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Abstract
AIM: To investigate whether high-fat-feeding is associ-
ated with increased intestinal permeability via  altera-
tions in bile acid metabolism.

METHODS: Male C57Bl/6J mice were fed on a high-fat 
(n  = 26) or low-fat diet (n  = 24) for 15 wk. Intestinal 
permeability was measured from duodenum, jejunum, 
ileum and colon in an Ussing chamber system using 4 
kDa FITC-labeled dextran as an indicator. Fecal bile ac-
ids were analyzed with gas chromatography. Segments 
of jejunum and colon were analyzed for the expression 
of farnesoid X receptor (FXR) and tumor necrosis factor 
(TNF).

RESULTS: Intestinal permeability was significantly in-
creased by high-fat feeding in jejunum (median 0.334 
for control vs  0.393 for high-fat, P  = 0.03) and colon 
(0.335 for control vs  0.433 for high-fat, P  = 0.01), but 
not in duodenum or ileum. The concentration of nearly 
all identified bile acids was significantly increased by 
high-fat feeding (P  < 0.001). The proportion of urso-
deoxycholic acid (UDCA) in all bile acids was decreased 

(1.4% ± 0.1% in high-fat vs  2.8% ± 0.3% in controls, 
P  < 0.01) and correlated inversely with intestinal per-
meability (r  = -0.72, P  = 0.01). High-fat feeding also 
increased jejunal FXR expression, as well as TNF ex-
pression along the intestine, especially in the colon.

CONCLUSION: High-fat-feeding increased intestinal 
permeability, perhaps by a mechanism related to bile 
acid metabolism, namely a decreased proportion of fe-
cal UDCA and increased FXR expression.

© 2012 Baishideng. All rights reserved.
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INTRODUCTION
Intestinal permeability is a term for the paracellular and 
transcellular translocation of  large molecules foreign to 
the body. Paracellular permeability is mediated by tight-
junction proteins, which prevent uncontrolled transport 
through the epithelium[1]. Deterioration of  tight-junction 
proteins may permit translocation of  bacterial lipopoly-
saccharides into the serum, i.e., endotoxemia, which may 
then cause inflammation. In obesity, low-grade inflamma-
tion is a risk factor for type 2 diabetes and cardiovascular 
diseases[2,3]. Impaired gut barrier function is related to 
several disease states such as steatohepatitis, fatty liver dis-
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ease and diabetes[4-6]. Furthermore, it may form the link 
between obesity and its related disorders[7-12].

High dietary fat content may in part lead to barrier 
dysfunction, supported by cross-sectional data indicat-
ing that a diet high in energy and fat is associated with 
endotoxemia[13]. Dietary fat affects bile acid metabolism, 
because the absorption of  fat requires an increase in bile 
flow. Consequently, a high-fat diet elevates the fecal con-
centration of  bile acids[14,15]. In mice, an orally fed second-
ary bile acid deoxycholic acid (DCA) induces intestinal 
inflammation[16], and in vitro bile acids provoke permeabil-
ity of  intestinal cell monolayers[17,18]. In contrast, the most 
hydrophilic bile acid, ursodeoxycholic acid (UDCA), may 
counteract increased intestinal permeability[19].

Proteins involved in bile acid absorption are mediated 
by the intestinal farnesoid X receptor (FXR), also known 
as the bile acid receptor, which is highly expressed in in-
testinal and liver tissues[20]. Mice deficient in FXR show 
compromised barrier function and localization of  neu-
trophils in their intestinal villi[21].

The aim of  this study was to investigate whether high-
fat feeding is associated with increased intestinal perme-
ability via alterations in bile acid metabolism.

MATERIALS AND METHODS
Animals
Male C57Bl/6 mice were obtained from Charles River 
(Sulzfeld, Germany) and acclimatized for a week prior 
to the experiment. At 6 wk of  age, they were random-
ized into two groups equal in weight: High-fat (n = 26; 
60E% fat, D12492; Research Diets, New Brunswick, NJ, 
United States) and control (n = 24; 10E% fat, D12450B; 
Research Diets). Diets were paired for fiber and protein 
content. Mice were housed six per cage in a standard ani-
mal laboratory with a dark/light cycle of  12/12 h, with 
free access to food and water. After 15 wk of  feeding, 
mice were euthanized with a gas mixture of  CO2 (70%) 
and O2 (30%) (AGA, Riihimäki, Finland), and cervical 
dislocation. Animal experiments were approved by the 
National Animal Experiment Board of  Finland.

Intestinal permeability measurements
Fresh segments of  duodenum, jejunum, ileum and proxi-
mal colon were collected in duplicate, opened along the 
mesenteric border, pinned onto 0.3 cm2 sliders and mount-
ed into an EasyMount Ussing chamber system with a volt-
age-clamp apparatus (Physiologic Instruments, San Diego, 
CA, United States). Two intestinal segments were collected 
in duplicate from each mouse, because only four chambers 
were available. Tissues were surrounded by 5 mL Ringer 
solution (120 mmol/L NaCl, 5 mmol/L KCl, 25 mmol/L 
NaHCO3, 1.8 mmol/L Na2HPO4, 0.2 mmol/L NaH2PO4, 
1.25 mmol/L CaCl2, 1 mmol/L MgSO4, 10 mmol/L  
glucose) on each side. The system was water-jacketed to 
37 ℃ and carbonated with a carbogen (95% O2 , 5% CO2; 
AGA) gas flow. After an equilibration period of  10 min, 
solutions were replaced with fresh Ringer, and 4 kDa 
FITC-dextran (TdB Cons, Uppsala, Sweden) was added 

to the luminal side to a final concentration of  2.2 mg/mL. 
Resistance and short-circuit current were followed for 60 
min, after which, serosal fluorescence was detected with 
a Wallac Victor2 1420 Multilabel counter (Perkin-Elmer, 
Waltham, MA, United States). Intestinal permeability was 
determined by comparing serosal fluorescence to luminal 
fluorescence as per mille of  translocated dextran.

Fecal bile acid analysis
Feces were collected at 13 wk by placing mice individually 
in metabolic cages for 24 h. Feed and water was provided 
ad libitum. Feces were carefully separated from all other 
material and frozen at -20 ℃. Upon analysis, feces of  six 
mice from each group were dried overnight with nitrogen 
and pulverized. Bile acids were extracted and measured by 
gas-liquid chromatography according to the method by 
Grundy et al[22] in the laboratory of  the Hospital District 
of  Helsinki and Uusimaa. Internal standards were run for 
isolithocholic acid, lithocholic acid, epideoxycholic acid, 
DCA, chenodeoxycholic acid, cholic acid and UDCA.

Farnesoid X receptor and tumor necrosis factor 
expression assays
Segments of  jejunum were collected from each mouse, 
snap frozen in liquid nitrogen, and stored at -80 ℃. RNA 
was extracted with TRI Reagent (RT111; Molecular Re-
search Center, Cincinnati, OH, United States) according 
to the manufacturer’s protocol. Tissues were homogenized 
with Precellus24 (6500 rpm, 2 × 15 s; Bertin Technolo-
gies, Montigny-le-Bretonneux, France). Phase separation 
was performed with chloroform (34 854; Sigma-Aldrich, 
St Louis, MO, United States), and RNA precipitation 
with isopropanol (P/7507/15X, Fisher Scientific, United 
States). RNA concentration was measured with NanoDrop 
8000 (Thermo Scientific, Waltham, MA, United States), 
and converted to cDNA with a SuperScript VILO cDNA 
synthesis kit (Applied Biosystems, Carlsbad, CA, United 
States) according to the manufacturer’s instructions, using 
1 µg RNA in a reaction volume of  20 µL. Reactions for 
quantitative real time polymerase chain reaction (qPCR) 
were run using TaqMan chemistry (Applied Biosystems) 
for FXR (Mm00436420_m1) and tumor necrosis factor 
(TNF) (Mm00443258_m1). Gene expression was normal-
ized to beta-actin and beta-glucuronidase. Reactions were 
run on a CFX96 real-time PCR detection system (Bio-Rad, 
Hercules, CA, United States) in triplicate. Skeletal muscle 
was used as a non-expressing negative control. Gene ex-
pression was calculated with Bio-Rad CFX Manager soft-
ware using the normalized expression ΔΔC(t) method.

Statistical analysis
Permeability results were statistically analyzed with a Mann-
Whitney U test due to the uneven distribution of  values 
around the means. In addition to calculating intestinal 
permeability for each segment (duodenum, jejunum, 
ileum and colon), a value for overall intestinal perme-
ability was calculated for each mouse as an average of  the 
permeability in its two measured intestinal segments. Bile 
acid and gene expression data were analyzed with a t test 
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between control and high-fat groups. As there was a spe-
cial focus on UDCA, the concentration of  this bile acid 
relative to total identified bile acids was also calculated. 
The gene expression data had a setting of  four groups, 
characterized by two factors possibly affecting intestinal 
FXR and TNF expression: intestinal segment and diet. 
The independent effects of  these two factors were sta-
tistically analyzed with a factorial experiment. Groups 
were also compared with each other individually for 
both intestinal segments with a t test. Equality of  vari-
ances was tested with Levene’s test. All statistical analyses 
were performed with PASW Statistics version 18.0.2 (IBM, 
United States). All data are expressed as mean ± SE unless 
otherwise stated.

RESULTS
Intestinal permeability
The weight of  the high-fat-fed mice was significantly 
higher compared to control mice (49.5 ± 0.59 g vs 28.6 ± 
0.36 g, P < 0.001). High-fat-feeding increased intestinal 
permeability significantly in the jejunum (median 0.334 
per mille translocated dextran for control vs 0.393 for 
high-fat, P = 0.03) and colon (median 0.335 for control 
vs 0.433 for high-fat, P = 0.01), but not in the duodenum 
(median 0.359 for control vs 0.360 for high-fat, P = 0.33) 
or ileum (median 0.351 for control vs 0.452 for high-fat, 

P = 0.69, Figure 1). Resistance and short-circuit current 
were measured during the Ussing chamber experiments 
to monitor tissue viability. The stability of  these values 
indicates good viability of  tissue segments throughout 
the experiments (Figure 2).

Fecal bile acids
Feces from high-fat fed mice contained substantially more 
bile acids compared to feces from control mice (2.13 ± 
0.29 mg/g dry feces vs 0.37 ± 0.03 mg/g dry feces, P < 
0.001; Figure 3A). This was reflected as a significantly 
elevated concentration of  each bile acid (P < 0.01) except 
isolithocholic acid (Figure 3B). We were especially inter-
ested in the effects of  UDCA, which is considered cyto-
protective, therefore, we calculated the ratio of  UDCA 
to total bile acids. The proportion of  UDCA in feces of  
high-fat-fed mice was nearly halved compared to that in 
control mice (1.4% ± 0.1% in high-fat vs 2.8% ± 0.3% in 
controls, P < 0.01, Figure 3C). There was also a marked 
inverse correlation of  overall intestinal permeability to 
the proportion of  UDCA in total fecal bile acids (r = 
-0.72, P = 0.01, n = 11, Figure 4A). The correlation re-
mained significant even after controlling for body weight 
(partial correlation r = -0.64, P < 0.05, n = 11). A trend 
for a similar association was seen in the subgroups of  je-
junal and colonic permeability (r = -0.88, P = 0.05, n = 5  
for jejunum and r = -0.70, P = 0.12, n = 6 for colon, Fig-

Figure 1  Effect of high-fat-feeding on intestinal permeability. Intestinal permeability in duodenum (A), jejunum (B), ileum (C), and colon (D) of high-fat-fed vs con-
trol mice. Permeability was measured in an Ussing chamber. Results are shown as per mille translocated dextran. Box plots show median, upper and lower quartiles, 
and Tukey’s whiskers (highest and lowest values, outliers shown as black dots). aP < 0.05 between high-fat and control.
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ure 4B and C). In addition, we correlated permeability to 
the ratio of  UDCA to DCA, a cytotoxic bile acid. This 
was done to prevent bias by the unmeasured muricholic 
acid, which is a primary bile acid present in murine bile[23], 
and is left unidentified by methods designed for clinical 
use. The relation of  UDCA to DCA showed a similar 
halved concentration and inverse correlation to perme-
ability (r = -0.70, P = 0.02).

Intestinal farnesoid X receptor and tumor necrosis 
factor expression
The effect of  high-fat-feeding on bile acid metabolism and 

intestinal inflammation was assayed as expression of  intes
tinal FXR and TNF in the jejunum and colon. Jejunal 
FXR expression was increased 30% by high-fat feeding 
(0.74 ± 0.049 for high-fat vs 0.57 ± 0.051 for control, P = 
0.03) and colonic TNF expression was doubled (0.82 ± 
0.148 for high-fat vs 0.42 ± 0.068 for control, P = 0.02) 
but no significant differences were seen in jejunal tumor 
necrosis factor (TNF) (P = 0.30) or colonic FXR (P = 0.63, 
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Figure 4  Correlation of proportion of ursodeoxycholic acid with intestinal permeability. Pearson’s correlation of fecal proportion of ursodeoxycholic acid (UDCA) 
percentage to overall permeability of intestine (A), jejunal permeability (B), and colonic permeability (C). Each dot represents an individual animal.

Table 1  Gene expression of farnesoid X receptor and tumor 
necrosis factor (mean ± SEM)

 Control  High-fat P  value

n expression n expression

FXR
   Jejunum 14 0.57 ± 0.051 12 0.74 ± 0.049 0.03
   Colon 10 1.36 ± 0.234 14 1.49 ± 0.159 0.63
TNF
   Jejunum 14 0.21 ± 0.041 12 0.27 ± 0.040 0.30
   Colon 10 0.42 ± 0.068 14 0.82 ± 0.148 0.02

FXR: Farnesoid X receptor; TNF: Tumor necrosis factor.
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Table 1). FXR and TNF expressions did, however, cor-
relate with each other (r = 0.41, P < 0.01, n = 50, Figure 5).

A factorial experiment on the independent effects of  
diet and intestinal segment on gene expression revealed 
that overall intestinal TNF expression was elevated by 
high-fat-feeding (P = 0.02). Moreover, both TNF and 
FXR expressions were higher in colon compared to jeju-
num (P < 0.001 for both).

DISCUSSION
The objective of  this study was to see whether intesti-
nal permeability was increased by high-fat-feeding via a 
mechanism related to bile acid metabolism. These data 
showed that permeability of  jejunum and colon in high-
fat-fed mice was increased. The animals were clearly 
obese solely due to dietary fat content (60E%), and not 
by genetic modification. Our results on increased perme-
ability are supported by a similar previous study, which 
investigated the effects of  obesity and a high-fat diet on 
rat intestinal permeability[12]. Also a carbohydrate-free 
diet containing an extremely high amount of  fat (72E%) 
increased intestinal permeability in mice[9]. Our 60E% 
diet may be considered more physiologically relevant 
compared to carbohydrate-free diets. We also took care 
to pair the diets in protein and fiber content. Therefore, 
the barrier dysfunction in high-fat-feeding was not bi-
ased by any fiber-mediated effect. There is no conclusion 
on whether gut permeability may be affected by obesity 
alone, without modifications in diet composition[7,12].

In the present study, we found that, in addition to 
increased fecal bile acid content, high-fat feeding also mo
dulated fecal bile acid profile. Bile acids and bile juice are 
known to impair barrier function in enterocyte monolay-
ers in vitro[12,17,18], as well as recovery from tissue damage 
ex vivo[24], and are elevated in serum of  high-fat-fed rats[12]. 
Our data indicate that high-fat-feeding modifies gut per-
meability by a mechanism related to bile acids, as previ-
ously hypothesized[12].

This is, to the best of  our knowledge, the first study 
to show that high-fat-induced intestinal barrier dysfunc-
tion is related to increased intestinal FXR expression. 
Inagaki et al[21] have shown in a FXR knockout mouse 
model that FXR is involved in tight junction integrity. It 
is unclear, however, what role FXR plays in the patho-
genesis of  high-fat-induced barrier dysfunction.

Both fecal bile acids and intestinal TNF expression 
were elevated by high-fat-feeding in the present study. 
Bile acids are linked to inflammatory pathways, because 
DCA is able to stimulate the nuclear factor-κB route[25], 
which regulates TNF expression. A correlation between 
bile acids and TNF was not observed in our small set of  
fecal samples. Intestinal FXR and TNF were, however, 
correlated, which may reflect a link between intestinal bile 
acid concentration and inflammation. Incubation of  jeju-
num in DCA (0.3 mmol/L) increased prostaglandin E2 
in the supernatant, thus indicating a possible role for in-
flammation in increasing intestinal permeability (data not 
shown). Orally fed DCA induces intestinal inflammation 

in mice[16], which further supports the hypothesis that in-
flammation is involved in the pathogenesis of  gut barrier 
dysfunction. In this study, we observed increased TNF 
expression in the intestine. TNF is known to increase 
intestinal permeability in vitro[26-29], and anti-TNF antibod-
ies restore barrier function in vivo[30,31]. However, these 
data do not permit us to draw conclusions on whether 
increased TNF expression, in this study, was a cause or a 
secondary event in increased intestinal permeability.

We observed a halved proportion of  UDCA in fecal 
bile acids of  high-fat-fed mice. Moreover, this propor-
tion of  UDCA correlated with increased permeability, 
even when controlled for body weight. These data suggest 
a barrier protective effect for UDCA in our study. Our 
results are in agreement with previous reports showing 
that, as a hydrophilic bile acid, UDCA does not increase 
epithelial permeability in vitro in comparison to other bile 
acids[18]. On the contrary, it is capable of  counteracting 
intestinal barrier dysfunction[19], protecting against chemi-
cally induced colitis[19,32,33] and colitis-associated adenocar-
cinoma[34] in rodents. Its role may be especially relevant 
in comparison to DCA, because UDCA protects mito-
chondria against DCA-induced reactive oxygen species 
production[35]. It may thus be suggested that, in addition 
to total bile acid concentration, the bile acid profile is 
relevant regarding bile-acid-related functions in the intes-
tine.

Intestinal permeability was measured ex vivo with the 
Ussing chamber as the translocation of  large dextrans. 
This direct method is more representative of  intestinal 
permeability than the often used transepithelial resistance 
and tight-junction protein analysis. Furthermore, the 
Ussing chamber allows measurement of  permeability from 
selected tissue segments, unlike direct in vivo methods.

The 4 kDa FITC-dextrans used here are generally 
believed to translocate through the paracellular spaces, 
although there are no reports to confirm this. Permeabil-
ity to FITC-dextrans does, however, correlate with a de-
crease in tight-junction protein expression[10]. It has also 
been proposed that translocation of  lipopolysaccharides 
occurs transcellularly via chylomicrons[36]. The methods 
used in the present study do not distinguish between 
these two pathways. Their importance in intestinal per-
meability needs further elucidation.

We evaluated modifications of  bile acid metabolism 
by analyzing fecal bile acids. It must be noted that fecal 
bile acids only reflect alterations of  bile acid metabolism, 
and this method does not allow us to draw conclusions 
about liver bile acid metabolism or bile composition. It is, 
however, an estimate of  colonic bile acid concentrations.

In conclusion, high-fat feeding increases permeability 
in the jejunum and colon, elevates fecal bile acid concen-
tration, and induces intestinal inflammation in mice. Al-
terations in bile acid homeostasis, namely UDCA synthe-
sis and intestinal FXR expression, may relate to increased 
intestinal permeability. Our results show that alterations 
in bile acid metabolism may be associated with intestinal 
permeability and should be studied as a possible target in 
affecting the onset of  barrier dysfunction.
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COMMENTS
Background
Intestinal permeability has recently been linked to type 2 diabetes, steatosis 
and steatohepatitis. One proposed cause for increased permeability is a diet 
high in fat. A high-fat-diet increases excretion of bile. Secondary bile acids 
are known to increase permeability of epithelial monolayers in vitro. However, 
physiological concentrations of bile juice obtained from healthy rats have failed 
to increase epithelial monolayer permeability. This may be due to the fact that 
bile consists of a profile of several bile acids, which differ in cytotoxicity. It has 
not yet been addressed whether high-fat feeding alters the profile of fecal bile 
acids, and whether this profile plays a role in the onset of barrier dysfunction.
Research frontiers
Proposed mechanisms for the dietary induction of increased intestinal perme-
ability have mostly been related to alterations in gut microbiota. Only a few 
publications have mentioned other luminal factors affecting permeability. The 
research hotspot in this field is how diet modifies bile acid metabolism and 
leads to increased intestinal permeability. 
Innovations and breakthroughs
Although bile is considered detrimental to the gut epithelium, physiological con-
centrations have not increased epithelial monolayer permeability. We show that 
not only was bile excretion increased by high-fat feeding, but the profile of fecal 
bile acids had become more cytotoxic than in healthy control mice. The propor-
tion of a hydrophilic bile acid, ursodeoxycholic acid (UDCA), was decreased by 
high-fat feeding and correlated inversely with intestinal permeability.
Applications 
The prevention of barrier dysfunction may decrease the risk of its associated 
diseases. The present results suggest that bile acid metabolism is a potential 
target for the prevention of a barrier dysfunction. 
Terminology
Intestinal permeability refers to how large molecules, such as inflammatory 
bacterial components, translocate through the intestinal epithelium into the 
circulation. Translocation may be paracellular, through tight-junction proteins, 
or transcellular, via chylomicrons. UDCA is a hydrophilic bile acid. Deoxycholic 
acid is a secondary bile acid produced from cholic acid by intestinal microbes.
Peer review
The authors tested intestinal permeability in an ex vivo model (Ussing cham-
bers; mucosal to serosal flux of FITC-labeled dextran) in mice on a high-fat diet; 
moreover, analysis of fecal bile acids and expression of mucosal tumor necrosis 
factor and farnesoid X receptor was performed.
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