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Abstract

Background: The growth of high-throughput technologies such as microarrays and next generation sequencing
has been accompanied by active research in data analysis methodology, producing new analysis methods at a
rapid pace. While most of the newly developed methods are freely available, their use requires substantial
computational skills. In order to enable non-programming biologists to benefit from the method development in a
timely manner, we have created the Chipster software.

Results: Chipster (http://chipster.csc.fi/) brings a powerful collection of data analysis methods within the reach of
bioscientists via its intuitive graphical user interface. Users can analyze and integrate different data types such as
gene expression, miRNA and aCGH. The analysis functionality is complemented with rich interactive visualizations,
allowing users to select datapoints and create new gene lists based on these selections. Importantly, users can
save the performed analysis steps as reusable, automatic workflows, which can also be shared with other users.
Being a versatile and easily extendable platform, Chipster can be used for microarray, proteomics and sequencing
data. In this article we describe its comprehensive collection of analysis and visualization tools for microarray data
using three case studies.

Conclusions: Chipster is a user-friendly analysis software for high-throughput data. Its intuitive graphical user
interface enables biologists to access a powerful collection of data analysis and integration tools, and to visualize
data interactively. Users can collaborate by sharing analysis sessions and workflows. Chipster is open source, and
the server installation package is freely available.

Background
The growth of high-throughput technologies such as
microarrays and next generation sequencing (NGS) has
been accompanied by active research in data analysis
methodology, producing new analysis methods at a
rapid pace. The international Bioconductor project [1]
has been particularly important in this regard, demon-
strating the power of open software development for
bioinformatics. While most of the newly developed
methods are freely available, their use requires substan-
tial computational skills, such as knowledge of the R
programming language in the case of Bioconductor.
This can be a bottleneck for wet lab scientists, who typi-
cally have a life science background and no

programming experience. In order to enable experimen-
tal biologists to benefit from the method development
in a timely manner, we have created the Chipster soft-
ware [2]. Chipster brings a powerful collection of up-to-
date analysis methods and visualization tools within the
reach of bioscientists via its intuitive graphical user
interface. Being a versatile and easily extendable plat-
form, Chipster can be used for different types of high-
throughput data such as microarrays, proteomics and
NGS. In this article we describe its comprehensive col-
lection of analysis and visualization tools for microarray
data using three case studies.

Implementation
Chipster’s ability to provide a biologist-friendly access to
a powerful bioinformatics platform is technically based
on a desktop application user interface, a flexible
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distributed architecture, and the ability to integrate
many types of analysis tools.
The Chipster client software is a full graphical Java

desktop application, since we saw it the best way for
offering an intuitive user interface with highly interactive
visualisations and an overall smooth user experience. To
make the client installation and updates as easy and
automatic as possible, Chipster uses the Java Web Start
technology.
In order to provide a comprehensive set of analysis

tools, we have made it easy to integrate any kind of
tools in Chipster, regardless of how they are implemen-
ted (R/Bioconductor, command line, Java, Web services,
etc.). As R/Bioconductor provides a rich collection of
analysis functionality for microarray and NGS data, we
have built a strong support for R integration: Wrappers
manage communication with R processes and pool
them for rapid responsiveness, and several R versions
can be run side-by-side. Integration of command line
tools is also supported and can be accomplished even
automatically. The tool selection offered by the local
server can be augmented by external Web services
(SOAP). For example, we currently use the pathway
analysis tools for IntAct, Reactome and Consensus-
PathDB in this manner. From the user’s point of view
these remote services look like any other tools and are
included in the workflows as usual.
Adding new tools to Chipster is easy. First you write a

short description for the tool’s inputs, outputs and para-
meters using simple notations (Figure 1). Then you
place the description and the tool code, for example an
R script, to a specific directory in the computing service.
In the case of a command line tool, instead of copying
the tool code, you just add a reference to the tool binary
in the Chipster configuration file. The new tool is then
picked up by the computing service and becomes auto-
matically visible in the Chipster client.
In the basic setup, Chipster is a client-server system.

Server architecture allows tasks to be performed in opti-
mal places: for example, interactive visualizations hap-
pen in the client, whereas the actual analysis tasks are
processed by computing services, which can be run on
server machines with ample CPU and memory
resources. This way the user can run several analysis
tasks simultaneously without burdening his/her compu-
ter. In addition, there is no need to install any analysis
tools or libraries to the user’s computer as they are
installed and maintained centrally in the computing ser-
vers. To avoid transferring data multiple times between
the client and server, a caching mechanism is used. The
caching extends to multi-user scenarios thanks to Chip-
ster’s cryptographically strong data identifiers: When a
previously saved analysis session is opened from a

different computer, possibly by a different user, the sys-
tem still uses the original cached copy of the data and
does not transfer it again to the server side.
A Chipster server can be run on a single server com-

puter or even a laptop. The Chipster server itself con-
tains multiple independent services, so it can be scaled
across a cluster of servers to distribute computational
and data transfer load. Reliability is also improved as
failed services can be replaced on the fly. The runtime
scaling has proven to be useful when operating large
national and institutional Chipster services, as usage
peaks can be managed by adding computational servers
when required. The system consists of compute, authen-
tication and management services, and message and file
brokers, which act as the communication channels
between the components (see additional file 1: Chip-
ster_architecture.pdf). Because of the message oriented
architecture, only the broker components require open
network ports and therefore local firewalls should not
pose problems. Only the message broker needs to be
configured as an entry point into the system, all the
other server components are automatically discovered.
For running the computing services, a 64-bit Linux or
Mac computer is recommended. The other server parts
and the client software only require Java 1.6.
Chipster is freely available and is open source soft-

ware under the GNU General Public License (GPL)
version 3 or later. We provide an installation package
for the software of the complete Chipster server sys-
tem at the Sourceforge site [3], and installation
instructions for this package can be found on our Wiki
pages [4]. Free short-term evaluation accounts to our
Chipster server are provided for those wanting to try
Chipster first, and long term accounts are also avail-
able [2]. Installation of the basic server setup is
straightforward using the tools provided, and the Wiki
pages also document the more advanced adaptations,
such as distribution to a cluster, integration into local
authentication systems, and deployment of secure
communication protocols. After unpacking the server
software and running an automatic configuration
script, the server can be started and the Chipster client
launched via a web site provided with the package. All
analysis tools are included in the installation by
default, but most of them require R or other support-
ing applications to function. A setup script is provided
that automatically installs the R packages, and instructs
how the supporting applications should be installed.
The server administrator is free to tailor the tool selec-
tion and install tool support only for those functional-
ities that are needed. For even more rapid deployment
of the Chipster server environment, we are developing
a virtual machine based package.
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Figure 1 Analysis tools are integrated to Chipster using a simple tool description notation. It is easy to integrate new analysis tools to
Chipster. One simply writes a short description for the tool’s inputs, outputs and parameters as shown here. When the description and the tool
code are placed to a specific directory in the computing service, the tool and its parameter panel become automatically visible to the users in
the Chipster client program. This example shows the automatically generated parameter panel (top) and the description and tool code (below)
for the R/Bioconductor based tool “Pathway analysis for miRNA targets”. In the case of a command line tool, instead of copying the tool code,
one just adds a reference to the tool binary in the Chipster configuration file.
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Results
General functionality of Chipster
User interface
Chipster’s user interface consists of four panels: Analysis
tools, datasets, workflow and visualization (Figure 2).
The panels for the datasets and the workflow display
essentially the same files, but while the former provides
a typical folder view, the latter shows the relationships
between the files. It is therefore easy to keep track of
which analysis steps were taken to produce a particular
file. Both views allow the user to export, rename, and
delete files, and the workflow view also allows the user
to prune and save workflows. The analysis tool panel
displays Chipster’s analysis tools grouped into categories
such as normalization, preprocessing, statistics and

pathway analysis for easy discovery. Once a tool has
been selected, the user can view its short description,
the manual page and the source code, and change para-
meters if necessary. A complete list of the current analy-
sis tools is available on the Chipster web site, and the
analysis functionality is described in more detail in the
corresponding section of this article. The visualization
panel allows the user to view the selected dataset using
different visualization methods, which are discussed in
more detail below.
Describing an experimental setup is accomplished

using a Phenodata editor. Chipster’s normalization tools
produce a phenodata file, which the user can complete
by entering the experimental groups for the different
samples. Any other variables such as time, dose, pairing

Figure 2 Chipster user interface. Chipster’s user interface consists of four panels: Datasets, analysis tools, workflow, and visualization. Data files
are displayed in the Datasets view (top left) and in the Workflow view (bottom left). The latter displays the analysis results as boxes colored
according to the category of the tool that produced them. It enables the user to keep track of the relationships of the result files and to save
the analysis steps taken as an automatic, reusable workflow. The analysis tool panel (top right) displays Chipster’s analysis tools grouped into
categories such as normalization, preprocessing, statistics and pathway analysis for easy discovery. Once a tool has been selected, the user can
view its short description, the manual page and the source code, and change parameters if necessary. The visualization panel (bottom right)
offers different interactive visualizations according to the selected dataset. The user can select genes in the visualizations and create new
datasets based on this selection.
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and technical replicates can also be entered by adding
new columns to the phenodata. The description column
allows the user to enter the sample names that s/he
wants to be used in visualizations. Phenodata is by
default created during normalization, but users can also
import normalized data and generate a phenodata file
for it in Chipster, as demonstrated in the second case
study of this article.
When an analysis task has been submitted, its pro-

gress can be monitored by opening the Task manager
window from the bottom panel of the user interface.
Task manager lists the status (i.e. transferring inputs,
waiting, running, transferring outputs, completed), start-
ing and running times, and tool parameters. It also
allows the user to cancel a task if needed.
Chipster allows users to save their analysis sessions, so

that the work can be continued later, even on another
computer, or shared with collaborators. Work on differ-
ent datasets can be saved into separate sessions, and the
sessions can also be combined later if needed. A session
file is a zip-file containing all the data files, their rela-
tionships, and the tool parameters used for each analysis
step. It is also possible to save just the commands for
the analysis steps taken as a workflow, which can be
applied to another dataset or shared with other users.
The workflow functionality of Chipster is described in
more detail later in this article.
A complete manual for Chipster describing data

import, user interface and the individual analysis tools is
available on the web [2]. It also contains step-by-step
tutorials which cover whole analysis from data import
to downstream applications such as pathway enrichment
using publicly available datasets. While helpful for indi-
vidual users getting started with Chipster, the tutorials
can also serve as teaching material in microarray data
analysis courses. Several Chipster training sessions are
organized every year in different locations, the details
can be found on Chipster website.
Visualizations
Visualizing data and inspecting it by eye is one of the
most powerful ways of finding patterns that are interest-
ing for further analysis. We have therefore made a lot of
effort to provide rich and powerful visualizations in
Chipster. Currently there are about 25 different visuali-
zations, which are divided in two categories: interactive
visualizations generated by the client program, and static
images generated by R/Bioconductor on the server. Both
types of visualizations are viewed in the visualization
panel (Figure 2). This panel can be maximized if more
area is required for viewing, or detached as a separate
window if several visualizations need to be viewed
simultaneously.
Chipster’s interactive visualizations include 2D and 3D

scatter plots, histogram, expression profiles, array layout,

volcano plot, Venn diagram, heatmap and self-organiz-
ing map clustering (SOM) visualization. In addition to
zooming and changing titles and colors etc, the interac-
tive visualizations allow users to select datapoints and
create new gene lists based on these selections. There is
cross-talk between the different visualization methods,
so that datapoints selected in one visualization are high-
lighted when the same data is visualized using another
method. All interactive visualizations can be saved in
PNG format by right-clicking on the image.
R/Bioconductor provides a wide variety of visualiza-

tions for microarray data, many of which are available in
Chipster. These include box plot, density plot, heatmap,
correlogram, annotated dendrogram, MA plot, idiogram,
quality control plots, gene set enrichment plots, and sev-
eral visualizations for array comparative genomic hybri-
dization (aCGH) data. As opposed to the interactive
visualizations generated by the Chipster client program,
the images generated by R/Bioconductor are static,
although in many of them the user can change the sam-
ple names by entering the desired names in the pheno-
data file as described above.
Automatic workflows speed up analysis and enable
reproducible and collaborative research
Microarray data analysis typically involves performing
several analysis steps and trying different parameter set-
tings. Once a suitable combination has been found and
analysis completed, it is often desirable to save the steps
taken as an automatic workflow. Reusing workflows
serves many purposes. Firstly, it saves time as multi-step
analysis can be executed with just one mouse click.
Sharing workflows within a research group brings con-
sistency to analysis and provides an easy way for bioin-
formaticians to help biologists. Sharing workflows in a
wider context is also beneficial as providing a download-
able workflow file facilitates the reproduction of pub-
lished results and increases the collaboration of the
bioinformatics community in general.
The need for automatic workflows is widely recog-

nized and many programs such as GenePattern, Taverna
and Galaxy [5-7] provide different approaches towards
this goal, ranging from pure workflow enactment
engines to analysis software with web forms for work-
flow construction. In Chipster we have taken an
approach where, instead of specifically constructing
workflows, the user performs the analysis normally. The
system keeps track of the analysis steps taken, and dis-
plays them visually in the Workflow panel (Figure 2).
The user can experiment with different methods and
parameters, and prune the resulting workflow by delet-
ing the unwanted steps. When a satisfactory analysis
pipeline is ready, the user simply clicks on the desired
beginning point of it in the workflow panel and saves
the workflow. The workflow is saved as a file, which

Kallio et al. BMC Genomics 2011, 12:507
http://www.biomedcentral.com/1471-2164/12/507

Page 5 of 14



contains instructions to run certain analysis tools with
the selected parameter settings in a certain order.
Importantly, Chipster also supports branched workflows,
as real life analysis workflows are seldom simple linear
sequences of steps.
Users can easily apply a workflow to another dataset,

or share it with other Chipster users by giving them a
copy of the workflow file. In addition to the user-made
workflows, Chipster provides ready-made workflows for
finding and analyzing differentially expressed genes,
miRNAs and proteins. The user can continue analysis
from the workflow results as normal, so they don’t
restrict the analysis in any way but can be used rather
as a backbone.
The primary goal of Chipster’s workflow functionality

is to enable non-programming users to construct work-
flows. However, users with programming experience can
extend the Java BeanShell code of a workflow file with
any functionality desired: the workflow environment is a
complete programming environment and the functional-
ity of the client can be accessed using a workflow pro-
gramming interface.

Analysis functionality
Data import and supported array types
Chipster is able to import any tab-delimited data. While
Affymetrix CEL-files and Illumina BeadStudio/Geno-
meStudio-files are recognized automatically, other files
are imported using an Import tool, which allows the
user to specify the data columns corresponding to iden-
tifiers, sample and background intensities, etc. Chipster
offers the possibility to import data not only from user’s
computer, but also directly from public databases such
as ArrayExpress [8], Gene Expression Omnibus (GEO)
[9], and CanGEM [10], and from a given url.
It is important to note that while the tools for prepro-

cessing, statistics, clustering and visualizations work for
any tab-delimited data, tools for annotation, pathway
and promoter analysis require annotation information
for the array. Chipster has annotation packages for most
Affymetrix expression arrays (3’, gene and exon arrays),
all Illumina expression arrays and the human 27 k
methylation array, and the most common Agilent
expression arrays. In addition, rudimentary support is
offered for Affymetrix and Illumina SNP arrays. For
aCGH arrays it is essential to know the exact genomic
coordinates for the probes, and Chipster has a dedicated
tool for fetching these annotations from the CanGEM
database [10]. For a full list of supported array types,
please see the website [2]. Annotation packages for new
arrays can be created using the AnnotationDbi package
offered in the Bioconductor project.

Normalization
Chipster is capable of normalizing most of the com-
monly used chip types. It has dedicated normalization
tools for Affymetrix 3’, gene and exon arrays, Illumina
arrays, and Agilent 1- and 2-color arrays. Chipster also
offers a general normalization tool for cDNA arrays that
can be used for normalizing other 2-color data. Simi-
larly, the Agilent 1-color tool can be used for normaliz-
ing other 1-color data. The actual normalization
methods, such as Robust Multi-array Average (RMA),
Li-Wong (dChip), loess, quantile, robust spline and var-
iance stabilizing normalization, are implemented as
parameters of the tools [11,12].
It has been shown that a significant number of probes

on several Affymetrix and Illumina arrays map to differ-
ent genes than indicated by the manufacturer [13-16].
As remapping probes to the current genome and tran-
scriptome databases has been shown to improve the
interpretation of gene expression data, Chipster’s nor-
malization tools offer the possibility to use the
remapped information. For Affymetrix’ 3’-expression
arrays the user can decide whether to use the alternative
mappings (altCDFs) in the summarization step. For
Affymetrix exon and gene arrays and for Illumina arrays
the remappings are used automatically. The first case
study of this article demonstrates how to apply the alter-
native mappings for Affymetrix’ 3’-expression arrays.
After the initial normalization using a platform-speci-

fic tool, the data can be further normalized to specific
genes or samples. Chipster also includes a tool for
removing random (batch) effects, e.g. where samples
cluster according to preparation day instead of the bio-
logical groups under study, using a linear mixed model-
ling approach to the normalization.
Quality control
Chipster has an extensive selection of tools for quality
control. These include platform-specific tools, such as
plots for RNA degradation, Relative Log Expression
(RLE), Normalized Unscaled Standard Error (NUSE),
scaling factor summary, percent of present probesets,
and quality control probe expression in the case of Affy-
metrix arrays. The more general tools, such as Principal
Component Analysis (PCA), clustering and Non-metric
Multi-Dimensional Scaling (NMDS), can also be used
for quality control of samples. If quality control tools
indicate that certain samples need to be excluded from
further analysis, this can be easily accomplished in Chip-
ster by either excluding the deviant samples from the
already normalized data or by re-normalizing the accep-
table samples. The latter approach is recommended for
certain normalization methods such as RMA, which are
affected by the context (i.e. a set of arrays).
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Filtering
Chipster includes tools for filtering genes by standard
deviation, coefficient of variation, inter-quartile range,
expression and flags. Another, more versatile way of fil-
tering is to first calculate several descriptive statistics for
each gene by using the specific tool for that, and then
apply the “Filter using a column value” tool to filter the
genes based on any of these. Annotated gene lists can
also be filtered based on chromosomal location, pathway
terms, etc. Different filters can be combined by using
the interactive Venn diagram to create new subsets.
Venn diagram can also be used for filtering the dataset
with a list of gene identifiers.
Statistical testing
Statistical tools in Chipster can be divided into tests for
finding differentially expressed genes, ordination meth-
ods and association analysis. Tools for pathway analysis
as well as the statistical tools dedicated for aCGH data
are described in their own sections below.
Tests for finding differences in mean gene expression

between groups are divided into separate tools accord-
ing to the number of groups to be compared (one
group, two groups, several groups). Several tests are
available in every tool, and they usually include both
parametric tests such as t-test, empirical Bayes [17],
ANOVA, and non-parametric tests such as Mann-Whit-
ney U and Kruskall-Wallis’ test. Chipster also contains
separate tools for Significance Analysis of Microarrays
(SAM) [18] and Reproducibility-Optimized Test Statistic
(ROTS) [19]. A linear modelling tool, an implementa-
tion of linear regression modelling, allows analysis of
several variables at the same time. It can take into
account three main effects and their interactions, as well
as technical replicates and pairing, and its use is demon-
strated in the first case study of this article.
Ordination methods include PCA, NMDS, and Cano-

nical Correspondence Analysis (CCA). PCA can be per-
formed for either genes or samples, and the results can
be visualized as an interactive 3D-scatter plot, where
samples can be colored according to any experimental
variable defined in the phenodata file.
Association analysis can perform case-control analyses

on SNP array data. It tests Hardy-Weinberg equilibrium,
and association of the genetic markers with the case-
control status using both dominant and recessive mod-
els of inheritance.
Unsupervised and supervised clustering
Chipster’s tools for unsupervised clustering include K-
means, hierarchical and quality threshold clustering and
SOM. Hierarchical clustering results can be visualized as
interactive heatmaps and plain trees, and the reliability
can be checked using bootstrapping. For K-means clus-
tering, Chipster includes a separate tool for estimating
the optimal number of clusters to generate (K).

Classification or supervised clustering tools include K-
nearest neighbor (KNN)-classification and the more ver-
satile general classification. KNN-classification allows
validation of classifiers by using either a cross-validation
approach or a test set of new samples. The general clas-
sification tool offers many more classification methods,
such as Support Vector Machines (SVM), Linear Discri-
minant Analysis (LDA), and Naïve Bayes networks, but
it does not allow classifying new samples like the KNN-
classification does.
Annotation
Chipster uses annotation packages provided by the Bio-
conductor project and the BrainArray site [20]. There
are two ways to annotate the data: either by generating
a separate annotation file or by appending the annota-
tion to the actual data. This latter option allows for fil-
tering genes based on pathway involvement,
chromosomal location, or other annotation information.
Pathway and promoter analysis
The pathway tools include gene enrichment analysis for
Gene Ontology (GO) terms [21] and KEGG pathways
[22] based on the hypergeometric test implemented in
the GOstats package [23]. Users can select conditional
testing for GO terms in order to avoid redundancy
caused by the hierarchical structure of GO. In this mode,
the gene list is tested for the most specific GO terms
first. If significant terms are found, the genes mapping to
these terms are removed before testing for the more gen-
eral parent terms. As opposed to testing genes individu-
ally, the user can also perform gene set tests based on the
globaltest package [24] and SAFE [25], which calculate a
test statistic per GO category or KEGG pathway taking
into account the expression levels of the genes. In addi-
tion to these tools running on the actual Chipster server,
pathway tools running elsewhere are also offered in the
Chipster client program. These include over-representa-
tion analysis with ConsensusPathDB provided by the
Max-Planck Institute. ConsensusPathDB integrates func-
tional interaction data from 20 databases covering pro-
tein-protein, metabolic, signalling and gene regulatory
interaction networks [26], thus providing a powerful and
combinatorial approach to pathway analysis.
The promoter analysis tools in Chipster offer a possi-

bility to search for common sequence motifs with Wee-
der [27] or Cosmo [28], or search for known
transcription factor binding motifs using the JASPAR
matrices [29]. Transcripts are linked to the correspond-
ing promoter sequences using RefSeq accession num-
bers. Promoter sequences for human, mouse, rat,
drosophila and yeast are obtained from the UCSC gen-
ome browser [30].
miRNA analysis
The tools for miRNA analysis are applicable to most
miRNA arrays including Agilent and Exiqon, as long as
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the data includes miRNA systematic names which Chip-
ster uses as identifiers. The user can retrieve miRNA
target genes from six different databases, run pathway
enrichment analysis for the targets, and correlate
miRNA expression with matching gene expression data
if available.
aCGH data analysis
Chipster contains a comprehensive collection of tools
for analysing DNA copy number data measured by
aCGH. The tools include calling copy number aberra-
tions (gains and losses) [31,32], identifying commonly
aberrated regions [33], removing wavy artifacts from
aCGH profiles [34], and measuring known copy number
variation for the areas of interest (probes, genes or chro-
mosomal regions) from the Database of Genomic Var-
iants [35]. Dedicated tools are also available for
clustering [36], group comparisons [37], and hypergeo-
metric tests for enriched GO categories. These take into
account the specific characteristics of aCGH data, and
are therefore more suitable than the equivalent tools
developed for gene expression studies. Importantly, it is
also possible to integrate aCGH data with expression
data to assess expression changes induced by aberrated
gene copy numbers [38]. The third case study of this
article demonstrates how to integrate aCGH data with
gene expression data in Chipster.
As the mapping of microarray probes to their genomic

coordinates is essential for all aCGH data analysis, this
information can be downloaded from CanGEM, which
is a public database focusing on aCGH microarray data
[10]. These mappings have been obtained from probe
sequences using MegaBlast [39] and are available for dif-
ferent builds of the human genome. Direct importing of
entire data sets from CanGEM is also supported.
Data export to public databases and other software
In addition to analysis sessions, individual data files can
also be exported from Chipster in a tabular text format
at any time. These files are suitable for submission to
many third-party software. Chipster can also export data
in a suitable format for uploading to the ArrayExpress
[8] and GEO [9] databases.

Case studies demonstrating Chipster’s analysis and
visualization tools
In this section we present three case studies to illustrate
the merits of some data analysis and visualization
options in Chipster, such as linear modelling, alternative
probe mappings, and data integration. The analysis ses-
sions of these case studies are available for download
[40] and further inspection in Chipster.
Using linear modelling to analyze several factors
simultaneously
This case study demonstrates how to apply the linear
modeling tool for a biological problem using data from

the case-control study published by Lenburg [41]. They
compared renal cell carcinoma tissue samples with
healthy tissue from the same person, which effectively
introduces a pairing structure to the data. We will
model the pairing explicitly here, and also include the
gender of the individual and the side of the affected kid-
ney (left or right) as independent variables in the model.
In this example we also show how to apply alternative
probe mappings for Affymetrix data, in this case for the
U133A arrays.
The CEL-files for the 17 samples were imported to

Chipster and the quality of the data was checked using
the Affymetrix-specific quality control tools including
RLE and NUSE. As no deviant arrays were identified, all
the arrays were retained in the dataset and normalized
using the RMA method and the alternative probe map-
pings (altCDFs). Using altCDFs for the summarization
step practically halved the number of probesets, redu-
cing it from 22 283 to 12 133. Next the experimental
setup was described using the phenodata file, which was
generated during normalization. The variable corre-
sponding to the most interesting hypothesis (here, case
versus control) was coded in the group column. All the
other variables of interest such as gender, side and pair-
ing were added as new columns to the phenodata and
coded with numbers. Several quality controls including
PCA, NMDS and dendrogram run on the normalized
data showed that the sample groups separate well from
each other. Affymetrix control probes and 90% of the
genes that showed the lowest coefficient of variation
were removed using the tools “Search by gene name”
and “Filter by CV”, respectively. Chipster’s filtering tools
“Filter by CV” and “Filter by standard deviation” allow
users to set the filtering percentage according to their
needs. We used a relatively high level of stringency in
this and the following case studies in order to focus on
the more prominent changes in expression and to mini-
mize false positive findings in the downstream analyses.
The genes that are differentially expressed between

cases and controls, males and females, or left and right
kidneys, can be analysed using tests suitable for compar-
ing two groups. However, this is a suboptimal solution,
since possible interactions between the variables can not
be tested, and the effect of interest can be masked by
confounding variables. To address this we used the lin-
ear modelling tool in Chipster to build a linear regres-
sion model that allows us to include all the variables in
the same analysis and to take the pairing structure into
account. Chipster’s linear modelling tool is an imple-
mentation of the limma package [17] from the Biocon-
ductor project. The case-control status, gender and side
of the kidney were included as main effects and the
patient was included as pairing. All variables were trea-
ted as categorical variables (factors). Thus, the following
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model was fitted

y = a + b1*status + b2*gender + b3*side + b4*patient + e

The Benjamini and Hochberg false discovery rate
(FDR) correction was applied to the p-values to adjust
them for multiple comparisons.
Results for the case-control comparison were visualized

using the interactive volcano plot, where the x-axis con-
tains the log2-transformed fold change values, and the y-
axis contains the -log10 -transformed p-values (Figure 3).
The linear modelling result was filtered for p-values
using the tool “Filter using a column value”. 839 genes
were statistically significantly differentially expressed (p-
value < 0.05) between the cases and controls, 20 genes
were significant for gender comparison, and no genes
became significant for the comparison between left and
right kidneys. The list of genes that were up-regulated in
cancer (378 genes) was enriched for GO categories Blood
vessel development (GO:0001568) and Response to
hypoxia (GO:0001666), as judged by the tool “Hypergeo-
metric test for GO”. Similarly, enrichment for HIF1-
alpha transcription factor network and several adhesion
pathways was indicated by the tool “Hypergeometric test
for ConsensusPathDB”. These results are consistent with
the fundamental role of angiogenesis in the renal cell car-
cinoma pathogenesis [42].

In contrast to the analysis conducted by Lenburg et al,
our results for the case-control comparison are adjusted
for the other variables in the model. In other words, the
results given for the case-control comparison take into
account additional knowledge of the samples such as
gender, side of the kidney and the patient. Lenburg et al
reported 1211 UniGene clusters and 23 unannotated
probesets (corresponding to 851 unique gene symbols)
that had changed more than three-fold. In order to
compare their result to ours, the differentially expressed
genes were filtered for fold change using the tool “Filter
using a column value”. The list of more than three-fold
changed genes (280) was then compared to that of Len-
burg in the interactive Venn diagram visualization, using
gene symbol as the common identifier. Only 191 genes
were common to both datasets. In addition to the differ-
ent analysis methodology, this difference probably
reflects the use of remapped probes, which has been
shown to cause up to 50% discrepancy in genes pre-
viously identified as differentially expressed [13]. Inter-
estingly, the 89 genes detected only by Chipster
included genes involved in hypoxia response (ADM,
ALDOC and DDIT4), cell migration (COL1A2), and cell
proliferation (PDGFD). Taken together, Chipster’s linear
modelling tool and alternative probe mappings enabled
us to find additional genes potentially relevant to renal
cell carcinoma, while keeping false positive findings due
to outdated probe mappings to a minimum.
Analyzing a prenormalized dataset: Comparing gene
expression between two populations
In this example we demonstrate how to analyse prenor-
malized data in Chipster by using expression data from
the study by Stranger et al. [43]. They performed gene
expression profiling of Epstein-Barr virus-transformed
lymphoblastoid cell lines of the 270 individuals geno-
typed in the HapMap Consortium using Illumina’s WG-
6 version 1 arrays. In this example we compare gene
expression in the European (CEU) and African (YRI)
populations using a subset of 120 samples (parents
only).
Normalized data from the Genevar site [44] of the

Sanger Institute were imported to Chipster using the
Import tool. The data was converted to Chipster format
and the phenodata was created by using the tool “Pro-
cess prenormalized”. The population was indicated with
numeric codes (CEU = 1, YRI = 2) in the group column
of the phenodata, and the population codes (CEU and
YRI) were entered in the description column in order to
use them as sample labels in visualizations.
Differential expression between the populations was

visualized using the NMDS tool, which produces a two-
dimensional map (Figure 4) based on sample dissimilar-
ity calculated using Euclidean distance. As is instantly
evident from the image, the YRI samples are more to

Figure 3 Volcano plot of results from the linear model analysis
of renal cell carcinoma. Differential gene expression between
cancer and normal samples was analyzed using linear modelling as
described in the first case study of this article. The results were
visualized using the interactive volcano plot of Chipster, so that the
relative gene expression between cancer and normal samples was
plotted on the x-axis, and the -log 10 -transformed p-values from
the linear model were plotted on the y-axis. Each dot denotes one
gene (probeset). The colored dots are statistically significantly (p < =
0.05) down-regulated (green) or up-regulated (red) genes. Users can
select genes by drawing a box around them and create new gene
lists based on these selections.
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the top-left of the image, and the CEU samples more to
the bottom-right, indicating that there are differences in
gene expression between the populations. The samples
were also visualized in a 3-dimensional interactive scat-
terplot using the three most significant components
from a PCA analysis. Again, it was noted that samples
clearly segregated according to population, but no
further sample clustering could be observed upon close
examination of the data points along any axis and direc-
tion of view, suggesting that no additional underlying
sample characteristics exhibited any major impact on
the expression patterns.
Differentially expressed genes were analysed using the

empirical Bayes test, after filtering out 95 percent of the
probes that showed the lowest standard deviation. 1601
probes corresponding to 1233 known genes were statis-
tically significantly differentially expressed between the
populations at the 5% false-discovery rate. In order to
gain functional insight, the differentially expressed genes
were analysed for enrichment in GO categories for bio-
logical process using the tool “Hypergeometric test for
GO” with default parameter settings. Interestingly, the
most enriched category was immune response. The list
of differentially expressed genes was further filtered on
fold change using the tool “Filter using a column value”.
Only 75 probes corresponding to 45 known genes
showed a fold change higher than 2. Taken together, it

seems that gene expression differences between popula-
tions are commonplace, but most of the differences are
very subtle.
Integrating DNA copy number and gene expression data
This third case study illustrates the integration of aCGH
and mRNA data to assess expression changes induced
by DNA copy number aberrations. As the aberrations
typically contain also bystander genes in addition to the
driving ones, integration with expression data helps to
identify the potential cancer genes. We used 32 breast
cancer samples with matching aCGH data [45] and
expression data [46]. This is a subset of the original
study containing 106 samples, because we were able to
pair data only for 32 samples using the supplementary
material of the referred articles. Attempts to obtain the
pairing information from the original authors were also
unsuccessful.
The Agilent 4x44K aCGH data was normalized using

the Agilent 2-color normalization tool with normexp
background correction (offset 50) and loess normaliza-
tion [1]. The Affymetrix U133A expression data was
GCRMA normalized [1], and 75% of the probesets with
the lowest standard deviation were filtered out. Quality
of the two data sets was checked with respective quality
control tools, and since no deviant samples were
observed, all arrays were retained. In order to enable the
integration of the copy number and expression data, the
Agilent probes and Affymetrix probesets were annotated
with their chromosomal positions using the tool “Fetch
probe positions from CanGEM” [10].
aCGH profiles typically show a wavy artefact related

to their GC content. This pattern can be removed by
using clinical genetics samples measured on the same
array platform as calibration data [34]. We applied the
tool “Smooth waves from normalized aCGH data” using
a calibration dataset of mental retardation samples [47]
which had been previously normalized using the same
settings as described for the aCGH data above.
Smoothed log ratios were then analyzed with the tool
“Call copy number aberrations from aCGH data” [31,32]
to detect gains and losses. The aCGH data set was stu-
died further by identifying commonly aberrated regions
[33], which showed most frequent gains in 8q and 1q.
The amount of known copy number variation (CNV)
within these regions was measured with the tool “Count
overlapping CNVs” [35], which annotates the data with
two metrics: the number of reported CNVs that overlap
with the region of interest, and the proportion of base
pairs that falls within the reported CNVs. These values
were compared to the mean and median across the
whole genome, obtained by running the tool “Calculate
descriptive statistics”.
In order to assess expression changes induced by

DNA copy number aberrations, the aCGH and mRNA
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Figure 4 NMDS analysis of the gene expression differences
between two populations. Normalized gene expression data for
120 European (CEU) and African (YRI) samples was obtained from
the Genevar site and analyzed with Chipster’s NMDS tool as
described in the second case study of this article. The samples
segregate to different parts of the plot, indicating that there are
differences in gene expression between the populations.
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data sets were first integrated using the tool “Match
copy number and expression probes”, which locates the
closest copy number probe for each expression probeset.
It also generates a heatmap showing the two data sets
organized by chromosomal position. The effect of copy
number changes on mRNA expression levels was then
evaluated by a permutation-based non-parametric test
[38] implemented in the tool “Test for copy number
induced expression changes” using the default parameter
settings. Probesets with a p-value smaller than 0.05 were
selected with the tool “Filter using column value”. Our
analysis identified 884 genes (corresponding to 1087
Affymetrix probesets) which showed copy number
induced expression changes. In the original paper,
Andre et al. [45] highlighted a list of 20 frequently
amplified genes, 15 of which showed significant correla-
tion between expression and copy number. Chipster
detected nine of these genes: BRF2, DDHD2, EIF4EBP1,
ERBB2, ERLIN2, FGFR1, GRB7, LSM1, and RAB11FIP1.
The resultant gene list was explored further using dif-

ferent filters. As ERRB2 is a well-known breast cancer
gene, we filtered the gene list for involvement in the
ERRB2 signaling pathway by using the tool “Extract
genes from KEGG pathway”. Five such genes were
found, in addition to ERBB2 itself. We filtered the gene
list also for effect size (the amount of differential gene
expression induced by the copy number difference), and
for the coefficient of determination, R2 (the proportion
of variation in gene expression explained by copy num-
ber change). There were 25 genes for which the effect
size of the DNA copy number on the gene expression
was higher than two and explained over 50% of the var-
iation in gene expression. Interestingly, one of these
genes was TOB1 (Transducer of ErbB2 1), which has
been recently implicated in breast cancer metastasis
[48]. The relation between the copy number and expres-
sion data for TOB1 was illustrated using the tool “Plot
copy number induced gene expression” (Figure 5).
Taken together, these results demonstrate Chipster’s
ability to identify potential cancer related genes. While
the integration method used by Andre et al. simply
divides the samples into two groups based on DNA
copy number calls, the method implemented in Chipster
also takes into account the probabilities with which
these calls are made (sometimes referred to as “soft
calls”), which has been shown to yield improved results
[38].

Discussion
Comparison with other microarray data analysis software
As microarrays have become a standard experimental
technique for many genome-wide applications, a large
number of software has been developed for their analy-
sis. For a comprehensive review the reader is referred to

the recent survey by Koschmieder et al [49]. In their
thorough comparison of the currently available microar-
ray analysis software, Chipster was the most complete in
terms of analysis functionality, and it was also consid-
ered particularly user-friendly and easy to install.
Chipster differs from many other software in that it

combines several important features in one package.
Firstly, Chipster facilitates reproducible and collaborative
research by enabling users to save the performed analy-
sis steps as reusable, automatic workflows, which can
also be shared with other users. As Chipster keeps track
of the analysis, it can also produce textual reports of the
steps taken. Secondly, Chipster allows the integration of
different data types such as gene expression, miRNA
expression and aCGH data. Thirdly, Chipster avoids the
all too common “black box” approach by allowing the
user to view the source code of the analysis tools.
Fourthly, Chipster is a client-server system, where the
client software utilizes Java Web Start technology for
automatic installation and updates. The actual analysis
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Figure 5 DNA-mRNA plot illustrating copy number induced
gene expression changes for TOB1. Copy number and gene
expression data in 32 breast cancer patients was integrated, and the
effect of copy number changes on mRNA expression levels was
evaluated using a permutation-based non-parametric test as
described in the third case study of this article. The tool “Plot copy
number induced gene expression” was then used to illustrate the
results for the TOB1 gene (Transducer of ErbB2 1). In the plot each
patient is depicted as a blue circle, whose radius is proportional to
the probability of the copy number call, and whose centerpoint
indicates the gene expression level. The filled red circles have a
radius proportional to the estimated expected call probabilities, and
their centerpoint indicate the estimated mean expression for the
respective call.

Kallio et al. BMC Genomics 2011, 12:507
http://www.biomedcentral.com/1471-2164/12/507

Page 11 of 14



modules, R libraries, annotations, and promoter and
pathway databases are installed and updated centrally
on the server side. The client-server system combines
the benefits of a standalone program and web based
tools: Having a full graphical user interface makes it
easy to provide responsiveness and interactivity when
compared to web-based applications, while the centra-
lized approach for the analysis tools reduces the mainte-
nance burden. It also enables the analysis jobs to benefit
from the CPU and memory of central computing ser-
vers, so that the user’s desktop computer is freed for
other tasks. In fact Chipster’s flexible architecture allows
the analysis computations to be distributed to several
servers, and the tool and database collection can be
further expanded by connecting external Web services
to the system. Finally, Chipster is open source, and new
analysis tools can be easily added by using a simple tool
description notation.
Among the leading freely available software that most

closely resembles Chipster are Mayday [50] and MeV
[51], which offer rich analysis functionality and interac-
tive visualizations. However, Chipster differs from them
both technically and functionally in many ways. In
terms of functionality, the main differences lie in the
quality control and normalization tools. Mayday doesn’t
provide array specific quality control tools, such as RLE
and NUSE for Affymetrix data, and MeV includes hardly
any quality control tools at all. The normalization
options in both Mayday and MeV are very limited:
While MeV includes basic scaling and various transfor-
mations, there are for example no specific tools for nor-
malizing Affymetrix raw data (CEL files). Therefore
users have to install additional software to handle
importing and normalization tasks. Mayday includes
support for CEL files, but the only normalization algo-
rithm provided is RMA. Neither software has built-in
support for Illumina arrays, nor do they offer the possi-
bility to use remapped probe information. The tool
selection for statistical testing is fairly similar in Chip-
ster, Mayday and MeV. However, Mayday doesn’t pro-
vide a linear modeling tool for the analysis of more
complex multi-factorial experiments, and MeV’s tool
allows the analysis of only two factors without consider-
ing the interaction effects between them. On the other
hand MeV offers a statistical tool for survival analysis,
which is not available in either Chipster or Mayday.
While the clustering options of Chipster, Mayday and
MeV are very similar, the latter two provide a wider
choice of classification tools. aCGH analysis is supported
only by Chipster and MeV, but MeV lacks the ability to
include gene expression data in an integrative analysis
approach. Analysis of miRNA expression data and inte-
gration with gene expression data is only available in
Chipster.

All the three software provide workflow functionality,
allowing users to automate and share analysis pipelines.
However, the implementation of the this functionality is
very different. In Chipster the workflow is created auto-
matically as the analysis progresses and gradually builds
to a complete pipeline, which the user can edit and save
at any time. In contrast, both MeV and Mayday use
separate workflow building applications, which the user
has to learn in addition to the main software. While the
workflow panel in Chipster makes saving workflows
easy, it also greatly enhances general usability: By clearly
displaying the relationships between datasets it enables
the user to quickly get an overview of the analysis
session.
From the technical point of view both Mayday and

MeV are standalone applications, while Chipster is a cli-
ent-server system. Both approaches have their limita-
tions and advantages: While standalone software doesn’t
need to transfer data over the network to the server, its
performance is limited by the CPU and memory of the
user’s computer. This can be a serious limitation when
performing computing intensive tasks such as hierarchi-
cal clustering, permutation-based statistical testing, or
normalization of exon arrays. Taken together, the choice
of software is not trivial and depends on factors like
ease of installation and use, the type of data to be ana-
lyzed, the capability of the user’s computer, and the
availability and extent of IT infrastructure and support.

Future development
While this paper describes Chipster’s microarray data
analysis functionality, it is important to remember that
Chipster is a generic platform and easy to extend to
other areas, even beyond bioinformatics. For example,
developing the sequence analysis software Embster [52]
was very fast by integrating the EMBOSS package [53]
and several other analysis tools to this platform. Also
adding NGS data analysis functionality to Chipster has
been easy, and the current release candidate version of
Chipster already contains tools for RNA-seq, miRNA-
seq, ChIP-seq and methyl-seq data. It also contains a
built-in interactive genome browser for viewing reads
and results in their genomic context. While server based
systems such as Chipster and Galaxy [7] have the advan-
tage of being able to handle computationally heavy NGS
analysis tasks, they face the challenge of transferring
large amounts of data over the network. Chipster’s flex-
ible architecture has allowed us to tackle this problem
efficiently using the following approaches. As described
in the Implementation section of this article, a caching
mechanism is used so that data is not transferred multi-
ple times. In order to optimize data transfer even
further, we are currently developing lightweight sessions
which only contain links to the data stored on the
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server. We are also developing plugins that allow the
user to connect different data servers to the system so
that transfers are done directly between the servers (and
when possible, skipped altogether). In terms of distribu-
ted processing we are currently working with the
Hadoop map-reduce framework [54] so that large jobs
can be run in the cloud.

Conclusions
Taken together, Chipster is a user-friendly open source
analysis software for microarray and other high through-
put data. Its intuitive user interface brings a comprehen-
sive collection of analysis methods within the reach of
experimental biologists, enabling them to analyze and
integrate different data types such as gene expression,
miRNA and aCGH. The analysis tool arsenal is comple-
mented with powerful interactive visualizations, allowing
users to select datapoints and create new gene lists
based on these selections. Importantly, users can save
the performed analysis steps as reusable, automatic
workflows. Chipster promotes collaboration at several
levels: While biologists can collaborate by sharing work-
flows and analysis sessions, bioinformatics core facilities
can also easily share their expertise with research groups
by providing ready-made workflows and new analysis
tool scripts. Finally, Chipster integration is an easy way
for analysis method developers to provide their tool
with a graphical user interface, thereby making it avail-
able for a wider group of users.

Availability and requirements
• Project name: Chipster
• Project home page: http://chipster.csc.fi/
• Operating system(s): Platform independent
• Programming language: Java
• Other requirements: Java 1.6
• License: GNU GPL version 3
• Any restrictions to use by non-academics: none

Additional material

Additional file 1: This file contains a figure showing the different
components of the Chipster server environment.
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