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Kumpulan tiedekirjasto

In this thesis we consider the Dirichlet-to-Neumann map in Electrical Impedance Tomography
(EIT). EIT is a tomography method which uses electrical currents and voltages to determine the
conductivity distribution inside the measured object. The Dirichlet-to-Neumann map (DN map)
takes the voltage on the boundary and gives the resulting current density on the boundary. This
map can be approximated by a matrix known as the Dirichlet-to-Neumann matrix. In this thesis
we analyse this matrix using Principal Component Analysis (PCA).
In chapter 1 we give a short introduction to EIT with a brief history of the study and some
applications of the method. The Dirichlet-to-Neumann map is derived in chapter 2. Constructing
the DN map requires solving the Dirichlet problem which is derived from Maxwell?s equations. The
Dirichlet problem and its solvability is studied in this chapter as well. Some of the concepts needed
in this study can be found from the appendices.
The method used for approximating the DN map is introduced in chapter 3. The approximated
matrices are then analysed using PCA, which is described in the same chapter. PCA can be used to
find the components where the variation is the largest and to reduce the dimension of the data using
these components. We use a method known as Singular Value Decomposition (SVD) to reduce the
dimension of the data and to compute the principal values and components.
We computed the DN matrices with simulated data using different conductivity distributions. We
chose the unit circle as our domain with a constant conductivity on the background and four ano-
malies with changing conductivity. The 4th chapter introduces the computations and the obtained
results. The resulting principal components and values are shown in this chapter. An approxima-
tion of the data was made using the dimensionality reduction method described in chapter 3. The
relative errors for different reconstructions are also shown in chapter 4.
In the final chapter we discuss the results. Our goal was to find out how the four variables in the
conductivity distributions affect the dimension of the hyperplane that the DN matrices form. It
seems that even with four degrees of freedom the DN matrices vary most on a 2-dimensional plane.
We also found out that in this case most of the principal components have almost no effect on the
data.
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Kumpulan tiedekirjasto

Tässä tutkielmassa käsitellään Dirichlet-to-Neumann -kuvausta Impedanssitomografiassa (EIT).
Impedanssitomografia on kuvantamismenetelmä, jossa mitattavan objektin johtavuusjakauma yri-
tetään päätellä sähkövirran ja jännitteen reuna-arvojen avulla. Dirichlet-to-Neumann -kuvaus ku-
vaa jännitteen reunalla virrantiheydeksi reunalla. Tätä kuvausta voidaan approksimoida matriisilla,
jota kutsutaan Dirichlet-to-Neumann matriisiksi. Tässä tutkielmassa analysoimme tätä matriisia
käyttämällä pääkomponenttianalyysiä (PCA).
Luvussa 1 on lyhyt johdanto impedanssitomografiaan sekä sen tutkimuksen historiaan. Luvussa esi-
tellään myös muutamia menetelmän sovelluksia. Dirichlet-to-Neumann-kuvauksen määritelmä esi-
tellään luvussa 2. Kuvausta määriteltäessä joudumme ratkaisemaan nk. Dirichlet?n ongelman joka
seuraa suoraan Maxwellin yhtälöistä. Tässä luvussa tutkitaan myös Dirichlet?n ongelmaa sekä sen
ratkeavuutta. Joitain tässä osiossa tarvittavista käsitteistä löytyy tutkielman lopussa sijaitsevista
liitteistä.
Menetelmä, jota käytetään Dirichlet-to-Neumann -kuvauksen approksimointiin esitellään luvussa
3. Saatuja matriiseja analysoidaan käyttämällä pääkomponenttianalyysia, jonka toiminta käydään
läpi samassa luvussa. Pääkomponenttianalyysiä voidaan käyttää niiden komponenttien etsimiseen,
joiden suuntaan data varioi eniten sekä dimension pienentämiseeen käyttämällä näitä komponent-
teja. Käytämme singulaariarvohajotelmaa (SVD) datan dimension pienentämiseen sekä laskemaan
pääkomponentit sekä näitä vastaavat ominaisarvot.
Laskimme Dirichlet-to-Neumann matriiseja simuloidusta datasta käyttämällä eri johtavuusjakau-
mia. Laskuissa käytettiin tutkittavana joukkona yksikköympyrää, joka sisältää neljä poikkeamaa,
joissa johtavuus muuttuu sekä taustan, jossa johtavuus on vakio. Neljännessä luvussa esitellään
suoritetut laskut sekä saadut tulokset. Saadut pääkomponentit sekä niitä vastaavat ominaisarvot
löytyvät tästä luvusta. Dataa approksimoitiin käyttämällä dimension pienentämistä menetelmällä,
joka kuvaillaan luvussa 3. Eri approksimaatioiden suhteelliset virheet löytyvät luvusta 4.
Viimeisessä luvussa pohditaan tuloksia. Tutkielman tavoitteena oli selvittää miten neljä muuttu-
jaa johtavuusjakaumassa vaikuttavat Dirichlet-to-Neumann matriisien muodostaman hyperpinnan
ulottuvuuteen. Laskujen perusteella vaikuttaa siltä, että vaikka johtavuusjakaumissa on neljä va-
pausastetta, niin Dirichlet-to-Neumann matriisit varioivat lähinnä 2-ulotteisessa avaruudessa. Li-
säksi huomattiin, että suurimmalla osalla pääkomponenteista ei ole juurikaan vaikutusta dataan.
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Chapter 1

Introduction to EIT

Electrical impedance tomography or EIT is an imaging technique which uses electrical
currents to determine the inner structure of an object. An electrical current is applied on
the surface of the object and the resulting voltage is measured and used to determine the
conductivity distribution inside the object.

Determining the condutivity distribution from boundary mesurements is a nonlinear
and severely ill-posed inverse problem. An inverse problem is the opposite of a direct
problem where we wish to find an effect for a cause. In inverse problems the causality
is reversed and we wish to recover the cause with a given effect. The definition of a
well-posed problem was given by Jacques Hadamard. A problem is well posed if it has
the following properties

(i) A solution to the problem exists

(ii) The solution is unique

(iii) The solution depends continuously on the data.

We can assume that the first condition is true. Clearly the object has a conductivity
distribution. The second condition means that having a complete set of boundary mea-
surements of voltage and current determines a unique conductivity. This has been studied
thoroughly and is true under a variety of smoothness assumptions. However, the third
condition poses a real problem. It can be shown that under certain conditions there can
exist arbitrarily large changes in the conductivity distribution which do not have an effect
on the boundary data.

This study focuses on the direct problem rather than the inverse problem, using a
given conductivity distribution inside the object to determine the voltage and current
density on the boundary. Therefore, many different aspects of inverse problems are not
included in the theory.
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1.1 A brief history of EIT

The foundation for the study of the inverse conductivity problem was laid by Alberto
Calderón in his paper in 1980 [15]. Calderón provided a mathematical formulation of the
problem which is often referred to as the Calderón problem: ”Is it possible to determine the
conductivity distribution by making voltage and current measurements on the boundary?”

In 1987 John Sylvester and Gunther Uhlmann [16] provided a fundamental uniqueness
result for the problem using Complex geometrical optics. The result implies that a C2

conductivity distribution inside the object is fully determined by the voltage and current
measurements on the boundary in 3 or more dimensions.

In 1996 Adrian Nachman [17] proved uniqueness for the 2-dimensional case with C2

conductivities and infinite precision data and provided a reconstruction method for this
case. A numerical implementation for Nachmans method was presented by Siltanen,
Mueller and Isaacsson in 2000. In 2006 Kari Astala and Lassi Päivärinta [18] proved
uniqueness without any smoothness assumptions for the 2D case.

1.2 Some applications of EIT

Due to the fact that EIT equipment is relatively low cost and the technology to create
mesurement devices already exists it has many applications in medical imaging and non-
destructive testing.

In medical imaging it can provide a non-hazardous alternative to x-ray tomography
which exposes the subject to radiation. However, EIT reconstruction methods are very
sensitive to noise and do not detect small anomalies very well. Medical applications of
EIT include monitoring lungs to detect a collapsed lung or fluid accumulation, detecting
breast cancer, monitoring cardiac function or mechanical ventilation, detecting pulmonary
embolus and pulmonary edema caused by high altitude.

In geophysics the imaging technique is often referred to as electrical resistivity to-
mography or electrical resistivity imaging. However, mathematically they deal with the
same inverse problem and the theoretical study for both of these problems is the same.
Applications of ERT include fault investigation, ground water table investigation and
determining the content of soil mixture.

There are also many industrial applications e.g. in mining, pulp and paper industries.
EIT can be used to detect air bubbles inside an object or to gain information on mixing
processes.
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Chapter 2

The Dirichlet-to-Neumann map

In this chapter our goal is to give the definition of a Dirichlet-to-Neumann map in EIT
and to prove some basic results regarding the map. We begin by deriving the Dirichlet
problem in EIT. This problem arises from the fundamentals of electromagnetism. Our
approach in sections 2.1, 2.4 and 2.5 is similar to the approach in [1]. In sections 2.2.1
and 2.3 we follow the same structure as in [6].

2.1 Maxwell’s equations

The mathematical model for electromagnetic fields can be obtained from a set of three-
dimensional partial differential equations called Maxwell’s equations.

Definition 2.1. Let E(x, t) be the electric field, J(x, t) the current density, D(x, t) the
electric displacement field, ρ(x, t) the free electric charge density, B(x, t) the magnetic
flux and H(x, t) the magnetic strenght for a point x ∈ R3. The Maxwell’s equations in
differential form are

(2.2) ∇ ·D = ρ (Gauss’s law)

(2.3) ∇ ·B = 0 (Gauss’s law for magnetism)

(2.4) ∇× E = −∂B
∂t

(Faraday’s law of induction)

(2.5) ∇×H = J +
∂D

∂t
(Ampere’s law).
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In addition, Ohm’s law implies that

(2.6) J = σ(x, ω)E,

where σ(x, ω) is the conductivity. In EIT, the current applied on the surface results in
a current density of the form Re(Jeiωt), where ω is the angular frequency of the current.
Now equations (2.4) and (2.5) become

(2.7) ∇× E(x) = −∂B(x)eiωt

∂t
= −iωB(x)

and

(2.8) ∇×H(x) = J(x) + iωD(x).

We assume that the magnetic permeability µ is very small and that the electric and
magnetic response of the object is linear and isotropic. Now

D = ε(x, ω)E and

B = µ(x, ω)H,

where ε(x) is the electric permittivity, µ(x) the magnetic permeability.
Now E and B can be linearized about µ = 0 to obtain

E(x, ω;µ) = E(x, ω; 0) + ∂µE(x, ω; 0)µ+
1

2!
∂2
µE(x, ω; 0)µ2 + . . .

= E0 + µE1 + µ2E2 + . . . and

B(x, ω;µ) = B0 + µB1 + µ2B2 + . . . .

Now using the approximation µ = 0 equation (2.7) becomes

∇× E0(x, ω) = −iωB0(x, ω),

and from the linear constitutive relation, it follows that B0(x, ω) = 0. Now

∇× E0 = 0.

The electric field E0 can be expressed using the gradient of the electric potential u:

E0 = −∇u.

Now from the linear constitutive relations, (2.8) and (2.6) we get the following equation

∇×H = (σ + iωε)E.
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Now we can take the divergence to get

∇ · (∇×H) = ∇ · ((σ + iωε)E).

Since the divergence of a curl is always zero we get

∇ · ((σ + iωε)E) = ∇ · ((σ + iωε)∇u(x)) = 0.

This is the generalized Laplace equation which forms the basis of solving the inverse
conductivity problem. In later studies we consider the 2D case with ω = 0:

∇ · (σ∇u) = 0.

2.2 The Dirichlet problem in EIT

2.2.1 The Dirichlet problem

In EIT we want to solve the inverse conductivity problem i.e. determine the unknown con-
ductivity distribution σ inside the domain Ω by using current and voltage measurements
on the boundary. The direct problem is to determine the voltage-to-durrent-density map
on the boundary with known conductivity distribution inside the object. In order to find
the voltage-to-current-density map we must solve a partial differential equation to find
out the voltage distribution inside the object. This is known as the Dirichlet problem in
EIT. The problem is as follows:

Find such u ∈ Ω, that satisfies

(2.9) ∇ · σ∇u = 0, in Ω, where u|∂Ω = f

Here Ω ⊂ Rn is the reconstruction domain and ∂Ω the boundary of the domain. The
condition u|∂Ω = f is known as the Dirichlet boundary condition.

2.2.2 Weak solutions

In practice the conductivity σ usually has discontinuities. Therefore the term ∇ · σ∇u
cannot be treated using regular derivatives. To overcome this problem we introduce the
concept of a weak solution.

First, we give the definition of a weak solution to a similar Dirichlet-problem. This
will be a useful step in proving that the problem (2.9) has a unique weak solution. We
begin by introducing a theorem that will prove to be useful in the future.
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To distinguish the L2 inner product from the cartesian inner product we will use the
following notation for the L2 inner product from now on:

(2.10) (u, v) =

∫
Ω

uv dx,

for all u, v ∈ L2.

Theorem 2.11. Let σ ∈ L∞(Ω). Now if there is a positive constant M such that

(2.12)
1

M
≤ σ(x) ≤M, for almost all x ∈ Ω,

then the conjugate linear pairing

(u, v)σ 7→ (∇u, σ∇v)

defines an inner product (·, ·)σ on the closed subspace H1
0 (Ω). Additionally, the pairing

defines the norm ‖ · ‖σ, which is determined by its equivalence with the H1-norm.

Proof. Let u ∈ C∞0 . Now by the Poincaré inequality B.5 and the condition 2.12 we get
the following equation

‖u‖2
H1(Ω) = ‖u‖2

L2(Ω) + ‖∇u‖2
L2(Ω) ≤ (C(Ω)2 + 1)M2‖u‖2

σ.

Now also
‖∇u‖2

σ ≤M2‖∇u‖2 ≤ ‖u‖2
H1(Ω).

Therefore the norms are equivalent in C∞0 which proves the theorem.

We use the following as motivation for our definition. Assume that σ is differentiable
and there is a positive constant M such that

1

M
≤ σ(x) ≤M, for almost all x ∈ Ω.

If u ∈ C2
0(Ω) solves the equation

∇ · σ∇u = f,

where f ∈ L2(Ω), then using integration by parts we get

(∇u, σ∇v) = (f, v), for all v ∈ C∞0 (Ω).

Using this as a motivation we get the following definition:
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Definition 2.13. Assume that f ∈ L2(Ω). Now a function u ∈ H1
0 (Ω) is called a weak

solution of the following Dirichlet-problem

(2.14) ∇ · σ∇u = f, u|∂Ω = 0,

if

(2.15) (∇u, σ∇v) = (f, v),

for all v ∈ H1
0 (Ω).

We can prove the existence and uniqueness of the weak solution to the Dirichlet-
problem 2.15:

Theorem 2.16. Assume that f ∈ L2(Ω). The Dirichlet problem

∇ · σ∇u = f, u|∂Ω = 0

has a unique weak solution u ∈ H1
0 (Ω).

Proof. Let λf (v) = (f, v) for v ∈ H1
0 (Ω). This defines a bounded linear functional on

H1
0 (Ω) for any f ∈ L2(Ω). Now by the Riesz representation theorem A.2 there exists a

unique u ∈ H1
0 (Ω) such that

(u, vσ) = λf (v),

for all v ∈ H1
0 . Now using the conjugate linear pairing in (2.11) we get

(∇u, σ∇v) = (u, vσ) = λf (v) = (f, v),

for all v ∈ H1
0 .

2.2.3 Uniqueness and existence of the solution

Now we are ready to prove the solvability and uniqueness of the Dirichlet-problem in EIT
2.9. We can formulate the problem using the trace map introduced in B.8.

First, consider the following Dirichlet-problem: Let f ∈ H1/2(∂Ω). Find a function
u ∈ H1(Ω) such that

(2.17) (u, v)σ = 0, for all v ∈ H1
0 (Ω),

where tr(u) = f .
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Theorem 2.18. Let σ ∈ L∞(Ω) and there is a positive constant M such that

1

M
≤ σ(x) ≤M, for almost all x ∈ Ω.

Now the problem 2.17 has a unique solution u ∈ H1(Ω)

Proof. We begin by proving the uniqueness of the solution. Assume that u solves the
problem 2.17 with f = 0. Now by theorem B.9 we have u ∈ H1

0 (Ω). Since u is now a
solution of the weak problem 2.15 with f = 0 by theorem 2.13 it is unique.

Next we prove the existence. Let F = Ef ∈ H1(Ω) be the extension of f . Now we
define the term ∇ · σ∇F to belong to the dual of H1

0 (Ω) by identifying it with the linear
functional

λ(F ) : θ 7→ −(σ∇θ,∇F ),

where θ ∈ H1
0 (Ω). Now the functional λ depends linearly on F .

Now by the Riesz-representation theorem A.2 there is a unique U ∈ H1
0 (Ω) satisfying

the following equation
(θ, U)σ = λ(F )(θ)

for all θ ∈ H1
0 (Ω). Now the function u = U + F is a weak solution to 2.17.

2.2.4 Example of a solution

The Dirichlet problem can be solved analytically in some simple cases where the conduc-
tivity σ is rotationally symmetric. We will provide an example of such case but first we
will prove a useful theorem regarding the Laplace operator.

Theorem 2.19. Let x = r cos θ and y = r sin θ, where r ≥ 0 and θ ∈ [0, 2π]. Now the
Laplace operator ∆ can be transformed to polar coordinates with the following identity

∆v(x, y) =
1

r

∂v(r, θ)

∂r
+

1

r2

∂2v(r, θ)

∂θ2
+
∂2v(r, θ)

∂r2
,

where v : R2 → R.

Proof. Using the chain rule we get

∂v

∂r
= cos θ

∂v

∂x
+ sin θ

∂v

∂y
∂v

∂θ
= −r sin θ

∂v

∂x
+ r cos θ

∂v

∂y
.
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Differentiating a second time we get

∂2v

∂r2
= cos2 θ

∂2v

∂x2
+ sin2 θ

∂2v

∂y2

∂2v

∂θ2
= r2 sin2 θ

∂2v

∂x2
− r cos θ

∂v

∂x
+ r2 cos2 θ

∂2v

∂y2
− r sin θ

∂v

∂y
.

Now using these results we get the identity

1

r

∂v

∂r
+

1

r2

∂2v

∂θ2
+
∂2v

∂r2
=

1

r
cos θ

∂v

∂x
+ sin θ

∂v

∂y
+ cos2 θ

∂2v

∂x2
+ sin2 θ

∂2v

∂y2

+
1

r2

(
r2 sin2 θ

∂2v

∂x2
− r cos θ

∂v

∂x
+ r2 cos2 θ

∂2v

∂y2
− r sin θ

∂v

∂y

)
= (sin2 θ + cos2 θ)

∂2v

∂x2
+ (sin2 θ + cos2 θ)

∂2v

∂y2

=
∂2v

∂x2
+
∂2v

∂y2
= ∆v.

Now consider the following case with a single cocentric rotationally symmetric anomaly.

Example 2.20. Let Ω ⊂ R2 be the unit disk and ∂Ω its boundary. Now we must solve
the conductivity equation

∇ · σ∇u = 0, in Ω, u|∂Ω = f.

In order to define a cocentric anomaly we use polar coordinates denoted by r, θ. Now let
us consider the following conductivity distribution

σC,ρ(r, θ) :=

{
1 + C , 0 ≤ r < ρ
1 , ρ ≤ r ≤ 1,

where C > 0 and ρ ∈ (0, 1). We choose the voltage on the boundary to be fn(θ) := einθ

for some n ∈ Z. There are apparent reasons for choosing this voltage distribution.
For solving the problem we use a technique called separation of variables. In order to

use it, we assume that the solution can be separated into its radial and angular components
i.e. u(r, θ) = R(r)Θ(θ). Now the boundary condition can be written as follows

R(1)Θ(θ) = fn(θ) = einθ.

Therefore
R(1) = 1 and Θ(θ) := einθ.

12



Now let R := R1 for r < ρ and R := R2 for r > ρ. Since σC,ρ is now constant in both
cases, we get

(2.21) σC,ρ∆u = 0, for 0 < r < ρ or ρ < r < 1.

The Laplace operator ∆ in polar coordinates is determined as

∆u =
1

r
ur + urr +

1

r2
uθθ =

1

r
R′Θ +R′′Θ +

1

r2
RΘ′′.

Now we can differentiate Θ(θ) = einθ twice to get Θ′′(θ) = −n2einθ = −n2Θ(θ). Therefore

∆u =
1

r
R′Θ +R′′Θ +

1

r2
R · (−n2Θ) =

(1

r
R′ +R′′ +

−n2

r2
R
)

Θ.

Now since Θ 6= 0 the equation (2.21) becomes the following:

σC,ρ(r
2R′′ + rR′ − n2R) = 0.

Since σC,ρ > 0 we get the following ordinary differential equations:

r2R′′1 + rR′1 − n2R1 = 0, 0 < r < ρ

r2R′′2 + rR′2 − n2R2 = 0, ρ < r < 1.

These are Euler equations which have the following solutions:

R1(r) = C1r
|n| + C2r

−|n|, 0 < r < ρ

R2(r) = C3r
|n| + C4r

−|n|, ρ < r < 1,

where n 6= 0 and C1, C2, C3 and C4 are constants.
The next step is to determine the constants Ci by using boundary conditions. Since we

do not have a boundary condition at r = 0, we can impose a condition that u is bounded
near r = 0, i.e. |R1(0)| <∞. Therefore

C2 = 0.

Since R2(1) = 1, we know that

1 = R2(1) = C3 · 1|n| + C4 · 1−|n| = C3 + C4.

For our solution we also need to have u and σC,ρ
∂
∂r
u continuous at r = ρ. This implies

that

R2(ρ) = R1(ρ) and

R′2(ρ) = (1 + C)R′1(ρ).(2.22)
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This implies that

C3ρ
|n| + C4ρ

−|n| = C1ρ
|n|

⇔ C3 − C1 + C4ρ
−2|n| = 0.

Also from (2.22) we get

|n|C3ρ
|n| + C4ρ

−|n| = C1ρ
|n|

⇔ (1 + C)C1 − C3 + C4ρ
−2|n| = 0.

Now we have the following linear system of three equations with three unknowns:

C3 + C4 = 1,

C3 − C1 + C4ρ
−2|n| = 0 and

(1 + C)C1 − C3 + C4ρ
−2|n| = 0.

By solving the system we acquire the constants

C1 =
2

kn
, C2 =

2 + C

kn
, C3 =

−Cρ2|n|

kn

Now since u = RΘ, the solution to the Dirichlet problem is

un(r, θ) =


2r|n|

2 + C(1− ρ2|n|)
einθ, 0 < r < ρ

(2 + C)r|n| − Cρ2|n|r−|n|

2 + C(1− ρ2|n|)
einθ, ρ < r < 1,

where n ∈ Z.

2.3 The Dirichlet-to-Neumann map

In this section our goal is to define a map which takes the given voltage distribution to the
current-density distribution on the boundary. This map is called Dirichlet-to-Neumann
map or the voltage-to-current-density map. Our approach is similar to the approach in
[6] and many of the proofs and additional information can be found there.

Let Ω ⊂ R2. Now the voltage distribution on the boundary f corresponds to the
Dirichlet boundary condition

u|∂Ω = f |∂Ω

14



and the current density distribution J on the boundary is

J |∂Ω = σ
∂u

∂ν

∣∣∣
∂Ω
,

where ν is the outward pointing unit vector.
To give the definition of a Dirichlet-to-Neumann map we need to define a normal

derivative for a function u which is a solution to the problem 2.17.
First, assume that everything is smooth. Now by Green’s theorem we get the following

equation ∫
∂Ω

σ
∂u

∂ν
hdS =

∫
Ω

(∇ · σ∇u)v + 〈∇u,∇v〉dx,

where v|∂Ω = h. Now when ∇ · σ∇u = 0 in Ω we get∫
∂Ω

σ
∂u

∂ν
hdS =

∫
Ω

σ〈∇u,∇v〉dx.

Now using the Trace-theorem we get the following estimate∣∣∣∣∫
Ω

σ(∇u,∇v)dx

∣∣∣∣ ≤ C‖u‖H1(Ω)‖v‖H1(Ω) ≤ C1‖f‖H1/2(∂Ω)‖h‖H1/2(∂Ω).

Therefore the bilinear form

(f, h) 7→
∫
∂Ω

σ
∂u

∂ν
hdS

where u is a solution of the problem 2.17 defines a bounded linear functional on H1/2(∂Ω).
We call this element the normal derivative of u.

Now we are ready to give the definition of the Dirichlet-to-Neumann map.

Definition 2.23. Let u ∈ H1 be the unique solution to the Dirichlet problem (2.17).
Now the map

(2.24) Λσ : H1/2(∂Ω)→ H−1/2(∂Ω), Λσ : u|∂Ω −→ σ
∂u

∂ν

∣∣∣
∂Ω
,

where Λσ is a bounded linear map, is the voltage-to-current-density or Dirichlet-to-
Neumann map determined by the conductivity σ.

The DN map also has the following weak definition which we will use in the future.

Definition 2.25. Let u ∈ H1(Ω) be the unique solution to the problem 2.17. Now the
Dirichlet-to-Neumann map has the weak definition

Λσ : H1/2(∂Ω)→ H−1/2(∂Ω), (Λσf, h)∂Ω =

∫
Ω

σ〈∇u,∇v〉

where v ∈ H1(Ω) is any function with trace h on the boundary.
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2.4 The Neumann-to-Dirichlet map

In EIT we can either apply voltages on the boundary and measure current densities or
apply a current and measure the voltage on the boundary. With this in mind we can
define a map which takes current density on the boundary to voltage on the boundary.
This map is called the Neumann-to-Dirichlet map.

In order to do this we must define the Neumann problem. The problem is as follows:
Find such u ∈ Ω, that satisfies

∇ · σ∇u = 0, in Ω, where σ
∂u

∂ν

∣∣∣∣
∂Ω

= g

and
∫
∂Ω
g dS = 0.

Definition 2.26. Let u ∈ H1 be the unique solution to the Neumann problem. The map

Rσg = u|∂Ω

is called the Neumann-to-Dirichlet map.

Next, we introduce two theorems regarding the boundedness and other properties of
the map. The proofs of these theorems follow from the standard theory of elliptic partial
differential equations. A thorough study can be found in [4]. However, since the Neumann

data implies the condition
∫
∂Ω
g dS = 0 we must first introduce a new function space H̃s.

Definition 2.27. Let f ∈ Hs(∂Ω). Now f ∈ H̃s if it satisfies the following conditions:

(i)
1

|∂Ω|

∫
∂Ω

f dS = 0 and

(ii) (f, c) = 0 for all constant functions c,

i.e. H̃s consists of Hs functions that are orthogonal to all constant functions and have
mean value zero.

Theorem 2.28. The Neumann-to-Dirichlet map

Rσ : H̃−1/2(∂Ω)→ H1/2(∂Ω)

is bounded.

Theorem 2.29. The Neumann-to-Dirichlet map Rσ is self-adjoint, smoothing and com-
pact.
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Now we can see two key equalities concerning Λσ and Rσ. First, define a projection
operator

PΛσ := |∂Ω|−1

∫
∂Ω

φ dS.

Now for any f ∈ H1/2(∂Ω) we have

PΛσf = |∂Ω|−1

∫
∂Ω

σ
∂u

∂v
dS = |∂Ω|−1

∫
Ω

∇ · σ∇u dz = 0,

and therefore Λσ : H1/2(∂Ω) → H̃−1/2(∂Ω). Now from the definitions of Λσ and Rσ we
get the following equalities:

(2.30)
ΛσRσ = I : H̃−1/2(∂Ω)→ H̃−1/2(∂Ω)

RσΛσ = I − P : H1/2(∂Ω)→ H̃1/2(∂Ω)

2.5 Eigenfunctions and eigenvalues of the DN map

In this study we only consider the domain to be the unit circe i.e. Ω = {x ∈ R2 | |x| ≤ 1}.
When the conductivity σ(x) is rotationally symmetric we know the eigenfunctions and
eigenvalues of the DN map. We begin by looking at our previous example 2.20 and
deriving the eigenfunctions and eigenvalues of the DN map in this case.

Example 2.31. Let us consider the same conductivity distribution as in example 2.20.
We have shown that the solution to the dirichlet problem is

un(r, θ) =


2r|n|

2 + C(1− ρ2|n|)
einθ, 0 < r < ρ

(2 + C)r|n| − Cρ2|n|r−|n|

2 + C(1− ρ2|n|)
einθ, ρ < r < 1,

Now the Dirichlet-to-Neumann map is

ΛσC,ρfn =
∂

∂r
un|r=1 =

∂

∂r

(
(2 + C)r|n| − Cρ2|n|r−|n|

2 + C(1− ρ2|n|)
einθ

)∣∣∣∣∣
r=1

=

(
(2 + C)|n|r|n|−1 + Cρ2|n||n|r−|n|−1

2 + C(1− ρ2|n|)
einθ

)∣∣∣∣∣
r=1

=
2 + C(1 + ρ2|n|)

2 + C(1− ρ2|n|)
|n|fn
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Now we can see that functions einθ, where n ∈ Z are the eigenfunctions of ΛσC,ρ and the
corresponding eigenvalues are

λn =
2 + C(1 + ρ2|n|)

2 + C(1− ρ2|n|)
|n|,

where n ∈ Z.

Now we have shown that we can determine the eigenfunctions and eigenvalues of the
DN map with a piecewise constant conductivity distribution with a single rotationally
symmetric anomaly. We can also determine the eigenfunctions and eigenvalues for any
piecewise constant and rotationally symmetric conductivity distribution by the following
theorems.

Theorem 2.32. Let Ω = {x ∈ R2 | |x| ≤ 1}. Consider the rotationally symmetric case
σ(x) = σ(|x|). Then the eigenfunctions φn of the DN map are Fourier basis functions

(2.33) φn = (2π)−
1
2 einθ.

Proof. The proof is similar to the example 2.31. A more detailed approach can be found
in [9].

Theorem 2.34. Let Ω = {x ∈ R2 | |x| ≤ 1} and 0 = r0 < r1 < · · · < rN−1 < rN = 1,
where N ≥ 2. For j = 1, . . . , N , let σj be positive real numbers such that σj 6= σj+1 and
σN = 1. Define σ(r) = σj for rj−1 < r < rj, j = 1, . . . , N . The eigenvalues of Λσ are

(2.35) λn = |n| − 2|n|(1 + CN−1)−1,

where the numbers Cj are given recursively by C1 = ρ1r
−2|n|
1 and

Cj =
ρjCj−1 + r

−2|n|
j

ρj + Cj−1r
2|n|
j

for j = 2, . . . , N − 1, where

ρj =
σj+1 + σj
σj+1 − σj

.

Proof. Since λ0 = 0, we only take the values n 6= 0. We will construct an H1 function un
which solves the equation ∇ · σ∇un = 0 in Ω, with the boundary condition un|r=1 = φn.
Denote

un = vn(r)einθ and vn(r) = ajr
|n| + bjr

−|n|,
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for rj−1 ≤ r < rj where j = 1, . . . , N . Now we set b1 = 0 so that un is harmonic in the
innermost disc.

Next, we match the limits on each radius by setting

vn(r−j ) = vn(r+
j ) and

σj∂vn(r−j )

∂r
=
σj+1∂vn(r+

j )

∂r
.

This results in the equation

aj =

(
σj + σj−1

σj − σj−1

)
Cj−2 + r

−2|n|
j−1(

σj + σj−1

σj − σj−1

)
+ Cj−2r

2|n|
j−1

bj = Cj−1bj

for j = 2, . . . , N .
Now from the boundary condition un|r=1 = φn we get

(2π)−
1
2 einθ = un|r=1 = (aN · 1|n| + bN · 1−|n|)einθ.

Therefore aN + bN = (2π)−
1
2 .

It can be checked using Green’s theorem that our function un is in H1 and satisfies
∇ · σ∇un = 0 in the weak sense. Now the current density on the boundary becomes

∂un
∂r
|r=1 =

∂

∂r
(aNr

|n| + bNr
−|n|)φn|r=1

= (aN |n|r|n|−1 − |n|bNr−|n|−1)φn|r=1

= |n|(aN − bN)φn.

Therefore λn = |n|(1− bN) and bN =
1

1 + CN−1

. This proves the theorem.

The theorem above only provides us with the eigenvalues for conductivity distribu-
tions with at least one anomaly. However, we also need the eigenvalues for the constant
conductivity σ ≡ 1. We use the notation Λ1 for the DN map with this conductivity.

Theorem 2.36. Let Λ1 be the DN map with the conductivity distribution σ ≡ 1 and
φn = (2π)−

1
2 einθ. Now

Λ1φn = |n|φn, for all n ∈ Z,

i.e. the n:th eigenvalue of the operator Λ1 is |n|.
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Proof. We can clearly see that Λ1φ0 = 0. Therefore φ0 is the eigenfunction with the
corresponding eigenvalue 0. Next we consider the case n ∈ Z\{0}. Now

∆zn =
∂2zn

∂x2
+
∂2zn

∂y2
= n

∂zn−1

∂x
+ in

∂zn−1

∂y
= n(n− 1)zn−2(1− 1) = 0.

Next, we move to polar coordinates by setting zn = r|n|einθ. Now zn|∂Ω = einθ =
√

2πφn.
Let r̂ and θ̂ be the basis vectors for the polar coordinates. Now the outward-pointing
normal on the boundary is ν = r̂. Finally, by differentiating we get

Λ1φn =
∂φn
∂ν

=

(
r̂
∂φn
∂r

+ θ̂
1

r

∂φn
∂θ

)
· ν

=
1√
2π

(
r̂
∂r|n|einθ

∂r
+ θ̂

1

r

∂r|n|einθ

∂θ

)
· r̂
∣∣∣∣
r=1

=
1√
2π

∂r|n|einθ

∂r

∣∣∣∣
r=1

=
1√
2π
|n|r|n|−1einθ

∣∣∣∣
r=1

=
1√
2π
|n|einθ

= |n|φn.

Note that the eigenvalues in the case of one or more anomalies are of the form λn =
|n| + ε, where ε is exponentially small as shown in [12]. Therefore, it is very difficult
to accurately compute the eigenvalues with large values of n. However, we can compute
the difference Λσ − Λ1. Now since the n:th eigenvalue of Λ1 is |n|, the n:th eigenvalue
of Λσ − Λ1 is precisely 2|n|(1 + CN−1)−1. Now we can use the difference to compute DN
maps with very high accuracy when testing EIT algorithms with low noise level.
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Chapter 3

The Dirichlet-to-Neumann matrix

In this chapter we introduce the Dirichlet-to-Neumann matrix (DN matrix) which is
an approximation of the DN map. The matrix can be computed using the methods
explained in section 3.1. We will restrict ourselves to Ω ⊂ R2 being the unit disk since
our computations are done using this set.

Our goal in this study is to analyze the DN matrix using Principal component analysis
explained in 3.2. More information on the Finite element method can be found in [3] and
[1]. An introduction and additional information on Principal component analysis can be
found in [10].

3.1 Computing the DN matrix

3.1.1 Matrix approximation of a bounded linear operator

Let A be a bounded linear operator A : Hs(∂Ω) → Hr(∂Ω). We can construct a matrix
approximation to A using Fourier series. Denote f ∈ Hs(∂Ω) and g = Af ∈ Hr(∂Ω). If
the Fourier series of f and g have correct convergence properties, then

g(θ) = Af(θ) = A
∞∑

n=−∞

f̂(n)φn(θ) =
∞∑

n=−∞

f̂(n)Aφn(θ)

where φn = (2π)−
1
2 einθ are the Fourier basis functions. Now we can determine the function

g by computing its Fourier coefficents

ĝ(m) := 〈φm, g〉 = 〈φm,
∞∑

n=−∞

f̂(n)Aφn(z)〉 =
∞∑

n=−∞

f̂(n)〈φm,Aφn(z)〉.
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We can now approximate the functions f and g using the truncated sums

f(θ) ≈
N∑

n=−N

f̂(n)φn(θ) and g(θ) ≈
N∑

n=−N

ĝ(n)φn(θ),

where N > 0. Finally, we can construct a matrix approximation A : C2N+1 → C2N+1 of
the operator A by defining the elements as follows:

A(m,n) := 〈Aφn, φm〉 =
1

2π

∫ 2π

0

(Aeinθ)e−imθdθ,

where we use the indexing m ∈ {−N, . . . , N} for the rows and n ∈ {−N, . . . , N} for the
columns.

3.1.2 Computing the DN matrix using FEM

In our study we choose the unit disk Ω ⊂ R2 as our domain. We will be using this domain
from now on. We wish to construct a matrix approximation Lσ to our bounded linear
operator

Λσ : H1/2(∂Ω)→ H−1/2(∂Ω).

We do this by using the method described in the previous section. Choose some N > 0
and choose the truncated basis from 2.33 with −N ≤ n ≤ N . Now we approximate the
DN map by the (2N + 1)× (2N + 1) matrix Lσ = [(Lσ)m,n] defined by

(3.1) (Lσ)m,n := (Λσφn, φm) =
1√
2π

∫ 2π

0

(Λσφn)e−imθ dθ.

Above we use the indexing m ∈ [−N, . . . , N ] for the rows and n ∈ [−N, . . . , N ] for the
columns.

The matrix Lσ can be computed numerically using the Finite Element Method (FEM).
The finite element method is used to compute an approximation of the solution to the
Dirichlet problem. To use the method we must use the weak formulation of the Dirichlet
problem. Consider the Dirichlet problem in 2.9. The weak formulation of the problem is
as follows:

Find such u ∈ H1(Ω) that

(3.2) (∇u, σ∇v) = 0, u|∂Ω = f,

for all v ∈ H1
0 (Ω). Again, we use the same notation for the L2 inner product as described

in 2.10.
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The idea is to discretise the domain Ω into finite elements and define basis functions
vi which vanish on most of these elements. The finite elements used in our 2-dimensional
case are triangles. These elements form a mesh that covers the domain Ω. An example
of a very fine mesh can be found in figure 4.2.

The solution u is then approximated in a finite-dimensional function space using the
basis functions vi. These basis functions are usually not defined directly. Instead a
function type, the so called ansatz function, (e.g. linear or quadratic polynomial) is
selected which the approximation of u should adopt on each of these elements. A common
choice is a linear ansatz function, which means that the approximation will be a linear
function on each element and continuous over Ω but not continuously differentiable. This
is the reason behind the weak formulation of the problem.

Each of the elements possess a set of distinguishing nodes and vertices. In our case
the nodes are located at the center and at the corners of each tringle and are the degrees
of freedom of the ansatz function.

This results in a finite system which is solved to give the approximation of u in the
finite-dimensional function space defined by the basis functions vi. The accuracy of the
approximation is dependent on the mesh used. Therefore, a finer mesh results in a better
approximation.

In our case we use MATLAB’s PDE Toolbox for the FEM implementation. When
computing an approximation for the DN map we need to differentiate the approximate
solution to evaluate

Λσφn =
σ(∂un)

∂ν
|∂Ω

and then use a quadrature rule to give an approximation to the integral in 3.1 for all
−N ≤ m ≤ N , which yields the n:th column of our matrix Lσ. These computations will
be made for all −N ≤ n ≤ N to build each column of the matrix.

3.1.3 Computing the ND matrix

Now we can approximate the DN map numerically by computing a matrix approximation
of the map. Computing the matrix requires solving the Dirichlet problem which is done
using finite element method. However, when computing the DN matrix we come up with
the task of numerical differentiation which is unstable. For this reason we first compute
the matrix approximation for the Neumann-to-Dirichlet map and compute its inverse.

Consider the space H̃−1/2 as defined in 2.27 and the Neumann-to-Dirichlet map

Rσ : H̃−1/2(∂Ω)→ H1/2(∂Ω).

Our goal is to compute its matrix approximation Rσ.
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First, consider the Neumann problem

(3.3) ∇ · σ∇un = 0 in Ω, with σ
∂un
∂ν

∣∣∣∣
∂Ω

= φn,

where the solution un is determined up to an additive constant. To make the solution
unique we require the following condition∫

∂Ω

un dS = 0.

Since
∫
∂Ω
σ ∂un
∂ν

dS = 0, the problem (3.3) is well-defined only when n 6= 0. Therefore, we
define Rσ as a 2N × 2N matrix with the basis φ−N , . . . , φ−1, φ1, . . . φN where we don’t
include the constant function φ0 = (2π)−

1
2 .

When constructing the approximation our first step is to solve the Neumann problem
(3.3) for

n = −N, . . . ,−1, 1, . . . N

using the finite element method. We specify the Neumann data at the centers of the edge
segments. When evaluating the trace un|∂Ω we simply choose the values of the solution
un at the boundary nodes.

Now we set Rσ = [(Rσ)m,n] = ûn(m) with

ûn(m) = 〈un|∂Ω, φm〉 =
1√
2π

∫ 2π

0

un|∂Ω(θ)e−inθ dθ,

where m is the row index and n the column index. The integration is implemented with
with a quadrature using the lengths of the boundary segments as weights.

3.1.4 Computing the DN matrix from the ND matrix

We can use the ND matrix to compute the DN matrix quite easily. We do this by using
the inverse R−1σ . Since the potential un ∈ H1(Ω) is the same in both the Dirichlet and
Neumann problems the DN and ND maps are each others inverses as seen in 2.30.

First, let
L′σ := R−1σ .

Now L′σ is a 2N×2N matrix. However, the DN matrix is a (2N+1)×(2N+1) since it uses
the truncated basis with n = −N, . . . , N and possesses appropriate mapping properties
for constant basis functions at the boundary.

It can be easily seen that u ≡ 1 is the unique solution of the Dirichlet problem
∇ · σ∇u = 0 in Ω with u|∂Ω = 1. Therefore, the DN operator satisfies

(3.4) Λσ1 = 0.
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This in fact holds for all constant functions C, since the unique solution to the conductivity
equation with u|∂Ω = C is u = C. Also, since the net current through the boundary must
be zero we get

(3.5)

∫
∂Ω

Λσf dS = 0 for all f ∈ H1/2(∂Ω).

This states that functions of the form Λσf have zero as the constant component.
Using the conditions 3.4 and 3.5 we get our matrix approximation Lσ by adding

a zero row and a zero column in the middle of our matrix L′σ. This also results in
(2N + 1)× (2N + 1) matrix which was our goal. More precisely, we divide the matrix into
4 N ×N blocks named as follows:

L′σ =

[
L′σ{1, 1} L′σ{1, 2}
L′σ{2, 1} L′σ{2, 2}

]
and construct the matrix Lσ by adding a zero row and column in the middle as follows:

Lσ =


L′σ{1, 1} 0

N×1
L′σ{1, 2}

0
1×N

0
1×1

0
1×N

L′σ{2, 1} 0
N×1

L′σ{2, 2}


.

The effect of the zero column is that multiplying the vector representing the coefficents
of the constant function u = 1 expressed in the Fourier basis[

0
1
· · · 0

N
1

N+1
0

N+2
· · · 0

2N+1

]T
by the matrix Lσ on the left gives the zero vector. This is the discrete counterpart of 3.4.
The effect of the zero row is that for any vector f ∈ R2N+1 the vector Lσf has the form[

•
1
· · · •

N
0

N+1
•

N+2
· · · •

2N+1

]T
This leads to the coefficent of φ0 being 0 and it is the discrete counterpart of 3.5.

3.2 Principal component analysis

The next step in this study is to analyze the DN matrices that correspond to different
conductivity distributions. The main problem in this analysis is to find out the useful
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information from this high-dimensional data. In order to do this, a dimensionality re-
duction method is needed. In this study a method called principal component analysis is
used for the task.

Principal component analysis is a statistical method used for finding out the compo-
nents from the n-dimensional data X which have the most variance. These components
are called the principal components of X. The principal components are linearly uncor-
related and each have a corresponding principal value.

The first step in PCA is to form the datamatrix X where each row of the matrix
contains a repetition of the experiment. In our case each row contains the DN matrix in
row form. Each column of the matrix therefore contains the values of one element of the
DN matrix. Since the DN matrices are n×n -matrices the datamatrix is an m×n2 -matrix,
where m is the number of matrices computed with different conductivity distributions.

The next step is to subtract the mean of the data. This means computing the mean
value for each of the dimensions and subtracting each element of the column by the
corresponding mean value.

After subtracting the mean from the data we can compute the covariance matrix. Co-
variance between two vectors x, y ∈ Rn, where x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn)
is

cov(x, y) =

∑n
i=1(xi − x)(yi − y)

n− 1
,

where x and y are the mean values of the corresponding vectors. The covariance be-
tween n-dimensional data can be represented as a covariance matrix C ∈ Rn×n which is
constructed as follows

Ci,j = cov(Xi, Xj),

where Xk is the k:th column of the data matrix X representing the k:th dimension. Now
since the column means have been subtracted from the data matrix X we can estimate
the covariance matrix as the sample correlation matrix

Q =
1

n
XTX.

The principal components are now the eigenvectors of the covariance matrix C and the
principal values are the corresponding eigenvalues.

Computing the covariance matrix and its eigenvectors is computationally challenging.
However, we can use a more efficient method for finding out the principal components.
This method is known as singular value decomposition.
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3.2.1 PCA using singular value decomposition

The singular value decomposition of an n×m -matrix X is

X = USV T .

Here U is an n×n -matrix where the columns consist of orthogonal unit vectors of length
n, called the left singular vectors of X, the n × n -matrix S is a diagonal matrix which
consists of positive diagonal elements called the singular values of X and the matrix
V ∈ Rm×m contains orthogonal unit vectors of length m called the right singular vectors
of X.

Now we can write the covariance matrix C = XTX using the singular value decom-
postion as follows

XTX = (USV T )TUSV T = V SUTUSV T = V S2V T .

Since the matrix V consists of orthogonal unit vectors and the matrix S is a diagonal
matrix we can compare this with the eigenvalue decomposition of XTX and notice that
the right singular vectors of X are the eigenvectors of XTX and the singular values of
X are the square roots of the eigenvalues of XTX. Therefore, the principal components
are exactly the right singular vectors of X and the principal values are the squares of the
singular values of X.

3.2.2 Dimensionality reduction

Since the principal components of the data matrix X are orthogonal and the first com-
ponents represent the directions with the most variance we can approximate the data
by using only the first principal components. Using only the first components we can
represent the data using fewer dimensions which are selected to maximize the variance
and minize the error in the reconstruction.

We can reduce the dimension by computing the score matrix T = US by including
only the first singular values, i.e. the truncated score matrix Tn is defined as follows

Tn = USn,

where {
(Sn)i,j = Si,j, when 1 ≤ i, j ≤ k
(Sn)i,j = 0, when k ≤ i, j ≤ n.

The reconstruction
Xn = TnV

T
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contains the linear combinations of the first n principal components i.e. each row xi of
the data matrix X is approximated with the linear combination

xi = ti,1p1 + ti,2p2 + · · ·+ ti,npn,

where ti,k is the element of the score matrix corresponding to the i:th measurement and
the k:th principal component vector pk.

Since the elements of the score matrix form the coefficents of the linear combinations
which form the data matrix, we can study these coefficents to see the effect of each
principal component on the data.
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Chapter 4

Computations and results

One of the goals in this study was to understand the behaviour of the DN matrix cor-
responding to different conductivity distributions. The computations were simplified by
studying the case of piecewise-constant conductivities in the unit circle. Our goal is to
compute the principal components and values of the data and analyze the behavior of the
DN matrix using these values.

The DN matrices were computed by first computing the ND matrix and using the
inversion technique in section 3.1.4. Computing the matrix included solving the Neu-
mann problem using FEM. This was done using MATLAB’s PDE toolbox. The resulting
matrices form the data matrix used in PCA with each row consisting of a DN matrix.

4.1 The conductivity distributions and FEM

Consider the unit circle as our set Ω with the boundary ∂Ω. The conductivity distributions
used were piecewise-constant conductivities with four different anomalies in the unit circle.
The background conductivity outside the anomalies is σ ≡ 1. The four anomalies consisted
of four tiles as seen in picture 4.1.

Let σn, where n = 1, 2, 3, 4, be the conductivity for each anomaly. The conductivities
used were chosen in the interval [0.4, 1.6] with a step of 0.2. Overall, this resulted in 7
different conductivities for each tile and 47 = 2401 different conductivity distributions.
The number of trigonometric basis functions used was N = 5. This resulted in 2N + 1×
2N + 1 = 11× 11 DN matrices. Therefore the resulting datamatrix is of size 2401× (11 ·
11) = 2401× 121.

In addition, the DN matrix for the constant conductivity σ1, where σ ≡ 1, was com-
puted. Due to the reasons mentioned in 2.5 the matrices included in the data were of the

29



form
Λσk − Λσ1 ,

where k = 1, . . . , 2401 represents the conductivity distribution used. Computing the
data matrix took approximately 8 hours on a regular desktop computer with a quad-core
processor.

Figure 4.1: An example of a conductivity distribution used

The Neumann problem was solved using FEM as described in 3.1.2. The mesh was
created using a premade Matlab routine and consisted of 65536 triangles and 33025 ver-
tices. An image of the mesh used can be found in figure 4.2. In the image the vertices
are shown in blue on a white background.
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Figure 4.2: The mesh used in solving the Neumann problem with FEM

4.2 Principal components

The principal components of the DN matrix data were computed using SVD as described
in 3.2. The singular value decomposition was done using Matlab’s SVD routine. This
resulted in three matrices: matrix U where the columns consist left singular vectors, a
diagonal matrix with the singular values S and the matrix V containing the right singular
vectors.

Now we get the principal components as the right singular vectors of the data matrix.
Images of the first three principal components are shown in figures 4.3, 4.4 and 4.5. The
matrices are shown as images rather than in the traditional form, since it is easier to
visualize them this way.
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Figure 4.3: The first principal component

Figure 4.4: The second principal component
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Figure 4.5: The third principal component

4.3 Principal values

All principal values were computed using the same approach. The singular values are
obtained from the matrix S, which contains the values as its diagonal elements. Since the
singular values are the square roots of the eigenvalues of the covariance matrix C = XTX,
we get the principal values as the squares of the singular values. The first 45 principal
values can be found in table 4.3.

A logarithmic plot of first 40 principal values can be found in figure 4.6 and a loga-
rithmic plot of all principal values can be found in figure 4.7.
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Value no. Value Value no. Value Value no. Value

1 134,4785177 16 2, 46935 · 10−5 31 1, 04549 · 10−25

2 92,18508562 17 7, 16807 · 10−6 32 7, 30099 · 10−26

3 0,719661564 18 4, 88032 · 10−6 33 6, 5278 · 10−26

4 0,351255821 19 4, 40929 · 10−6 34 4, 39491 · 10−26

5 0,319265082 20 2, 43369 · 10−6 35 3, 9422 · 10−26

6 0,166123473 21 1, 03723 · 10−6 36 2, 88653 · 10−26

7 0,114837613 22 9, 30906 · 10−7 37 2, 51233 · 10−26

8 0,056799296 23 7, 35296 · 10−7 38 2, 45074 · 10−26

9 0,001245244 24 3, 9394 · 10−7 39 1, 91354 · 10−26

10 0,001187612 25 2, 80313 · 10−7 40 1, 57748 · 10−26

11 0,000333355 26 2, 5065 · 10−7 41 1, 44218 · 10−26

12 0,000215312 27 1, 10792 · 10−7 42 1, 25395 · 10−26

13 9, 29489 · 10−5 28 3, 8673 · 10−8 43 1, 17798 · 10−26

14 7, 53199 · 10−5 29 1, 7231 · 10−8 44 1, 06536 · 10−26

15 3, 68571 · 10−5 30 2, 61937 · 10−9 45 9, 7068 · 10−27

Table 4.1: The first 45 principal values

Figure 4.6: The first 40 principal values plotted on a logarithmic scale
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Figure 4.7: All principal values plotted on a logarithmic scale

4.4 Dimensionality reduction

The data was approximated using truncated score matrices described in 3.2. Approxima-
tions were made with 1, 2, 3, 10, 30, 40 and all 121 singular values. The relative error for
each n ∈ {1, 2, 3, 10, 30, 40, 121} was computed as

En =
‖Rn −X‖p
‖X‖p

,

where Rn is the approximated data matrix using n singular values, as described in 3.2.2,
and X is the data matrix.

The approximation made using all singular values was computed to form a baseline
to see the computational error caused by the SVD routine. The relative errors for each
approximation computed with the l1, l2 and l∞ norms can be found in table 4.4.
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No. of singular values l1 − norm l2 − norm l∞ − norm
1 0,905472113 0,827949551 0,591416237

2 0,093697578 0,073153936 0,095372668

3 0,092923199 0,051107579 0,057693884

10 0,003933957 0,001574443 0,000925099

30 4, 18211 · 10−13 2, 78831 · 10−14 2, 62817 · 10−14

40 5, 53495 · 10−14 1, 03634 · 10−14 9, 10323 · 10−15

121 2, 94284 · 10−14 2, 74029 · 10−15 2, 41259 · 10−15

Table 4.2: The relative errors in different approximations
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Chapter 5

Discussion

5.1 Principal values

One of the goals in this study was to find if the four variables in the conductivity distri-
butions have some effect to the dimension of the hyperplane that the DN matrices form.
Since our data is 121 dimensional it is impossible to visualize it using all of the data.
Therefore PCA was used to reduce the dimension.

The principal values can be studied to determine which principal components have the
biggest effect on the data. It can be clearly seen from the data in table 4.3 that the first
two principal values are significantly greater than the rest. The third principal component
is already two orders of magnitude smaller than the second one. Therefore the most of
the variation in the DN matrices happens in the direction of these two components.

After the first two principal components we see a steady decrease in the values until
the 30:th value. After the first 30 principal values there is another significant decrease.
The 31:st principal value is 16 orders of magnitude smaller than the 30:th value. This can
be seen clearly seen on the logarithmic plots 4.6 and 4.7.

5.2 Dimensionality reduction

The effect that each principal component has on the data can also be seen when computing
an approximation of the data matrix using the truncated sums described in 3.2. We can
clearly see from the relative errors shown in 4.4 that the error is already relatively small
when using two components in the approximation. This corresponds to the fact that the
first two principal values are much larger than the rest of the values.

We can also see that the error is almost insignificant when the approximation uses
30 singular values. The error in this case is very close to the error on the baseline
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approximation using all 121 singular values. Therefore, the last 91 principal components
have almost no effect on the data. Again, the result is in line with the significant decrease
in the principal values.

These facts suggest that even with 4 degrees of freedom in the conductivity distribution
the DN matrices vary primarily in a 2-dimensional subspace with the first two principal
components as the directions of the most variation. We can also see that only 30 out of
the 121 principal components have a notable effect on the data.

In this study we only computed the DN matrices for the special case of 4 anomalies
in the unit circle. This case was already computationally quite demanding. With more
time and more computational power the matrices could be computed for with different
conductivity distributions to see if the principal components and values differ from these
results.
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Appendix A

Functional analysis

In this chapter we present some of the basic concepts of functional analysis needed in
our study. Our goal is to define the function spaces used and give some basic results of
functional analysis and especially Fourier-analysis.

A.1 Some fundamental definitions and theorems in

functional analysis

Our goal in this section is to introduce some basic definitions and theorems of functional
analysis. We begin by giving the definition of dual space which will be used to define
Sobolev spaces used in our study. We also introduce important theorems such as the Riesz
representation theorem and Green’s formula. More information on functional analysis can
be found in [13], [6] and [14].

Definition A.1. Let H be a Hilbert space over a field F . The dual space H∗ is the set
of all linear maps

φ : H → F.

Theorem A.2. Let X be a Hilbert space. Then for each bounded linear function F : X →
C there exists a unique element f ∈ X such that

F (φ) = 〈φ, f〉,

for all φ ∈ X.

Next, we introduce three very useful theorems known as the Divergence theorem,
Green’s first identity and Green’s formula. We begin with the Divergence theorem.
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Theorem A.3. Let Ω ∈ Rn, where n ≥ 2, be a bounded domain with boundary ∂Ω and
ν(x) = (ν1(x), . . . , νn(x)) the outward-pointing unit normal at the boundary. Now∫

Ω

∇ · h(x) dx =

∫
∂Ω

〈ν(x), h(x)〉 dS(x),

where 〈·, ·〉 denotes the Euclidian inner product and dS(x) is the surface measure on ∂Ω.

Now assume that f, g ∈ C2(Ω) ∩ C1(Ω), where Ω is the closure of Ω. Let h = (∇f)g.
Now using the product rule of differentiation we get

∇ · h = (∆f)g + 〈∇f,∇g〉,

where ∆ = ∇ · ∇ is the Laplace operator. We also have

〈ν(x), (∇f)g〉 = 〈ν(x),∇f〉g =
∂f

∂ν
g,

where
∂f

∂ν
is the normal derivative of f . Using these results we get Green’s first identity.

Theorem A.4. Let Ω ∈ Rn, where n ≥ 2, be a bounded domain with boundary ∂Ω. Now∫
Ω

(∆f)g + 〈∇f,∇g〉 dx =

∫
∂Ω

∂f

∂ν
g dS(x).

Now we are ready to prove Green’s theorem.

Theorem A.5. Let Ω ∈ Rn, where n ≥ 2, be a bounded domain with boundary ∂Ω. Now∫
Ω

(∆f)g − f∆g dx =

∫
∂Ω

∂f

∂ν
g − f ∂g

∂ν
dS(x).

Proof. By Green’s first identity we get∫
Ω

(∆f)g + 〈∇f,∇g〉 dx =

∫
∂Ω

∂f

∂ν
g dS(x)

and ∫
Ω

f∆g + 〈∇f,∇g〉 dx =

∫
∂Ω

f
∂g

∂ν
dS(x).

Now by subtracting these equations we get∫
Ω

(∆f)g + 〈∇f,∇g〉 dx−
∫

Ω

f∆g + 〈∇f,∇g〉 dx =

∫
∂Ω

∂f

∂ν
g dS(x)−

∫
∂Ω

f
∂g

∂ν
dS(x)

⇔
∫

Ω

(∆f)g − f∆g + 〈∇f,∇g〉 − 〈∇f,∇g〉 dx =

∫
∂Ω

∂f

∂ν
g − f ∂g

∂ν
dS(x)

⇔
∫

Ω

(∆f)g − f∆g dx =

∫
∂Ω

∂f

∂ν
g − f ∂g

∂ν
dS(x).
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A.2 Fourier analysis

In this section our goal is to introduce the definitions of a Fourier transform and Fourier
series and give some theorems that will be useful in our study. The proofs can be found
in [2].

Definition A.6. Let f : Rn → R. The Fourier transform of f is defined as

F(x)(ξ) = f̂(ξ) =
1

(2π)n

∫
Rn
f(x)e−ixξ dx.

and the inverse Fourier transform is given by

F−1(f)(x) =

∫
R
f̂(ξ)eiξx dξ.

Definition A.7. Let f : R→ R be a function such that f(x) = f(x+ 2π) for all x ∈ R.
The Fourier series of f is defined as

∞∑
n=−∞

f̂(n)einx,

where f̂(n) :=
1

2π

∫ 2π

0
f(x)e−inx dx.

Next, we introduce two important results on the uniqueness of the Fourier series. The
proofs can be found in [2].

Theorem A.8. Let f, g be measurable and integrable functions with x ∈ [0, 2π] and
f̂(n) = ĝ(n) for all n ∈ Z. Now f(x) = g(x) for all x ∈ (0, 2π) where f − g is continuous.

Corollary A.9. Let f, g : [0, 2π] → C be continuous functions and f̂(n) = ĝ(n) for all
n ∈ Z. Then f(x) = g(x) for all x ∈ [0, 2π].

Now we can prove an important theorem regarding the convergence of a Fourier series.

Theorem A.10. Let f : [0, 2π]→ C be a continuous function and

∞∑
n=−∞

∣∣∣f̂(n)einx
∣∣∣ =

∞∑
n=−∞

∣∣∣f̂(n)
∣∣∣ <∞.

Now the following equality holds

f(x) =
∞∑

n=−∞

f̂(n)einx

where the convergence is uniform.
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Proof. Since |einx| = 1 with all x ∈ [0, 2π], we know that the series
∑∞

n=−∞ f̂(n)einx

converges uniformly in [0, 2π]. Let g be the function defined as

g(x) =
∞∑

n=−∞

f̂(n)einx = lim
N→∞

SNf(x).

Now we know that g is continuous in [0, 2π]. Our next goal is to prove that g(x) = f(x)
for all x ∈ [0, 2π].

Let k ∈ Z. Now

ĝ(k) =
1

2π

∫ 2π

0

g(x)e−ikx

=
1

2π

∫ 2π

0

lim
N→∞

N∑
n=−N

f̂(n)einxe−ikx dx

= lim
N→∞

f̂(n)
1

2π

∫ 2π

0

N∑
n=−N

einxe−ikx dx

= f̂(k),

Above we used the information that since the series is uniformly convergent we can change
the order of integration and taking the limit. Now since both f and g are continuous and
have the same fourier coefficents, by A.9 we know that g(x) = f(x) for all x ∈ [0, 2π].
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Appendix B

Sobolev spaces

In this chapter our goal is to give the definition of a Sobolev space and some of its
properties. To achieve that goal we must first define a generalization of a derivative
known as the weak derivative.

First, we introduce the concept of a multi-index for the sake of notational convenience.
An n-dimensional multi-index α is an n-tuple

α = (α1, α2, . . . , αn)

where n ∈ N.
The absolute value of an n-dimensional multi-index α is defined as

|α| = α1 + α2 + · · ·+ αn

and is referred to as the length of a multi-index.
Given a multi-index α, we define a differential operator Dα as follows:

Dα =

(
∂

∂x1

)α1

· · ·
(

∂

∂xn

)αn
=

∂|α|

∂xα1
1 · · · ∂xαnn

.

Next we introduce a generalization of a derivative called the weak derivative. Let u ∈
Ck(Ω), where Ω is an open subset of Rn and v ∈ C∞0 (Ω). Now the following integration-
by-parts formula

(B.1)

∫
Ω

Dαuφ dx = (−1)|α|
∫

Ω

uDαφ dx

holds for all |α| ≤ k and φ ∈ C∞0 (Ω). Notice that all terms involving integrals over
the boundary of Ω, which arise in the course of integrating by parts disappear since the
function φ and its derivatives are identically zero on the boundary of Ω.

We use the identity (B.1) as the starting point for defining the concept of weak deriva-
tive.
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Definition B.2. Let α be a multi-index and u, v ∈ L1
loc(U) where U ∈ Rn is an open set.

We say that v is the α:th -weak derivative of u if∫
Ω

uDαφ = (−1)|α|
∫

Ω

vφ

for all φ ∈ C∞c (U).

We denote the α:th weak derivative of u with Dαu. Now we can define Sobolev spaces
using the definition of a weak derivative.

Definition B.3. Let Ω ⊂ Rn be an open set, α an n-dimensional multi-index and k an
integer where 0 ≤ k ≤ n. The Sobolev space W k,p(Ω) is defined as

W k,p(Ω) = {u ∈ Lp(Ω) | Dαu ∈ Lp(Ω) for all |α| ≤ k}.

In the special case of p = 2 we denote the Sobolev space W k,2(U) = Hk(U). We will
be using this notation in the future.

Now we can define a norm for the Sobolev spaces.

Definition B.4. Let k ∈ N, 1 ≤ p ≤ ∞ and u ∈ W k,p(Ω). We define the the Sobolev
norm of u as

‖u‖Wk,p(Ω) =

∑
|α|≤k

‖Dαu‖pLp(Ω)

 1
p

when 1 ≤ p <∞

and
‖u‖Wk,∞(Ω) =

∑
|α|≤k

‖Dαu‖L∞(Ω) when p =∞.

The next theorem is known as Poincaré’s inequality and will a useful tool when study-
ing Sobolev spaces. We use the notation (u)Ω for the average of u over Ω. More information
with proof can be found in [4].

Theorem B.5. Let Ω ⊂ Rn be a bounded, connected and open subset with a C1 boundary
∂Ω. Assume 1 ≤ p ≤ ∞. Then there exists a constant C, depending on n, p and Ω, such
that

‖u− (u)Ω‖Lp(Ω) ≤ C‖∇u‖Lp(Ω),

for each function u ∈ W 1,p(Ω).

Next we define Sobolev spaces Hk for any k > 0. We do this by using Fourier trans-
forms.

45



Definition B.6. Let U ⊂ Rn be an open set, α an n-dimensional multi-index and k ∈ R
where 0 ≤ k ≤ n. The Sobolev space Hk(U) is defined as

Hk(U) = {u ∈ L2(U) |
∫
U

(1 + |ξ|2)k|û(ξ)|2 dξ <∞}

where û is the Fourier transform of u.

The space Hk(U), where k > 0 is a Hilbert space when equipped with the norm

(u, v)Hk =

∫
U

(1 + |ξ|2)kû(ξ)v̂(ξ) dξ.

Next we define Sobolev spaces for negative values of k

Definition B.7. Let U ⊂ Rn be an open set, α an n-dimensional multi-index and k ∈ R
where k ≤ 0. We define the space Hk(U) as the closure of C∞0 (U) with respect to the
norm ‖u‖Hk = ‖(1 + |ξ|2)s/2û‖L2

We can also give a different characterization of this space using the dual space of Hk.
Consider the conjugate linear pairing

(u, v) 7→
∫
U

û(ξ)v̂(ξ) dξ, where (u, v) ∈ C∞0 (U)× C∞0 (U).

Using the Cauchy-Schwartz-inequality we get∣∣∣∣∫
U

u(ξ)vξ dξ

∣∣∣∣ ≤ ‖(1 + |ξ|2)k/2û(ξ)‖L2‖(1 + |ξ|2)k/2v̂(ξ)‖L2 = ‖u‖Hk‖v‖H−k

for any k ∈ R.
Now if

∫
uv dx = 0 for all v ∈ C∞0 , then u = 0. Therefore we can identify H−k(U)

with the dual space of Hk(U).
Next, we introduce the concept of a trace operator and two theorems. A more thorough

study of the trace operator and proofs for the theorems can be found in [4]. The first
theorem is called the trace theorem.

Theorem B.8. Let Ω ⊂ Rn be a bounded domain with a Lipschitz boundary ∂Ω. Now

(i) there exists a unique bounded linear operator tr : H1(Ω) → L2(∂Ω) such that if
u ∈ C1(Ω ∩ ∂Ω), then tr u = u|∂Ω and

(ii) the range of tr is dense in L2(∂Ω).
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More generally, if u ∈ Hm(Ω) and trju ≡
∂ju

∂ν
, where 0 ≤ j ≤ m− 1, then

trj : Hm(Ω)→ Hm−j−1/2(∂Ω)

is a continuous and linear surjection.

Theorem B.9. Let tr be the trace operator. Now

ker tr = H1
0 (Ω).
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