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The word tomography refers to a variety of imaging methods where a penetrating wave is used
to collect data about an unknown object of interest. The waves usually need to be sent through
the object from a large number of different angles in order to have enough data for a successful
reconstruction. The problems can be expressed in a form where the measured data is known
to be equal to the unknown object (expressed as a function) multiplied by a known operator.
Reconstructing either a two-, three-, or in case of dynamic tomography, four-dimensional image
based on data is not a simple matter of inverting said operator. The measurement noise, which is
always a factor in imaging situations, can be amplified greatly in the reconstruction, making the
inverse problem in question ill-posed. To avoid this, some regularization method in which a stable,
unique problem close to the original, ill-posed one, needs to be applied. A method called Tikhonov
regularization is one of the most commonly used ones.

Discrete tomography differs from general tomography by limiting the objects or images being
reconstructed to ones consisting of only a small set of different densities or colours. This a priori
knowledge of the object makes it possible to make successful reconstructions based on a much
smaller amount of data. Traditionally discrete tomography has only focused on making recon-
structions of binary images but more recently algorithms have been developed that allow the
number of different colours or densities to be as large as five. There are some very promising new
algorithms in the field of discrete tomography but due to the requirements set by new applications,
an ever-increasing number of researchers are working on new ones.

In this thesis a small, simulated example of tomographic reconstruction is made using both Tikho-
nov regularization and DART (discrete algebraic reconstruction technique), which is an algorithm
of discrete tomography. Both methods give reasonably good results in all of the situations that
were studied. It is found, however, that for an image fulfilling the requirements for using DART
(small enough number of different colours), DART performs significantly better when the number
of projection angles is decreased.
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Kumpulan tiedekirjasto

Sanalla tomografia viitataan erilaisiin kuvantamismenetelmiin, joissa tuntemattomasta kappa-
leesta kerätään tietoa käyttäen läpäisevää aaltoa. Useimmissa tapauksissa aalto täytyy lähettää
kappaleen lävitse monesta eri kulmasta, jotta saadaan kerättyä riittävästi tietoa hyvän rekon-
struktion aikaansaamiseksi. Tämäntyyppiset ongelmat voidaan ilmaista muodossa, jossa mitattu
data tiedetään yhtä suureksi kuin (funktion muodossa esitetty) tuntematon kappale kerrottuna
tunnetulla operaattorilla. Joko kaksi-, kolmi- tai dynaamisen tomografian tapauksessa neliulot-
teisen rekonstruktion rakentaminen perustuen dataan ei onnistu yksinkertaisesti kääntämällä
kyseinen operaattori. Mittaustilanteissa aina vaikuttavana tekijänä oleva kohina saattaa vahvistua
rekonstruktiossa merkittävästi, tehden kyseessä olevasta inversio-ongelmasta huonostiasetetun.
Jotta tämä pystytään välttämään, on käytettävä jotakin regularisaatiomenetelmää, jossa tutkitaan
ongelmaa, joka on lähellä alkuperäistä, huonosti asetettua ongelmaa, mutta yksikäsitteinen ja sta-
biili. Tikhonov-regularisaationa tunnettu menetelmä on yksi näiden joukossa laajimmin käytetyistä.

Diskreetti tomografia poikkeaa yleisestä tomografiasta siten, että kappaleet tai kuvat joita yrite-
tään rekonstruoida koostuvat siinä ainoastaan muutamista eri tiheyksistä tai väreistä. Tämä a
priori-tieto mahdollistaa sen, että hyviä rekonstruktioita voidaan saada aikaan paljon pienemmän
datamäärän perusteella. Alun perin diskreetti tomografia keskittyi ainoastaan binääristen kuvien
rekonstruoimiseen, mutta viime vuosina on kehitetty uusia algoritmeja, jotka sallivat eri tiheyksien
tai värien määrän olla jopa viisi. Jotkut uusista algoritmeista ovat hyvin lupaavia, mutta uusien
sovellusten asettamien vaatimuksien takia yhä kasvava joukko tutkijoita työskentelee uusien algo-
ritmien kehittämisen parissa.

Tässä tutkielmassa pieni, simuloitu esimerkki tomografisesta rekonstruktiosta on toteutettu käyt-
täen sekä Tikhonov regularisaatioa että DART-algoritmia, joka on eräs diskreetin tomografian al-
goritmi. Molemmat menetelmät toimivat hyvin kaikissa tutkielmassa käsitellyissä tilanteissa. Huo-
mataan kuitenkin, että kuvalle, jossa eri värien määrä on riittävän pieni, DART antaa selkeästi
parempia rekonstruktioita kun projektiokulmien määrää vähennetään.
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1. Introduction: About inverse problems

The type of problems where an object is known and the mission is to
collect data about it are sometimes referred to as direct problems. The
opposite of this are problems called inverse problems, where the object
is unknown and the goal is to recover it as well as possible based on

Date: May 11, 2016.
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2 ERNA PIILA

known data, which is often in the form of observed measurements. In
a literal sense of the word a very simple (although for the purposes of
the mathematical field of inverse problems overly simplistic) practical
example of an inverse problem would be a photograph and its nega-
tive. This is, however a well-posed problem as it is easy to go back and
forth between the direct problem and the inverse one. It is not always
trivial which is the direct problem and which the inverse one from a
set of two problems that are inverse to each other. Sometimes it is
merely a question of which one is simpler or was studied first. In the
mathematical field of inverse problems where only ill-posed problems
are ever really studied, out of the set of two problems that are inverse
to each other one is well-posed and the other one is ill-posed. In this
situation direct problem is the one that is well-posed [3], [4].

In the literal sense of the word inverse problems do often appear in
mathematics even in situations where they are not necessarily studied
as such. This is often the case with problems that are well-posed. In
practice this means the kind of situation where we are trying to solve

(1.1) Ax = m

where A is a given operator and m is measured data for x and A is
invertible and its inverse is bounded. It is easy to see that

(1.2) x = A−1m.

For example Fourier- and Laplace-transforms are well-posed operators
[1].

In [6], Jaques Hadamard defined well-posed problem as follows:

(i) There is at least one solution
(ii) The solution is unique (There is at most one solu-

tion)
(iii) The solution depends continuously on data

Inverse problem is thus ill-posed if one or more of these conditions do
not apply. This means that it is not possible to move back and forth
between the direct and inverse problems as it is with for example with
Fourier- and Laplace-transforms and their respective inverses.

Ill-posedness in inverse problems in a sense in which they are studied
in the mathematical field named thusly is most commonly caused by
failing to fulfil the third criterion, which is often referred to as stability.
Often even a relatively small disruption in data can lead to significant
instability in the solution of an inverse problem. This difficulty is being
addressed with various regularization methods, more on which later.
As noise is inevitably present in all practical measurement situations,
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aforementioned equation
Ax = m

is in fact going to take the form

(1.3) Ax+ ε = m

where ε represents white noise. For an ill-posed problem the naïve
reconstruction that was illustrated before is going to fail (below x rep-
resents the naïve reconstruction of x):

(1.4) x≈A−1m = A−1(Ax+ ε) = x+ A−1ε

When noise is non-existent, the naïve reconstruction gives perfect re-
sults. This is, however, never the case in real situations and the attempt
for naïve reconstruction will often cause the noise to amplify to an ex-
tent where any results gained will be completely useless. This is an
example of a so-called inverse crime [1].

Inverse problems are often approached by first testing the method
that is going to be used for solving them with simulated data and only
after that tackling the problem with real, measured data. This way
the accuracy of the method can be evaluated and the possible prob-
lems are easier to recognize and to deal with. In practice most of the
problems studied are continuous instead of being discrete as the data
represented as a set of measured values might suggest. When an inverse
problem is defined in terms of an infinate-dimensional function spaces
and then discretized for practical purposes, a model error occurs. Since
inverse problems are usually ill-posed, neglecting this error, which is
often called inverse crime, may have serious consequences to the quality
of the given solution. It is important that a different discretization is
used while generating the data than what is used while performing the
reconstruction. Using the same discretization would constitute an in-
verse crime as some reconstructions might provide perfect results with
some particular discretization but fail completely with any other. Most
often the object being measured is going to be constructed in a contin-
uous way, meaning that for example changes in fabric density are going
to happen smoothly, so any discretization is going to be artificial in any
case. A very simple practical example of using a different discretization
in this way could be in a problem of trying to recover a known function
in which one parameter is time. To avoid inverse crime one would have
to use different step length while generating the function than one does
while reconstructing it. That is to say the points in time where the val-
ues are observed should be different in the reconstructed model than
they are in the original one. Otherwise one might get results that are
much better than they should be. Using the same grid is not the only
way to commit an inverse crime. Also using the same mathematical
model for both generating the simulated data and inverting it may lead
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to much better inversion results that would otherwise be obtained [1],
[5].

As was mentioned before, the naïve reconstruction practically always
fails when it is used for solving ill-posed inverse problems. In this in-
troduction the nature of A is not specified and it is referred to only as
a given operator. In a situation where A is a function, A−1 does not
exist or is not continuous when the problem is ill-posed. In situations
concerning discrete tomography, which are of particular interest in this
thesis, or generally any finite dimensional discretization of an inverse
problem, A is a matrix. In these cases the problem leading to failure
of naïve reconstruction is most often the lack of stability, which is the
result of inevitable noise in practical measurement. One possible way
of obtaining good inversion results despite of measurement noise is by
using some regularization method. The choice of methods depends on
the nature of the inverse problem that is being solved as well as the
tools available. For example MATLAB, which is a software commonly
used for the numerical solving of inverse problems, works much better
and faster with some regularization methods than it does with others.
Also the speed with which the inversion results are needed can in many
practical situations be a factor. Even with sophisticated mathematical
software, processing amounts of data as large as some inversion prob-
lems require can take significant amounts of time. Some regularization
methods may provide results much quicker than others, even if the re-
sults are not as good.

There are several choices of possible regularization methods. Some of
the commonly used ones include Tikhonov regularization, Total Vari-
ation regularization (often referred to as TV-regularization), Landwe-
ber iteration and Truncated or Selective singular value decomposition
(SVD). Even though different regularization methods should be used
for different types of inverse problems, some of the methods are more
often applicable than others. Truncated SVD and Tikhonov regular-
ization are possibly the most commonly used ones. Tikhonov regular-
ization is the method that is used for solving the practical problem
studied in this thesis, and it is discussed later on. As good regular-
ization methods as there are available, there are still issues that are
waiting to be solved. Good parameter choices are often a challenge in
many methods. For example the choice of parameter α in the formula

(1.5) xapprox = minx
{
‖ Ax−m ‖22 +α ‖ x ‖22

}
for Tikhonov regularization is an open problem. There are possible
methods for finding the value for α that gives the best results but they
work uncertainly at best. Often the value is chosen based simply on
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what has in similar situations previously been found to give smallest er-
ror or what choice of parameter works best while the method was tried
out with simulated data. While working with simulated data that is
similar enough to the actual, measured data one can easily experiment
with the value of α in order to find out which value (at least the ball-
park) gives the best reconstruction [1], [3].

In this thesis the type of inverse problems that are mostly the object
of interest are those revolving around tomography, where information
such as the inner structure of an object is sought to recover from a
set of projections. The object that is attempted to recover is seen as
a function with a domain that is either discrete or continuous and a
range that is a given discrete set of (usually) real numbers. The prob-
lem posed in tomography is to recover this function, sometimes even
just partially or approximately, based on weighted sums in a discrete
case or weighted integrals in a continuous case over subsets of its do-
main. In practical applications such as medical imaging it is common
for these sums or integrals to only be known approximately as noise
is always a factor when something is being measured in a practical
situation. Computerized tomography (CT) which G. T. Herman and
A. Kuba in their book Discrete Tomography: Foundations, Algorithms
and Applications [2] refer to as general (in other words not discrete)
tomography often deals with a very large number of projections. In
discrete tomography, which is the main field of interest in this thesis,
very few projections are in ideal situations used for recovering the func-
tion.

Discrete tomography with this particular name is a relatively young
field, dating back to 1994 when Larry Shepp organized the first meet-
ing devoted to it. The problems revolving around discrete tomography
had obviously also been studied before that and it has been used for
many practical applications much before the name of the field was es-
tablished for example in fields of medicine, image-processing etcetera.
A common problem in discrete tomography is to find out when a set
of points on a plane is uniquely defined by for example vertical and
horizontal projections and when possible trying to reconstruct it. This
situation is often represented as a (in ideal situations square) matrix
the elements of which are unknown. The problem is to recover this
matrix based on its row and column sums. As using row and col-
umn sums only rarely gives a unique solution, additional information
such as prior knowledge about the qualities of the reconstructed ob-
ject or additional, for example diagonal projections are also often used.
In the mathematical field of discrete tomography (as opposed to the
words being used just to refer to non-continuous tomography) the im-
ages that are being reconstructed are often binary (situation consistent
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with aforementioned set of points on a plane), meaning that for each
pixel there are only two possible values. Binary images translate into
binary matrices (matrices, where only possible numbers are 0 and 1).
This obviously makes the odds of finding a unique solution based on
only small number of projections better. The number of projections
needed for good reconstructions in different situations and the theory
behind this are discussed later [2].

The main emphasis of this thesis is on x-ray tomography in situations
where the attenuation values (which measure how much the intensity
of the x-ray decreases when it passes through tissue) are known. The
case where there are only two or three different values is of particular
interest. In the first part of the thesis x-ray tomography is discussed
both generally and in the kind of situation described above. The goal
is to shed some light on how having prior information about the at-
tenuation values could be used in tomographic reconstruction and to
some extent also how this is relevant to practical situations in x-ray
tomography. A practical problem of this type is solved in the last part
of the thesis. It is done with simulated data to find out if the chosen
method works well in this situation, in order to better find suitable
parameters values as well as to make sure it is robust against noise.
If the method is deemed good enough, a similar reconstruction could
be made with real, measured data. The chosen method for the recon-
struction is Tikhonov regularization with conjugate gradient method,
the theory of which is also covered later in this thesis.

2. About tomography

2.1. General things about tomography. Even though x-ray to-
mography was historically the first method of medical imaging in use
and also the method of tomography of the most interest in this thesis,
it is by no means the only method. The word refers to any imaging
method by a penetrating wave and the different methods are used for
varying purposes including radiology, different fields of physics, biology
and so forth. The history of tomography dates back to at least year
1895, when Wilhelm Röntgen discovered x-rays. X-ray tomography is
a popular method of medical imaging to this day, even though since
the 1970’s several more computer-based techniques have begun chal-
lenging its position. The mathematical principles behind tomography
were introduced by Johann Radon, after whom Radon transform that
is discussed later on is named, in 1917 [8].

From a mathematical point of view the interesting part of any method
of tomography is the reconstruction. In simple terms the method with
which most tomographic machinery works is that there is a source,
which sends off penetrating waves of some type to a detector, which
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measures what is left of the waves when they get there. The object
of interest is placed between the source and the detector and the re-
construction of the object is made based on how much the waves have
attenuated between leaving the source and reaching the detector. Dif-
ferent types of material have different attenuation values or in more
simple terms they absorb different amounts of radiation, so the in-
tensity of the wave reduces to a different degree depending on what
kind of material it passes through. Generally if the object being recon-
structed is not priorly known to be homogeneous and very regularly
shaped, sending the waves from just one angle is not going to lead
to a reconstruction that is in any way accurate. That is why several
projections are generally required. The number of projections needed
for a good reconstruction varies greatly depending on which tomogra-
phy technique is in question. Different tomographic approaches can be
used in situations where the number or the distribution of projections
is inadequate in terms of classical tomography. Sparse tomography is
a field dedicated to building reconstructions based on projections that
are acquired at large intervals but where distances between projections
are fairly even. Limited-angle tomography on the other hand seeks to
build reconstructions from projections that are from less than full angle
range, leaving parts of the object virtually invisible. As was already
mentioned in the introduction, the number of projections commonly
used in discrete tomography can be only a few whereas general tomog-
raphy (which approaches the ideal situation of continuous tomography
which is the basis for the mathematical theory) often uses hundreds of
projections [1], [2].

Figure 1. An unknown object being x-rayed from four
different angles.

Mathematically tomographic reconstruction is an inverse problem
where, as mentioned in the introduction, the object of interest is seen as
a function. The mathematical theory is relatively different for discrete
tomography and for general tomography (for example computerized
tomography). The means for recovering the function are in discrete
tomography based on line sums and in continuous tomography line
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integrals. Continuous tomography is a mathematical ideal that can-
not happen in reality, some discretization always has to takes place in
a practical imaging situation. When a method of tomography being
used is one based on radiation (such as x-rays) and it is being used for
medical purposes (or some other purpose where the object of interest
is a living thing), it is necessary to keep the number of projections as
small as possible to avoid excessive exposure to radiation. For the gen-
eral public being aware of the dangers of radiation is a relatively new
phenomenon; x-rays were not always only used for research purposes
or when it was a medical necessity. Sometimes they were even used for
very frivolous purposes; until 1970’s an x-ray shoe fitter could be found
in many shoe shops despite the warnings about dangers of radiation
published in medical journals since the 1950’s [1], [9].

2.2. Mathematical theory of tomography. The mathematical the-
ory of x-ray tomography is based on line integrals. The x-rays travel
through the objects of interest in straight lines. The intensity of an
x-ray is measured in a number of photons; a certain amount of photons
leaves the x-ray source and a certain amount reaches the detector. Let
us denote the intensity of the x-ray when it enters the object of interest
by I0 and when it exits it by I1. Clearly I1 < I0 as the intensity of
the radiation reduces when it passes through material. In the following
example where the x-ray passes through several objects in a row, let
the intensity of the radiation be In−1 before and In after the nth object.
Now I0 > I1 > ... > In. Attenuation of radiation passing through ma-
terial is exponential. Let us consider a situation where an x-ray passes
through n identical, homogeneous objects, each of which absorbs 30%
of the radiation. Now it is easy to see that In = 0.7nI0. Obviously not
only the attenuation qualities of the material the x-ray passes through
but also the length of the distance it travels in said material affect how
much the intensity of the radiation reduces passing through the object.

Now let us denote that I(x) is the intensity of the x-ray when the
distance it has travelled within the object is x. Because the material the
x-ray passes through is in most situations not homogeneous, we need
to define a function that takes into account the different attenuation
properties of the different materials. Let us mark this optical density
function by f(x). For a sufficiently small distance dx the reduced
intensity dI(x) is propotional to f(x) by formula

(2.1) dI(x) = −f(x)I(x)dx

Now if we consider that the intensity when the x-ray is entering the
object is I0 and exiting it I1 where I0 > I1 as the intensity of the x-ray
is attenuated when it passes through the object. The reduction in the
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Figure 2. X-ray beams passing through three objects,
each of which absorbs 30% of radiation that passes
through it. The photon count of each of the beams when
they leave the source is 1000. On the right of the image
are the photon counts as measured by the detector, the
logarithms of said photon counts and difference of the
logarithm of the photon count to that of the unattenu-
ated beam.

intensity is defined by

(2.2) I1 = I0e
−R,where R =

∫
f(x)dx

Previous formula only gives information about the attenuation of a
single x-ray, and in order to be able to make any tomographic recon-
structions, multiple x-rays from various directions are almost always
needed.

Let us next consider a two dimensional situation where an x-ray
passes horizontally from left to right as demonstrated by the following
picture:

The target (a two-dimensional slice of the object of interest) is placed
in a square defined by 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1. Let us consider the
level on which the horizontal x-ray passes through the target object to
be a constant that we denote by y1. Now the initial intensity of the
x-ray is I0 := I(0) and the intensity of the x-ray exiting the object is
I1 := I(1). The intensity of the x-ray at point (x, y1) is denoted by
I(x). The optical density function is defined much as before, except
that now it is a function with two variables: f(x, y). Also the formula
that states the intensity’s reduction’s relation to the optical density
remains essentially the same:

(2.3) dI(x) = −f(x, y1)I(x)dx
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Figure 3. An x-ray beam passing through the object
of interest (the little squares surrounding the object are
not there on purpose).

The reduction in the intensity is otherwise defined exactly as before,
but for the definition of R, which is now a function with two variables:
(2.4)∫ 1

0

f(x, y1)dx = −
∫ 1

0

dI(x)

I(x)
dx = −(ln(I(1)− ln(I(0))) = ln I0 − ln I1

The expression on the left is the line integral along the x-ray from the
source to the detector. Because I0 is the intensity of the x-ray leaving
the source and I1is its intensity that is measured by the detector, both
these values are known and the rightmost expression is easy to calcu-
late (see figure 2). This is, however, a slightly idealized situation as in
a real life measuring situation the data gathered from the detector is
always noisy [1], [10].

2.2.1. Radon transform. The target is usually x-rayed from several di-
rections and not all the x-rays pass through its centre. Let us denote
the angle the normal vector of the x-ray makes with the x-axis with θ
and the shortest distance of the x-ray passing through the target object
(considering that the centre of the target object is placed on the point
(0, 0) on the plane) from its centre with p. For compactly supported,
continuous function f : R2 → R that represents the unknown density
the Radon transform is defined as follows:

(2.5) <f(p, θ) =

∫ ∞
−∞

f(p cos(θ) + s sin(θ), p sin(θ)− s cos(θ))ds

where

(2.6)
[
p
s

]
=

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

] [
x
y

]
.
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The Radon transform, the graphic representation of which is often
referred to as a sinogram, is what x-ray machinery give as output data.
The larger < is, the more the radiation from that particular projection
is attenuated. The mathematical problem of tomographic reconstruc-
tion is then to find the inverse of the function <f(p, θ) in order to
reconstruct the target object. The problem with an inverse Radon
transform is that it is not robust against measurement noise. To work
around this problem different versions of finding a more stable approxi-
mations are often utilized. There are multiple computationally efficient
inversion formulas available for the Radon transform. One of the most
commonly used ones is called filtered back projection algorithm. For an
easy way of inverting Radon transform we also need Fourier transform
[1], [10], [11].

Figure 4. On the left an image of the geometry of the
Radon transform and on the right an example of a sino-
gram.

2.2.2. Fourier transform. Fourier transform for f : Rn → R is defined
by

(2.7) f̂(ξ) =

∫
Rn
f(x)e−iξ·xdx

and its inverse by

(2.8) f(x) =
1

(2π)n

∫
Rn
f̂(ξ)eiξ·xdξ.

Radon transform is mostly used for reconstructing a two-dimensional
”slices” of a three-dimensional objects (sometimes three-dimensional
tomographic reconstructions are also made), so the Fourier transform
aiding with this is mostly used for n = 2. Sometimes three-dimensional
tomographic reconstructions are also made [1], [10], [12].
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2.2.3. Fourier slice theorem. To use this for inverting Radon transform
we first need to find Fourier transform of a Radon transform where the
angle θ is fixed and ξ is any real number. Let us denote this by <̂f(ξ, θ):

<̂f(ξ, θ) =
∫∞
−∞<f(p, θ)e−iξpdp(2.9)

=
∫∞
−∞

∫∞
−∞ f(p cos(θ) + s sin(θ)), p sin(θ)− s cos(θ))e−iξpdsdp

Now because (x, y) = (p cos(θ) + s sin(θ), p sin(θ)− s cos(θ)) and
p = x cos(θ) + y sin(θ) a change of variables gives us

(2.10)
∫ ∞
−∞

∫ ∞
−∞

f(x, y)e−iξ(x cos(θ)+y sin(θ))dxdy = f̂(ξ cos(θ), ξ sin(θ)).

This result is called Fourier slice theorem. As can be seen it in
this situation states that the one dimensional Fourier transform of the
Radon transform equals the Fourier transform in two dimensions of the
density function of which we originally took the Radon transform. This
gives us a way of inverting the Radon transform. The Radon transform
is known from detecting how much the x-ray attenuated between the
source and the detector and its value is

(2.11) <f(p, θ) =
ln I0
ln Id

where I0 is the intensity of the x-ray leaving the source and Id is its
intensity arriving to the detector. Let us first apply inverse Fourier
transform formula to the Fourier slice theorem:

f(x, y) =
1

4π2

∫ ∞
−∞

∫ ∞
−∞

f̂(α, β)ei(αx+βy)dαdβ(2.12)

=
1

4π2

∫ ∞
−∞

∫ ∞
−∞
<̂f(ξ, θ)eiξ(x cos(θ)+y sin(θ)) | ξ | dξdθ

=
1

4π2

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞
<f(p, θ)eiξ(x cos(θ)+y sin(θ)−p) | ξ | dpdξdθ

The absolute value follows from the fact that

(2.13) <̂f(−ξ,−θ) = <̂f(ξ, θ).

This method of inverting the Radon transform will in an ideal situ-
ation always recover the density function f when the Radon transform
is known. It is, however, very unstable and even a small errors in the
measurement can cause the reconstruction to become very inaccurate.
There are more accurate and faster discrete methods available for re-
constructing an image from its Radon transform [1], [10], [11].

2.3. Reconstruction with discrete tomographic data. Just like
in general tomography, the point of tomography with discrete data
is to reconstruct the density function f , only whereas in continuous
situation both the domain and the range of the function are continuous,
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in discrete case at least the range is discrete, specifically a finite set of
real, nonnegative numbers. In a reconstructed model this is always
the case, no matter how high the resolution an image that is recovered
is always formed of pixels. The target object is certainly not always
discrete so in order to apply methods of tomography with discrete
data the x-rayed area has to be artificially divided into ”pixels”. When
working with simulated data an image can also be further discretized
(the resolution lowered) in order to make the number of calculations
necessary smaller. For high-resolution images it can take a long time for
even reasonably powerful computers to run the programs. To attempt
discrete tomographic reconstruction in two dimensions, each pixel of
the target area is numbered (going column by column, for example)
and each pixel is assumed to have a constant value. These nonnegative
values are denoted with f j, j = 1, . . . , n where n is the number of
pixels. The measurement of the line integrals along the x-rays can now
be approximated by sums where aij is the distance the x-ray denoted
by Li travels within the jth pixel.

(2.14) mi =

∫
Li

f(x, y)ds ≈
n∑
j=1

aijf j

On each sum only the pixels that are intersected by the x-ray in ques-
tion are included [1], [2].

For k measurements in m ∈ Rk the previous sum gives the equation

(2.15) Af = m

where aij form the matrix A in a way that is explained in the following
example:

2.16. Example. Let us divide a square shaped area within which the
object we are trying to reconstruct is into (for the sake of being able to
still keep the matrix A small enough for the example to be demonstra-
tive) 9 pixels. Within each of the pixels the attenuation value remains
constant. Let the number of projections be 2, one horizontal and one
that for one pixel that it travels horizontally from right to left travels
vertically down three pixels. Let the number of x-ray beams for each
projection be 3. Now the number of measurements is 6. The pixels are
numbered column by column from left to right.

Now the distance each of the x-ray beams giving the measurements
m1, m2 and m3 travels within each pixel it passes through is

√
10
3
.

For the beams with measurements m4, m5 and m6 the distance each
beam travels within each pixel is 1. The number of columns in the
measurement matrix A is the number of pixels in the image and the
number of rows the number of measurements. The equation Af = m
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Figure 5. In this example the length of the side of each
pixel is considered to be 1.

now takes the form
(2.17)



√
10
3

√
10
3

√
10
3

0 0 0 0 0 0

0 0 0
√
10
3

√
10
3

√
10
3

0 0 0

0 0 0 0 0 0
√
10
3

√
10
3

√
10
3

0 0 1 0 0 1 0 0 1
0 1 0 0 1 0 0 1 0
1 0 0 1 0 0 1 0 0





f1
f2
f3
f4
f5
f6
f7
f8
f9


=


m1

m2

m3

m4

m5

m6



Many more projections are usually needed for the solution to the
equation to be unique. The number of projections needed depends on
the situation, what level of accuracy is expected of the reconstruction
and the chosen reconstruction method. There are methods with which
by having some prior information about the image or by making as-
sumptions about it one can use much lower number of projections and
still get a good results. Of course one does not always have the kind
of prior information needed and wrong initial assumptions are going
to compromise the chances of getting any useful results at all. Nor-
mally the projections are chosen by taking them at regular intervals
over 180 degrees (because after that the projections are just going to
be repeated). As the number of rows in the matrix A is the number
of the parallel x-ray beams times the number of projections and the
number of beams is in real situations also much larger, the size of A
increases quickly as the number of projections is increased. This is the
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main reason why running certain reconstruction algorithms can some-
times be very time consuming [1], [2].

It is easy to see that the naïve inversion f = A−1m will not work
in this situation as A is not a square matrix and can thus not be in-
vertible. An inversion can be attempted using some generalized inverse
such as Moore-Penrose pseudoinverse for A, often denoted by A+. A
simple way of finding this pseudoinverse is described in definition 3.6.
Pseudoinverses can also be found by finding a left inverse or a right in-
verse in the following manner: If ATA is invertible, this pseudoinverse
is given by formula (ATA)−1AT . If on the other hand AAT is invertible,
the formula that gives the pseudoinverse is AT (AAT )−1. Using this the
measurement matrix not being square does not prevent us from trying
the naïve inversion:

(2.18) f ≈ (ATA)−1ATm or f ≈ AT (AAT )−1m

This type of inversion method as well as the normal naïve inversion
if the matrix A were invertible and such method could be used can
give almost perfect inversion results when applied to noise free data.
As will be further discussed in section 3.2, these methods are not ro-
bust against the inevitable measurement noise and adding even small
amount of noise can make the reconstruction useless. The failure of
naïve reconstruction is discussed more later on. Sensitivity to noise is
not the only problem with naïve inversion. While working with sim-
ulated data trying to find f simply by multiplying the measurement
vector m by the inverse or pseudoinverse of A is an example of an
inverse crime. In this situation the inverse crime is constituted of not
changing the discretization of the image between creating the data and
reconstructing it. To avoid the inverse crime in the previous example’s
situation one could change the unrealistically crude 3x3 discretization
to one (for example) twice as fine, 6x6 (which obviously would still
be unrealistically crude). In practice this means twice as many x-ray
beams from each measurement angle. The resulting data is now crime
free and naïve reconstruction, doomed to fail as it may be, can be
applied [1], [13].

3. Tomographic reconstruction

As mentioned earlier, there are a number of different methods of
reconstruction that are widely used in tomography. Different applica-
tions have different requirements for the quality of reconstruction as
well as for how quickly the reconstruction needs to be acquired. Of-
ten there can also be limits set by the obtained data, it can be very
noisy, the number of projections can be small or the angle of projec-
tions limited. Due to its noise amplifying qualities, simply inverting
the Radon transform will not give satisfactory reconstructions in real



16 ERNA PIILA

life situations where the tomographic reconstruction problems are al-
ways ill-posed. In order to obtain good reconstructions even from noisy,
imperfect data, different regularization methods are used. The basic
idea behind regularization is that instead of treating a problem that
due to its ill-posedness is not uniquely solvable, we try to find a nearby
problem, for example by introducing additional information, that has
a unique solution. By solving that, we can then find an approximate
solution to the original problem.

For a standard form inverse problem Af+ε = m where the measure-
ment noise ε > 0, the best solution that can be hoped for is to find f
approximately. Due to the measurement noise, the naïve way of trying
to solve the problem by inverting A, given that it even is invertible and
its inverse continuous, and getting the crude approximate solution of
f ≈ A−1m is certainly going to fail as even if the measurement noise
is taken into account, the method will most likely amplify the noise.
Following is a brief introduction to some of the most commonly used
methods for finding noise robust solutions.

3.1. Singular value decomposition. Even though previously dis-
cussed mathematical theory of tomography is based on a continuous
model Af + ε = m, in practice it is necessary to approximate the
continuous situation with a discrete model of the form Af + ε = m,
where A is a matrix, f ∈ Rn and m ∈ Rk. A factorization of a matrix
called singular value decomposition (SVD) is not in itself a regulariza-
tion method but it is a useful tool for many methods that employ least
squares fitting of data. In linear algebra an orthogonal matrix U is a
matrix such that

(3.1) UTU = UUT = I

and any matrix A ∈ Rk×n can be written in the form

(3.2) A = UDV T

where both U ∈ Rk×k and V ∈ Rn×n are orthogonal matrices and
D ∈ Rk×n is a diagonal matrix. If the matrix A had complex values,
instead of orthogonal matrices U and V would be unitary matrices and
instead of the normal transpose of V the last term would be its conju-
gate transpose. UDV T is called the singular value decomposition of A
and the non-zero elements of D, denoted by dj, are called the singular
values of A [1], [14], [16].

If k = n and the matrix D is square-shaped, the elements dj are
placed on the diagonal from the upper left corner of the matrix (element
d11 in standard notation, denoted d1 in a diagonal matrix) to the lower
right corner (element dkk in standard notation, denoted simply by dk in
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case of a diagonal matrix). The rest of the elements in the matrix D are
zero. If k 6= n the structure of a diagonal matrix is a bit less intuitively
clear. If k > n, the singular values dj are situated diagonally from d1 in
the upper left corner to dn in the spot that in standard notation would
be dnn and all the elements on the rows from row rn+1 to the row rk
are zero. If k < n, the singular values run diagonally from d1 to dk in
exactly the same manner, the element dk being on the spot that would
normally be denoted with dkk. All the elements in the columns form
column ck+1 to column cn are zero. Singular values are non-negative
and in decreasing order:

(3.3) d1 ≥ d2 ≥ · · · ≥ dmin(k,n) ≥ 0

To calculate a singular value decomposition, which is not necessarily
unique, for a matrix one needs to find the eigenvalues and eigenvectors
of AAT and ATA, the eigenvectors of which make up the columns of U
and V respectively. The singular values are square roots of the eigen-
values of AAT and ATA.

A non-zero vector v is an eigenvector of a square matrix W if

(3.4) Wv = λv

where λ is a scalar called the eigenvalue that corresponds to the eigen-
vector v. To find the needed eigenvalues and eigenvectors one must first
calculate matrices AAT and ATA and then find the value of eigenvalue
λ from the following equation:

(AAT )v = λv ⇒ (AAT )v − λv = 0⇒ (AAT − λI)v = 0

or correspondingly for ATA:

(ATA)v = λv ⇒ (ATA− λI)v = 0.

This equation only has a unique solution when the determinant | AAT−
λI |= 0 (and correspondingly | ATA − λI |= 0) from which the po-
tential eigenvalues can be found. The number of eigenvalues depends
on the size of the square matrices AAT and ATA, each matrix gives
as many eigenvalues as the number of its rows (or columns). All the
eigenvalues are not necessarily separate.

Now the eigenvectors associated with each of the eigenvalues can be
found by placing the values of λ into the equation

(AAT − λI)v = 0 (or(ATA− λI)v = 0)

The eigenvectors gained from the matrix AAT form the columns of
the matrix U and the vectors gained from the matrix ATA form the
columns of the matrix V in the singular value decomposition. Finally
the singular values dn are square roots of the eigenvalues, placed on the
diagonal from the upper left to the lower right corner of the matrix D
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in a decreasing order [1], [14], [16].

In practice the singular value decomposition is of course never cal-
culated by hand, even for a very small measurement matrix it would
take a ridiculously long time. It can, however, be easily done using
any number of mathematics softwares. Ill-posedness of a reconstruc-
tion problem can be detected from the singular value decomposition of
the measurement matrix, a problem is ill-posed if the singular values
gradually decrease to zero and if the ratio between the largest and the
smallest non-zero singular values is very large.

3.2. Truncated singular value decomposition. Singular value de-
composition in itself is a nice method of detecting ill-posedness in in-
verse problem and it can be used to calculate a pseudoinverse of a ma-
trix, but to attempt the actual regularized inversion, one needs more
tools. SVD is used as a part of several regularization methods but
most closely related to it is truncated singular value decomposition,
often called just truncated SVD or even just TSVD. TSVD is also
probably the most straightforward and easiest to implement method of
regularized inversion.

In truncated SVD only t biggest singular values are taken into ac-
count and the rest of the values are set equal to zero. This means also
using only the first t columns of matrices U and V . Larger singular
values contribute more to forming the matrix A than the smaller ones.
Depending on how many of the singular values are discarded, calcu-
lating TSVD is much more economical than calculating the full SVD.
The value of t chosen can depend on what properties are prioritized
most in the situation at hand. The more singular values are cut off,
the quicker the SVD for the remaining part is to calculate, but at the
same time the approximation of the original matrix gets less accurate.
Sometimes some of the singular values are significantly larger that the
rest of them, this may offer a very natural point after which the rest
of the singular values can be discarded. Often the choice just comes
down to what is valued more, time or accuracy [1], [15].

TSVD can be used for solving the linear least squares problem

(3.5) min ‖ Af −m ‖2

where A is a matrix, f ∈ Rn and m ∈ Rk. By using TSVD additional
requirements are imposed to the solution to make the norm as small as
possible. This way the effects of noise can ideally be lessened, as the
smallest singular values that in TSVD are discarded are often result
of noise in the measurement. To find the minimum norm solution,
Moore-Penrose pseudoinverse of A can be used. The pseudoinverse
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can be calculated using singular value decomposition and it is usually
denoted by A+.

3.6. Definition. If A = UDV T is the singular value decomposition of
A, then A+ = V D+UT , where

(3.7) D+ =



1
d1

0 . . . 0 . . . 0

0 1
d2

...
... . . .

1
dr... 0

...
0 . . . . . . 0


∈ Rn×k

and r is the largest index with which the singular value dn is still greater
than zero [13].

Simply using the pseudoinverse to find f will generally not lead
to satisfactory results especially if the singular values approach zero
quickly or 1/d1 is much smaller than 1/dr as these are indicators that
the problem is ill-posedness and thus the solution is most likely not sta-
ble. Using truncated SVD will help with this by discarding the elements
that lead to amplification of noise in the reconstruction. Truncated sin-
gular value decomposition is defined similarly to pseudoinverse A+ but
by replacing all the reciprocals of the singular values in D+ from an
index α onwards with zero:

3.8. Definition. Truncated SVD, denoted by A+
α , is defined as follows:

(3.9)

A+
α = V D+

αU
T , whereD+ =



1
d1

0 . . . 0 . . . 0

0 1
d2

...
... . . .

1
drα... 0

...
0 . . . . . . 0


∈ Rn×k

and rα is smallest of the values of r with which the corresponding
singular value is still greater than α:

(3.10) rα = min
{
r,max{j | 1 ≤ j ≤ min(k, n), dj > α}

}
The reconstruction function corresponding to this, denoted by Lα, can
now be defined by the formula

(3.11) Lα(m) = V D+
αU

Tm =
rα∑
i=1

ui
Tm

di
vi
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The bigger the value of α is, the fewer singular values are kept and
the less the measurement noise gets amplified in the reconstruction.
The problem with TSVD is knowing where to cut as keeping too few
singular values leads the solution not being an accurate approximation
of the original matrix [1], [15].

3.3. Tikhonov regularization. Tikhonov regularization is possibly
the most widely used regularization method of ill-posed inverse prob-
lems. It is named after Andrey Tikhonov but has in fact been indepen-
dently invented by many different people. As was already discussed
earlier in this chapter, a solution to a standard form inverse prob-
lem Af + ε = m can’t be found by simply finding the inverse or the
pseudoinverse of A without causing the measurement noise to amplify.
A noise robust solution can be sought using ordinary least squares-
method, by trying to minimize the expression
(3.12) ‖ Af −m ‖2 .

Throughout this thesis ‖ · ‖ denotes the Euclidean (`2) norm. This
method often leads to an underdetermined system of equations and can
thus not be uniquely solved. Adding a regularization term to this will
ideally lead to the solution f that fits data m that has the kind of
properties we expect the solution to have. To find a Tikhonov regular-
ized solution we instead of trying to find a solution to the not uniquely
solvable problem, try to find Tα(m) that minimizes the expression

(3.13) ‖ ATα(m)−m ‖2 +α ‖ Tα(m) ‖2

where α > 0 is a regularization parameter that needs to be chosen and
α ‖ Tα(m) ‖2 is the regularization term. The role of the regularization
term is to make the solution stable and this can be achieved with a good
choice of parameter α. Stabilizing quality of the regularization term
means that even though the original problem is ill-posed, the regular-
ized problem has to be well-posed and thus measurement noise in data
should not affect the minimizer much. The problem with Tikhonov
regularization is that a sure method for finding the best possible value
for α is yet to be discovered. Too small value of α will affect the noise
robustness properties of the regularized solution and too large value
will lead to the solution not being a good approximation of the original
problem [1], [17].

3.14. Theorem. Let A be a k × n matrix. The solution Tα(m) to the
Tikhonov regularized problem is given by

(3.15) Tα(m) = VD+
αU

Tm,

where A = UDV T is the singular value decomposition and

(3.16) D+
α = diag(

d1
d21 + α

, . . . ,
dmin(k,n)

d2min(k,n) + α
) ∈ Rn×k
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Proof of this will be omitted but can be found for example in [1].

Using the column vectors ui and vi of matrices U and V , Tα(m) can
now be written in the form
(3.17)

Tα(m) = VD+
αU

T (m) =
r∑
i=1

(
d2i

d2i + α
)
ui

Tm

di
vi =

r∑
i=1

(
di

d2i + α
)(ui

Tm)vi.

If the singular value decomposition ofA is known, Tikhonov-regularization
is in many cases a computationally fairly attractive method. When it
comes to very large-scale problems, calculating the SVD even by com-
puter can, however, be very time-consuming. In those situations it is
more effective to use a method of finding a Tikhonov regularized solu-
tion that does not require calculating the SVD of the matrix A. An
alternative way of presenting a Tikhonov regularization problem is as
a system of linear equations:

(3.18) (ATA+ αI)f = ATm

Now the solution isn’t based on SVD and it is given by

(3.19) Tα(m) = (ATA+ αI)−1AT (m).

3.3.1. Generalized Tikhonov regularization. One of the things that makes
Tikhonov-regularization such a widely used method is that a priori in-
formation about the solution can be introduced to the method, thus
making finding a unique solution easier. We may for example know
that f is smooth or, as we know in the practical example in this the-
sis, that all the values of f come from a certain small set of values. A
situation like this in relation to tomography might occur, at least in
idealized sense, for example if a body part being x-rayed is known to
consist of certain tissue types, each of which is known to have certain
known attenuation value. The expression that is being minimized in
Tikhonov regularization can be modified based on the a priori knowl-
edge. For example in case of a smooth function f , we seek to find
Tα(m) that minimizes the expression

(3.20) ‖ ATα(m)−m ‖2 +α ‖ LTα(m) ‖2

where L is a discretization of a differential operator often called a reg-
ularization matrix. For L = I this would clearly be exactly the same
as 3.13, which in literature is sometimes referred to as zeroth-order
Tikhonov regularization. If we have a prior estimate of f , denoted by
f ∗, the expression being minimized takes the form

(3.21) ‖ ATα(m)−m ‖2 +α ‖ L(Tα(m)− f ∗) ‖2 .
With a regularization matrix, the formula 3.19 for the solution of the
regularized problem looks like

(3.22) Tα(m) = (ATA+ αLTL)−1AT (m).
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A version to which a priori information can be introduced is called gen-
eralized Tikhonov regularization. The role of the regularization matrix
is to try and reduce the error in the reconstruction without dampening
the important features of the available estimate of f . In addition to the
identity matrix I, some common choices for L include finite difference
matrices such as

(3.23) L =


1 −1 0 . . . 0
0 1 −1 0 . . . 0
... . . . . . .
... 1 −1

...
0 . . . . . . 1 −1

 ∈ R(n−1)×n

When L is not an identity matrix or an identity matrix multiplied
by scalar, it provides smoothing for the solution. For some methods
of choosing a good regularization matrix and additional information
about generalized Tikhonov regularization, see [20], also [1], [18].

3.3.2. Choice of regularization parameter. As was mentioned before, a
sure method for finding the best value for the parameter α is an open
problem. There are, however, a few methods that can be utilized in
certain situations. One of the best-known methods is the so-called
L-curve method. L-curve as a method of investigating how different
parameter values affect a regularized system goes back to Miller and
Lawson & Hanson. Later it has been studied extensively by Hansen
and O’Leary and several others.

To use the L-curve method, one first needs to choose a fairly large
number of possible values for regularization parameter α such that
0 < α1 < α2 < · · · < αM <∞. The values of expressions

(3.24) ‖ ATα(m)−m ‖ and ‖ LTα(m) ‖

are then calculated for each of the values of α and the results are
plotted on a log-log scale. The resulting curve is hopefully relatively
smooth and by its shape resembles capital L (hence the name L-curve
method). The best possible choice for the value of α is supposedly
found as close as possible to the part that represents the corner of
L. Intuitively it is relatively easy to see why L-curve method would
produce a good parameter value α, as it graphically demonstrates the
trade-off between minimizing the residual ATα(m)−m and minimizing
the term LTα(m) in L2 norm. Ideally the ”corner” between the vertical
and horizontal parts of the L-shape, which is being emphasized by the
log-log scale, offers a natural point of compromise between these two
qualities. Problems with this method of course arise when, despite the
log-log scale, there is no distinctive L-shape. It is noteworthy that all
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the possible regularized solutions must lie above or on the Tikhonov
L-curve [1], [17], [21].

Figure 6. L-curve. An ideal situation, where the curve
resembles capital L enough that it can easily be used to
find as good a value for α as possible.

Some of the other well-known methods include general cross-validation
(GCV) and Morozov’s discrepancy principle. Compared to L-curve
method, GCV produces an estimate for a good parameter value more
rarely than L-curve does, but estimates from GCV are a little more
accurate as L-curve tends to over-smooth the solutions slightly. The
problem with Morozov’s discrepancy principle is that it doesn’t work
for generalized Tikhonov regularization; it can only be used to find a
good parameter value in form 3.19 situations. Finding a method that
would always produce an optimal value for α is an unsolved problem.
One practical method of finding at least a reasonable approximation is
to first test the regularization algorithm with simulated data that re-
sembles the actual situation. Knowing what the reconstruction should
look like enables calculating the errors that different choices of α pro-
duce. It is also possible to look at the parameter values that have been
previously used by others in similar situations and use an average of
those. For more information about GVC, discrepancy principle and
other methods of finding a good estimate optimal parameter value, see
for example [1], [17], [21].

3.3.3. Large problems and conjugate gradient method. Calculations with
large matrices even with good mathematics-softwares are very time-
consuming and often require powerful computers. For an even remotely
realistic-sized tomography problem, even storing the resulting matrix
A in computer memory would be problematic. In very large-scale prob-
lems using methods that utilize SVD is extremely uneconomical. Luck-
ily, this problem can be surpassed when Tikhonov regularization is used
in the form 3.22. We can use it in a matrix-free way in a sense that
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only a matrix-vector product is required by using some iterative solu-
tion method such as conjugate gradient method or generalized minimal
residual method. System of linear equations

(ATA+ αLTL)f = ATm

can be solved without actually having to construct the matrices A and
L. In order to do that, it is helpful to have available computational
routines that produce aforementioned matrix-vector products (for for
example Matlab) that we shall call Amult and Lmult that for arbitrary
vector z ∈ Rn give

(3.25) Amult(z) = Az ∈ Rk and Lmult(z) = Lz ∈ Rk′

and correspondingly for the transposes of the matrices A and L routines
ATmult and LTmult that with vectors v ∈ Rk andw ∈ Rk′ as arguments
return

(3.26) ATmult(v) = ATv ∈ Rn and LTmult(w) = LTw ∈ Rn.

There are various methods that can be used for solving systems of
linear equations. When implemented iteratively, conjugate gradient
method is particularly well suited for solving very large, sparse prob-
lems. By using it it is possible to numerically find solutions even when
the size of the problem makes it impossible by direct methods. The
method is based on a correction made to the direction of the gradient
after each iterative step. It can be implemented when the matrix of the
system is symmetric, that is M = MT , and positive-definite. Matrix
M ∈ Rn×n is positive-definite if cTMc is positive for every non-zero
column vector c ∈ Rn [1], [19].

Conjugate gradient method was originally developed for the purpose
of minimizing quadratic function

(3.27) f(x) =
1

2
xTMx− bTx,

which is equivalent to solving

(3.28) Mx = b.

Gradient of the equation 3.27 is a vector-valued function

(3.29) f ′(x) =


∂
∂x1
f(x)

∂
∂x2
f(x)
...

∂
∂xn

f(x)


that for any given point x points in the direction of the greatest in-
crease of the function f(x). Equation 3.27 can thus be minimized by
setting f ′(x) to zero, the minimizer then also being solution to 3.28.
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3.30. Definition. Two non zero-vectors d1 and d2 are said to be con-
jugate with respect to symmetric matrix M , if dT1Md2 = 0 or in other
words if they are orthogonal for inner product 〈d1,d2〉M = dT1Md2. A
finite set D = {d1,d2, . . . ,dn} is said to be a set of mutually conjugate
vectors if dTi Mdj = 0 for all i 6= j.

3.31. Lemma. If matrix M ∈ Rn×n is positive-definite and D = {d1,
d2, . . . ,dn} is a set of non-zero, mutually conjugate vectors, then these
vectors are linearly independent.

Proof: Let α0, α1, . . . , αk be scalars such that
(3.32) α0d0 + α1d1 + · · ·+ αkdk = 0.

Because D is a set of mutually conjugate vectors and thus dTi Mdj = 0
for all i 6= j, multiplying the equality 3.32 by dTjM , 0 ≤ j ≤ k yields

αjd
T
jMdj = 0.

But M = MT 0 and dj 6= 0. Therefore αj = 0 for j = 0, 1, . . . , k and
the vectors in D are linearly independent.�

Let us denote the solution of 3.27 and 3.28 by x∗. IfD = {d1,d2, . . . ,
dn} is a set of mutually conjugate vectors, x∗ can be expressed in the
following way:

(3.33) x∗ =
n−1∑
i=0

αidi

The term αi in the previous expression can be calculated as follows:

x∗ =
n−1∑
i=0

αidi ⇔Mx∗ =
∑n−1

i=0 αiMdi ⇔ dTjMx∗ =
∑n−1

i=0 αid
T
jMdi

⇔ dTj b =
∑n−1

i=0 αid
T
jMdi(3.34)

Now recall that 〈di,dj〉M = dTi Mdj and that because vectors di in the
set D are mutually conjugate with respect to M , all the terms in the
sum in the following expression except for the jth one are zero.

djb = 〈dj, b〉 =
n−1∑
i=0

αi〈di,dj〉M = αj〈dj,dj〉M

⇒ αj =
〈dj, b〉
〈dj,dj〉M

=
dTj b

dTjMdj
(3.35)

Using a set of n mutually conjugate direction vectors we can now find
an expression for x∗ using only them and elements that are known to
us:

(3.36) x∗ =
n−1∑
j=0

〈dj, b〉
〈dj,dj〉M

dj =
n−1∑
j=0

dTj b

dTjMdj
dj
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Let us denote the kth conjugate direction vector by dk and kth gra-
dient vector by gk:

(3.37) dk = −gk = b−Mxk

In conjugate direction methods, the solution is sought by with each
step choosing a point

(3.38) xk+1 := xk + αkdk.

3.39. Algorithm. The conjugate direction algorithm Let {di}n−1i=0 be a
set of mutually conjugate vectors. For any x0 ∈ Rn the sequence {xk}
generated according to

xk+1 = xk + αkdk, k ≥ 0

with

(3.40) αk = − gTk dk

dTkMdk
=
〈gk,dk〉
〈dk,dk〉M

converges to a unique solution x∗ of Mx = b after n steps.

The problem with using conjugate direction algorithm is that all the
values in the set of mutually conjugate vectors D have to be found be-
fore its implementation. This can be difficult in practice as the matrix
M is often so large that simply storing the data is problematic. For
more information about using conjugate gradient as a direct method,
see for example [22] (original source), [1], [23], [24].

When conjugate gradient method is implemented iteratively, it is
not necessary to determine the direction vectors beforehand. They are
chosen one at the time by using the previous choice to determine the
next. This is much more economical than obtaining all the vectors in
D beforehand, as the previous vectors can now be discarded after each
iteration step.

To use the iterative conjugate gradient method, one first needs to
choose an initial guess for the value of solution. Let us denote this
guess by x0. If there is no a priori information about the solution that
would give a reason for a different guess, let x0 = 0. Every new di-
rection vector is determined by taking the current negative gradient
vector (as we are trying to minimize 3.27, negative gradient takes us to
the direction of the greatest decrease) and adding to it a linear combi-
nation of the previous direction vectors. All the direction vectors are
mutually conjugate with respect to M . After each iteration step the
current position can be evaluated by finding the value of f(x) for the
current value of x (xk after the kth step). The value of f(x) should
be getting smaller with each step [1], [23], [24].
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3.41. Algorithm. The conjugate gradient algorithm:

For any x0 ∈ Rn, let d0 = −g0 = b−Mx0. For k = 0, 1, 2, . . .

αk = − gTk dk
dTkMdk

xk+1 = xk + αkdk

gk+1 = Mxk+1 − b

βTk =
gk+1Mdk

dTkMdk

dk+1 = −gk+1 + βkdk

Stop if gk+1 = 0 or sufficiently small. The resulting xk+1 is an approx-
imation of the solution of 3.27 and 3.28.

In the following example a small image is reconstructed using Tikhonov
regularization implemented with conjugate gradient method.

3.42. Example. The simulated data used in this example resembles
a common problem of discrete tomography. It is an image of a pawn
on a checked background consisting of 3 different grey values (black,
grey and white). It was created with Matlab using a code that can be
found in appendix of this thesis. All the codes used can be found in
the appendix.

The process for this experiment was conducted as follows: The be-
ginning part of the experiment is very much like example 2.16. The
first step was to create a [−1, 1]× [−1, 1] square. For a fixed value N ,
which represents the number of projections, lines representing x-rays
were then placed through the square so that cos(θ)x + sin(θ)y = s
where values of θ run from −π

2
to π

2
− π

N
with a step length of π

N
and

the values of s run from −1.1 to 1.1 with a step length of 2.2
N−1 . There

are N different values for both θ and s, which leads to a total number
of measurements of N2. We number them so that the lines in the first
direction, which is the direction −π

2
, are marked with m1, . . . ,mn so

that they correspond to the values of s −1.1, . . . , 1.1 in that order. The
lines in the second direction −π

2
+ π

N
are marked with mN+1, . . . ,m2N

and correspond again to the values of s −1.1, . . . , 1.1 in that order and
so on. The square was then divided into N2 similar squares and they
were numbered so that the upper left corner is subsquare 1, the one
under it is subsquare 2 and so on, this way subsquare N + 1 is on the
right side of the first subsquare and the last subsquare N2 in the lower
right corner. An approximate picture of the situation with the value
of N = 4 below.

To form the coefficient matrix A, we note that the number of columns
in the matrix is the number of pixels, N2, and the number of rows is the
number of measurements (in other words the number of x-ray beams,
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Figure 7. An approximate picture showing the direc-
tions and placements of the lines m1, . . . ,mN2 and how
the pixels the square is divided into are numbered with
the choice N = 2.

represented by arrows in the image above times the number of pro-
jection angles), also N2. Each component A(i,j) is the distance that
the line mi travels within the subsquare j. The code for creating the
matrix is Appendix A, note that the choice for value N can be changed
in the first row.

The next order of business was to find simulated data suitable in a
sense that it only consists of a small number of grey values. Any random
shape would have worked but for reasons that are for a large part
frivolous (it looks much nicer) but also practical (it makes detecting
mistakes in the reconstruction with naked eye easier) a particular black
and white image was constructed. An image of a pawn was constructed
into the [−1, 1]× [−1, 1] square in the following way:
The areas in the set

{(x, y) : [(x > 0 ∧ y > 0) ∨ (x ≤ 0 ∧ y ≤ 0)] ∧ x2 + y2 > (
9

10
)2}

are left white. The areas in the combination of the sets

{(x, y) : [(x ≤ 0 ∧ y > 0) ∨ (x > 0 ∧ y ≤ 0)] ∧ x2 + y2 > ( 9
10

)2},
{(x, y) : x2 + (y − (1

2
)2 ≤ (1

4
)2},

{(x, y) : x2 + 4(y + 1
2
)2 ≤ (1

2
)2, y ≥ −1

2
} and

{(x, y) : y
4
− 1

8
≤ x ≤ −y

4
+ 1

8
,−1

2
≤ y ≤ 1

2
}
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are black. What remains of the square is grey, more specifically the
colour halfway between black and white. The code that can be found
in Appendix B forms N ×N matrix F for an input value of N (which
has to be of the form 4k). The component F (i, j) of the matrix gets
value 1 (white), 0 (black) or 1

2
(grey) based on which of the sets (x, y) =

(2j−N
N

, 2i−N
N

) above it belongs to. The code also forms a vector f of
N2 components that reads the components of F from down to up and
from left to right: f((j−1)∗N + i) = F (N +1− i, j), i = 1, . . . , N, j =
1, . . . , N . For the chosen value of N a number N1 = 2 ∗ N is then
calculated. This part of the process helps avoid the dreaded inverse
crime. For this number a N1×N1 matrix named ro and a vector roo
of N12 components are calculated by the same method as F and f
before.

Figure 8. The image constructed with the code
Pawn.m on the left with resolution N = 96 and on the
right with resolution N = 48.

Next step in the process was to simulate the measurement data by
using the code matrixA.m (Appendix A) to construct a 962×962 matrix
A96. The code Pawn.m (Appendix B) is then used to construct the
vector roo, which is the vector constructed of the image of a pawn with
resolution N = 96. Now the noise free measurement data is gained by
using multiplication: m96 = A96 ∗ roo. This would of course not be
possible if the measurement data would be real instead of simulated,
so to make the situation more realistic we then add some noise to
the measurement data. The noise is simulated to each component
individually by using Matlab’s rand-generator so that L2-norm relative
error is about 2 percent. We now have a new vector of 962 components
that we will denote by m96n. To avoid inverse crime we will be looking
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for the reconstruction using a 482×482 matrix A48 that is constructed
using the code matrixA.m with the choice of N = 48. To do this
we need to interpolate the measurement data from m96n to a same
type of vector of 482 components m48n. Each component depends
on parameters θ and s and the choice of N = 96 contains all the
measurement angles θ (θ = −π

2
: π
N

: π
2
− π

N
) of the choice N = 48. The

distance components s are trickier as they don’t fall into same places as
they do with resolution N = 96. With the choice N the jth component
of the vector s is

(3.43) sNj = −1.1 +
2.2(j − 1)

N

and it is easy to prove that

(3.44) s48j = s962j−1 +
j − 1

47
(s962j − s962j−1)

which is why in the code measurements.m (Appendix C) the vector
m48n is formed using the vector m96n and the previous formula. To
draw the images the vectors m96, m96n and m48n are then turned
into matrices M96, M96N and M48N . See the figure 9.

Finally, the system (A48T ×A48+λI)x = A48T ×m48n (the system
3.18 in Tikhonov-regularization) is solved using a choice of λ = 0.023 (a
value which, in all honesty, is an approximation found by the method
of trial and error). The initial value for iteration in the code conj.m
(Appendix D) is chosen to be a vector of 482 components in which all
the components have the value 0.5. The code gives an output of recon-
structions after 2 and 49 iterations. It then changes the latter image
into a version in which the value of each pixel is rounded to whichever
of the values 0, 0.5 and 1 is the closest, a process which is similar to
the segmentation done in the beginning of using the DART-algorithm.
This mimics a typical situation in discrete tomography, where even
though the image is not known before the reconstruction like it is in
this simulated example, the possible grey values are often known. Us-
ing this method we get the reconstruction (Figure 10) in which the
relative error after 49 iterations is 16% where it in the data with noise
added to it was 2% . This is a fairly good result given the partial na-
ture of measurement data.

This method, as was demonstrated before, gives relatively good re-
sults, does not take too long to run and does not require the computer
to be particularly powerful. Smoothing of the image typically caused
by the regularization term can be seen particularly in the reconstructed
image after two rounds of iteration. This is due to the tendency of the
l2-norm to favour smooth functions. Using for example total variation
regularization in which the norm is l1, it is likely that we would have
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Figure 9. Image on the upper left-hand-side is the sino-
gram of the measurement data with N = 96. On the
right is the sinogram of the same data but with added
noise. On the bottom is the sinogram for the interpolated
measurement data.

ended up with an image resembling the lowest one (in which all the
pixel values are forced to the closest grey value found in the original
image) straight away. This method seems to be a decent choice when
a reconstruction is wanted as quickly as possible and some minor flaws
in the reconstruction will not have very dramatic effects. As can be
seen from the reconstructed image 10, some pixels have been misplaced,
which could very well be an issue if this type of reconstruction would be
used for example as a guideline for performing a surgery. It is highly
likely, that a method of reconstruction aimed especially for discrete
tomography would yield better results in a situation like this.

Tikhonov regularization is a quick and effective method and it is
easy to see why it is probably the most popular of all the reconstruc-
tion methods. Problems more severe than a few misplaced pixels arise,
however, when the data from which the reconstruction is attempted
is incomplete. In the following example almost the same small image
(just altered so that the same code could more easily be used) is re-
constructed based on only 20 projections. For an image this simple
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Figure 10. The image in the upper left corner is the
reconstruction after two iterations, on its right side is
the reconstruction after 49 iterations and on the bottom
is version of the reconstruction (after 49 iterations) in
which all the pixels are rounded to whichever of the val-
ues 0, 0.5 and 1 is closest to it.

and a shape which is this close to convexity the reconstruction is likely
to still be recognizable, but for a more complex shape even 20 equally
distributed projections would not be likely to be enough to give at all
usable results.

3.45. Example. The same codes that can be found in the appendix
were used here with the following alterations:

The reduced number of projections was achieved by leaving out pro-
jections in every other direction and then making the image being
reconstructed slightly smaller (as in the original code the number of
projections is tied to the size of the image) in order to get the number
of projections to be exactly the same as in the third reconstruction
example later on. In that example the number of projections is 20, a
number which was chosen based on it being one of the numbers used
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in the original papers on DART-algorithm [32] and [33].

Now for the fixed value N lines that represent x-rays cos(θ)x +
sin(θ)y = s are placed so that the values of θ run again from −π

2

to π
2
− π

N
but wth a step length that is now 2π

N
, twice what it was

before. As there are as still N values for s, just as there were in the
previous example, the measurement matrix is now of the size N2

2
×N2.

We denote this by AHN , H representing the fact that this measure-
ment matrix is half the size of the measurement matrix in the previous
example. This matrix is formed of the rows from 1 to N , from 2N + 1
to 3N , from 4N + 1 to 5N and so on of the original matrix. At this
point, in order to get the number of projections to be 20, we choose the
value of N = 40, which of course in this code leads both the original
image and the image used for the reconstruction to be a little smaller
than they were before, see figure 11.

Figure 11. On the left hand side target image with
the choice of N = 80, on the right the one used for the
reconstruction, in which N = 40.

From here on the example closely follows the previous one. We next
simulate the measurement data by multiplying the 80× 80 image with
a vector gained from the matrix AHN (see previous example for more
details). Then we add 2% of noise and interpolate the measurement
data to match the 40× 40 image that is in order to avoid inverse crime
used for the reconstruction. In the figure 12 the reconstructions are
being shown after 2 and 49 rounds of iteration. Just as in previous
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example, the bottom image is one where the pixel values are rounded
to the closest of the values that are known to appear in the image.
The relative error after 49 rounds of iteration (top right corner) is now
20% compared to previous example’s 16%, the reconstruction is visibly
worse but still (depending on the application it is used for) fairly good.

Figure 12. The image in the upper left corner is the
reconstruction after two iterations, on its right side is
the reconstruction after 49 iterations and on the bottom
is version of the reconstruction (after 49 iterations) in
which all the pixels are rounded to whichever of the val-
ues 0, 0.5 and 1 is closest to it.

As can be seen, for a situation as simple as this, Tikhonov regulariza-
tion still performs quite well. However, for a situation where the image
being reconstructed is more complex, there are even fewer projections
or the projection angle is limited, some far more sever problems start to
arise. Clearly some other reconstruction methods need to be studied.

4. Discrete tomography

4.1. About discrete tomography. The problems dealing with dis-
crete tomography have been seen in literature since at least 1957 (an
article published by H.J. Ryser in Canadian Journal of Mathematics,
[25]). However, discrete tomography as a separate field of study worthy
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of its own theory has only been around since the first mini-symposium
carrying the name was organized in 1994. The main reason for there
being a demand for such theory is that due to the lack of uniqueness;
most conventional methods of tomography such as filtered back projec-
tion and algebraic reconstruction techniques (ART) usually fail when
only a small amount of projections is available. Since its introduction
discrete tomography as a special field has for a great part focused on
the reconstruction of binary images, images that are comparable to bi-
nary matrices where ones are seen as white and zeroes are seen as black.
Binary images or -matrices can also be seen as two-dimensional special
case of reconstructing subsets of integer lattices. This kind of a situ-
ation occurs for example in reconstruction of nanocrystals at atomic
resolution. Even though a binary image is considerably easier to re-
construct than an image of which nothing is known a priori, it is still
often necessary to make further assumptions about it for the number
of projections in use to suffice for finding a unique solution. In many
algorithms of discrete tomography, local weight functions are utilized
if the image being reconstructed is known to be relatively smooth, in
other words containing large areas of connected ones or zeroes. In it-
erative methods where the reconstruction is attained pixel by pixel,
larger weight can be assigned to pixels that are surrounded by pixels
with the same value [2], [34].

Even though binary images are the main area of interest in discrete
tomography, some slightly varied situations can still be studied under
the name. For the purposes of this master’s thesis as well as many
situations where practical measurement takes place, one of the most
interesting ones is making reconstructions of functions that, rather
than having just values {0, 1}, have some other small set of values
{p1, p2, . . . , pl}. By using the prior knowledge about the possible val-
ues occurring in the reconstructed image, using algorithms of discrete
tomography it is often possible to greatly reduce the number of projec-
tions needed for a good reconstruction.

As discrete functions seem like special cases of general functions, it
is easy to assume that discrete tomography could use the same algo-
rithms as general tomography. This turns out not to be the case, some
integral questions about consistency, existence and uniqueness cannot
be answered using only the results of general tomography. Knowing
that the function f is discrete also offers hope that it can be recon-
structed from less data than would be needed to reconstruct general
function. Discrete tomography is mostly based on discrete mathemat-
ics, but the theory is also strongly connected to that of geometry and
combinatorics [2].
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4.2. Reconstruction from row- and column sums. A very sim-
ple reconstruction problem in discrete tomography resembles a Sudoku
puzzle but unlike most Sudokus, the solutions are usually not unique.
Essentially the problem is very much like the example 2.16 before, but
now the only projections in use are the horizontal one and the vertical
one. Knowing only the row and column sums one should now be able
to reconstruct the matrix. What makes it easier is the prior knowledge
about the possible values in f , in most typical discrete tomography
cases the possible values being 0 and 1. The same idea can be easily
visualized using so called lattice sets (or discrete sets), which are finite
subsets of the integer lattice Z2 (or in a more general case Zd). In
commonly used notation in discrete tomography we denote the finite
subset of Z2 that is attempted to reconstruct by F and state that if
a point of Z2 is an element of F , it has value one and if it is not an
element of F , it has value zero. F can now be seen as a function that
attaches either value one or value zero to every point in Z2. Usually
we do not consider the whole Z2 but only a rectangle A ⊂ Z2 that
includes every point that has value one. F can then be represented as
a function F : A→ {0, 1}, as can be seen for example in [2] and [34].

In the following example the task is to reconstruct a lattice set of
Z2 from x-rays in two lattice directions, vertical and horizontal. In
these projections we don’t consider all the possible lines (there being
an infinite number of them) but only the lines that pass through integer
points. These lines, often denoted by `, in a lattice direction are called
lattice lines if they pass through at least one point in Z2 (or in a more
general case Zd). An x-ray of the set in these directions gives the
number of points in the set, usually called the line sum of F along
these lines, on each vertical or horizontal line.

Figure 13. On the left an image of a lattice set, where
potential locations for points are marked with circles and
the line- and column sums are given at the end of each
line and column. On the right the circles are filled in to
demonstrate one possible reconstruction based on given
line sums.

4.1. Example. On the left is the reconstruction problem that gives
the line sums of each (non-zero) line of each of the two projections. In
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(4.4)



x1 + x4 = 2
x6 + x7 + x8 = 3
x9 + x11 = 2
x1 + x9 = 2
x6 = 1

x7 + x11 = 2
x4 + x8 = 2

.

Figure 14. Circles filled in to demonstrate the recon-
struction described on the left.

other words it tells how many of the integer points on each vertical or
horizontal line are elements of F. On the right is one possible version of
F based on the line sums in these two lattice directions. This kind of
discrete reconstruction problem can be viewed as the following linear
equation system:

(4.2) Px = m,where x ∈ {0, 1}N , P ∈ {0, 1}M×Nand m ∈ NM
0

where N is the number of lattice points in the rectangle that includes
all the lattice points with value one andM is the number of lattice lines.
P is now a matrix that describes whether a point with value one is on
the lattice line `. The line sums based on which the reconstruction
is made are expressed in the vector m. With the two dimensional
example we are looking at the reconstruction of F on the right can be
expressed in the form

(4.3)



x1 + x3 = 2
x5 + x6 + x8 = 3
x11 + x12 = 2
x1 + x5 = 2
x6 = 1

x3 + x11 = 2
x8 + x12 = 2

.

In this way of writing the expression only the variables with the value
one are written. The whole reconstruction problem can be expressed
similarly by writing all the variables in each line- and column sum, then
the problem of determining which of them have value one and which
value zero remains. The binary constrain x ∈ {0, 1}N often makes
solving these systems much more simple. However, the solutions are
often not unique. In the situation above it is easy to see that the same
vector m can be achieved with for example the reconstruction and the
corresponding system below:

Only in very rare and usually very simple situations are two pro-
jections enough for finding a unique solution. Even in a situation this
simple additional projections or other additional information is needed.
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With very few projections and very little information the problem is
not finding a unique solution, but sometimes, often when a larger num-
ber of projections are available, it can be that no solutions that satisfy
the projections are found.

4.2.1. Existence and uniqueness of reconstructions from two projec-
tions. The first reconstruction algorithm in discrete tomography was
introduced by Ryser in 1957 in [25], when he described a method for
reconstructing matrices of zeroes and ones from two projections. He
also gave necessary and sufficient conditions on the projections for the
existence of this reconstruction. In the next definition let us consider
vertical and horizontal projections of a binary matrix (a matrix of ze-
roes and ones).

4.5. Definition. Let R = (r1, . . . , rm) be a sequence of row sums or a
row sum vector and let C = (c1, . . . , cn) be a sequence of column sums
or a column sum vector. Clearly

(4.6)
m∑
i=1

ri =
n∑
j=1

cj

as both sums are equal to the number of ones in the binary matrix.
The class of all binary matrices A = (aij) that share the same row- and
column sums is often denoted by U(R,C).

(4.7)
n∑
j=1

aij = ri, i = 1, . . . ,m

(4.8)
m∑
i=1

aij = cj, j = 1, . . . , n

Ryser also described the following condition that can be used to find
out whether there is a possible reconstruction with given row- and col-
umn sums, or in other words to find out if the class of matrices U(R,C)
is nonempty:

Let us denote a matrix in which on every row i, i = 1, . . . ,m there
are ri ones followed by n − ri zeroes by A . This kind of a matrix is
called maximal. A row sum vector of a maximal matrix determines it
uniquely. Now let us denote its column sum vector by C = (c1, . . . , cn).
Clearly rearranging the terms on each row have no effect on the row
sum, so R = R. Let us then denote the non-increasing permutations
of the elements of the row- and column sum vectors R and C by R′,
that is r′1 ≥ r′2 ≥ · · · ≥ r′m and C ′, that is c′1 ≥ c′2 ≥ · · · ≥ c′n.
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4.9. Theorem. Let R and C be the row- and column sum vectors of a
binary matrix. The class U(R,C) is nonempty if and only if

(4.10)
n∑
j=l

c′j ≥
n∑
j=l

cj for 2 ≤ l ≤ n.

(For proof, see [25] or [2].)

Using this method for the previous example 4.1 , we can easily see
that the solution exists, just like we already saw by actually finding two
possible solutions. Rearranging the elements of the column sum vector
C in a non-increasing order we get C ′ = (c′1, c

′
2, c
′
3, c
′
4) = (2, 2, 2, 1). To

find C we first need to find the maximal matrix with given row sums,
this happens by stacking all the ones on each row on the left. Now it
is easy to see that C = (c1, c2, c3, c4) = (3, 3, 1, 0). To use the theorem
4.9 we only need the elements from the second element onwards on
each of the vectors. If the vectors were very long, calculating the sums
and making the comparisons for all l ≥ 2 would of course be very time
consuming. In this situation, however, it is easy to see that

4∑
j=2

c′j = 2 + 2 + 1 = 5 ≥
4∑
j=2

cj = 3 + 1 + 0 = 4,

4∑
j=3

c′j = 2 + 1 = 3 ≥
4∑
j=3

cj = 1 + 0 and

4∑
j=4

c′j = 1 ≥
4∑
j=4

cj = 0

so for all 2 ≤ l ≤ n,

n∑
j=l

c′j ≥
n∑
j=l

cj.

There is an algorithm that reconstructs a binary matrix based on
its row- and column sum vectors (see for example Herman & Kuba,
[2]), but determination of the precise number of matrices in U(R,C)
remains an open problem.

The question of uniqueness in respect to reconstructing binary matri-
ces from two projections is really not much more complicated than the
question of existence, but at least using the original method that Ryser
provided we first need to have one reconstruction. A binary matrix is
said to be unique if and only if there exists no other binary matrix with
the same row- and column sums. For finding out if a reconstruction is
unique, we need an element called switching component :
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4.11. Definition. In a binary matrix A a switching component is a 2x2
submatrix of either one of the two forms

(4.12) A1 =

[
1 0
0 1

]
or A2 =

[
0 1
1 0

]
Switching operation is one that changes a type A1 submatrix into type
A2 or vice versa. All the other elements in matrix A remain unchanged.

Switching operation clearly does not change the row- and column
sums and thus a binary matrix A is not unique if it has at least one
switching component. The reverse of the statement seems less intuitive
but is nevertheless true.

4.13. Theorem. A binary matrix is non-unique with respect to its row
and column sums if and only if it has a switching component.

In addition to non-uniqueness Ryser also showed that a binary ma-
trix A in with a switching component can be transformed into any
other matrix with the same row- and column sums with a finite num-
ber of switching operations (Proof: Ryser, [25]). Interestingly, Kong
and Herman in chapter 3 of [2] later proved that no similar result is
true for any grid that has grid lines in three or more directions. The
questions of uniqueness and reconstruction have to be approached in
a different way when dealing with discrete tomographic reconstruction
problems with three or more projections.

In the example 4.1 it is easy to see that the first suggested recon-
struction has three switching components and is thus not unique, as we
already saw by finding two different reconstructions with the given row
and column sums. A version of the previous theorem 4.9 can also be
used to find out if a matrix is unique. By considering equality instead
of the possible inequality we get a situation that with binary matrices
is equivalent to the non-increasing permutation of elements in column
sum vector C being equal to the column sum vector of the maximal
matrix A; C ′ = C:

(4.14)
n∑
j=l

c′j =
n∑
j=l

cj for 2 ≤ l ≤ n.

The equivalence is a result from all of the terms in vectors C ′ and C
having to be the same from the second element on for the sums to be
equal for 2 ≤ l ≤ n, clearly the first element has to be the same in both
vectors then also. A maximal matrix A is always unique as the ones
are stacked on the left on each row and so a zero can never be placed on
the left side of a one and A can thus not have a switching component.
The same goes for any matrix A that has been obtained from A by a
permutation of columns. As all the column sums have to be the same
for the terms to be equal, this is obviously the case if C ′ = C and thus
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if 4.14 is true for matrix A, it is unique with respect to its row- and
column sums. This condition was most likely first found by Y.R. Wang
and published in 1975 in [26].

Knowing that a binary matrix satisfies 4.14 and is thus unique, we
can more easily reconstruct it using for example the following algorithm
according to [2]:

4.15. Algorithm. As an input we have a pair of vectors, (R,C), that
are as previously the row- and colums sums of a binary matrix. To use
this algorithm, the vectors must satisfy 4.14. Now the matrix can be
reconstructed using the following three steps:

Step 1. A = 0; (zero matrix)
Step 2. Find i1, i2, ..., im such that ri1 ≥ ri2 ≥ · · · ≥ rim ;
Step 3.

For j = 1 to n,

for k = 1 to cj,

aikj = 1;

Output: Matrix A.

4.16. Example. Let us try this out in practice. We must first have
the row- and column sums of a matrix A that satisfies 4.14, that is
to say a unique matrix. In practice this means that the column sum
vector of the matrix A has to have the exact same elements as the
column sum vector of the maximal matrix A. For example the pair of
vectors R = (3, 1, 3) and C = (2, 0, 3, 2) satisfies this condition as now
C ′ = (3, 2, 2, 0) and C = (3, 2, 2, 0) and clearly the sums

∑4
j=l c

′
j and∑4

j=l cj are equal for all 2 ≤ l ≤ n. We start the reconstruction from a
zero matrix of the right size, in this case 3x4:
1.

A =

 0 0 0 0
0 0 0 0
0 0 0 0


For the second step we need to find i1, i2 and i3 such that the elements
of the row sum vector are in a non-increasing order. If i1 = 1, i2 = 3
and i3 = 2 we see that
2.

ri1 = r1 = 3, ri2 = r3 = 3 and ri3 = r2 = 1

For the third and the last step we need to be replacing zeroes in the
matrix A above with ones so that for j = 1, 2, 3, 4 and for k = 1, . . . , cj
the elements aikj = 1. Let’s look at all the values of j one by one:
3.

j = 1 : k = 1, . . . , c1 = 1, 2. Now ai11 = a11 = 1 and ai21 = a31 = 1.
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j = 2 : k = 1, . . . , c2 = 1 to 0. No results.

j = 3 : k = 1 . . . c3 = 1, 2, 3. Now ai13 = a13 = 1, ai23 = a33 = 1

and ai33 = a23 = 1.

j = 4 : k = 1, . . . , c4 = 1, 2. Now ai14 = a14 = 1 and ai24 = a34 = 1.

From this we get an output of a matrix

A =

 1 0 1 1
0 0 1 0
1 0 1 1


which as we can see corresponds to the row- and column sums of
R = (3, 1, 3) and C = (2, 0, 3, 2).

A binary matrix that is bigger in size being unique in respect to its
row- and column sums is of course a fairly unlikely situation to hap-
pen, so this algorithm cannot in most situations be used. In the book
Discrete Tomography: Foundations, Algorithms and Applications ([2])
Herman and Kuba give a version of this algorithm that can be used
in a general situation. They also give a proof that the algorithm in
fact gives a matrix belonging to U(R,C) as output. That algorithm,
however, is too complicated to be used as an example that is done by
hand in order to demonstrate the different steps.

4.2.2. Convexity and other prior information. Whether or not a binary
matrix is convex is an important factor in both reconstructing from two
projections or more. Convexity means the same thing it always does,
that you can draw a straight line from any point of the object to any
other point without crossing a boundary or leaving the object. A lattice
set A that is a subset of Zn is said to be convex if A = convA ∩ Zn.
For binary matrices different levels of convexity are described based on
whether ones (or in case of binary images white pixels) are all following
each other consecutively. The formal definition is as follows:

4.17. Definition. A binary matrix is h-convex (horizontally convex) if
in the rows the ones follow each other consecutively. A binary matrix
is v-convex (vertically convex) if in the columns ones follow each other
consecutively. A binary matrix is hv-convex if it is both h-convex and
v-convex.

When a binary matrix or a binary image is simply called convex,
this generally refers to it being hv-convex but in a way where it only
contains one convex body. Hv-convex set can have several, which is
demonstrated in the rightmost image below. In the image below con-
vexity is demonstrated using binary images where ones are seen as
white and zeroes are seen as black instead of binary matrices as it is
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easier to see whether an a white shape in black background is convex
even with a quick glance.

Figure 15. The leftmost image is h-convex, the one in
the middle is hv-convex and the one on the right hand
side is also hv-convex but consists of two separate hv-
convex bodies.

With the binary images where the zeroes and ones of binary matrices
are expressed as black and white pixels, the convexity can also be
studied based on boundary length. When the length of the side of
one pixel is considered to be one, the boundary of a binary image
is defined as the set of line segments that separate the black pixels
from the white pixels. A binary matrix that has m nonzero row sums
and n nonzero column sums is hv-convex if its boundary length is
2m + 2n. One problem with this method of looking at convexity is
that clearly an image and its negative have the same boundary lengths
or in other words, there is no way differentiating between an image,
where the convex bodies are formed by ones from an image where the
convex bodies are formed by zeroes. Based on line sums it is not always
possible to know whether there exists an hv-convex reconstruction, but
if the line sums and the boundary length are known, relatively good
assumptions of the shapes of the objects formed by white pixels in the
image can sometimes be made. If for example the line sums are large
(relative to the size of the binary image in question) but the boundary
length is small, it is easy to guess that the white pixels (with value
one) form some sort of a solid object [28], [34].

4.3. Discrete tomography with larger number of projections.
By knowing the length of the boundary or by having some other prior
knowledge of the binary matrix (or the binary image or lattice set)
in addition to the row- and column sums one can in some cases in-
crease their chances of finding a unique reconstruction. In most cases,
however, additional projections are needed. Problematically, the com-
putationally effective reconstruction strategies for binary images from
two projections suggested by among others Ryser and Gale (whose
strategy was based on network flow problems) become NP-hard in sit-
uations where the number of projections is larger. New algorithms
are needed for situations where the number of projections is larger
than two but still significantly smaller than the number of projections
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needed for adequate reconstructions in CT. Combinatorics-based re-
construction strategies such as the ones proposed by Ryser are not the
only possible approach; some of the different points of view from which
DT problems can also be solved are statistical, continuous optimiza-
tion and discrete algebraic reconstruction technique (DART), which is
an algorithm based on continuous method with a discretization step.
DART-algorithm is discussed more later on. In the following chapters,
whenever a particular algorithm is introduced, this thesis follows the
notation of the original author.

In 1997, less than 3 years after the first mini-symposium on discrete
tomography was organized, R. J. Gardner and P. Gritzmann proved
that in Z2 there are certain prescribed sets of four lattice directions
that any convex lattice set can be distinguished from any other such
set based on its projections in these directions. They also showed that
this cannot be achieved with a number of projections smaller than four.
In order to provide uniqueness, the four lattice directions have to be
such that their slopes do not yield a cross ratio of 4/3, 3/2, 2, 3 or 4.
For more information on this, see [27]. Using only four projections in
a real measurement situation would, however, be very risky as even a
small change in suitable four directions can lead to a set of projections
that does not determine the object being reconstructed uniquely. The
result showing that certain set of four lattice directions is enough to de-
termine a convex lattice set in Z2 can be easily extended to Zn, n ≥ 2.
In their paper Gardner and Gritzmann also showed that any seven mu-
tually nonparallel lattice directions suffice to determining any convex
subset of Z2 from any other such set uniquely and that also in this case
seven is the smallest possible number with which this can be achieved
[27].

The number of projections required for determining a convex poly-
gon in Z2 can be reduced to three by using an iterative method called
successive determination first proposed by Edelsbrunner and Skiena in
[28] where the previous projections are utilized to help decide the best
directions for following x-rays. For a more general case, Gardner and
Gritzmann proved that any finite subset of Zn can by using successive
determination be distinguished from any other such set by n/(n − k)
projections on (n− k)-dimensional lattice subspaces. The results pro-
posed by Gardner and Gritzmann only apply to determining the convex
lattice sets, finding an algorithm with which any convex set in Z2 could
be reconstructed is a problem to which they did not find a solution. Six
years later S. Brunetti and A. Daurat continued the work of Gardner
and Gritzmann by presenting an algorithm with which convex subsets
of Z2 can be reconstructed based on their x-rays in a suitably chosen
set of four lattice directions or any set of seven mutually nonparallel
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lattice directions [29].

Many algorithms of discrete tomography require the object that is
being reconstructed to have certain properties such as being convex in
the direction of the x-rays in same manner as h-, v- and hv-convexity
described in 4.17. It can be more generally defined as follows:

4.18. Definition. A lattice set F is line-convex with respect to direc-
tion p if intersections of all lines of p with the set F are the sets of
points with integer coordinates of straight line segments.

For Z2 this means that on each line of the direction p, all the integer
pairs that form the coordinates that are on the line segment from the
point where the line enters F to the point where it exits it are in F .
In addition to h-, v-, and hv-convexities that are defined as before, we
say that F is d-convex (respectively hd-, vd- or hvd-convex) if it is
convex with respect to diagonal direction, meaning direction directed
by vector (1, 1).

4.19.Definition. A lattice set F is convex if is the intersection between
Z2 and its convex hull, denoted by Conv(F ), which is the smallest of
all the convex sets containing F .

Another property that many algorithms of discrete tomography ex-
pect of the binary matrix, -image or the lattice set being reconstructed
is connectivity :

4.20. Definition. A 4-path is a finite sequence of points (M0,M1, . . . ,
Mn) ∈ Z2 such thatMi+1−Mi is in the set {(±1, 0), (0,±1)}. A lattice
set F is 4-connected if for any A,B ∈ F there is a 4-path from point A
to point B. A 4-connected lattice is also called a polymino.

Even though polyminoes and thus 4-connectivity is the most im-
portant and the most restrictive type of connectivity at least for the
purposes of discrete tomography, sometimes 8- and 6-connectivities are
also used. They are defined like 4-connectivity, except that the follow-
ing point can in 8-connectivity’s case be any of the surrounding dots
and in 6-connectivity’s case the one on left, right, up, down, lower left
or upper right. More formally:

4.21.Definition. An 8-path (respectively a 6-path) is a finite sequence
of points (M0,M1, . . . ,Mn) ∈ Z2 such that Mi+1 − Mi is in the set
{(±1, 0), (0,±1), (±1,±1)}, (respectively {(±1, 0), (0,±1), (1, 1),
(−1,−1)}).

8-connected and 6-connected lattice sets are defined just as a polymino
but for 8-path and 6-path in place of the 4-path [29].

4.4. Some reconstruction algorithms for discrete tomography.
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Figure 16. Above are directions of a 4-path (left) and
a 6-path(right) and below a polymino and a 6-connected
lattice set respectively.

4.4.1. A reconstruction algorithms proposed by Brunetti, Daurat and
Del Lungo. In [30] Brunetti and Daurat offer an algorithm for recon-
structing convex lattice sets for x-rays from two directions, but for a
situation with x-rays from more than two directions they only gave the
following result:

4.22. Theorem. Let D = {v1, . . . , vd} be a set of directions such that
d ≥ 7 or one of the cross-ratios of the slopes of four directions arranged
in an increasing order is not in {4/3, 3/2, 2, 3, 4}. We have d vectors(
pvi(minvi), . . . , pvi(maxvi)

)
1≤i≤d. A convex set such that XvjF (j) =

pvi(j) for all i ∈ [1, d] and j ∈ [minvi ,maxvi ] can be reconstructed in
O(d2n5) time.

For proof, see [30].

Soon after, they wrote paper [31] in collaboration with A. Del Lungo,
in which they present an algorithm, which can be used to reconstruct
convex lattice sets based on approximate x-rays. This is a realistic
situation as in practice measurement noise and inaccuracies lead to
only approximate x-rays ever being available. It is, however very slow
to use for sets that are simply convex and thus they present a class
called Q-convex (or strongly Q-convex, which is a version where Q-
convexity is generalized to any set of directions) lattice sets.

4.23. Definition. Let D be a set of to independent linear lattice di-
rections p and q on Q2. Let us assume that p(x, y) = ax + by and
q(x, y) = cx + dy where a, b, c, d ∈ Z, ad − bc 6= 0, gcd(a, b) = 1 and
gcd(c, d) = 1. Let M = (xM , yM). We now denote p(xM , yM) = p(M).
Now x-ray of a lattice set in the direction p(M) (a constant) is the
following function XpF : Z→ N0:

(4.24) XpF (i) = card({N ∈ F : p(N) = i}).
Now function XpF gives the number of lattice points of F on each line
parallel to direction p. Let us now define four zones around a point
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M ∈ Z2:

Z0(M) = {N ∈ Z2 : p(N) ≤ p(M)andq(N) ≤ q(M)}(4.25)
Z1(M) = {N ∈ Z2 : p(N) ≥ p(M)andq(N) ≤ q(M)}
Z1(M) = {N ∈ Z2 : p(N) ≥ p(M)andq(N) ≥ q(M)}
Z1(M) = {N ∈ Z2 : p(N) ≤ p(M)andq(N) ≤ q(M)}

Figure 17. Lines p(M) = i and q(M) = j and zones
Z0, . . . , Z3.

Using the previous definitions we can now define Q-convexity:

4.26. Definition. A lattice set F is quadrant convex or Q-convex
around D = {p, q} if Zk(M) ∩ F 6= ∅ for all k = 0, 1, 2, 3 implies
M ∈ F .

In other words this means that if there is at least one point of F in
all four zones Zk(M), k = {0, 1, 2, 3}, the point M has to belong to F .
A Q-convex set around two directions is always also line convex with
respect to those directions. Let P = (p1, . . . , pn), P ′ = (p′1, . . . , p

′
n), Q =

(q1, . . . , qm) and Q′ = (q′1, . . . , q
′
m) be vectors whose elements are non-

negative integers and the first and the last element in each vector are
positive. A Q-convex set F around D with x-rays such that pi ≤
XpF (i) ≤ p′i and qj ≤ XqF (j) ≤ q′j for all i, j is contained in the
following lattice parallelogram:

(4.27) ∆ = {N ∈ Z2 : 1 ≤ p(N) ≤ n and 1 ≤ q(N) ≤ m}
Let us denote the pointM ∈ ∆ the intersection of the p-line p(M) =

i and q-line q(M) = j by M = (i, j). Let K = {1, 2, 3, 4}. To use the
algorithm of Brunetti, Daurat and Del Lungo, four Boolean variables
Vk(M) have to be associated one with each zone Zk(M). Then a 2-
satisfiability formula is built on these variables so that there is a Q-
convex set F around D such that pi ≤ XpF (i) ≤ p′i for i = 1, . . . , n
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and qj ≤ XqF (j) ≤ q′j for j = 1, . . . ,m if and only if the 2SAT formula
is satisfiable. If an evaluation V of the variables Vk(M) satisfying the
2SAT-formula exists, F is defined by the function φ:

(4.28) F = φ(V ) iff F = {M ∈ ∆ : Vk(M) is true ∀ k ∈ K}

where Vk(M) is true if and only if Vk(M) is false. The constraints of the
2SAT formula are Q-convexity, lower bound and upper bound on the x-
rays. With lower bound the purpose is to express that in the direction
p the x-ray values of the lattice set are greater than some prescribed
integers. For line p(M) = i must be XpF (i) ≥ l for the variables Vk(M)
to satisfy the lower bound constraint. The upper bound constraint is
satisfied if in the direction q the x-ray values are smaller than some pre-
scribed integers, for line Xq(M) = j must be XqF (j) ≤ l.To see how
Q-convexity, upper- and lower bound can be expressed with Boolean
variables, see [31].

4.29. Algorithm. Now let us fix four bases A,B,C and D such that
p(A) = 1, p(B) = n, q(C) = 1 and q(D) = m. The following 2SAT-
formula named APPROX presented by Brunetti, Daurat and Del Lungo
is satisfiable if and only if there is a Q-convex set F around D contain-
ing the bases A,B,C and D with x-rays along p and q such that pi ≤
XpF (i) ≤ p′i for i = 1, . . . , n and qj ≤ XqF (j) ≤ q′j for j = 1, . . . ,m:

APPROX(P, P ′, Q,Q′, A,B,C,D) =(4.30)

QCONV ∧
∧

1≤i≤n

(
(LB(p, i, pi) ∧ UB(p, i, p′i, C,D)

)
∧
∧

1≤j≤m

(
LB(q, j, qj) ∧ UB(q, j, q′j, A,B)

)
where P, P ′, Q and Q′ are as before, QCONV stands for Q-convexity,
LB for lower bound and UB for upper bound. These conditions can be
expressed in the following way:

4.31. Lemma. If an evaluation V of the variables Vk(M) satisfies the
formula QCONV, then F = φ(V ) is Q-convex around D.

If an evaluation V of the variables Vk(M) satisfies QCONV∧LB(p, i, l),
then the x-ray of F = φ(V ) along p is such that XpF (i) ≥ l.

If an evaluation V of the variables Vk(M) satisfies QCONV
∧UB(q, j, l, A,B), then F = φ(V ) contains the bases A and B and its
x-ray of along q is such that XqF (j) ≤ l.

For proof and formal definitions of QCONV, LB(p, i, l) and
UB(q, j, l, A,B), see [31].
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The algorithm chooses bases A,B,C and D and builds the formula
4.30. If the formula is satisfiable, the solution is given by F = φ(V ). If
the reconstruction attempt fails, the algorithm chooses new four bases
and repeats the procedure. For proof and additional information about
how to use the algorithm, see [31].

In a situation where P = P ′ and Q = Q′ and
∑n

i=1 pi =
∑n

j=1 qj
the problem of finding suitable a Q-convex set F around D becomes
exact consistency problem. For solving that, Brunetti, Daurat and Del
Lungo propose the following algorithm:

4.32. Algorithm. Let A and B be two bases such that p(A) = 1 and
p(B) = n. The following formula named EXACT is satisfiable if and
only if there is a Q-convex set F around D containing bases A and B
and with x-rays along p and q such that XpF (i) = pi for i = 1, . . . , n
and XqF (j) = qj for j = 1, . . . ,m.
(4.33)
EXACT(P,Q,A,B) = QCONV

∧
1≤i≤n

LB(p, i, pi)
∧

1≤j≤m

UB(q, j, qj, A,B)

For proof and additional information, see [31]. This algorithm may
be attractive in theoretical situations, especially as in both algorithms
the number of possible positions of the bases is what defines the maxi-
mum number of reconstruction attempts and it is obviously much lower
in the second algorithm. The conditions of the algorithm 4.32 are,
however, not always met and with practical measurements the previ-
ous formula 4.29 is most likely more applicable.

For an algorithm that can reconstruct a lattice set from x-rays from
more than two directions, additional conditions are required. First we
need to define Q-convexity around larger number of directions:

Let U be a set of d directions { ~uh = (ah, bh)
d
h=1} where ah and bh

are a pair of coprime integers and bh ≥ 0. The vector ~uh = (ah, bh) can
be expressed in linear form in the following way: uh(x, y) = bhx− ahy.
Given two directions ui, uj ∈ U the four zones Z(i,j)

k (M) are defined as
in 4.25 around every point M ∈ Z2. Altogether there are 2d(d − 1)
zones around each M ∈ Z2. Let us choose 2d of these zones. The point
M on a line in the direction uh divides it into two semi-lines that have
origin in M :

s+h (M) = {N ∈ Z2 : uh(N) = uh(M) and ~uh · ( ~ON) ≥ ~uh · ( ~OM)}

s−h (M) = {N ∈ Z2 : uh(N) = uh(M) and ~uh · ( ~ON) ≤ ~uh · ( ~OM)}
where O stands for any point of origin and ′′·′′ is a scalar product of
two vectors.
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4.34. Definition. An almost-semi-plane along a set of directions U is
a zone Z(i,j)

k (M) such that for each direction uh of U only one of the
two semi-lines s+h (M) and s−h (M) is contained in it.

Brunetti, Daurat and Del Lungo denote the almost-semi-planes sur-
rounding M in the following way:

Let
∏

0(M) be the almost-semi-plane that contains s+h (M) for each
h = 1, . . . , d. The other almost-semi-planes encountered clockwise
around M from

∏
0(M) are

∏
1(M), . . . ,

∏
2d−1(M). Using almost-

semi-planes Q-convexity can now be defined for more than two di-
rections:

4.35. Definition. A lattice set F is strongly Q-convex around a set of
directions U if and only if for each M /∈ F there exists an almost-semi-
plane

∏
k(M) around M such that F ∩

∏
k(M) = ∅.

The reconstruction algorithm for more than two directions now tries
to find out whether there is a strongly Q-convex set F around U such
that

(4.36) ph,i ≤ XuhF (i) ≤ p′h,i for i = 1, . . . , nh and d = 1, . . . , h

where P1 = (p1,1, . . . , p1,n1), P
′
1 = (p′1,1, . . . , p

′
1,n1

), . . . , Pd = (pd,1, . . . , pd,nd)
and P ′d = (p′d,1, . . . , p

′
d,nd

) are 2d vectors whose elements are non-negative
integers and the first and the last element of each vector are positive.

Similarly to 4.27, a Q-convex set F around U with x-rays such that
ph,i ≤ XuhF (i) ≤ p′h,i is contained in a lattice polygon:

(4.37) ∆ = {N ∈ Z2 : 1 ≤ uh(N) ≤ nh ∀ 1 ≤ h ≤ d}

With the difference of changing Zk(M) to
∏

k(M), the same strategy
as before can now be used to find if there is a strongly Q-convex set
as described in 4.36. A 2SAT formula is built on Boolean variables
Vk(M) where K = {0, 1, . . . , 2d− 1} and M ∈ ∆ so that the described
strongly Q-convex set F around U exists if and only if the formula is
satisfiable. If there is an evaluation V of the variables Vk(M) satis-
fying the 2SAT formula, the solution is given by F = φ(V ) where φ
is defined as before. The formula APPROX can easily be generalized
to a situation with several x-rays. The constraints of APPROX are
the same as before with the exception of QCONV being replaced by
SQCONV, strong Q-convexity.

The lower bound for strongly Q-convex sets does not differ much
from the Q-convex case, but the formula by which upper bound is
expressed depends on a much larger number of bases:

SUB(p, i, p′i, A1, B1, . . . , Ah−1, Bh−1, Ah+1, Bh+1, Ad, Bd)
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Aj and Bj are the bases in the direction uj. While the reader is re-
ferred to the original paper of Brunetti, Daurat and Del Lungo [31] for
the formal definition of the Boolean expression for SUB, the following
lemma explains the bases that appear in the formula:

4.38. Lemma. Let K be a set of indices {0, 1, . . . , 2d − 1} and K+
h =

{t ∈ K : s+h ⊂
∏

t(M)}. For any M ∈ ∆ such that uh(M) = i
there exists at most one k ∈ K+

h such that for any k′ ∈ K+
h \{k} the

almost semi-plane
∏

k′(M) contains one of the points A1, B1, . . . , Ah−1,
Bh−1, Ah+1, Bh+1, Ad, Bd.

For proof, see [31].

The algorithm as proposed by Brunetti, Daurat and Del Lungo for
reconstructing strongly Q-convex lattice sets from more than two pro-
jections can now be written in the following way:

4.39. Algorithm. Let P1, P
′
1, . . . , Pd, P

′
d be as before. Let us fix 2d

bases A1, B1, . . . , Ad, Bd where each pair of bases corresponds to one
of the d directions. The following formula is satisfiable if and only if
there is a strongly Q-convex set F around U that has x-rays along uh
as described in 4.36 and that contains the bases A1, B1, . . . , Ad, Bd:

APPROX(P1, P
′
1, . . . , Pd, P

′
d, A1, B1, . . . , Ad, Bd)(4.40)

= SQCONV ∧
∧

1≤h≤d,1≤i≤nh

SLB(uh, i, pi)

∧SUB(p, i, p′i, A1, B1, . . . , Ah−1, Bh−1, Ah+1, Bh+1, Ad, Bd)

For the ways SQCONV, SLB and SUB are expressed with Boolean
variables, see [31].

The algorithm works by choosing d pairs of bases for which it builds
the 2SAT formula APPROX. As before, the number of different posi-
tions the bases can take defines the maximum number of attempts it
can take to reconstruct F , which in this case is n2d.

4.4.2. Discrete algebraic reconstruction technique (DART). The dis-
crete algebraic reconstruction technique, often referred to as the DART-
algorithm, was proposed by Batenburg and Sijbers in 2007 in their
paper [32]. In 2011 they wrote a new, more elaborate paper [33] on
the subject, giving a description of the algorithm along with practical
examples validating it, which was needed as DART is a heuristic al-
gorithm without a guarantee of convergence. In the latter paper they
also went on to show that when only a small number of projection
images is available or the angular range of the projections is small,
DART-algorithm gives more accurate reconstructions than alternative
methods. The algorithm is also robust against noise. It works by first
solving a problem as if it were a problem of continuous tomography
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using some algebraic reconstruction method, which is a group of it-
erative reconstruction techniques, and then discretizing reconstructed
values by setting them to closest one of the possible values the image
is known to attain.

DART-algorithm differs from many other algorithms of discrete to-
mography in a few important ways. First of all, the images recon-
structed using DART do not necessarily need to be binary, it works
with any set of allowed grey values {p1, p2, . . . , p`}, although it works
best when the number of grey values is not larger than five. Even
though there needs to be prior knowledge about the grey values and
simply knowing that the number of different values is small enough
will not suffice for the purposes of DART-algorithm, it is robust with
respect to errors in estimation of the values. Secondly, even though
DART-algorithm gives good results when the number of projections is
small, it can be used also when the number of projections is in dozens
or even hundreds. Thirdly, as has been mentioned earlier, many algo-
rithms of discrete tomography require the object to be of a particular
shape or to have specific convexity or connectedness properties. Many
algorithms can only reconstruct for example hv-convex or Q-convex ob-
jects. With DART there are no particular requirements for the shape
of the object being reconstructed.

0: The initial step To use DART-algorithm, one first needs to ex-
ecute a fixed number of iterations with some algebraic reconstruction
method (the group of algebraic reconstruction methods is often called
ARMs). This part is the initial step. A range of different algebraic
reconstruction methods can be used for this. The one Batenburg and
Sijbers use in their paper is called SART (short for Simultaneous Al-
gebraic Reconstruction Technique), which is an algorithm in which the
reconstruction is updated with each projection angle separately. Fol-
lowing is a very brief description of SART:

Let W ∈ Rm×n
≥0 be a linear operator called the projection matrix

that maps the image x = (xi) ∈ Rn to p, which is a vector of measured
data:

(4.41) Wx = p

W and p can be decomposed into d blocks of k rows in the following
way:

(4.42) W =

 W 1

...
W d

 ,p =

 p1

...
pd
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Each of the blocks W t = (wtij) represents the projection operator from
one angle and pt the corresponding projection data. Now let γtj =∑k

i=1w
t
ij for j = 1, . . . , n and t = 1, . . . , d and let βti =

∑n
j=1w

t
ij for

i = 1, . . . ,m and t = 1, . . . , d. We denote the set of all permutations of
the numbers 1, . . . , d by Sd. Let σ be a random element of Sd. To use
the SART-algorithm, we first need to make and initial guess x = x(0).
The algorithm computes a new estimate x(s), s = 1, 2, . . . iteratively
from the previous estimate x(s−1) using the formula

(4.43) x
(s)
j = x

(s−1)
j + λ

1

γ
σ(s)
j

k∑
i=1

w
σ(s)
ij r

(s)
i

β
σ(s)
i

, j = 1, . . . , n

where r(s) = pσ(s) −W σ(s)x(s−1) and λ is a relaxation factor [33].

1: The segmentation The next step in using the DART-algorithm is
to get an image that consists of pixels of only the allowed grey values
{p1, p2, . . . , p`}. This is achieved by segmenting the image. Let x(t−1)

be the current reconstruction in the beginning of the tth iteration. The
segmented reconstruction s(t) ∈ Rn is computed from x(t−1) so that
each pixel has one of the allowed grey values {p1, p2, . . . , p`}. A common
way to do this is by simply rounding the pixel values to whichever of
the grey values is closest to it. While there are several ways to get the
segmentation, one more formal way to do this is by defining a threshold
τi by the following formula:

(4.44) τi =
pi + pi+1

2
, i = 1, 2, . . . , `− 1

Using this, we can define a threshold function r : R→ {p1, p2, . . . , p`}:

(4.45) r(v) =


p1, v < τ1
p2, τ1 ≤ v < τ2

. . .
pn, v ≤ τ`−1

.

2: Selection of free pixels After the segmentation step the image is
further divided into two groups of pixels: free pixels that are denoted
by U (t) and fixed pixels that are denoted by F (t). The set U (t) consists
of pixels that are adjacent to at least one pixel that has different grey
value. One can either choose the adjacent pixels of pixel i to be the
ones 4-connected to it or the ones 8-connected to it. DART used the
8-connected neighbourhood of pixel i. This neighbourhood is denoted
by N(i) ⊂ {1, 2, . . . , n}. Set F is formed of the pixels that are not free.
Note that U (t)∩F (t) = ∅ and all the pixels in the image are in U (t)∪F (t).
Edges or boundaries of the object are formed of the free pixels, as they
are the part where the change from one density or a grey value to an-
other happens. The boundary pixels, denoted by B(t) ⊂ {1, 2, . . . , n},
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are calculated from s(t).

If the shape of the object is such that there are for example holes
in it, the edges of the holes should of course be also formed of free
pixels. This, however, does not always happen which leads to DART-
algorithm overlooking possible holes in the structure of the object. To
avoid this, a subset of free pixels that are not connected to current
edge must be selected with each iteration step and updated along with
pixels that form the current edge. This is done by supplementing the
set U (t) with some random pixels from F so that each fixed pixel is
freed independently of neighbouring pixels with a probability of 1− p
where 0 < p ≤ 1. This process also helps with problems caused by
noisy measurement data and grey level errors. Only the set of free
pixels U (t) is subjected to update with each iteration step of DART.
First, only the boundary pixels are selected as free pixels: U (t) = B(t).
Some fixed pixels are then added to U (t) by a randomized procedure as
described above. With each new DART-update the selection process
will change. This allows changes to happen in the areas of the image
that are not close to the current edge.

3: Arm with fixed pixels: In the following, we consider the operation
of fixing pixels more thoroughly. Let

(4.46)

 | |
w1 . . .wn

| |

 x1
...
xn

 =

 p1
...
pm


be a linear system where wi denotes the ith column vector of W . Next
step in using the DART-algorithm is to define an operation that fixes
the variable xi at value vi ∈ R. The goal is to be able to compute
xiwi ∈ Rm beforehand so that the variable xi can be removed from
x, the column wi from W and viwi can be subtracted from the right-
hand-side. We now get a new system:

(4.47)

 | | | |
w1 . . .wi−1 wi+1 . . .wn

| | | |




x1
...

xi−1
xi+1
...
xn


=

 p1
...
pm

− viwi

This new system has the same number of equations as the original sys-
tem 4.46 but the number of variables has decreased by one.

With each DART-iteration, pixels i in the set F (t) are fixed in their
values s(t)i . This further reduces the number of variables from n to
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n− | F (t) |. Now the following version of the system that only has free
pixels as variables can be solved with a constant number of iterations
using the chosen algebraic reconstruction method:

(4.48) W̃ x̃ = p̃

Given that the grey values assigned for the fixed pixels are close to
being correct with respect to the unknown object being reconstructed,
solving the system 4.48 should improve the values of the remaining free
pixels compared to solving the underdetermined system 4.46.

4: Smoothing operation: The measurement noise now only affects
the free pixels, causing heavy fluctuations on their values. To deal
with this problem, we need a smoothing operation. In order to regu-
larize the system, after applying the algebraic reconstruction method,
a Gaussian smoothing filter with radius of one is applied to the bound-
ary pixels.

5: Termination criterion: The last step in using the DART-algorithm
is setting a termination criterion. While many practical examples per-
formed by Batenburg and Sijbers demonstrate that in the relevant sit-
uations they studied the algorithm rapidly converges towards an ac-
curate reconstruction, due to the heuristic nature of the algorithm, it
cannot be formally stated under what conditions it converges. The
termination criterion can be either a fixed number of iterations or the
total projection error E : Rn → R defined as

(4.49) E(x) =‖Wx− p ‖2
Initial ARM
reconstruction

Segment the
reconstruction

Identify the
fixed pixels
F and the

free pixels U

Apply ARM to
the free pixels U

Is the stop
criterion met?

Smooth the
reconstruction

Final recon-
struction

no

yes
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Above: Flowchart of the DART-algorithm.

Following is the DART-algorithm in pseudo code as presented by
Batenburg and Sijbers in [33].

4.50. Algorithm. DART-algorithm

Compute a start reconstruction x(0) using ARM;
t := 0;
while (stop criterion is not met) do;
begin

t:=t+1;
Compute the segmented image s(t) = r(x(t−1));
Compute the set B(t) of the boundary pixels of s(t);
Compute the set U (t) of the free pixels of s(t);
Compute the set F (t) = {1, . . . , n} \ U (t) of fixed pixels;
Compute the image y(t) from x(t−1) and s(t), setting

y
(t)
i := s

(t)
i if i ∈ F (t) and y(t)i := x

(t−1)
i otherwise;

Using y(t) as the start solution, compute the
ARM-reconstruction x(t), while keeping the pixels
in F (t) fixed;

Apply a smoothing operation to the pixels in U (t);

end

The results gained by using DART depend on various things. One
of the most important ones is the choice of algebraic reconstruction
method used; in addition to SART, which was described earlier, some
common choices include SIRT (short for Simultaneous Iterative Re-
construction Technique) and ART (short for Algebraic Reconstruc-
tion Technique). Other things that affect the success of the DART-
algorithm are the number and placement of the projection angles, the
number most often being much smaller than in general tomography,
and the choice of p, which gives the probability with which each pixel
is freed in each iteration. When p = 1 the set of free pixels U is not
supplemented with random pixels and DART is most often not able to
reconstruct an image with a hole, but the results improve dramatically
when p is even slightly smaller than 1. The more noise there is, the
smaller p needs to be in order to gain good reconstructions. If the level
of the noise is low a value of p closer to 1 can be chosen as then a good
reconstruction may be gained with fewer computations. For examples
of how the level of noise and the fix probability work together, see [35].
As was mentioned earlier, DART also works best when the number of
grey values is not larger than five. The number of DART-iterations is
obviously also an extremely important factor with respect to quality of
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the reconstructions [32], [33], [35].

There are two main methods for implementing the DART-algorithm:
ray-driven and pixel (or in 3D-case voxel)-driven. Ray-driven methods
visit all the pixels lying on a projection line, adding together the values
of each pixel to form a total projection of each line. The projection lines
are visited sequentially. In pixel-driven scheme the total projections
are collected simultaneously, visiting the pixels one by one. The pixel-
driven method works better for the DART-algorithm as many of the
pixels are fixed in each iteration step and only the pixels in the set
of free pixels U need to be calculated in each iteration. If the set
of fixed pixels F is large compared to the total number of pixels, the
running time of the ARM-iterations can be reduced significantly by the
use of pixel-driven scheme. If the value of each pixel i is denoted by
vi ∈ R and ith column vector of the projection matrix W is denoted
by wi ∈ Rm, the projection qi ∈ Rm of each of the pixels i is calculated
in the following way:

(4.51) qi = viwi

In the practical experiments carried out by Batenburg and Sijbers in
[33], the pixel-driven method was used on a number of phantoms of the
size 512× 512 pixels so that each projection for each angle consists of
512 detector values, one value for each pixel. Parallel beam geometry
was used in these simulated experiments and the number of grey val-
ues was between two and five, except for the well-known Shepp-Logan
phantom, in which the number of grey values is six. In these simulated
situations the images were not contaminated by noise. Compared to
the other algorithms studied (Filtered Back Projection, Total Varia-
tion Minimization, SART), DART-algorithm consistently gave more
accurate results with a smaller number of projections. Near-perfect re-
constructions were acquired depending on the complexity of the image
with a number of projections ranging from 8 to 40, 40 being the number
of projections used for reconstruction of the Shepp-Logan phantom in
which the number of grey values is larger than the suggested maximum
number for the DART-algorithm.

DART-algorithm proved even more useful compared to its contin-
uous counterparts when the reconstructions were attempted with a
limited angle of projections. DART’s ability to utilize prior knowledge
of the grey values found in the image seems to yield reconstructions
that are vastly better than those gained by algorithms of continuous
tomography. Even though SART also gave relatively good results with
incomplete angular range, DART was the only one out of the algo-
rithms tested in [33] that gave close to perfect reconstructions with as
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little as 80 degree projection angle.

In the same paper a real-life problem acquired by x-ray scanning a
diamond was also studied. In this situation the scanned object was
obviously not pixelized, so additional discretization step was added
to the procedure. As always when working with real data, the sino-
gram was contaminated by noise. With real data, the grey levels are
also often only known approximately, which can make reconstructions
with DART less accurate. as was mentioned earlier, the choice of the
probability p grows in importance when the data is noisier and also
when there are errors in the assumed values of the grey levels. The
reason why a lower fix probability yields better results when the data
is noisy is that all the noise is distributed between free pixels in the
ARM-iterations. The fewer free pixels there are, the more their value
is determined exclusively by noise. The same is true for errors in the
grey values; The smaller the number of free pixels is, the more they
will be affected by the projection error resulting from over-or under es-
timating the values. With the estimation of grey values up to 10% off
from the actual value, only 0.5% of the pixels were misclassified with
both values p = 0.5 and p = 0.85.

The main problem with the DART-algorithm is its heuristic nature.
There is no certain way to predict its behaviour in terms of conver-
gence. Even though practical trials have shown that DART converges
in a smooth way, it cannot be guaranteed that it converges towards a
correct solution. Setting the fix probability p close but not equal to 1
has given the best convergence rate but as was discussed in the previ-
ous paragraph, larger fix probabilities make the algorithm less stable
when dealing with noisy data or errors in estimation of the grey values.
In practice, even though DART-algorithm often converges slower than
its continuous counterparts and the number of iterations needed is thus
larger, the fact that the ARM-iterations only need to be performed on
a subset of pixels increases the speed of the process. Its ability to find
excellent reconstructions from a much smaller number of projections
makes it an effective tomographic tool [33].

In order to demonstrate the usefulness of DART-algorithm, similar
small image that was used in examples 3.42 and 3.45 is reconstructed in
the following example implementing it with same number of projections
as was used in 3.45. The code used for the reconstruction is from Astra
Toolbox (which can be downloaded for free online). The image used in
the other examples had to be altered some in order for it to fulfill the
requirements of the said code.
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4.52. Example. The readymade code for a reconstruction using DART
required the image that is being reconstructed to be 512 times 512 pix-
els, so significantly larger than the image used in previous examples.
It also required the edges of the image to be black for a reason that
remains a mystery to the author. It is possible that some other colour
would have worked as well but the code was run with the same image
with the colour of the edges being white and that did not work. It also
appears that not all of the area of the image is active measurement area,
the code loses everything happening closer to the edges of the image
that is not black. Actual size of the active measurement area is some-
where between 512 times 512 pixels and 300 times 300 pixels, which is
the size of the image in the middle of the black frames. The small image
used in examples 3.42 and 3.45 was altered to meet the requirements
of the code using an image processing software. As the code is not au-
thor’s own, it remains somewhat unclear whether any measures have
been taken to avoid inverse crime during the reconstruction. In the
figure 18 are the original picture and the reconstruction without added
noise. As could be expected from the examples in [32], [33] and [35],
the reconstruction from the noise free data is nearly perfect, only 137
pixels that are not correct. Due to not knowing whether the amount
of misplaced pixels ought to be compared to the total number of pixels
in the image or to that of the active measurement area, the size of
which remains unclear, we only give the number of pixels the colour of
which is incorrect compared to the original picture and the reader can
decide if they would rather compare it to the total amount of pixels,
262144, or maybe the number of pixels inside the black frame, 90000.
The number of projection angles used for the reconstructions was 20,
same as in example 3.45.

As is often a problem while working with codes that are not one’s
own, it is also unclear to the author, in which part of the code is it
possible to change the fix probability. By altering a variable named
"masking random" in the code, results similar to what can be assumed
would be gained by altering fix probability were aquired. The writer
of the code describes this variable as "percentage of random points",
which is here assumed to mean the percentage of the pixels that can
change, that is free pixels. This would mean that this variable can be
written as 1 − p (the fix probability subtracted from 1). In the fig-
ure 19 the reconstructions of the image can be seen with two different
levels of gaussian noise, 1% and 2%, and with the values of masking
random 0.1, 0.5 and 0.9. Even though the reconstructions are still
quite good, clearly the role of noise is quite significant while using the
DART-algorithm. This is not surprising considering the important role
of apriori knowledge about the grey values found in the picture. It is
possible that the effects of noise could have been somewhat lessened
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Figure 18. On the left the original image used for the
reconstruction and on the right DART-reconstruction
from 20 projection angles with no added noise. There
are only 137 pixels that are not the colour they are sup-
posed to be in the reconstruction.

by for example tampering with the smoothing filter, but the results
gained here are relatively similar to the results gained in similar exper-
iments in for example [35], so there is no reason to believe that there
is anything significantly wrong with the filter provided in the code.

The whole Astra Toolbox, from which the code used for these re-
constructions can be found, can be downloaded from this website:
https://sourceforge.net/projects/astra-toolbox/ (5.5.2016).
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Figure 19. On the left side are the reconstructions with
1% of added gaussian noise, on the right side the level
of noise is 2%. The values of masking random from up
to down are 0.1, 0.5 and 0.9. The white number in the
upper left corner of each image is the number of pixels
that are wrong in the reconstruction.
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4.4.3. Monte Carlo algorithms. Another heuristic group of algorithms
commonly used to solve discrete tomographic reconstruction problems
is called Monte Carlo algorithms. It is related to group of Las Vegas
algorithms, but where Las Vegas algorithms always give the correct an-
swer with a running time that is a random variable, Monte Carlo algo-
rithms produce a solution in a fixed number of steps but there is a pos-
sibility, usually with probability < 1/3, that the solution is incorrect.
Las Vegas algorithm that is terminated early thus not guaranteeing the
correct answer is in fact Monte Carlo algorithm. Both Monte Carlo-
and Las Vegas algorithms belong to a larger group called randomized
algorithms, algorithms that make random choices during execution. It
is a group that was originally developed to be a tool of computational
number theory but has since found uses in many other fields as well.
The reason for the attractiveness of randomized algorithms is their sim-
plicity and speed compared to most alternative methods. Most Monte
Carlo algorithms can be solved by integration. There are two basic ap-
proaches to Monte Carlo algorithms: direct sampling and Markov-chain
sampling, often referred to as MCMC (Markov-chain Monte Carlo). As
the more simple method of direct sampling rarely works, most situa-
tions call for MCMC.

Following is merely a brief introduction to Monte Carlo methods
giving some explanation about the general idea and the basic consepts
without attempting to get into theory of it on an any deeper level. The
basic idea behind Monte Carlo methods is that given a sufficiently large
set X and a distribution p(X) over it, we can approximate the distri-
bution by drawing a set of N independent and identically distributed
samples:

(4.53) pN(x) =
1

N

N∑
i=1

1(x(i) = x) −→
N →∞

= p(x)

The same samples can also be used to calculate the expectations:

(4.54) EN(f) =
1

N

N∑
i=1

f(x(i)) −→
N →∞

E(f) =
∑
x

f(x)p(x)

These expectations can be used to solve some complicated multi-
dimensional integrals. The sampling is what distinguishes Monte Carlo
methods from general integration schemes in which the object of inter-
est is the one-dimensional integral

(4.55) I =

∫ b

a

f(x)dx ≈
M−1∑
l=0

δ · f((xl + xl+1)/2)

whereM is the number of slices of the width δ. Approximating integral
with a sum converges towards the correct solution when M → ∞ but
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this method becomes more difficult to use and less accurate when the
integral that needs to be computed is multi-dimensional [38], [39], [40].

A direct sampling (sometimes also called simple sampling) Monte
Carlo method can be used to overcome these problems. Let’s say we
want to find out the area of an irregularly shaped patch of grass in
the desert. We first draw a square an area of which we can of course
calculate around the patch and arm ourselves with a large number of
pebbles. We then start randomly throwing the pebbles into the square.
We can then estimate the area of the patch by calculating what per-
centage of the pebbles landed inside the patch. As the number of the
pebbles thrown gets larger, the percentage converges towards the per-
centage of the area of the square that the patch occupies. A small
number of pebbles is enough to give a decent estimate for the area but
sadly this method proves to be useless in most practical situations such
as the one described next.

MCMC-method we get out of this when we realize that our upper
body strength is simply not enough to throw the pebbles all the way to
the other side of the patch. We start at a random location, throw the
pebble into a random direction, walk to the pebble and throw a new
one to a random direction from there and so on. This method works
well until we throw a pebble out of the square. When this happens,
this throw is rejected, the thrower doesn’t move and the previous throw
is counted twice, meaning that a second pebble is placed next to or if
possible on top of the previous pebble. After a large amount of throws
the pebbles should be scattered around the squares with piles of peb-
bles close to the edges and especially corners of the square due to the
rejected throws.

Rejection method ensures that the path generated by flinging peb-
bles, or in less practical terms the Markov chain, is reversible. It is
often referred to as detailed balance condition. It is fundamental to
the Metropolis algorithm that is introduced in a little bit and it is
explained in slightly more formal terms in that context. Unlike the di-
rect sampling method of simply flinging pebbles around from one spot,
MCMC-method works in most situations. It is, however, much less
economical and often requires the kind of time and resources that are
simply not available. Even a long Markov-chain often produces only
a small number of independent samples, which makes the result very
approximative, and the programs based on them are usually extremely
sensitive to noise and other small irregularities. Determining the step
length or in terms of pebbles and grass patch the length of each throw
can also be problematic. If the step length is too short, we end up
sampling only a very small area of the grass patch as it takes a huge
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number of pebble flings to get far enough from the starting point, in
other words convergence towards a good estimate is very slow. If, how-
ever, the step length is too long we end up throwing the rocks outside
of the square all the time, leading to a very large number of rejected
throws, which also leads to very slow convergence.

The value of π can also be estimated using the same idea so that the
patch of grass is in fact a circle the radius of which is 1. This situation
is denoted using a probability density π, which in this case is the square

(4.56) π(x, y) =

{
1, if | x |≤ 1 and | y |≤ 1

0 otherwise

and a function f , which here is the circle

(4.57) f(x, y) =

{
1, if x2 + y2 < 1

0 otherwise

If the probability that the pebble is thrown from location a to loca-
tion b is expressed by the formula p(a → b) and π(a) stands for the
stationary probability for the pebble to be at location a, location in
this context meaning a certain area of the square, for example the up-
per left corner if the square is divided into 9 smaller squares (meaning
that if a is inside the location a, π(a) = 1, otherwise π(a) = 0) and
the probability for the pebble to be at each location is equal, the afore-
mentioned detailed balance condition can be written in the following
way:

π(a)p(a→ b) = π(b)p(b→ a)(4.58)
π(a)p(a→ c) = π(c)p(c→ a) etc.

Source: [38], [39], [40].

4.4.4. Metropolis algorithm. One of the most well-known and com-
monly used Monte Carlo algorithms that utilizes Markov chains is
called the Metropolis algorithm. It was developed in 1953 by the Rosen-
bluth and Teller families within a nuclear weapons program. It differs
from the scenario described above where the probability for the peb-
bles to be at each location is considered equal in a way that it allows
some locations to be more likely than others. The probability for a
move of the pebble from location a to location b not to be rejected in
Metropolis algorithm is

(4.59) p(a→ b) = min
[
1,
π(b)

π(a)

]
.

In practice this means, that if you at first stand at a location a that
we assume to be inside the square so that π(a) = 1 and then throw a
pebble to a random direction so that it lands in location b, there are
two things that can happen: either location b is inside the square, so
that π(b) = 1 or it is not, in which case π(b) = 0. In the first case
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you will accept the move and walk to your pebble, in this situation
the formula 4.59 tells you to accept the move with probability 1. In
the second scenario, the formula tells you that you should reject the
move as π(b)

π(a)
= 0 and thus the probability with which you move from

a to b is 0. When the values of π(a) and π(b) are not equal, one needs
to consider the two possible situations π(a) < π(b) and π(a) > π(b)
separately in terms of the acceptance probability but the situation is
still very simple [39], [40].

The basic idea is to evaluate the properties of any substance that
may be seen as being composed of interacting individual molecules by
generating a Markov chain of successive states s1 → s2 → . . . . The new
state is generated from the previous one using a transition probability
P (sn → sn+1) which is designed so that it occurs with a probability
given by the equilibrium Boltzmann distribution which gives the prob-
ability Pk(s) with which state s occurs at the kth time step. The
sequence of states or samples can then be used much as in the pebbles
in the allegory before to calculate areas or integrals.

Metropolis-algorithm and MCMC-methods in general can be used
to solve inverse problems in Bayesian or discrete settings. In Bayesian
inversion a priori-information is added to the measurement data and
for example the tomographic reconstruction is calculated based on both
these elements. Discrete tomography in turn can often be considered
from a Bayesian perspective, as it is often the case that neighbouring
pixels can be assumed to be more likely to have the same values. If
the noise and the prior distribution (i.e. the distribution that assigns
probabilities to vectors based on how likely they are in the light of the
a priori information) are assumed to be Gaussian, then the maximum
a posteriori estimate and conditional mean estimate are the same and
coincide with the Tikhonov-regularized solution with δ representing the
level of noise [37], [38], [39], [40].

4.5. Applications and development in the field of discrete to-
mography. Discrete tomography is a relatively young field, so it is
hardly surprising that it is still constantly developing. Existing algo-
rithms are improved and new algorithms coined at a quick pace. In
addition to development in algorithms, new applications to discrete to-
mography are found regularly. Many of the applications are of course
medical, but it is not the only field where discrete tomography has
proven its usefulness. In the following chapter some relatively new al-
gorithms as well as some common applications are briefly listed without
going into specifics.

4.5.1. Medical imaging and cardiac angiography. Using discrete tomog-
raphy for medical purposes is only possible in special circumstances as
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human body is not a homogenous object and it cannot even be seen
as consisting of only a few tissue densities. It is, however, possible
to use different methods to enhance a certain region compared to the
surrounding tissue. The method often used when a heart is studied
is injecting contrast material in the blood vessels, making it possible
to study and reconstruct a 3D-object consisting of the blood vessels
that now have a certain specific attenuation value and everything else,
which in this situation is considered background material. Something
that needs to be taken into account while making reconstructions of
blood vessels, or for that matter anything else, close to the heart is the
added difficulty posed by the movement of the heart.

Angiography is the technique of medical imaging that is used to visu-
alize the insides of blood vessels. In cardiac angiography or cardiography
the focus is on aortas and the heart ventricles. The resulting images are
either cardiac angiograms, ventriculograms, or arteriograms depending
on which part of the heart contrast material was used to opacify. In
[41] the authors state that a section through the heart can be seen as a
binary image so that white is assigned to those parts or pixels that con-
tain contrast material. They use Gibbs priors in order to have a better
idea of the character of the image to limit the class of possible solutions,
thus allowing them to reconstruct the binary image in question from
only horizontal-, vertical- and one diagonal projection. In their take
of a Gibbs distribution, the colour of a pixel influences the local energy
function of only itself and its 8 neighbours. Local energy function in
turn is defined in such a way that it encourages certain configurations
such as clusters of black or white pixels. In this case the purpose of
the Gibbs distribution is to point the solutions to a direction where if
a pixel is of certain colour, it is likely that so are the pixels that are
8-adjacent to it. Using a modified Metropolis-algorithm on noiseless
data, the reconstructions were nearly perfect. This is of course a situ-
ation that would never occur with real measurement data. Even with
added noise, their results suggest that if an image is a typical member
of a class of images with a certain Gibbs distribution, three projections
are often enough to narrow down the possible solutions to only those
that are close to the original image. [41], [42]

4.5.2. Dynamic tomography. Dynamic tomography, also known as 4D-
tomography, is a field that is interested in developing algorithms that
can be used for reconstructing usually three-dimensional objects that
evolve continuously with time. It is something that we often come
across in medical imaging, for example in tomographic reconstruction
of heart, like was mentioned in the previous section, or lungs. In
many non-medical applications the movement is not just something
that makes the reconstruction of the structure that is the main object
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of interest more difficult. It can in fact be the main reason for the need
of reconstructions. In [43], the example for a typical yet notoriously
difficult problem in dynamic tomography is mapping the displacement
of one immiscible fluid with another inside some porous material, a
situation that is of practical interest in oil production. Most com-
monly used reconstruction techniques of general tomography assume
that the sample is static. Movement of the sample will lead to blurred
reconstructions. The necessary scan time is much shorter when mak-
ing reconstructions using algorithms of discrete tomography because of
the a priori information about the gray values present in the sample
and the fewer projections that are needed because of that. This means
that the sample doesn’t have time to move as much, which leads to
better reconstructions. This way a priori information that the sample
consists of only a small number of gray values can be used to improve
the reconstruction of the sample at any given time. The authors of
[43] present an algorithm where a priori information that the sample
consists of only two gray levels is used in order to successfully map
two-phase fluid flow in porous media using existing x-ray micro-CT
equipment. This is achieved by assuming that the porous structure
(such as rock with capillaries) is static, the change from one moment
to the next is localized to a small area and that the static structure
steers the behaviour of the dynamic component. For more informa-
tion about the algorithm and the relationship between discrete- and
dynamic tomography, see [43].

4.5.3. Belief-propagation reconstruction. The correspondence between
discrete tomography and Bayesian approach was already briefly men-
tioned in the chapter about Monte Carlo-methods. Often in discrete
tomography the images being reconstructed are such that neighbour-
ing pixels are more likely to have the same value. In [44], a fast and
accurate belief-propagation-based algorithm is presented for situations
like this. The algorithm estimates the marginal probability for each
pixel value by relying on belief propagation (BP), which is a message-
passing algorithm that even though it is not always exact, has given
very accurate results for the problem at hand. With noise free data
the algorithm produced a perfect reconstruction and with data that
was corrupted with a small amount of Gaussian noise the results were
perfect when the number of projections was increased. Even with a
moderate amount of noise, the algorithm still outperformed for exam-
ple ones based on convex relaxation of a binary tomography problem.
The main problem of the algorithm is the lack of speed: the number of
iterations needed is very high which makes the algorithm slow and thus
unsuitable for purposes, where the results are needed fast. The authors
still clearly feel that the algorithm has great potential and that its im-
plementation can possibly be sped up making it in every aspect one
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of the best algorithms for discrete tomography in Bayesian settings [44].

The future promises great advances in the field of discrete tomog-
raphy. Many promising algorithms are still under development and a
continuously increasing number of researchers are working on new ones.
There is also plenty of demand for new algorithms in many different
fields. For example coloured 3D x-ray images are something that can
be expected to appear for widespread medical use in not too distant
future and algorithms of discrete tomography can be used to improve
the process of acquiring them.
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Appendix A.
matrixA.m

clear a l l
N=96; theta=−pi /2 : pi/N: pi/2−pi/N; s =−1.1:2.2/(N−1)

: 1 . 1 ; d=2/N;
% part o f matrix t h a t corresponds to va lue
% the t a=−p i /2.

for i =1:N,
for j =1:N^2 ,

% Let ’ s cons t ruc t t h a t
j 1=f loor ( ( j−1)/N) ; j 2=j−1−N∗ j 1 ; s s=s ( i ) ; b

=1−( j 2+1)∗d ;
i f b<= −s s && −s s < b+d , A( i , j )=d ;
else A( i , j )=0;
end ,

end ,

end ,
% Then the rows corresponding to va l u e s 0<the ta<−p i

/2

for i=N+1:N^2/2 ,
for j =1:N^2 ,

i 1=f loor ( ( i −1)/N) ; i 2=i−1−N∗ i 1 ; j 1=f loor ( ( j
−1)/N) ; j 2=j−1−N∗ j 1 ;

Co=cos ( theta ( i 1+1) ) ; S i=sin ( theta ( i 1+1) ) ;
s s=s ( i 2+1) ;

a=−1+j1 ∗d ; b=1−( j 2+1)∗d ;
k1=(ss−a∗Co) / S i ; k2=(ss−(a+d)∗Co) / S i ; k3=(

ss−b∗ Si ) /Co ; k4=(ss−(b+d)∗ Si ) /Co ;
i f b<=k1 && k1<=b+d , t1=1; else t1=0; end
i f b<=k2 && k2<=b+d , t2=1; else t2=0; end
i f a<=k3 && k3<=a+d , t3=1; else t3=0; end
i f a<=k4 && k4<=a+d , t4=1; else t4=0; end

i f t1==1 && t2==1, A( i , j )=sqrt (d^2+(k2−k1 )
^2) ;

e l s e i f t1==1 && t3==1, A( i , j )=sqrt ( ( k3−a )
^2+(k1−b) ^2) ;
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e l s e i f t1==1 && t4==1, A( i , j )=sqrt ( ( k4−a )
^2+(b+d−k1 ) ^2) ;

e l s e i f t2==1 && t3==1, A( i , j )=sqrt ( ( a+d−k3 )
^2+(k2−b) ^2) ;

e l s e i f t2==1 && t4==1, A( i , j )=sqrt ( ( a+d−k4 )
^2+(b+d−k2 ) ^2) ;

e l s e i f t3==1 && t4==1, A( i , j )=sqrt ( ( k4−k3 )
^2+(d^2) ) ;

else A( i , j )=0;
end

end
end

% Next the rows t ha t correspond to va lue t h e t a =0.

for i=N^2/2+1:N^2/2+N,
for j =1:N^2;

i 1=f loor ( ( i −1)/N) ; i 2=i−1−N∗ i 1 ; j 1=f loor ( ( j−1)/N
) ; j 2=j−1−N∗ j 1 ;

a=−1+j1 ∗d ; s s=s ( i 2+1) ;
i f ss>=a && ss<a+d , A( i , j )=d ; else A( i , j )=0; end
end

end

% Fina l l y the remaining rows corresponding to cases
where 0<the ta<pi /2

for i=N^2/2+N+1:N^2 ,
for j =1:N^2 ,

i 1=f loor ( ( i −1)/N) ; i 2=i−1−N∗ i 1 ; j 1=f loor ( ( j
−1)/N) ; j 2=j−1−N∗ j 1 ;

Co=cos ( theta ( i 1+1) ) ; S i=sin ( theta ( i 1+1) ) ;
s s=s ( i 2+1) ;

a=−1+j1 ∗d ; b=1−( j 2+1)∗d ;
k1=(ss−a∗Co) / S i ; k2=(ss−(a+d)∗Co) / S i ; k3=(

ss−b∗ Si ) /Co ; k4=(ss−(b+d)∗ Si ) /Co ;
i f b<=k1 && k1<=b+d , t1=1; else t1=0; end
i f b<=k2 && k2<=b+d , t2=1; else t2=0; end
i f a<=k3 && k3<=a+d , t3=1; else t3=0; end
i f a<=k4 && k4<=a+d , t4=1; else t4=0; end
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i f t1==1 && t2==1, A( i , j )=sqrt (d^2+(k2−k1 )
^2) ;

e l s e i f t1==1 && t3==1, A( i , j )=sqrt ( ( k3−a )
^2+(k1−b) ^2) ;

e l s e i f t1==1 && t4==1, A( i , j )=sqrt ( ( k4−a )
^2+(b+d−k1 ) ^2) ;

e l s e i f t2==1 && t3==1, A( i , j )=sqrt ( ( a+d−k3 )
^2+(k2−b) ^2) ;

e l s e i f t2==1 && t4==1, A( i , j )=sqrt ( ( a+d−k4 )
^2+(b+d−k2 ) ^2) ;

e l s e i f t3==1 && t4==1, A( i , j )=sqrt ( ( k4−k3 )
^2+(d^2) ) ;

else A( i , j )=0;
end

end
end
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Appendix B.
pawn.m

% Give N of the form N=4∗k
clear f
N=48; N1=2∗N; k=N1/4 ;
for i =1:N1 ,

for j =1:N1 ,
i f ( i <=2∗k && j<=2∗k && ( i−2∗k )^2+(j−2∗k )

^2>(1.8∗k ) ^2) | | . . .
( i >2∗k && j >2∗k && ( i−2∗k )^2+(j−2∗k

) ^2>(1.8∗k ) ^2) ,
ro ( i , j )=1;

e l s e i f ( i >2∗k && j<=2∗k && ( i−2∗k )^2+(j−2∗k
) ^2>(1.8∗k ) ^2) | | . . .

( i <=2∗k && j >2∗k && ( i−2∗k )^2+(j−2∗
k ) ^2>(1.8∗k ) ^2) | | . . .

( i−2∗k )^2+(j−2∗k )^2>=(1.8∗k )^2 && (
i−2∗k )^2+(j−2∗k )^2<=(1.9∗k )^2 | |
. . .

( i−k )^2+(j−2∗k )^2<=(0.5∗k )^2 | | . . .
4∗( i−3∗k )^2+(j−2∗k )^2<=k^2 && i<=3∗

k | | . . .
2∗k−1/4∗( i−k )<=j && j<=2∗k+1/4∗( i−k

) && i>=k && i<=3∗k ,
ro ( i , j )=0;

else ro ( i , j ) =0.5 ;
end ,

end ,
end
figure (1 ) , imagesc ( ro ) , axis equal , axis o f f ,

colormap gray
for i =1:N1 ,

for j =1:N1 ,
roo ( ( j−1)∗N1+i )=ro (N1+1−i , j ) ;

end ,
end
k=N/4 ;

for i =1:N,
for j =1:N,
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i f ( i <=2∗k && j<=2∗k && ( i−2∗k )^2+(j−2∗k )
^2>(1.8∗k ) ^2) | | . . .

( i >2∗k && j >2∗k && ( i−2∗k )^2+(j−2∗k
) ^2>(1.8∗k ) ^2) ,

F( i , j )=1;
e l s e i f ( i >2∗k && j<=2∗k && ( i−2∗k )^2+(j−2∗k

) ^2>(1.8∗k ) ^2) | | . . .
( i <=2∗k && j >2∗k && ( i−2∗k )^2+(j−2∗

k ) ^2>(1.8∗k ) ^2) | | . . .
( i−2∗k )^2+(j−2∗k )^2>=(1.8∗k )^2 && (

i−2∗k )^2+(j−2∗k )^2<=(1.9∗k )^2 | |
. . .

( i−k )^2+(j−2∗k )^2<=(0.5∗k )^2 | | . . .
4∗( i−3∗k )^2+(j−2∗k )^2<=k^2 && i<=3∗

k | | . . .
2∗k−1/4∗( i−k )<=j && j<=2∗k+1/4∗( i−k

) && i>=k && i<=3∗k ,
F( i , j )=0;

else F( i , j ) =0.5 ;
end ,

end ,
end
figure (1 ) ,
subplot ( 1 , 2 , 1 )
imagesc ( ro ) , axis equal , axis o f f , colormap gray
t i t l e ( [ ’ Target ␣ at ␣ s i z e ␣ ’ , num2str(N1) , ’∗ ’ ,

num2str(N1) ] )
subplot ( 1 , 2 , 2 )
imagesc (F) , axis equal , axis o f f , colormap gray
t i t l e ( [ ’ Target ␣ at ␣ s i z e ␣ ’ , num2str(N) , ’∗ ’ , num2str

(N) ] )

for i =1:N,
for j =1:N,

f ( ( j−1)∗N+i )=F(N+1−i , j ) ;
end ,

end
f=f ’ ;
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Appendix C.
measurements.m

% We f i r s t cons t ruc t the non−noisy measurements
m_96 us ing matrix A96 and

% f_96 . Then we sample i t wi th app . 2% r e l a t i v e L2−
norm error and f i n a l l y

% we s o l v e m_48 us ing i n t e r p o l a t i o n . Load f i r s t A96
and d r i v e pawn .m

% with N=48.

N=48;
m96=A96∗( roo ) ’ ; m96n=m96+0.01∗max(abs (m96) )∗randn

( (2∗N) ^2 ,1) ;

e r r o r 1=sqrt (sum( (m96−m96n) .^2) ) /sqrt (sum(m96.^2) ) ;
for i =1:N,

for j =1:N,
m48n ( ( i −1)∗N+j )= m96n((2∗ i −2)∗2∗N+2∗ j−1)+

. . .
( j−1)/(N−1)∗(m96n((2∗ i −2)∗2∗N+2∗ j )−m96n

((2∗ i −2)∗2∗N+2∗ j−1) ) ;
end ,

end
m48n=m48n ’ ;

N1=2∗N;
for i =1:N1^2 , k=ce i l ( i /N1) ; j=i−N1∗(k−1) ;

M96(k ,N1+1− j )=m96(N1^2+1− i ) ; M96N(k ,N1+1− j )=m96n(
N1^2+1− i ) ;

end

for i =1:N^2 , k=ce i l ( i /N) ; j=i−N∗(k−1) ;

M48N(k ,N+1− j )=m48n(N^2+1− i ) ;
end

figure (2 ) ,
subplot ( 2 , 2 , 1 ) ,
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imagesc (M96 ’ ) ,
axis equal , axis o f f
t i t l e ( [ ’ No i s e l e s s ␣meas . ␣N=’ num2str(N1) ] )
subplot ( 2 , 2 , 2 ) ,
imagesc (M96N’ ) ,
axis equal , axis o f f
colormap gray
t i t l e ( [ ’ Noisy␣meas . ␣with␣L2−␣ er . ␣ ’ ,num2str(round(

e r r o r 1 ∗100) ) , ’%’ ] )
subplot ( 2 , 2 , 3 ) ,
imagesc (M48N’ ) ,
axis equal , axis o f f
t i t l e ( [ ’ i n t e r p o l a t e d ␣measurements , ␣N=’ , num2str(N)

] )
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Appendix D.
conj.m

% Load A48 , pawn .m and measurements .m, both wi th N
=48

N=48;
clear X g dd a1 a2 a3
a l =0.023;
Q=A48 ’∗A48+a l ∗eye (N^2) ; b=A48 ’∗m48n ;
X( : , 1 ) =0.5∗ ones (N^2 ,1) ;
g ( : , 1 )=Q∗X( : , 1 )−b ; dd ( : , 1 )=−g ( : , 1 ) ;
for k=1:49

a l f a=−g ( : , k ) ’∗dd ( : , k ) /(dd ( : , k ) ’∗Q∗dd ( : , k ) ) ;
X( : , k+1)=X( : , k )+a l f a ∗dd ( : , k ) ;
g ( : , k+1)=Q∗X( : , k+1)−b ;
beta=g ( : , k+1) ’∗Q∗dd ( : , k ) /(dd ( : , k ) ’∗Q∗dd ( : , k ) ) ;
dd ( : , k+1)=−g ( : , k+1)+beta∗dd ( : , k ) ;

end ,

% p l o t t i n g the r e s u l t s

answer1=X( : , 3 ) ;
answer2=X( : , 5 0 ) ;
a id1=answer2 <0.33; a id3=answer2 >0.66; a id2=1−aid1−

aid3 ;
answer3=aid3+0.5∗ aid2 ;

for i =1:N^2 , k=ce i l ( i /N) ; j=i−N∗(k−1) ; a1 (k ,N+1− j )=
answer1 ( i ) ;

a2 (k ,N+1− j )=answer2 ( i ) ; a3 (k ,N+1− j )=answer3 ( i ) ;

end

e r r o r 2=sqrt (sum( ( f−answer2 ) .^2) ) /sqrt (sum( f .^2) ) ;

f igure (3 ) ,
subplot ( 2 , 2 , 1 ) ,
imagesc ( a1 ’ ) ,
axis equal , axis o f f
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t i t l e ( [ ’ Result ␣ a f t e r ␣two␣ steps , ␣ a l ␣=␣ ’ , num2str( a l
) ] )

subplot ( 2 , 2 , 2 ) ,
imagesc ( a2 ’ ) ,
axis equal , axis o f f
t i t l e ( [ ’ 49␣ s t ep s . ␣L2−␣ er . ␣ ’ ,num2str(round( e r r o r 2
∗100) ) , ’%’ ] )

subplot ( 2 , 2 , 3 ) ,
imagesc ( a3 ’ ) ,
axis equal , axis o f f
colormap gray
t i t l e ( ’ P r o j e c t i on s ␣ to ␣ 0 , ␣ 0 .5 ␣and␣ 1 . ’ )
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