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Male and female mice show significant
differences in hepatic transcriptomic response
to 2,3,7,8-tetrachlorodibenzo-p-dioxin
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Abstract

Background: 2,3,7,8–tetrachlorodibenzo-p-dixion (TCDD) is the most potent of the dioxin congeners, capable of
causing a wide range of toxic effects across numerous animal models. Previous studies have demonstrated that
males and females of the same species can display divergent sensitivity phenotypes to TCDD toxicities. Although it
is now clear that most TCDD-induced toxic outcomes are mediated by the aryl hydrocarbon receptor (AHR), the
mechanism of differential responses to TCDD exposure between sexes remains largely unknown. To investigate the
differential sensitivities in male and female mice, we profiled the hepatic transcriptomic responses 4 days following
exposure to various amounts of TCDD (125, 250, 500 or 1000 μg/kg) in adult male and female C57BL/6Kuo mice.

Results: Several key findings were revealed by our study. 1) Hepatic transcriptomes varied significantly between the
sexes at all doses examined. 2) The liver transcriptome of males was more dysregulated by TCDD than that of
females. 3) The alteration of “AHR-core” genes was consistent in magnitude, regardless of sex. 4) A subset of genes
demonstrated sex-dependent TCDD-induced transcriptional changes, including Fmo3 and Nr1i3, which were
significantly induced in livers of male mice only. In addition, a meta-analysis was performed to contrast
transcriptomic profiles of various organisms and tissues following exposure to equitoxic doses of TCDD. Minimal
overlap was observed in the differences between TCDD-sensitive or TCDD-resistant models.

Conclusions: Sex-dependent sensitivities to TCDD exposure are associated with a set of sex-specific TCDD-responsive
genes. In addition, complex interactions between the aryl hydrocarbon and sex hormone receptors may affect the
observable differences in sensitivity phenotypes between the sexes. Further work is necessary to better understand the
roles of those genes altered by TCDD in a sex-dependent manner, and their association with changes to sex hormones
and receptors.
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Background
Chlorinated dioxins are a large class of environmental
contaminants generated as by-products of a variety of
industrial processes [1]. Dioxin exposure can lead to a
variety of toxic outcomes, and concerns surrounding
widespread human exposure have led many of these to
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be extensively studied in model organisms [2–6]. To
date, most studies of dioxin-induced toxicity have fo-
cused on the most potent and toxic congener, 2,3,7,8-tet-
rachlorodibenzo-p-dioxin (TCDD). At high doses, TCDD
has been associated with numerous toxic outcomes in
humans, including severe chloracne, neurotoxicity and
tumourigenesis [3, 6–8]. In animal models, even small
doses of TCDD have been shown to cause a wide range
of toxicities, the severity and duration of which differ
among species [2, 9, 10]. Although the exact mechan-
ism of TCDD-induced toxicities is not completely
understood, many studies have demonstrated that the
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interaction between TCDD and the aryl hydrocarbon
receptor (AHR), a ligand-dependent transcription fac-
tor, plays a critical role in mediating them [11–13].
The AHR typically resides quiescently as a cytoplasmic
complex with its chaperone proteins heat shock pro-
tein 90 (HSP90) and AHR-interacting protein (AIP).
Upon ligand binding, the AHR translocates to the nu-
cleus where it disaggregates from the chaperone pro-
teins and. heterodimerizes with the AHR nuclear
translocator (ARNT) [14]. The resulting complex binds
to aryl hydrocarbon response elements (AHREs) in
DNA and alters the transcription of target genes such
as Cyp1a1 [15–17].
The link between AHR-regulated transcriptional

events and TCDD-induced toxicities was established by
several experimental approaches. Ahr knockout mice
demonstrated increased resistance to most TCDD-
induced toxicities, relative to wild-type mice [9, 18].
Similarly, mice expressing mutations which prevent nu-
clear translocation, heterodimerization of AHR with
ARNT, or AHRE binding are highly refractory to dioxin-
induced toxicities [11, 19, 20]. In addition, mice lacking
hepatic ARNT show reduced hepatotoxicity following
treatment with TCDD [21]. These studies indicate that
DNA binding of ligand-activated AHR is essential for the
development of TCDD-induced toxic effects. In order to
elucidate the specific mechanisms by which TCDD and
the AHR elicit toxic outcomes, several groups have exam-
ined the AHR-mediated transcriptional events in various
animal models and tissues following TCDD exposure [12,
13, 22–26]. Interestingly, the sensitivity of animals to
TCDD-induced lethality was found to vary largely among
species as well as between different strains within a spe-
cies [27–30] (Table 1). One possible explanation for this
variation involves the structure of the AHR: different iso-
forms were found to exist between species and strains
Table 1 TCDD sensitivity differences among animal models

Species Strain Male LD50

(μg/kg)
Female LD50

(μg/kg)

Hamstera N/A >5051 N/A

Guinea Pigb N/A 0.6-2 N/A

Ratc Han/Wistar (Kuopio) >10000 >10000

Long-Evans (Turku AB) 17.7 9.8

Mouse C57BL/6Kuod 305 >5000

DBAe ~2570 N/A

The dose-sensitivity of TCDD-induced lethality in animals varies largely among
organisms; both inter- and intra-species variation exists
N/A Data not available
aHenck et al. [28]
bSchwetz et al. [27]
cPohjanvirta et al. [30]
dPohjanvirta et al. [36]
eChapman and Schiller [29]
which can be associated with the various toxicity pheno-
types [31–33].
The role of the AHR becomes less clear when evaluating

differences in toxic outcomes observed between male and
female animals within the same strain [30, 34, 35]. While
there was no difference in the sequence or structure of the
AHR between male and female C57BL/6 mice, females
were refractory to the typical toxic outcomes of TCDD
[33, 36]. Other studies have demonstrated differential sus-
ceptibility of male and female C57BL/6 mice for a wide
range of endpoints, including acute lethality, wasting syn-
drome, leukocytopenia and liver damage [36, 37]. Several
studies suggest a complex interaction between the AHR
and estrogen (ER) [38–41] and androgen receptors (AR)
[39], which may partly explain the different TCDD-
induced outcomes between sexes. However, the specific
role of these receptors remains unclear. Female mice and
guinea pigs are more resistant to TCDD-induced lethality
than their male counterparts, while in rats, the sensitivity
profiles are reversed, with females being the more TCDD-
sensitive sex [30, 34, 36].
To further investigate this issue, a dose–response experi-

ment was conducted on male and female C57BL/6Kuo
mice and the hepatic transcriptomic profiles were evaluated
with the intention of identifying sex-dependent/TCDD-me-
diated transcriptional events. Furthermore, a meta-analysis
was performed using data from a similar time-course ex-
periment in male and female mice [42] and using previous
studies of rats under similar conditions [26, 43–45] in
hopes of unravelling the mechanisms involved in producing
the divergent TCDD-induced toxicities.
Results
To identify specific changes in mRNA abundance associ-
ated with differential TCDD-induced toxicities observed
in male and female C57BL/6 mice, the hepatic transcrip-
tome was profiled. Specifically, male and female C57BL/
6Kuo mice were treated with either corn oil alone or a
single dose of 125, 250, 500 or 1000 μg/kg TCDD in
corn oil. It was previously demonstrated that survivor rates
varied significantly between male and female animals within
this range [36], with the lower TCDD doses being below
the LD50 for male mice, and all doses being well tolerated
by female mice (Table 1). In addition, a significant differ-
ence in plasma ALAT (alanine aminotransferase) activities
between sexes existed 4 days post-exposure regardless of
dose [36]. Therefore hepatic tissue was profiled 4 days after
exposure to identify sex-specific transcriptomic changes
(Fig. 1). It is important to note that while the higher
doses of TCDD (500 and 1000 μg/kg) are lethal to male
mice of this strain, lethality does not occur until day 14
at the earliest [36] hence animals were not yet moribund
at this early time point.



Fig. 1 Experimental Design. Adult C57BL/6Kuo mice (20 each male and female) were divided into five treatment groups per sex. Each group
received a single dose of TCDD in corn oil (125, 250, 500, or 1000 μg/kg) or corn oil alone. Livers were excised 4 days after treatment and RNA
was isolated and hybridized to Affymetrix Mouse Gene 1.1 ST arrays. Data for each sex were pre-processed and modelled separately. Results for
male and female cohorts were then combined. Those genes determined to be significantly altered by treatment were identified and downstream
analyses, including pattern recognition and function analyses, were performed. A meta-analysis was performed through integration of data from
13 rodent-TCDD studies and additional analyses were performed to identify trends
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Overview of transcriptomic profiles
Following data pre-processing, transcripts showing the
most variable intensities were subjected to hierarchical
clustering to visualize abundance patterns between treat-
ment groups (Fig. 2a). Unsurprisingly, distinct transcrip-
tomic profiles exist between male and female animals
(independent of treatment), with further differences eas-
ily observed between TCDD treated and control animals
within each sex. The Adjusted Rand Index (ARI) was
calculated to quantitate this clustering. Cluster sizes of 2
(sex, treatment [treated or control]), 5 (dose [0, 125, 250,
500 or 1000 μg/kg TCDD]) and 10 (sex:dose) were



Fig. 2 Summary of Transcriptomic Profiles. a RMA normalized intensity values for genes with the highest variance across all samples (variance > 2.0)
were visualized; clear sex-specific and treatment-specific (TCDD or corn oil) abundance patterns were observed. Intensity values for each sample were
clustered with the DIANA hierarchical clustering algorithm, with Pearson’s correlation as a similarity metric. Shading (white to blue) represents RMA
normalized intensity values. b Linear modeling was performed to identify differences between treatment and control groups. Each sex was evaluated
separately and results combined after modeling was applied. The legend indicates the experimental (i.e., M125 =male TCDD treated mice (125 μg/kg)
relative to male vehicle control animals). The number of genes determined to be significantly altered at a range of FDR-adjusted p-value thresholds were
examined across experimental groups. c Results (log2 fold-change) were compared between male and female mice for each dosage group. Pearson’s
correlation indicated increasing similarity between transcriptomic profiles of male and female mice as TCDD dose was increased. Overlap of significantly
altered genes following each dose of TCDD in (d) male and (e) female cohorts
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evaluated. As expected, perfect agreement was identi-
fied for the partition based on sex (ARI = 1), moderate
agreement existed for the combination of sex and dose
(ARI = 0.26), while no agreement existed for treatment
or dose alone (ARI = −0.02 and 0.03 respectively).
To quantify transcriptomic differences, linear model-

ing was performed to compare treated and control
groups for each sex. Coefficients from the linear model
provide the magnitude of difference between treated and
control animals [log2(fold-change)], while modified t-tests
were used to determine significance of differences be-
tween groups, followed by false discovery rate adjustment.
The number of genes altered at various significance
thresholds was assessed for each treatment group (Fig. 2b).
In general, male mice showed more transcriptional
changes following TCDD exposure than female mice at
the same dose. To compare magnitude of change follow-
ing treatment, the coefficients for each dose were com-
pared between male and female mice, with Pearson’s
correlation used to ascertain similarity across the tran-
scriptome (Fig. 2c). The largest divergence between the
sexes occurs at the lowest dose (125 μg/kg TCDD); a sub-
set of transcripts showed increased abundance relative to
control animals in only male animals following this
dosage.
To further evaluate the extent of changes across the

dose–response spectrum, the number of genes deter-
mined to be significantly altered (log2|fold-change| > 1
and padj < 0.01) were compared for each sex. Using these
thresholds, male mice showed 141 transcripts altered
across all doses, however a greater number of transcripts
were consistently observed at doses below the LD50 for
these animals (Fig. 2d). Conversely, females showed
more genes altered at higher doses, and had only 43
transcripts altered at all four doses (Fig. 2e).

Conserved transcriptomic responses
Exposure to TCDD elicits transcriptional regulation
through activation of the AHR [9, 11, 18, 19, 21]. There-
fore, we examined 10 “AHR-core” genes (i.e. Ahrr,
Aldh3a1, Cyp1a1, Cyp1a2, Cyp1b1, Fmo1, Inmt, Nfe2l2,
Nqo1 and Tiparp) that have previously been established
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to be altered following exposure to TCDD in various
species and tissue types [12, 24, 46, 47]. These are genes
typically involved in xenobiotic metabolism and the
adaptive response to cellular stress. In general, the abun-
dance profiles of these genes were similar between male
and female mice (Fig. 3a, top dot-plot). Six genes (Ahrr,
Cyp1a1, Cyp1a2, Cyp1b1, Nqo1 and Tiparp) showed sig-
nificant alteration in all cohorts. Nfe2l2 demonstrated
similar magnitudes of induction following TCDD expos-
ure in all treatment groups; however differences in abun-
dance between treated and control groups were more
statistically significant in female mice. Similarly, Inmt
Fig. 3 Transcriptomic Responses of Genes of Interest. Two subsets of genes w
“AHR-core” genes and 21 genes determined to be significantly altered (|log2 fo
male or female mice. The magnitude (dot size), direction (dot colour: orange a
and significance (background shading representing FDR-adjusted p-values) of
genes (top) and genes of interest (bottom) are shown from both (a) dose resp
ple treatment while (c) demonstrate the presence or absence of AHRE motifs a
was altered only in female mice (except at the lowest
dose of TCDD, where it was unchanged); however the
magnitude of induction was below our threshold. There-
fore, none of the “AHR-core” genes were deemed to
show sex-dependent differences in response to TCDD
exposure.
The current dose response experiment only allows us to

observe mRNA abundance changes 4 days after exposure.
Therefore, results from a published time-course study [42]
were added for comparison and the “AHR-core” genes
were examined as above (Fig. 3b, top dot-plot). Aldh3a1
and Fmo1 were unaltered following TCDD treatment,
ere selected for visualization and comparison with additional datasets: 10
ld-change| > 1.5 and padj < 0.01) following all four doses of TCDD in either
nd blue representing increased and decreased abundance respectively)
changes relative to control animals are shown. Results for the “AHR-core”
onse and (b) time-course analyses. Covariates along the top indicate sam-
nd AHR-binding, as determined by ChIP-chip analysis
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regardless of dose or length of treatment. Interestingly,
Ahrr and Cyp1b1 were altered in livers of both male and
female mice only at later time points. Differences in hep-
atic response between male and female mice for Nqo1 and
Inmt may be due to differences in the number of animals
in each group between the studies (Table 2).
In order to better interpret the role of the AHR in

regulating these genes, both transcription factor binding
site (TFBS) analysis and AHR-binding analysis were per-
formed (as described in methods). The presence or ab-
sence of various AHRE motifs, as well as the detection
of AHR-binding by ChIP-chip for “AHR-core” genes is
shown (Fig. 3c, top panel). Only Fmo1 displayed an ab-
sence of AHRE motifs in the region examined, while
only Tiparp demonstrated AHR-binding in this study.

Sex-dependent transcriptomic responses
Since male and female C57BL/6 mice present divergent
susceptibilities to dioxin-induced acute lethality, we
sought to identify sex-dependent TCDD-responsive genes.
Using the same dual threshold of log2|fold-change| > 1
and padj < 0.01 used above, 69 genes were significantly al-
tered at all four doses in either male (37 genes) or female
(32 genes) mouse liver. Overlap between male and female
hepatic transcriptomic response following each TCDD
dose is shown in Additional file 1. To further refine this
list a more stringent threshold of log2|fold-change| >
1.5 and padj < 0.01 was applied, resulting in a set of 21
“candidate” genes with sex-dependent responses to
TCDD (Fig. 3a, bottom dot-plot). Of these, the most
notable sex-dependent response was observed for Fla-
vin containing monooxygenase 3 (Fmo3). The protein
product of this gene is involved in the oxidation of nu-
merous xenobiotics. This gene is significantly induced
following TCDD exposure in male livers, a result that
has been described previously [48]. While Fmo3 was
Table 2 Number of animals available per experimental group

Time (days) Dose
(μg/kg)

Number: Male
(TCDD/Control)

Number: Female
(TCDD/Control)

6 ha 500/0 5/4 5/4

1a 500/0 4/3 5/1

3a 500/0 4/4 4/1

4 125/0 4/4 4/4

4 250/0 4/4 4/4

4 500/0 4/4 4/4

4 1000/0 4/4 4/4

6a 500/0 4/3 5/2

The number of animals employed in each set of experimental conditions varied
slightly between the current dose response and previous time-course analyses. At
each time point, animals were treated with TCDD or vehicle control (indicated by
Dose - TCDD/control). Numbers of male or female mice per group are shown
as TCDD/control
aProkopec et al. [42]
significantly altered in all cohorts examined, the magni-
tude of change in female livers was smaller than that in
male livers. Similarly, five additional genes were signifi-
cantly altered across both males and females in the
dose response study; however the magnitude of these
changes reached the selected threshold in only male
(Hunk, P2ry4, Sun3 and Ugt1a9) or female liver
(Rcan3).
The identification of sex-specific TCDD-responsive

“candidate” genes was based solely on a single time-
point and may be picking up secondary transcriptional
events. However, the reduced TCDD sensitivity in female
mice may be a result of rapid adaptive capabilities.
Therefore, the “candidate” genes were further examined
along time-course [42] (Fig. 3b, bottom dot-plot) to
identify whether the candidates exhibit early or late
changes. As expected, Fmo3 mRNA abundance displayed
an evident temporal response in male liver, with abun-
dance increasing along the time-course. Many “candidate”
genes (i.e., Ggt6, Mmp12, Psat1, Rcan3 and Serpina7)
showed altered abundance at only the later time-points
examined (3 and/or 6 days post-exposure), likely indicat-
ing secondary responses to exposure. Strikingly, Dclk3,
which encodes a protein kinase, displayed significantly al-
tered hepatic abundance in only female mice along the
dose response study, but was primarily altered in only
male mice along the time-course study, with modest
changes observed at 6 h post-exposure in females [42].
Also of interest, uncharacterized protein LOC68949
(1500012F01Rik, also known as Zfas1) – a lncRNA impli-
cated in guiding site-specific methylation of rRNAs and
moderately expressed in normal liver of male mice [49] –
showed increased abundance in male hepatic tissue at all
doses at 4 days post-exposure, as well as at 3 days post-
exposure in the time-course study. In contrast, this tran-
script showed decreased abundance at early time-points
in female hepatic tissue (though the change was not statis-
tically significant).
As with the “AHR-core” genes, “candidate” genes were

examined for AHRE motifs and AHR-binding (Fig. 3c,
bottom panel). Although AHRE motifs were detected in
most candidate genes (20/21), only two (Abtb2 and
Fmo3) demonstrated AHR-binding by ChIP-chip [50].
Abtb2 was significantly down-regulated following treat-
ment (all 4 doses at 4 days) in only male livers. No
AHRE motifs were discovered within the searched re-
gion of the Serpina7 gene, which was significantly down-
regulated in female livers along the dose response, as
well as in both male and female livers at later time
points [42].

Functional analysis TCDD-responsive genes
To provide insight into the biological functions of TCDD-
responsive genes in hepatic tissue of male and female
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mice, a pathway enrichment analysis was performed on
the significantly altered genes (padj < 0.01) within each co-
hort. Gene ontologies that were significantly enriched
(padj < 0.01) in each cohort were identified and compari-
sons were made between the sexes at each dose
(Additional files 2 and 3). Surprisingly there were no sig-
nificantly enriched GO terms in male liver at the lowest
dose (125 μg/kg TCDD), despite this cohort having the
most altered genes (Fig. 2b, Additional file 2A). Con-
versely, female liver showed 35 enriched terms at this low
dose, despite a fewer number of genes. At higher doses,
male and female hepatic tissues demonstrate similar num-
bers and significant overlap (hypergeometric test, p < 0.01)
of enriched pathways (Additional file 2B–D). We identi-
fied 11 GO terms that displayed significant enrichment in
a sex-specific manner (significant enrichment in 3+ co-
horts in either sex). Interestingly, the majority of these
were female-specific and include ontologies such as carbo-
hydrate and alcohol metabolic processes (Fig. 4). Two
pathways were enriched in a male-specific manner: trans-
lation elongation and fatty acid biosynthesis (Fig. 4). Inter-
estingly, these pathways are enriched following only lethal
doses [36].

Alterations of TCDD-responsive genes in different
biological contexts
Finally, we sought to exploit our understanding of sex-
associated transcriptional profiles to identify candidate
drivers of dioxin toxicities. Because male and female mice
show differential sensitivity to dioxin toxicities, we hy-
pothesized that genes showing transcriptional differences
Fig. 4 Pathway Analysis. Significantly altered genes (padj < 0.01) were ident
(GOMiner). Gene ontologies that were determined to be significantly enrich
mice are shown. Dot size indicates enrichment values while background sh
between them might also drive differential sensitivity to
dioxin toxicities in other model systems. We therefore in-
tegrated sex-specific changes with TCDD-dependent tran-
scriptomic alterations in a variety of biological contexts
(Table 3). These studies administered equitoxic doses of
TCDD in sensitive rats and mice (100 and 500 μg/kg in
rat and mouse respectively) [24]. Regardless of species, the
transcriptomic changes induced by TCDD treatment were
more pronounced in hepatic tissue, particularly at the
later time-point examined. Few transcripts were statisti-
cally significantly altered in either hypothalamic or adipose
tissues in rats. In hepatic tissue, a higher number of al-
tered genes were observed in the dioxin-sensitive groups
(C57BL/6 Male; Rat L-E Male) than in the dioxin-resistant
groups (C57BL/6 Female; Rat H/W Male) both at 1 day
(Fig. 5a) and 4 days (Fig. 5b) post-exposure. In hepatic tis-
sue, there was minimal overlap among phenotypic groups,
4 days after treatment.
With the exception of Cyp1a1 and Nqo1, minimal

conservation was observed among the response of
“AHR-core” genes to TCDD exposure across studies.
Nfe2l2 and Tiparp were altered in hepatic tissue of all
organisms, while altered Aldh3a1 was limited to rat
liver (Additional file 4, top panel). Outside of the
“AHR-core” genes, 14 genes were determined to be sig-
nificantly altered (log2|fold-change| > 1 and padj < 0.01)
in both TCDD-sensitive cohorts (Additional file 4, cen-
ter panel) while 5 genes were altered primarily in the
resistant subtypes (Additional file 4, lower panel).
Of those genes showing a sex-specific response 4 days

after exposure to TCDD, 97 demonstrated significantly
ified for each sex/dose combination and used for pathway analysis
ed (padj < 0.01) at multiple (3+) TCDD doses in either male or female
ading represents FDR-adjusted p-values



Table 3 Summary of datasets for meta-analysis

Species Strain Tissue Sex TCDD (μg/kg) Time (days)

Mouse C57BL/6Kuo Liver Male 500 1a

4b

Female 1a

4b

Rat Long-Evans Liver Male 100 1c

4d

Adipose 1e

Hypothalamus 1f

Han/Wistar Liver Male 100 1c

4d

Adipose 1e

Hypothalamus 1f

To examine common and divergent transcriptomic alterations under different
biological contexts, multiple microarray studies employing various rodent
models (multiple species, strains, tissues, sexes and treatment time-points)
were incorporated into a meta-analysis
aProkopec et al. [42]
bLee et al. (current)
cYao et al. [44]
dBoutros et al. [43]
eHoulahan et al. [45]
fHoulahan et al. [26]
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altered abundance in only male liver (log2|fold-change| >
1 and padj < 0.01) while 68 were altered in only female
liver (Additional file 5). When compared with other bio-
logical contexts, Gpd2 was altered in only the liver of
male mice (both 1 and 4 day time points) while Gls2
was additionally altered in liver tissue of L-E rats at
both 1 and 4 days after exposure (Additional file 5, left
panel). In female mouse liver, Gstp1 and Ugdh were al-
tered at both time points however were not altered in
any of the additional cohorts examined. Alternatively,
Eml4 and Exoc3 were additionally altered in hepatic tis-
sue of both rat strains at both time points, while Il1r1
was altered in only the resistant subtypes (Additional
file 5, right panel). Ultimately, no genes were signifi-
cantly altered exclusively to all of the sensitive- or re-
sistant- phenotypes examined suggesting that these
diverse models of dioxin sensitivity and resistance are
driven by different genes. However, Gls2 was altered
in livers of both the TCDD-sensitive male mouse
and L-E rat. Gls2 encodes a glutaminase involved in
reducing levels of reactive oxidative species (ROS)
[51]. The reduced abundance of this transcript ob-
served in TCDD-sensitive organisms may lead to in-
creased intracellular ROS and subsequent toxicities.
Livers of both female mice and H/W rat demon-
strated significant induction of Il1r1 (an interleukin
1 receptor) suggesting an enhanced immune re-
sponse by these organisms.
Discussion
Sensitivities to TCDD-mediated toxicities differ vastly
across animal models. We have previously studied the
hepatic transcriptomic responses to TCDD exposure in
various strains of rats and mice, where various AHR iso-
forms have been shown to play a role in mediating differ-
ential sensitivity phenotypes [13, 43, 44]. Unfortunately,
identifying the specific mechanisms by which differential
toxicity occurs has proven difficult. Recently, studies have
attempted to minimize the effect of genetic variation
among different species and/or strains through the use of
transgenic mice [33]. The current study attempts to
minimize the impact of genetic variation by exploiting the
differences in dioxin-sensitivities among male and female
animals within the same genetic background. Therefore,
characterization of the sex-specific TCDD-mediated tran-
scriptomic changes may provide valuable information on
the mechanisms of divergent TCDD-induced toxicities,
independent of the AHR.
Our examination of hepatic transcriptomic profiles

along both dose response and time-course experiments
revealed several key findings. First, the general response
patterns to TCDD exposure of male and female mice in
terms of hepatic mRNA abundance are evidently differ-
ent between the sexes [42]. Of the ~12,000 actively
expressed hepatic genes in mice [52, 53], ~72 % have
been described as being sexually dimorphic, with a fairly
equal split between female- and male-biased genes [52].
Following treatment with TCDD, livers of female mice
displayed a smaller number of altered transcripts relative
to their corn-oil-treated counterparts than did male
livers. This difference between male and female hepatic
response is consistent along the dose response, however
this was not the case early in the time-course [42], sug-
gesting that this is a result of the longer exposure time.
These results affirm that exposure to TCDD induces
more transcriptomic alterations in the livers of male
mice regardless of dose and as early as 1 day after expos-
ure. This suggests a relationship between the quantity of
transcriptomic changes and the increased sensitivity to
lethality observed in male mice [36].
Second, the “AHR-core” gene response is relatively con-

served across all cohorts. Transcriptomic changes can be
categorized as either primary, mediated directly by dioxin-
activated AHR, or secondary, those changes brought about
by the onset of toxicity. The observed conservation of the
“AHR-core” gene responses between the sexes, in particu-
lar the induction of classic AHR-regulated genes, such as
Cyp1a1, Cyp1a2 and Cyp1b1, suggests that AHR activity
alone may not be the key factor determining the differen-
tial phenotypic response. Further evidence for this hypoth-
esis comes from previous studies of Cyp1a1-null mice [37]
in which susceptibilities to TCDD toxicities, including acute
lethality, remained consistently different between the sexes.



Fig. 5 Meta-Analysis. The transcriptomic profiles for hepatic tissue from TCDD-treated mice and rats were compared. Mice were treated with
500 μg/kg TCDD while rats received 100 μg/kg – samples were collected at (a) 1 day and (b) 4 days after exposure. Only homologous genes were
examined for consistency (n = 6871). Significantly altered transcripts were identified as those with log2|fold-change| > 1 and padj < 0.01
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In addition, response patterns of these mRNA species have
been shown to be conserved in both the TCDD-sensitive
Long-Evans (L-E) and TCDD-resistant Han/Wistar (H/W)
rats [13, 43, 47]. This further suggests that a group of genes
outside of the “AHR-core” subset may be responsible for
the difference in TCDD-induced toxicities.
Third, as alluded to above, a subset of “candidate”

genes that exhibit sex-dependent response patterns was
found to exist. Therefore, it is hypothesized that changes
in abundance of these genes may result in either harmful
(males) or beneficial (females) effects regarding TCDD
toxicity. Further, altered abundance of these “candidate”
genes may lead to downstream changes in pathway ac-
tivities, and ultimately result in the observed toxicity
outcomes.
In particular, our results demonstrate strong induction

of Fmo3 by TCDD at all doses examined in hepatic
tissue of male mice. While basal expression of Fmo3 is
considerably higher in female liver than in male liver,
this induction results in mRNA levels that are similar to
those observed in TCDD-treated female liver. Fmo3 has
been extensively studied in TCDD-treated mouse models
[48]. The expression pattern of Fmo3 varies largely be-
tween mouse and rat - this enzyme is constitutively
expressed at higher levels in livers of female mice but vir-
tually absent in livers of adult males while, in rats, abun-
dance levels appear to be independent of sex [54]. It is
also important to note that sex steroids have opposite ef-
fects on abundance of Fmo3 between the two species. Tes-
tosterone has been shown to suppress expression and
activity of FMO3 in mice, while female sex hormones had
the opposite effect [55]. Conversely, testosterone has been
shown to positively regulate the FMO gene family,
while treatment with estradiol reduced FMO expression
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in rats [56]. Similarly, Nr1i3, which encodes the consti-
tutive androstane receptor (CAR), was shown to be sig-
nificantly upregulated following all doses (log2|fold-
change| > 1.5 following the 3 highest doses) of TCDD and
multiple time points (padj < 0.01) in male mice. Nr1i3 can
also be significantly suppressed by testosterone exposure
[57]. TCDD-mediated sex steroid reduction has been well-
demonstrated in previous studies, where exposure of
TCDD significantly decreased testosterone, progesterone
and estradiol in an AHR-dependent manner [58]. Reduced
testosterone levels following TCDD-exposure may relate to
the increased abundance of Nr1i3 observed in our studies
[42]. In addition, complex interactions have been described
between the AHR and the estrogen (ER) and androgen
(AR) receptors, in which ligand-activated AHR acts as both
a transcriptional co-regulator for and promotor of degrad-
ation of the ERα and AR [39]. Taken together, this suggests
that TCDD treatment alters the actions of sex hormones,
either directly or indirectly through modulation of receptor
activity, negatively regulating testosterone activities in male
mice, thereby reducing the suppression of Fmo3. The op-
posite effect of testosterone on Fmo3 in rats may also ex-
plain the reverse patterns of sex-dependent sensitivity to
TCDD exposure. Multiple biological pathways were identi-
fied that displayed significant enrichment of altered genes
following exposure to TCDD in a sex-dependent manner.
While none of these were directly related to the above dis-
cussion of sex steroids and receptors, female livers showed
an enrichment of altered genes involved in the inhibition of
peptidase activity and cofactor binding, as well as various
metabolic processes. This may allow female mice to better
handle toxic metabolites and oxidative stress brought on by
exposure to TCDD. The livers of male mice demonstrated
enrichment of pathways related to translational elongation
and fatty acid biosynthesis. Many of those genes demon-
strating altered abundance associated with the translational
elongation pathway are ribosomal components. A connec-
tion could be hypothesized between expression of these
rRNAs and the increased abundance of the lncRNA
1500012F01Rik (Zfas1). Enhanced synthesis of fatty acids
may relate to the decreased body weight experienced by
male mice following exposure to TCDD.

Conclusions
The divergent responses to TCDD exposure in male and
female C57BL/6 mice have been verified at the transcrip-
tomic level. The primary responses directly regulated by
the classical AHR-activation pathway are consistent, re-
gardless of sex. Several sex-specific TCDD-responsive
genes have been identified in hepatic tissue which may
be associated with the differential sensitivities to TCDD
induced toxicities. Moreover, different biological path-
ways demonstrated a significant enrichment of altered
genes following TCDD exposure between the sexes.
Previous studies have demonstrated a complex inter-
action between ligand-activated AHR and the activities
of sex hormones and receptors [39, 58]. The current
findings indicate altered abundance of specific genes
may be involved in the differential phenotypic toxicities
observed in male and female mice following exposure to
TCDD. Further work is necessary to fully understand
the specific mechanistic roles of sex hormones and asso-
ciated receptors in these TCDD-induced toxicities.

Methods
Animal handling
Adult female and male C57BL/6Kuo wild-type mice
were obtained from the National Public Health Institute,
Division of Environmental Health, Kuopio, Finland. The
current substrain (C57BL/6Kuo) originates from C57BL/
6 J mice and was generated through multiple generations
of inbreeding. Mice were employed at the age of 12–15
weeks to ensure both males and females had reached
maturity. To prevent aggressive behaviour among ani-
mals, mice were each housed individually in Marolon
cages with Altromin 1314 feed (Altromin Spezialfutter
GmbH & Co. KG, Lage, Germany) and tap water avail-
able ad libitum. The temperature in the housing envir-
onment was maintained at 21 ± 1 °C, with a relative
humidity of 50 ± 10 % and 12/12 h artificial light/dark
cycle. The study protocols were approved by the Finnish
National Animal Experiment Board (Eläinkoelautakunta,
ELLA; permit code: ESLH-2008-07223/Ym-23).

Experimental design
The experimental design is outlined in Fig. 1. Briefly, a
total of 20 male and 20 female C57BL/6Kuo mice were
used in this experiment. Animals were equally divided
into 5 groups for each sex (n = 4) such that the age and
weight range of the animals was consistent between
groups. Each group received a single dose of TCDD
(125, 250, 500 or 1000 μg/kg TCDD) or corn oil vehicle
alone administrated by oral gavage (10 mL/kg) between
0900 and 1300 h. All mice were euthanized four days
after treatment by carbon dioxide asphyxiation, immedi-
ately followed by cardiac exsanguination. Tissues were
harvested, immediately frozen in liquid nitrogen and
stored at −80 °C. Hepatic tissue was shipped on dry ice
to the analytical laboratory for processing. All animal
handling and reporting comply with ARRIVE guidelines
[59]. Information regarding individual animal treatment
is provided in Additional file 6.

Microarray hybridization
Samples were prepared as described previously [60].
Briefly, tissue was ground to a fine powder in liquid nitro-
gen using a mortar and pestle, and rapidly homogenized
using a Brinkmann Polytron (Polytron PT1600E with a
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PT-DA 1607 generator). Total RNA was extracted using
an RNeasy Mini Kit following manufacturer’s instructions
(Qiagen, Mississauga, Canada). Quantitation was per-
formed using a Nanodrop UV spectrophotometer (Thermo
Scientific, Mississauga, ON) and RNA integrity was veri-
fied by electrophoresis with RNA 6000 Nano kits on an
Agilent 2100 Bioanalyzer (Agilent Technologies, Santa
Clara, CA, USA). All samples demonstrated RNA integrity
scores greater than 8.5 and were subsequently used in
downstream analyses. RNA was transported to The Centre
for Applied Genomics (TCAG) at The Hospital for Sick
Children (Toronto, ON) and assayed on Affymetrix Mouse
Gene 1.1 ST arrays using recommended protocols.

Microarray pre-processing
Raw quantitated microarray data (CEL files) were ob-
tained from TCAG. Data were imported into the R stat-
istical environment (v3.1.2) using the affy package
(v1.44.0) of the BioConductor library [61]. Male and
female data were pre-processed separately using the
RMA algorithm [62] to avoid masking sex-specific ef-
fects. Distributional homogeneity of arrays was assessed
to detect outliers (Additional files 7 and 8); no arrays
were excluded. An updated mapping of probes to Entrez
Gene IDs was performed using the mogene11stmmen-
trezgcdf (v19.0.0) package [63]. Raw and pre-processed
microarray data from this study are available in the Gene
Expression Omnibus (GEO) repository under accession
GSE61038. Visualizations were generated using the
lattice (0.20-29) and latticeExtra (0.6-26) packages for R.

Statistical analyses and visualization
General linear modeling was employed separately for
each sex to identify transcripts altered by each dose of
TCDD, relative to basal abundance level. Expression
profiles were modeled as being a linear univariate com-
bination of a basal effect and a TCDD-induced effect
using a gene-wise linear model. Linear modeling was
performed using the limma (v3.22.1) package for R. The
standard error of each coefficient was adjusted with an
empirical Bayes moderation of the standard error [64].
Model-based t-tests were used to assess whether each co-
efficient was significantly different from zero, followed by
false-discovery rate (FDR) adjustment for multiple-testing
[65]. Annotated results are provided in Additional files 9
and 10 (male and female respectively). Patterns of tran-
script abundance in male and female mice were visualized
using DIANA hierarchical clustering with Pearson’s cor-
relation similarity metric. For downstream analyses, a dual
threshold of |log2 fold-change| > 1 and padj < 0.01 was used
to define significantly altered transcripts, unless otherwise
specified. Overlap of significantly altered genes between
groups was visualized using the VennDiagram package
(v1.6.11) for R [66].
Pathway analysis
Gene ontology enrichment, performed using the High-
Throughput GoMiner program (application build 454;
database build 2011–01), was used to identify pathways
significantly impacted by TCDD treatment [67]. For each
treatment group, a list of significantly altered genes was
identified as described above. Each list was compared
against a randomly drawn sample from the database
using 1000 randomizations, all mouse databases and
look-up options, all gene ontology (GO) evidence codes
and ontology classes (molecular function, biological
process and cellular component), with a minimum of
five genes per GO term and significance threshold of
FDR-adjusted p-value < 0.1. Overlap of enriched GO
terms between male and female mice was visualized
using Venn diagrams (Additional file 2). GO terms were
deemed differentially enriched between male and female
mice if they were significantly enriched (padj < 0.01) at
3+ doses in either male or female cohorts.

Transcription-Factor Binding Site (TFBS) analysis
A transcription-factor binding site analysis was per-
formed to target motifs associated with AHR tran-
scriptional regulation. The mouse reference genome
was searched for given motif sequences occurring
within ±3 kbp from the transcription start site of each
gene. REFLINK and REFFLAT tables (build mm9) were
downloaded from the UCSC genome browser [68] on July
15, 2014 to annotate transcription start sites. Four motifs
were examined: AHRE-I (core), AHRE-I (extended), AHRE-
I (full), and AHRE-II, with sequences GCGTG, TNGCGTG,
[T|G]NGCGTG[A|C][G|C]A, and CATG{N6}C[T|A]TG
respectively [69, 70]. For each available gene, the number of
doses at which the gene was determined to be significantly
altered by TCDD (padj < 0.01) in each sex and the number
of occurrences and conservation score for each motif are
provided in Additional file 11.

Chromatin Immunoprecipitation (ChIP) - chip analysis
To verify if alterations in mRNA abundance were asso-
ciated with AHR binding to regulatory motifs, a pub-
licly available chromatin immunoprecipitation with
DNA microarray (ChIP-chip) dataset (GSE11850) [50]
was analyzed as described previously [42]. Briefly, raw
data was downloaded for samples treated with DMSO
or TCDD (GSM299306, GSM299307, GSM299310 and
GSM299311) and normalized using RMA with the oligo
package (v1.28.2) in R (v3.1.0). The binary probe map
(NCBI build 35) provided by Affymetrix with mappings
to mm7 was used to associate probes with specific gen-
omic locations. Probes were then annotated with spe-
cific gene symbols by linking the genomic location to the
nearest gene (±1 kbp from the TSS) using cisGenome [71]
and REFFLAT tables (build mm7) downloaded on June 2,



Lee et al. BMC Genomics  (2015) 16:625 Page 12 of 14
2014 from UCSC genome browser [68]. Unannotated re-
gions were removed and a Student’s t-test performed to
detect statistically significant regions (padj < 0.05) in the R
statistical environment (v.3.1.0). For genes with multiple
probe mappings, a single probe with the lowest p-value
was kept for downstream analyses.

Meta-analysis TCDD toxicology studies in rodents
To extend our findings of differential transcriptomic
changes induced by TCDD treatment in a variety of
biological contexts, 12 datasets were incorporated into
a meta-analysis of TCDD-responsive genes. Datasets
are summarized in Table 3 and are available on the GEO
repository: rat liver (1 day - GSE31411; 4 day - GSE13513),
rat hypothalamus (GSE61039), rat adipose (GSE18301),
mouse liver (1 day - GSE61037). For each dataset,
TCDD-treated animals were compared with the corre-
sponding corn oil-treated control group using linear
modeling, as described above. Two groups of genes
were identified as being associated with sensitive
(log2|fold-change| > 1 and padj < 0.01 in livers of male
mice and L-E rats at 4 days post-exposure) or resistant
(log2|fold-change| > 1 and padj < 0.01 in livers of female
mice and H/W rats at 4 days post-exposure) phenotypes.

Availability of supporting data
Data for this study are available from the Gene Expression
Omnibus (GEO) repository under series GSE61038. Sup-
plementary material, including results from the transcrip-
tion factor binding site and gene ontology enrichment
analyses are available as additional files.

Additional files

Additional file 1: Transcriptomic Overlap. Venn diagrams display the
number of significantly altered genes (log2|fold-change| > 1 and padj <
0.01) in male and/or female liver following treatment with a single dose
of (A) 125, (B) 250, (C) 500 or (D) 1000 μg/kg TCDD. (PDF 139 kb)

Additional file 2: Overlap of Enriched Pathways. Pathway enrichment
analysis was performed using GOMiner software. Analyses were
performed for each sex/dose combination. Enriched gene ontologies
were compared between male and female mice following treatment
with (A) 125, (B) 250, (C) 500 and (D) 1000 μg/kg TCDD. (PDF 126 kb)

Additional file 3: Pathway Analysis. Pathway analysis was performed
using GOMiner software to identify enriched gene ontologies within
each sex/dose cohort. Enrichment scores and FDR-adjusted p-values are
provided. (XLS 2546 kb)

Additional file 4: Universally TCDD-Responsive Genes in Multiple
Biological Contexts. Datasets from multiple TCDD toxicity studies in
rodents were integrated together to visualize transcriptomic alterations of
(top) “AHR-core” genes and TCDD-responsive genes in different biological
contexts. Two groups of genes were identified as being associated
with (middle) sensitive (log2|fold-change| > 1 and padj < 0.01 in livers
of male mice and L-E rats at 4 days post-exposure) or (bottom)
resistant (log2|fold-change| > 1 and padj < 0.01 in livers of female mice
and H/W rats at 4 days post-exposure) phenotypes. (PDF 175 kb)

Additional file 5: TCDD-Responsive Genes in Male or Female Mice
Examined in Multiple Biological Contexts. Datasets from multiple
TCDD toxicity studies in rodents were integrated together to visualize
transcriptomic alterations of TCDD-responsive genes (log2|fold-change| >
1 and padj < 0.01) identified as altered in only (left) male or (right) female
livers, 4 days post-exposure to 500 μg/kg TCDD. (PDF 425 kb)

Additional file 6: Sample Information. A total of 20 male and 20 female
mice were included in this experiment. Each animal was treated with either
corn oil or a single dose of TCDD (125, 250, 500 or 1000 μg/kg) dissolved in
corn oil. Liver tissue was collected 4 days after treatment. (XLS 31 kb)

Additional file 7: Array QA/QC (Male Cohort). To verify data quality,
the distributional homogeneity of arrays (A) pre- and (B) post-RMA processing
was assessed. In addition, (C) RNA degradation was evaluated across probes
for each array and (D) the inter-array correlation was examined to identify
potential outliers; all arrays appeared highly similar and none were excluded
from downstream analyses. (PDF 418 kb)

Additional file 8: Array QA/QC (Female Cohort). To verify data quality,
the distributional homogeneity of arrays (A) pre- and (B) post- RMA
processing was assessed. In addition, (C) RNA degradation was evaluated
across probes for each array and (D) the inter-array correlation was examined
to identify potential outliers; all arrays appeared highly similar and none were
excluded from downstream analyses. (PDF 397 kb)

Additional file 9: Annotated Results (Male cohort). Linear modeling
was performed to identify differentially abundant transcripts between
TCDD-treated and control samples. A total of 21,115 transcripts were
assessed in this study. Transcripts were annotated with Entrez Gene ID,
gene Symbol and chromosome. Coefficients representing log2 fold-
change and FDR-adjusted p-values are given. (XLSX 3725 kb)

Additional file 10: Annotated Results (Female cohort). Linear
modeling was performed to identify differentially abundant transcripts
between TCDD-treated and control samples. A total of 21,115 transcripts
were assessed in this study. Transcripts were annotated with Entrez Gene ID,
gene Symbol and chromosome. Coefficients representing log2 fold-change
and FDR-adjusted p-values are given. (XLSX 3730 kb)

Additional file 11: Transcription Factor Binding Site Analysis. The
count of occurrences and conservation scores for each of four AHRE motifs
[AHRE-I (core), AHRE-I (extended), AHRE-I (full), and AHRE-II] were determined
for each gene (within 3kbp up- and downstream of the transcription start
site). For comparison, the number of doses at which each gene was altered
by TCDD (padj< 0.01) in either male or female mice is shown. (XLS 3783 kb)
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