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Abstract
Background: Analysis of a microarray experiment often results in a list of hundreds of disease-
associated genes. In order to suggest common biological processes and functions for these genes,
Gene Ontology annotations with statistical   testing are widely used. However, these analyses can
produce a very large number of significantly altered biological processes. Thus, it is often
challenging to interpret GO results and identify novel testable biological hypotheses.

Results: We present fast software for advanced gene annotation using semantic similarity for
Gene Ontology terms combined with clustering and heat map visualisation. The methodology
allows rapid identification of genes   sharing the same Gene Ontology cluster.

Conclusion: Our R based semantic similarity open-source package has a speed advantage of over
2000-fold compared to existing implementations. From the resulting hierarchical clustering
dendrogram genes sharing a GO term can be identified, and their differences in the gene expression
patterns can be seen from the heat map. These methods facilitate advanced annotation of genes
resulting from data analysis.

Background
A microarray experiment may result in hundreds of differ-
entially expressed genes that are subject to interpretation
and further analysis. As analysing these lists gene-by-gene
is tedious and error prone, the genes in the lists are rou-
tinely annotated using Gene Ontology (GO) with an aim
to identify statistically significant biological processes or
pathways [1]. However, statistical analysis of GO annota-
tions can produce a very large number of significantly
enriched or down-regulated biological processes. Thus, it
is often challenging to interpret GO results and identify
novel testable biological hypotheses.

The GO project provides a species-independent control-
led vocabulary for describing gene products (an RNA or

protein product encoded by a gene) in terms of their bio-
logical processes, cellular components and molecular
functions [1]. The GO annotations are carried out by cura-
tors of several bioinformatics databases, so the GO data-
base is constantly updated. The ontology defines terms
that are linked together to form a directed acyclic graph.
Gene products are annotated with a number of ontology
terms. Annotation with a given term also implies annota-
tion with all ancestors of the term.

In this study we present methodology and software to
cluster genes based on their biological functionality using
GO annotations. Integral part of the methodology is the
ability to rapidly compute pair-wise distances between the
gene annotation similarities.
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Two approaches to gene similarity computation are graph
structure -based (GS) and information content -based
(IC) measures. GS-based methods use the hierarchical
structure of GO in computing gene similarity. IC-based
methods additionally consider the a priori probabilities,
or information contents, of GO terms in a reference gene
set. IC-based measures have been found to perform better
than pure graph-based measures [2,3].

Czekanowski-Dice similarity [4] is a GS-based method.
Distance of genes G1 and G2 is defined as

where Δ is the symmetric set difference, # is the number of
elements in a set and GO(Gi) is the set of GO annotations
for gene Gi. Similarity can be defined as 1 - d(G1, G2).

In Kappa statistics [5], each gene is represented as a binary
vector (g1,...,gN), where gi is 1 if the gene is annotated with
the GO term gi and 0 otherwise. N is the total number of
GO terms under consideration.

Similarity of genes G1 and G2 is defined as

where  represents observed co-occurrence of GO

terms and  represents random co-occurrence.

 is the relative frequency of agreeing locations in

the two binary vectors, i.e., locations that are either both

0 or both 1.  is the expected relative frequency of

such locations if the binary vectors were random, taking
into account the observed probabilities of 0's and 1's.

The following discussion considers IC-based similarity
measures. The information content of a GO term is com-
puted by the frequency of the term occurring in annota-
tions; a rarely used term contains a greater amount of
information. Probability for observing a term t is defined

as , where MaxFreq is the maximum fre-

quency of all terms [6]. The information content for a
term t is given as IC(t) = -log2p(t). Probabilities can be esti-

mated from a corpus of annotations, such as the Gene
Ontology database.

Several related similarity metrics are based on the most
informative common ancestor (MICA) of two GO terms

and were introduced in the context of GO by Lord et al.
[7]. To compute the semantic similarity between terms t1
and t2, we first find the most informative common ances-
tor A of t1 and t2, i.e., A is a term that is an ancestor of both
t1 and t2 and has the maximum IC among common ances-
tors CommonAnc(t1,t2) of the terms. Now, the Resnik sim-
ilarity [8] is defined as

SimResnik(t1, t2) = IC(A).

Several other measures are defined that also take the infor-
mation contents of t1 and t2 into account. The Lin measure
[9] is defined as

Jiang and Conrath [10] define a semantic distance metric
as

dJC(t1, t2) = IC(t1) + IC(t2) - 2IC(A).

The corresponding similarity measure for dJC(t1, t2) [6] is
given by

Finally, the Relevance measure [11] that combines Lin's
and Resnik's measures is defined as

The MICA-based measures can be modified to take into
account so called disjunctive ancestor terms [6]. Two
ancestors a1 and a2 of a term t are disjunctive if there are
independent paths from a1 to t and from a2 to t. Such
ancestors represent distinct interpretations of the term t.
In the GraSM enhancement, all common disjunctive
ancestors of terms t1 and t2 are considered when comput-
ing Sim(t1,t2) [6]. GraSM modifies the computation of
IC(A) and can be applied to the Resnik, Lin and Jiang-
Conrath measures. 

After computing the pair-wise term similarities, the next
step in MICA-based measures is to calculate the similarity
between genes G1 and G2. This can be done in several ways

and our package supports three most commonly used
methods. In the two simplest methods, the maximum or
the mean of pair-wise GO term similarities between anno-
tation sets of G1 and G2 is used as the similarity value [12].

That is, when G1 is annotated with terms t1,...,tn and G2

with terms , pair-wise term similarities form an n
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× m matrix S. Now, Simgene(G1, G2) is the maximum or the

mean of the matrix. In the third method, similarity is
defined as Simgene(G1, G2) = max{rowScore, columnScore}

[11], where

In addition to MICA- and GraSM-based measures, we
have implemented the cosine similarity and SimGIC
measures. In cosine similarity [13], each gene G is repre-
sented as a vector (w1, w2,...,wN), where each wi is IC(ti) if

G is annotated with the term ti, or 0 otherwise. N is the

total number of GO terms under consideration. Similarity

of genes G1 and G2 is defined as , where · is the

dot product and |v| is the vector norm. This is the cosine
of the angle between vectors G1 and G2. In the SimGIC

(Graph Information Content) measure [3], similarity of
genes G1 and G2 is defined as

where GO(Gi) gives the GO annotations of gene Gi. Sim-
GIC is a hybrid of GS- and IC-based methods.

Given similarities between the genes we use hierarchical
clustering with heat map presentation to visualise both
semantic similarities and expression levels of the genes.
First, similarity measures are converted to distances using
d(x, y) = 1 - Sim(x, y) when the similarity range is [0, 1]
(Czekanowski-Dice, Kappa, Lin, Jiang-Conrath, Rele-
vance, Cosine, SimGIC) or using d(x, y) = 1/(Sim(x, y) +
1) when the range is [0, ∞) (Resnik). Second, a hierarchi-
cal clustering algorithm is run using the converted dis-
tances. The results are visualised as a dendrogram and
heat map. The dendrogram is generated using the GO
semantic distances and allows identification of clusters
containing genes contributing to the same biological
process. For each cluster we compute statistical signifi-
cance with a permutation test. The heat map illustrates
gene expression data obtained from microarray analysis.
Thus, the visualisation framework integrates both func-
tional gene expression levels to biological processes,
which facilitates interpretation of the gene expression
analysis results.

Implementation
The semantic similarity package, csbl.go, is available for R
[14]. The package computes similarities for arbitrary
number of genes and supports the following measures:

Czekanowski-Dice, Kappa, Resnik (with GraSM as an
option), Jiang-Conrath (GraSM), Lin (GraSM), Relevance,
Cosine and SimGIC. The MICA-based measures (Resnik,
Lin, Jiang-Conrath, Relevance and GraSM enhancements)
are implemented as a combination of R and C++ code; the
four other measures are implemented in R. In addition to
the regular R package, csbl.go is available as a component
for Anduril [15], a framework for high-throughput data
analysis we recently developed. The package is extensively
tested and includes a user guide.

Similarity computation needs GO term probabilities for
the reference gene set. We provide precomputed probabil-
ity tables for Homo sapiens, Saccharomyces cerevisiae,
Caenorhabditis elegans, Drosophila melanogaster, Mus muscu-
lus and Rattus norvegicus. The tables are computed based
on all gene and protein annotations for the given organ-
ism found in the geneontology.org database. As GO is
constantly updated and revised, we update the tables
every six months. The package also has an option to use
custom tables. The taxonomy ID of the organism is stored
along with probability tables as metadata, which enables
selection of a table by organism ID. The package also
includes an option to compute GO term enrichment
using Fisher's Exact Test [16].

Results and discussion
We evaluated the package by using a performance bench-
mark and by applying the methods to microarray data
from a testicular germ cell tumor study [17].

Performance benchmark
We compared the performance of our package to two ear-
lier introduced semantic similarity packages, SemSim
1.6.0 [18] and GOSim 1.1.5.1 [12]. The benchmark com-
putes semantic similarities for GO term set sizes 50, 100
and 200. For csbl.go and SemSim, the measures Resnik,
Jiang-Conrath, Lin and Relevance are used in the bench-
mark. GOSim does not support the Relevance measure so
only the three other measures are used for it. The GraSM
enhancement was not used in the benchmark as SemSim
does not support GraSM.

The benchmark computes a symmetric n × n similarity
matrix for the GO term sets. The three packages handle
matrix computation in different ways. GOSim and csbl.go
take a single term list and compute the symmetric matrix
by computing half of of the pair-wise similarities (n2/2)
and mirroring the matrix by the diagonal. SemSim takes
two potentially different term lists and computes all n2

pair-wise similarities. To compare the packages, we halved
the execution times of SemSim in order to consider a situ-
ation where all packages perform n2/2 operations. The
benchmark computes GO term similarities instead of
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gene similarities because the former is the most time-con-
suming part of similarity computation.

Benchmark results are in shown in Table 1. With the
csbl.go package we obtained 2400- to 5000-fold (GOSim)
and 2100- to 3000-fold (SemSim) speed gains. The speed
gain achieved by csbl.go becomes more obvious with
larger number of GO terms. For example, with 1000 terms
SemSim and GOSim take more than 30 minutes while
csbl.go takes less than one second.

Case study
As a case study, we applied similarity measures to identify
common GO classes for differentially expressed genes
involved in testicular germ cell tumors (TGCTs). The
TGCT microarray study here consists of five undifferenti-
ated embryonal carcinoma samples and 12 differentiated
testicular cell samples, which include both tumors and
healthy samples [17].

We re-analysed the data set with the goal of finding differ-
entially expressed genes (DEGs) between four undifferen-
tiated samples (EC_0502, EC_0564, EC_1017 and
EC_1740) and 10 differentiated samples (Cc_0915,
N_9013, N_9014, N_0140, Ter_0691, Ter_0696,
YST_0216, YST_0307, YST_0738, YST_2110). Three sam-
ples (EC_1838, Ter_1282 and Ter_2201) were excluded
due to data quality problems. Data from the two-channel
Agilent Human 1A were background corrected and proc-
essed with LOWESS [19]. DEGs were selected using t-test
followed by false discovery rate correction [20]. We
obtained 65 genes that have q-value below 0.1 and have
also fold change of at least 1.5. We found GO annotations
for 58 of the 65 genes using Ensembl version 50 [21].
Among the 58 genes, the median number of GO annota-
tions per gene is eight.

We computed the similarities between the 58 DEGs using
the Lin measure and converted the similarity matrix into
distance using d(x, y) = 1 - Sim(x, y). Then we used
agglomerative hierarchical clustering in R to generate gene
clusters based on the GO distance matrix. The heat map
that combines GO clusters and expression data is shown
in Figure 1. GO-based clustering for the genes is visualised
with a dendrogram on the left. To visualise the relation-
ships between samples, a second dendrogram based on
expression profiles is shown on the top. Using a dendro-
gram cutoff value of 0.35 we obtained nine clusters that
are numbered G1,...,G9. The gene names for these nine
clusters are given in Table 2 in the same order as Figure 1.
To gain further insight into the clusters, we extracted the
most informative GO terms for each cluster. These are
terms that occur in every gene of the cluster (taking par-
ent-child relationships into account) and have the largest
information contents. The most informative terms for
each cluster and their IC values are listed in Table 3. To
assess the significance of the IC values, we computed p-
values using a permutation test [16]. To obtain the p-value
for a cluster with the size k, we generated 10000 random
clusters with size k and computed IC of the most inform-
ative term in each cluster. The p-value is then the fraction
of clusters having IC at least as great as the cluster under
study.

The cluster G5 consists of two genes: cystathionase (CTH)
and glyoxalase I (GLO1). These two genes correlate
strongly in their GO terms as their extremely high IC-
value of 12.0 indicates. Also their gene expression patterns
are almost identical across the samples as shown in the
heat map in Figure 1. GLO1 is a glutathione-binding pro-
tein that contributes to several pathways that are associ-
ated with various diseases, such as cancers [22]. As
glutathione plays a key role in the process where tumor
cells acquire resistance to anti-cancer drugs, GLO1 inhibi-
tors are considered as potential anti-cancer agents [22,23].

Table 1: Benchmark results. 

Measure Number of GO terms csbl.go GOSim (vs. csbl.go) SemSim (vs. csbl.go)

Resnik 50 0.002 s 4.9 s (2399 ×) 4.5 s (2158 ×)
Resnik 100 0.006 s 19.5 s (3219 ×) 17.4 s (2880 ×)
Resnik 200 0.024 s 77.8 s (3245 ×) 71.0 s (2963 ×)
Lin 50 0.002 s 7.4 s (3612 ×) 4.5 s (2167 ×)
Lin 100 0.007 s 29.5 s (4284 ×) 17.4 s (2528 ×)
Lin 200 0.024 s 117.8 s (4894 ×) 71.0 s (2950 ×)
Jiang-Conrath 50 0.002 s 7.4 s (3590 ×) 4.5 s (2157 ×)
Jiang-Conrath 100 0.007 s 29.5 s (4274 ×) 17.4 s (2525 ×)
Jiang-Conrath 200 0.023 s 117.5 s (5043 ×) 70.9 s (3043 ×)
Relevance 50 0.002 s - 4.5 s (2062 ×)
Relevance 100 0.007 s - 17.4 s (2400 ×)
Relevance 200 0.025 s - 71.1 s (2866 ×)

Speed difference between csbl.go and other package is shown in parenthesis. Timings of csbl.go are shown with an accuracy of 1/1000 s.
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CTH is a critical factor in glutathione synthesis and has
recently been associated with increased risk of bladder
cancer [24]. While detailed discussion of the exact roles of
CTH and GLO1 in embryonal carcinomas is out of scope

of this study, our results suggest that GLO1 and CTH may
function in concert, and contribute to tumor progression
and drug resistance in embryonic cancers.

GO heat map and clusteringFigure 1
GO heat map and clustering. GO based clustering dendrogram of the selected genes (vertical axis) is visualised along with 
the expression patterns that are used to cluster the samples (horizontal axis). There are nine GO-based clusters named 
G1,...,G9 that contain more than one gene. The GO clusters are separated by a horizontal bar in the heat map. Genes without 
annotations are omitted from the heat map. Overexpressed genes are shown with white or yellow color and underexpressed 
genes with red color.
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Interestingly, CTH and GLO1 contribute to the same bio-
logical process but do not have common pathways in the
KEGG pathway database [25] as shown in Table 4 that
contains all KEGG pathways associated to genes in Table
2. Thus, CTH and GLO1 would not have been grouped
together with standard pathway analyses despite the fact
that, based on literature, their biological function is mark-
edly similar.

Conclusion
We have developed tools to cluster genes from microarray
experiments using semantic similarity measures. Using
benchmark tests we demonstrated clear speed gain as
compared to existing implementations. Our efficient
implementation of similarity measures enables analysis of

gene sets with hundreds of genes that are typically seen in
microarray experiments. We then combined expression
data and GO annotations using hierarchical clustering
and a heat map visualisation that together enable rapid
identification of genes sharing similar biological func-
tions. In our case study we further analysed genes that are
differentially expressed in testicular germ cell tumors
between undifferentiated embryonal carcinomas and dif-
ferentiated testicular cells. Our results suggest that GO-
based annotation analysis approaches may be able to take
advantage of the accumulated knowledge available in lit-
erature over approaches using pathway databases, which
are typically updated in a much slower pace than the GO
database. In summary, the csbl.go package allows rapid

Table 2: Genes corresponding to the most statistically significant clusters found in the case study. 

Cluster Genes

G1 PDCL3 MAGED1 (two probe sets) PRKCE PRDX1 CLIC4 MRPS23
GABARAPL3

G2 CBR3 RANBP17 NBEA FVT1
G3 LRRC47 WARS
G4 NANOGP8 ZNF215 POU5F1 MYBL2 L1TD1 CITED2 TCEA2 SMARCAD1

MKI67IP CPSF4 PPFIBP2 WDSUB1 PPP3CA ISG20L1 TIPARP CEP290
DPPA4 TJP2 NLRP7

G5 CTH GLO1
G6 PLAU PPAP2A
G7 TLR5 OR5R1 TMEM106C IFITM1 PCDHB5 PCDHB11 AC069513.28 PLK3
G8 SLC22A17 FLVCR1
G9 PDGFA IGSF21 GDF3 CCDC80 GAL TF

MAGED1 has two distinct differentially expressed probe sets. Genes are ordered from bottom to top in Figure 1. For example, the genes in cluster 
G1 in Figure 1 are, from bottom to top, PDCL3, two probe sets for MAGED1, PRKCE, etc.

Table 3: Most informative GO terms for the clusters obtained from microarray data. 

Cluster Size p-value IC GO term

G1 8 0.0063 1.835 cytoplasm
G2 4 0.20 1.835 cytoplasm

0.888 binding
G3 2 0.009 8.751 aminoacyl-tRNA ligase activity

5.841 translation
0.888 binding

G4 19 0.020 0.888 binding
G5 2 0.0007 12.012 carbon-sulfur lyase activity

1.835 cytoplasm
1.753 primary metabolic process

G6 2 0.21 4.705 negative regulation of biological process
3.420 hydrolase activity
3.411 cellular protein metabolic process

G7 8 0.020 1.366 membrane
G8 2 0.25 4.238 transporter activity

3.181 transport
2.866 integral to membrane

G9 6 < 0.0001 3.967 extracellular region

IC is the information content of given term. P-values are derived using a permutation test with 10000 repetitions. At most three GO terms are 
shown for each cluster. Only common GO terms with IC > 0 are shown.
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visualisation of gene GO and expression profiles, and
thereby facilitates hypothetisising gene functions in cells.

Availability and requirements
• Project name: csbl.go

• Project home page: http://www.ltdk.helsinki.fi/sysbio/
csb/downloads/GeneOntologyHeatmap/

• Operating system(s): Platform independent; tested on
Windows and Linux

• Programming language: R (version 2.6 or greater)

• License: GNU General Public License
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G7 TLR5 Toll-like receptor signaling pathway, Pathogenic Escherichia coli infection -EHEC and EPEC
G7 OR5R1 Olfactory transduction
G7 IFITM1 B cell receptor signaling pathway
G9 PDGFA MAPK signaling pathway, Focal adhesion, Gap junction, Regulation of actin cytoskeleton, Glioma, Prostate cancer, 

Melanoma

Genes not shown in the table did not have any KEGG pathway annotation.
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