parallel Glucose Hacks

Thorsten Ehlers
Kiel University
Kiel, Germany

Abstract—This document describes the SAT solvers we sub-
mitted to the SAT Competition 2016.

I. INTRODUCTION

We submit a solver to the Glucose Hack Track. As this
seems to performed quite well on easy benchmarks in our
tests, we also submit it to the agile track. Furthermore, we
submit a parallel version of Glucose to the parallel track.

II. GLUCOSE HACK TRACK

For the glucose hack track, we applied two small, but useful
changes.

What does LBD mean if the value is large?

The literal block distance (LBD) has become one of the
most important measures for learnt clause quality [1]. How-
ever, there are different opinions about the reasons for this. We
found experimentally that for values of LBD larger than 2, a
trivial measure like clause size worked astonishingly well on
the benchmarks of the SAT competition 2015. Therefore, we
swith the clause deletion strategy, and sort clauses according
to their size. We are curious to see how this performs on this
year’s benchmarks.

A. Delete Everything!

Glucose 3.0 never deletes clauses of LBD< 2. Although this
appears to be a great decision in general, it may be somewhat
misleading, e.g. if a clause is learnt which subsumes an LBD2-
clause. Therefore, we seek to delete clauses if they have not
been used for a long time. This is, we simply delete clauses
if their activity drops to zero. With the standard value for cla-
decay, 0.999, this is too aggressive, therefore we increased it
to 0.9999.

B. Don’t restart too early!

In [2], Audemard et. al suggest to block restarts if the solver
seems to be close to finding a SAT-answer. This decision
is based on the average trail size on which conflicts occur.
On some benchmarks, this does not work well, if many unit
clauses are found at decision level 0. Therefore, we adjust
this measure, and consider the difference between trail size
and trail size on decision level 0, i.e. “trail.size()-trail_lim[0]”.
This lead to a significant improvement on satisfiable formulas
in our experiments.

39

Dirk Nowotka
Kiel University
Kiel, Germany

III. PARALLEL TRACK

We submit a glucose-hack to the parallel track. In con-
trast to our massively-parallel solver TopoSAT [3], this is
a way simpler solver. Similar to Plingeling, we organise
our processes such that one of them organises the search,
wheras all others peform a portfolio search. Learnt clauses
are shared among all solver, if their LBD is at most 5, and
the size at most 100 literals. As the “master”-process tends
to be idle for small numbers of processes, we apply some
simple inprocessing-techniques as unhiding and failed literal
bra