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Abstract

Background: Traditionally biological similarity search has been studied under the abstraction of a single string to
represent each genome. The more realistic representation of diploid genomes, with two strings defining the
genome, has so far been largely omitted in this context. With the development of sequencing techniques and
better phasing routines through haplotype assembly algorithms, we are not far from the situation when individual
diploid genomes could be represented in their full complexity with a pair-wise alignment defining the genome.

Results: We propose a generalization of global alignment that is designed to measure similarity between phased
predictions of individual diploid genomes. This generalization takes into account that individual diploid genomes
evolve through a mutation and recombination process, and that predictions may be erroneous in both
dimensions. Even though our model is generic, we focus on the case where one wants to measure only the
similarity of genome content allowing free recombination. This results into efficient algorithms for direct
application in (i) evaluation of variation calling predictions and (ii) progressive multiple alignments based on
labeled directed acyclic graphs (DAGs) to represent profiles. The latter may be of more general interest, in
connection to covering alignment of DAGs. Extensions of our model and algorithms can be foreseen to have
applications in evaluating phasing algorithms, as well as more fundamental role in phasing child genome based on
parent genomes.

Introduction
A diploid genome consists of chromosome pairs, where
one sequence of a pair is obtained from the mother and
the other from the father, through a recombination pro-
cess: The two sequences representing mother (or father)
chromosome pair are mixed together into one sequence
by copying large chunks alternatively from both copies.
Mutations can occur so that the child chromosome pair
is not an exact copy of recombined sequences inherited
from the mother and the father.
The problem we tackle in this paper is how to define

optimal alignment between two diploid chromosome
pairs (called simply diploid genomes in the sequel), so

that only the sequence content is taken into account
allowing arbitrary recombinations.
To our surprise, this fundamental notion of sequence

similarity has not been addressed before in the literature.
This is apparently due to the strong role of the abstrac-
tion of one consensus string to represent genomes. This
abstraction is sufficient in most comparative genomics
scenarios when the aim is to measure large-scale muta-
tion events for inter-species comparison, resulting into
measures such as the inversion distance [1], the inver-
sion-indel distance [2], and DCJ-indel distance [3,4], to
name a few.
More fine-grained measures are needed when compar-

ing individuals from the same species. Global alignment
of individual consensus genomes only takes into account
homozygous variants and one allele of each heterozygous
variant. An obvious improvement is to model a diploid
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genome as a pair-wise alignment and to define a global
alignment of two such pair-wise alignments. Such gener-
alization is in the core of progressive multiple alignment,
where alignment of alignments has been widely studied.
However, most literature on progressive alignments
abstracts partial multiple alignments as strings of col-
umns, and just redefines the substitution operations as a
measure of similarity between columns, e.g. as sum-of-
pairs of possible character substitutions or as relative
entropy of frequency profiles. String of columns is yet
another abstraction of the underlying structure, and
there has been huge amount of work to overcome its
“once a gap, always a gap” shortcoming. Quite recently,
approaches based on representing the underlying struc-
ture truthfully as a node-labeled directed acyclic graph
(DAG) have been proposed to overcome this problem
[5,6]. There, the core problem is to find a path A (repre-
sented as a string) through one DAG, and a path X
through the other DAG, such that the optimal alignment
of A and X has maximum score over all possible pairs of
such paths. We refer to this problem as path-alignment
on labeled DAGs. Notice that on the two DAGs created
from two pair-wise alignments representing diploid gen-
omes, A and X are sequences resulting from an arbitrary
recombination of the underlying genomes.
We propose an extension of the DAG path-alignment

considered in [5,6], in the special case of pair-wise align-
ments. Instead of extracting one path from each DAG,
we extract two paths from each, forming a covering
alignment: Let G1 and G2 be two labeled DAGs each
representing a pair-wise alignment. We aim to find two
paths A and B that cover all nodes of G1, and two paths
X and Y that cover all nodes of G2, such that S(A, X)+ S
(B, Y) is maximum over all path-covers of G1 and G2,
where S(·, ·) is the global alignment score. This approach
takes into account all sequence content of diploid gen-
omes (represented by DAGs G1 and G2) for the similar-
ity measure.
Unfortunately, we are not yet able to solve the general

statement of the covering alignment problem. We solve
a one-sided covering alignment problem, and a
restricted covering alignment problem where the solu-
tion paths need to be synchronized. Both of them define
a distance between diploid genomes. The latter problem
admits a scalable solution in O(DN) time, where D is
the resulting synchronized diploid to diploid edit dis-
tance and N the maximum diploid length. Experiments
show that this approach can identify planted mutations
accurately, indicating that the sacrifice in restricting the
general problem statement appears not to be vital.
For simplicity of exposition, we describe our models

and algorithms using (unit cost) edit distance in place of
similarity score S(·, ·); however, our results can be trivi-
ally modified to compute the global alignment similarity

measure. For the same reason, we derive our equations
assuming free recombination; however, it is not difficult
to include a cost of recombination in our equations.

Applications
While we believe that covering alignment is a fundamen-
tal notion justified to be studied on its own rights, some
direct applications follow: The more general one is as a
generic tool for computing similarity between diploid
genomes, taking into account the possibility of recombi-
nation (possibly including a penalty for recombination
operations). Another application that follows from the
problem statement, is that covering alignment can be
plugged into progressive multiple alignment to take into
account full information of the labeled DAGs instead of
the partial information as in [5,6].
Variant calling evaluation
Another application is possible in variant calling evalua-
tion [7], as covering alignment takes heterozygous varia-
tions properly into account: High-throughput sequencing
allows a cost-effective way to discover how an individual
genome differs from the consensus reference genome of
the species. The result of such variant calling process is a
list of homozygous and heterozygous variant predictions.
To evaluate how good such prediction methods are, one
can resort to simulating artificial diploid genome by
applying a (random) set of variants to the reference. Let
such simulated genome be called ground-truth and the
included variants be called ground-truth variants. One
can then simulate the sequencing of random DNA frag-
ment reads from the ground-truth, to feed them to the
variant calling method. The method will then infer the
probable variants (typically by aligning the reads to the
reference genome). Let these variants be called predicted
variants.
Direct comparison of ground-truth and predicted var-

iants is problematic due to invariant indels and predic-
tion inaccuracies. Because of that, in [7] all predicted
variants are applied to the reference in order to create a
predicted haploid genome. Edit distance between the
predicted haploid and the ground-truth diploid was then
computed, allowing arbitrary recombinations for the
haploid to distribute along the diploid, giving a distance
measure. It was shown that this haploid to diploid edit
distance can be computed on realistic size variant call-
ing scenarios [7]. This approach is actually highly similar
to the path-alignments of [5,6].
There remained one shortcoming in [7] due to the

asymmetric measure; if there are overlapping predicted
heterozygous variants, one needs to decide which ones
to take to the predicted haploid. It was proposed to cre-
ate another haploid with the remaining predictions that
could not be applied in the first round, and do another
haploid to diploid distance computation. However, such
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scheme is not fully rigorous as it favors sensitivity over
specificity. Our new notion resolves the above issue.
Haplotyping
Finally, we believe that there is a more fundamental
notion combining one-sided covering alignment and
path-alignment that can be used in phasing child gen-
ome through mother-father-child trios: Conclusions sec-
tion sketches how our one-sided covering alignment
solution can be extended for this scenario.

Methods
Pair-wise alignment and edit distance
Let A and B be two sequences of size N and M respec-
tively, over an alphabet ∑. A pair-wise alignment of
sequences A and B is a pair of sequences (SA, SB) such
that SA is a supersequence of A, SB is a supersequence
of B, |SA| = |SB| = L is the length of the alignment, and
all positions which are not part of subsequence A
(respectively B) in SA (respectively SB), contain the sym-
bol ‘−’. The symbol ‘−’ is a special character not in ∑.
Given a cost function C such that C(a, b) is the cost

of transforming a character a into b, for any a, b ∈ ∑
∪ {’−’}, the cost of an alignment is defined as follows:

C(SA, SB) =
∑L

i=1 C(S
A
i , S

B
i ). Typically, for any a, b ∈ ∑

it holds that C(a, b) = C(b, a) > 0, C(a, a) = 0, and C
(a, ‘−’) = C(’−’, a) = Cindel > 0 is the cost of inserting
(or deleting) a character.
The edit distance D(A, B) between A and B can now

be defined as follows: D(A, B) = min{C(SA, SB):(SA, SB) is
an alignment of A and B}. An alignment that has the
minimum cost is called an optimal alignment.
It is possible to compute the edit distance using

dynamic programming in time O(NM), however, it is
possible to reduce the running time further to O(ND),
where D = D(A, B) is the unit cost (Levenshtein) edit dis-
tance [8,9].

Diploid to diploid alignment
We propose a distance D((A, B), (X, Y)) to measure a
distance between diploid individuals (A, B) and (X, Y)
that allows them to recombine freely.
A recombination R(SA, SB) of an alignment (SA, SB) is

another alignment (SA
′
, SB

′
) of some sequences A’ and B’

such that there exists a bitvector I such that
SA

′
[i] = SA[i] and SB

′
[i] = SB[i] if I[i] = 1, and

SA
′
[i] = SB[i] and SB

′
[i] = SA[i] if I[i] = 0.

Diploid to diploid distance: Given two pair-wise
alignments (SA, SB) and (SX, SY) the diploid to diploid
distance is defined as
D((A,B), (X,Y)) = min{D(A′,X′) +D(B′,Y ′) : (SA

′
, SB

′
)

is a recombination of (SA, SB) and (SX
′
, SY

′
) is a recombi-

nation of (SX, SY).

This problem can be interpreted as a covering align-
ment of two labeled DAGs created from pair-wise align-
ments: see the discussion in the end of synchronized
diploid to diploid alignment section. Unfortunately, we
do not know how to solve this problem efficiently or
how to argue about its complexity. We leave this as an
interesting open problem and continue to the variants
that we know how to solve and that also have important
applications; we also believe the basic notions derived
for the variants give insights for tackling the general
case later.

Pair of haploids to diploid alignment
In this section we propose a distance D((A, B), X, Y) to
measure a distance between diploid individual (A, B)
and a pair of haploid sequences X and Y.
Pair of haploids to diploid distance: Given a pair-

wise alignment (SA, SB) and two sequences X and Y,
the pair of haploids to diploid distance is defined as
D((A,B), (X,Y)) = min{D(A′,X) +D(B′,Y) : (SA′

, SB
′
) is

a recombination of (SA, SB)}.
An example of recombination in pair-wise alignments

and the pair of haploids to diploid distance measure is
included in Figure 1. The motivation to study this mea-
sure is that the dynamic programming solution given
below shows how the one-side covering alignment is
computed. This prepares for the solution of the syn-
chronized diploid to diploid distance studied in the
sequel. More importantly, the Conclusions section
describes an extension for modeling mother-father-child
trios such that this cubic algorithm is only minimally
modified.
A cubic time algorithm
To compute the pair of haploids to diploid distance, we
propose to compute values Vi,j,k for i ∈ {1, . . . , N}, j ∈
{1, . . . M}, and k ∈ {1, . . . , L}, such that Vi,j,k stands for
the pair of haploids to diploid distance between
sequences X1..i, Y1..j and alignment (SA1..k, S

B
1..k)

For the sake of simplicity we first show the recurrence
when SA[k] = SB[k] = c ∈ ∑:

Vi,j,k = min{C(Xi, c) + C(Yj, c) + Vi−1,j−1,k−1, (1:1)

C(′−′, c) + C(Yj, c) + Vi,j−1,k−1, (1:2)

C(Xi, c) + C(′−′, c) + Vi−1,j,k−1, (1:3)

C(′−′, c) + C(′−′, c) + Vi,j,k−1, (1:4)

C(Xi,′ −′) + Vi−1,j,k, (1:5)
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C(Yj,′ −′) + Vi,j−1,k} (1:6)

Here, expression (1.1) stands for a match or substitu-
tion; expressions (1.2) to (1.4) stand for insertions either
into X, Y, or both; and expressions (1.5) and (1.6) stand
for deletion from X or Y . Note that we do not include
the case Vi,j,k = C(Xi,′ −′) + C(Yi,′ −′) + Vi−i,j−1,k because
it is always redundant: this case stands for a deletion
from both X and Y at the same time, and that can be
obtained by first deleting a character from X, and then
from Y.
When a = SA[k] ≠ SB[k] = b we have to consider sym-

metric cases:

Vi,j,k = min{C(Xi, a) + C(Yj, b) + Vi−1,j−1,k−1, (2:1)

C(Xi, b) + C(Yj, a) + Vi−1,j−1,k−1, (2:2)

C(′−′, a) + C(Yj, b) + Vi,j−1,k−1, (2:3)

C(Xi, a) + C(′−′, b) + Vi−1,j,k−1, (2:4)

C(′−′, a) + C(′−′, b) + Vi,j,k−1, (2:5)

C(′−′, b) + C(Yj, a) + Vi,j−1,k−1, (2:6)

C(Xi, b) + C(′−′, a) + Vi−1,j,k−1, (2:7)

C(′−′, b) + C(′−′, a) + Vi,j,k−1, (2:8)

C(Xi,′ −′) + Vi−1,j,k, (2:9)

C(Yj,′ −′) + Vi,j−1,k} (2:10)

We need to consider twice as many expressions for
matches/substitutions (2.1 and 2.2), twice as many con-
ditions for insertions (2.3 to 2.8), and the same number
of conditions for deletions (2.9 and 2.10). When a = b
those duplicated equations become redundant and we
recover the previous formulation. Also it would be pos-
sible to formulate simplified recursions when there is a
gap in the alignment (that is, either a or b equals ‘−’),
however those are also particular cases of the general
formulation, given that C(’−’, ‘−’) = 0.
To compute the recombinant distance using dynamic

programming we need to fill a table V in time O(MNL).
If we want to find the actual alignment, in addition to
the standard traceback process, we need to traceback
the table carrying a bitvector I which is initially empty.
Every time we take a transition that decreases k we need
to prepend a 0 (respectively a 1) to I, if we choose an
expression from 2.1, 2.3, 2.4, or 2.5 (respectively 2.2, 2.6,
2.7, or 2.8). With this bitvector I we identify the recom-
bination (SA

′
, SB

′
) that generated the optimal alignment,

signaling with a 1 the positions where a recombination
is done.

Synchronized diploid to diploid alignment
Now let us assume that we have again two diploid gen-
omes represented as pair-wise alignments. We derive a
restricted variant of diploid to diploid alignment that

Figure 1 A pair-wise alignment (SA, SB) is shown for sequences A = agtggaaa and B = acggcca. A recombination SA
′ and SB

′ is obtained
by interchanging the shaded areas. The corresponding bitvector is I = 0110000. A pair-wise alignment (SX, SY) is shown for sequences X =
acggaaa and Y = agtggcca. The pair of haploids to diploid distance between (SA, SB) and (X, Y) is 0 + 1 = 1, and is obtained using the
recombination (SA

′
, SB

′
) and unit cost edit distance as the measure. The plain unit cost edit distance between (A, B) and (X, Y) is 2 + 3 = 5.

The plain unit cost edit distance between (A, B) and (Y, X) is 3 + 2 = 5. The synchronized diploid to diploid distance between (SA, SB) and (SX, SY)
is 3, using unit cost edit distance as the measure.
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keeps both input alignments synchronized. We first pre-
sent some auxiliary concepts that are useful for expres-
sing the algorithms.
Guiding functions
Given an alignment (SX, SY) for the sequences X and Y,
we build a guiding function h as follows: h(z) = (hi(z),
hj(z)) is such that hi(z) = z − count(SX1..z,

′ −′) and
hj(z) = z − count(SY1..z,

′ −′).
Given the two sequences X and Y and the guiding

function h, it is straightforward to recover the alignment
(SX, SY). Therefore, a guiding function is an alternative
representation of an alignment. The guiding function
allows us to traverse X and Y in a way that both hi and
hj increase in the areas of the alignment without gaps.
In the gapped areas, only the index corresponding to
the non-gapped sequence increases. Figure 2 shows an
example.
Let us denote by X1..i|SX1..k and Y1..j|SY1..k the longest

prefixes of X and Y appearing inside the partial align-
ment (SX1..k, S

Y
1..k).

We say that two alignments (SA
′
, SX) and (SB

′
, SY) are

synchronized with alignment (SX, SY) iff for each partial
alignment (SX1..k, S

Y
1..k) with X1..i|SX1..k and Y1..j|SY1..k there

are partial alignments (SA
′

1..p, S
X
1..P) and (SB

′
1..q, S

Y
1..q) with

X1..i|SX1..p and Y1..j|SY1..q such that p = hi(k) and q = hj(k),
where h is the guiding function of (SX, SY).
Synchronized diploid to diploid distance: Given two

pair-wise alignments (SX, SY) and (SA, SB) of length L1

and L2 respectively, the synchronized diploid to diploid
distance is defined as min{D(A’, X)+ D(B’, Y): (SA

′
, SB

′
) is

a recombination of (SA, SB), and D(A’, X) and D(B’, Y)
correspond to alignments that are synchronized with
(SX, SY)}.
Figure 3 shows an example where the connection with

the covering alignment problem is discussed.
The example in Figure 3 shows that synchronized

diploid to diploid alignment is not giving optimal
answer to the more general diploid to diploid align-
ment problem. The same example indicates that some-
times one can obtain the optimal answer through the
pair of haploids to diploid alignment instead, but the

following counterexample shows that this is not always
the case: Consider the pair-wise alignments SA = tc,
SB = ag and SX = ngc, SY = atv. If the cost of any sub-
stitution is 10, and the cost of any indel is 1, the optimal
diploid to diploid alignment is given by recombining
the second alignment in the second position, by
d = D(SA, SX

′
) +D(SB, SY

′
) = D(tc,ntc) +D(ag, agv) = 2.

The optimal solution of the pair of haploids to diploid
alignment problem, that allow recombinations only in the
first pairwise alignment is d = D(tc, ngc)+ D(ag, atv) = 6.
A quadratic time algorithm
Now we can formalize a recurrence for the synchronized
diploid to diploid alignment problem. The idea is that
instead of varying i and j freely as in the cubic time
algorithm, we will vary only the parameter of the guid-
ing function, so that the guiding function provide us
indexes i and j that are synchronized with the alignment
(SX, SY)
We compute values Dz,k for z ∈ {1, . . . , L1}, k ∈ {1, . .

. L2}, where Dz,k stands for the synchronized diploid to
diploid distance between sequences X1..hi(z),Y1..hj(z) and
alignment (SA1..k, S

B
1..k).

As the indexes hi(z) and hj(z) are given by the guiding
function of (SX, SY), the alignment is synchronized with
the alignment (SX, SY).

Dz,k = min{Dz−1,k−1 + ζ
(
hi (z − 1) , hj (z − 1) , k − 1, hi (z) , hj (z) , k

)
, (3:1)

Dz,k−1 + ζ
(
hi (z) , hj (z) , k − 1, hi (z) , hj (z) , k

)
, (3:2)

Dz−1,k + ζ
(
hi (z − 1) , hj (z − 1) , k, hi (z) , hj (z) , k

) } (3:3)
The rationale is to consider, among all the possibles

transitions used in the cubic time algorithm for pair of
haploids to diploid alignment, those that are compatible
with the guiding function. In this way the alignment of
X and Y is preserved. For this sake, the function ζ
receives as input the triplet (i, j, k) that corresponds to
the previous cell, and the triplet (i’, j’, k’) that corre-
sponds to the current cell.
Given that at least one of z or k decreases in each

recursive call, the valid cases for the function ζ are

Figure 2 For the sequences X = actgg and Y = atgagag we show a pairwise alignment composed by the sequences SX = actg - - - g,
and SY = a - tgagag. On the right the pairwise alignment is represented by the function h.
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those where at least one of k, i, j increase. For any of
those cases, the valid recombination costs from equation
2 are considered:
The cases where both k and z increase are

ζ
(
i − 1, j − 1, k − 1, i, j, k

)
= min{C (Xi,Ak) + C

(
Yj,Bk

)
, (4:1)

C (Xi,Bk) + C
(
Yj,Ak

)} (4:2)

ζ
(
i, j − 1, k − 1, i, j, k

)
= min{C(′−′,Ak) + C

(
Yj,Bk

)
, (5:1)

C(′−′,Bk) + C(Yj,Ak)} (5:2)

ζ
(
i − 1, j, k − 1, i, j, k

)
= min{C (Xi,Ak) + C(′−′,Bk), (6:1)

C (Xi,Bk) + C(′−′,Ak)} (6:2)

ζ
(
i − 1, j, k − 1, i, j, k

)
= min{C (Xi,Ak) + C(′−′Bk),(7:1)

C (Xi,Bk) + C(′−′,Ak)} (7:2)

The cases where only z increases:

ζ
(
i − 1, j − 1, k, i, j, k

)
= C(Xi,′ −′) + C(Yj,′ −′) (8:1)

ζ
(
i, j − 1, k, i, j, k

)
= C(Yj,′ −′) (8:2)

ζ
(
i − 1, j, k, i, j, k

)
= C(Xi,′ −′) (8:3)

Figure 3 DAG interpretation of the diploid to diploid alignment. Above, a DAG that represents the alignment (SA, SB), and below, a DAG
that represents the alignment (SX, SY), both from the example of Figure 1. From each DAG we extract two covering paths. That means that
every node is visited by at least one path. An optimal solution to the synchronized diploid to diploid distance is given by the two paths
extracted from the first DAG generating the sequences actggaaa and agggcca and the two paths from the second one generating the
sequences atagaaa and agcggcca. The synchronized diploid to diploid distance is then d(actgaaa, ataaaa) + d(aggcca, agcgcca) = 2 + 1 = 3.
Here the unit cost edit distance scores are used. Observe that the optimal diploid to diploid distance is 1 corresponding to the solution of pair
of haploids to diploid alignment in Figure 1, and that is also possible to extract paths that represent the solution of the diploid to diploid
distance.
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The case where only k increases:

ζ
(
i, j, k − 1, i, j, k

)
= C(′−′,Ak) + C(′−′,Bk) (9:1)

An O(ND) time algorithm
The same technique [8,9] used to achieve O(ND) run-
ning time for the Levenshtein distance of strings can be
applied here. The key observation here is
Lemma Let (SA, SB) and (SX, SY) be two alignments,

and let Dz,k be the synchronized diploid to distance costs
computed as before. Then ∀k ∈ 0, . . . , L1, z ∈ 0, . . . L2

it holds Dz,k >Dz-1,k and Dz,k >Dz,k-1.
Proof It is enough to verify that expressions 8.1 to 8.3,

and 9.1 are always positive. This holds because X and Y
contain no gaps. On the other hand, SA[k] or SB[k]
might contain a gap, but it is not possible that both of
them contain a gap at the same time. □
Let us assume for simplicity of exposition that |L1| =

|L2| = N and we store values Dz,k in a table. We want to
test if the distance between (A, B) and (X, U) is smaller
than a threshold t or not. That is, we want to test if DN,

N ≤ t for some threshold t. To do that, we do not need
to fill the entire table. It is enough to consider the diag-
onals j - i ∈ {-t/2, -t/2 + 1, . . . , 0, 1, . . . , t/2} in the
computation, because any path using a diagonal outside
this zone must use more than t operations that have a
positive cost, leading to an alignment with cost greater
than t. Starting with t = 1 and doubling this value until
DN,N does not decrease any more gives the optimal
answer, and the final area where the computation is done
is of order O(ND); the previous zone sizes form a geo-
metric series, so the computation done inside them is of
the same order as the computation inside the final zone.

Results and discussion
We implemented the three algorithms in C++. For the
computation of the Levenshtein distance, we resorted to

a boost-compatible implementation of a O(ND) time
algorithm [9]. We ran our experiments in a computer
node with 2 Intel Xeon E5540 2.53GHz processors,
32GB of RAM. The operating system was Ubuntu
12.04.4. Our code was compiled with gcc 4.6.4, optimi-
zation option -O3.
Our first experiments compared the performance of

our three algorithms. In order to do that, we considered
samples from the human chromosome 21 of different
sizes between 1000 and 100000. In order to generate the
pair of diploid individuals we made random mutations
(SNPs and deletions) independently on four copies of
the sequence. The pair of haploids for the cubic time
algorithm were extracted from one of the generated
diploids. Table 1 shows the results. As expected, the
cubic and quadratic time algorithms became infeasible
for moderate size sequences.
Then we wanted to test our new formulations on more

realistic instances. We simulated again a pair of diploid
individuals that contained the same variants, but this time
they were recombined differently. In addition we added
mutations independently in every strand. The results are
shown in Table 2. Our synchronized diploid to diploid dis-
tance correctly identifies the planted mutations. This indi-
cates that the synchronization does not make the general
diploid to diploid distance overly restricted.
Same kind of diploid genomes can also result from

variation calling predictions after applying haplotype
assembly [10]; long haplotype blocks can be correctly
phased, but at regular intervals, low read coverage
results into phasing errors with the order of the top and
bottom sequences switched when compared to the
simulated ground-truth.

Conclusions
We proposed new metrics to compare diploid indivi-
duals, extending classical pair-wise sequence alignment,

Table 1 The distance between pairs of diploids computed by our three algorithms, and the time (in seconds) used for
the computation

Cubic algorithm Synchronized -Matrix Synchronized -Diagonals

Length Mutations Distance Time Distance Time Distance Time

1000 21 21 19.190 21 0.040 21 0.001

2000 47 43 154.030 47 0.110 47 0.010

4000 85 79 1219.060 85 0.650 85 0.020

8000 174 - - 172 1.790 172 0.070

10000 218 - - 216 2.820 216 0.180

20000 408 - - 403 11.080 403 0.580

40000 777 - - 750 44.290 750 1.170

80000 1578 - - 1531 177.200 1531 4.630

100000 1994 - - 1935 276.960 1935 11.500

Cubic algorithm is our implementation of the pair of haploids to diploid algorithm, Synchronized -Matrix is the straightforward implementation of the
synchronized diploid to diploid distance, and Synchronized -Diagonals is the O(ND) time implementation of the same algorithm using the shortest detour
technique.
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to compare a pair of pair-wise alignments under free
recombination. Our motivation for the study came from
variant calling evaluation, where one wants to ignore the
phasing errors. For some other applications, one might
want to add a penalty on the recombination events.
Such penalties are easy to add to the formalism and to
the algorithms. A prominent application for such an
approach is the evaluation of phasing algorithms: The
optimal covering alignment also defines the recombina-
tion positions, so one could compare two alignments
resulting from different phasing algorithms and evaluate
how close they are, without requiring a ground-truth.
Comparison against ground-truth gives an estimate on
how many phasing errors the predicted diploid contains.
One could actually apply our current model for this
application, but free recombinations may give too much
freedom to optimize sequence content so that predic-
tions could seem to be containing many phasing errors.
We want to emphasize that our model captures the

similarity between predicted diploid genomes, and if we
want to use it for modelling the actual recombinations
appearing during evolution some modifications are
required: The reason is that full information of child
diploid genome comes from parts of mother and father
diploid genomes. The partial measure in terms of path-
alignment [5,6] captures this kind of one-to-one ancestral
comparison: Let Gm, Gf, A, and B denote a labeled DAG
representing mother, a labeled DAG representing father,
and two haploid sequences representing a child diploid
genome, respectively. We find a path X in Gm and a path
Y in Gf such that max(S(X, A) + S(Y, B), S(Y, A) + S(X, B))
is maximum, where S(·, ·) is the optimal alignment score
for two sequences. The mutations contributing to the opti-
mal solution give a way to trace the mutations coming
from mother (father) lineage. Observe that, before phasing,
our information on the child genome is as well just a

labeled DAG Gc created from a pair-wise alignment repre-
sentation of predicted diploid. To find the optimal phasing
of child genome, we could try to find (X, Y) trough a one-
sided covering alignment of Gc to the path-alignments in
Gm and Gf. This is almost identical to our pair of haploids
to diploid alignment, except in the place of pair of hap-
loids we have a pair of diploids represented by labeled
DAGs. The cubic time algorithm extends to this case:
Topological traversal of Gm and Gf in place of two
sequences results into some more recurrence options to
take into account the in-neighbors for each pair of nodes
(vm, vf) from the two DAGs. We find this an extremely
promising approach to tackle the phasing problem and as
future work we will conduct experiments on simulated
models. In the same line of development, we will try to
make this approach scalable by exploiting similar proper-
ties as those used for the shortest detour speed-up.
Finally, although the restricted variant of diploid to

diploid alignment using synchronization results into
good experimental behaviour, studying the complexity
of the general diploid to diploid alignment is certainly
another focus for our future work.
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Table 2 A number of variations were applied to the reference genome, and blocks of size 200 were recombined freely

Synchronized diploid To diploid Levenshtein

Length Variations Mutations Distance Time Distance Time

10000 100 7 7 0.006 52 0.010

20000 227 18 18 0.020 139 0.052

30000 338 33 33 0.064 241 0.138

40000 434 36 36 0.096 272 0.214

50000 538 46 46 0.140 367 0.362

60000 637 50 50 0.230 448 0.528

70000 742 67 67 0.274 529 0.850

80000 839 73 73 0.370 562 1.066

90000 960 91 91 0.550 697 1.570

100000 1089 109 109 0.688 762 2.198

1000000 10127 990 990 58.978 7676 376.320

After that, random mutations were introduced with probability 0.001. We show the distances and times (in seconds) obtained by our synchronized diploid to
diploid distance algorithm and by the Levenshtein distance.
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