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Abstract

Background: Gene expression microarray data have been organized and made
available as public databases, but the utilization of such highly heterogeneous
reference datasets in the interpretation of data from individual test samples is not as
developed as e.g. in the field of nucleotide sequence comparisons. We have created
a rapid and powerful approach for the alignment of microarray gene expression
profiles (AGEP) from test samples with those contained in a large annotated public
reference database and demonstrate here how this can facilitate interpretation of
microarray data from individual samples.

Methods: AGEP is based on the calculation of kernel density distributions for the
levels of expression of each gene in each reference tissue type and provides a
quantitation of the similarity between the test sample and the reference tissue types
as well as the identity of the typical and atypical genes in each comparison. As a
reference database, we used 1654 samples from 44 normal tissues (extracted from
the Genesapiens database).

Results: Using leave-one-out validation, AGEP correctly defined the tissue of origin
for 1521 (93.6%) of all the 1654 samples in the original database. Independent
validation of 195 external normal tissue samples resulted in 87% accuracy for the
exact tissue type and 97% accuracy with related tissue types. AGEP analysis of 10
Duchenne muscular dystrophy (DMD) samples provided quantitative description of
the key pathogenetic events, such as the extent of inflammation, in individual
samples and pinpointed tissue-specific genes whose expression changed (SAMD4A)
in DMD. AGEP analysis of microarray data from adipocytic differentiation of
mesenchymal stem cells and from normal myeloid cell types and leukemias provided
quantitative characterization of the transcriptomic changes during normal and
abnormal cell differentiation.

Conclusions: The AGEP method is a widely applicable method for the rapid
comprehensive interpretation of microarray data, as proven here by the definition of
tissue- and disease-specific changes in gene expression as well as during cellular
differentiation. The capability to quantitatively compare data from individual samples
against a large-scale annotated reference database represents a widely applicable
paradigm for the analysis of all types of high-throughput data. AGEP enables
systematic and quantitative comparison of gene expression data from test samples
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against a comprehensive collection of different cell/tissue types previously studied by
the entire research community.

Background
Gene expression microarray data published by the entire biomedical community have

been organized and made available for data mining in several public databases (e.g.

Oncomine, Gene Expression Omnibus, Array-express, GeneSapiens) [1-7]. This has

facilitated analyses of gene networks and gene regulatory processes [8-12], and the

identification of tissue- or disease-specific gene expression patterns [13-19]. Compre-

hensive microarray databases could also provide a powerful reference for guiding inter-

pretation of new microarray data produced from test samples [20]. Such an approach

would be particularly appealing for the analysis and interpretation of data from indivi-

dual samples. Here, we have developed a microarray data analysis approach based on

the similar concept as the simple, yet highly powerful and versatile sequence alignment

comparisons (e.g. BLAST) for matching an unknown test DNA sequence against a

comprehensive reference database of previously sequenced samples. The Alignment of

Gene Expression Profiles (AGEP) method compares expression profiles of individual

test samples with reference data obtained from large public gene expression microarray

databases that are normalized to allow direct quantitative comparisons with the data

from the test sample. The method provides the likelihood of the profile representing

each of the known reference profiles as well as the sets of genes that show concordant

and discordant expression levels against each of the reference datasets. Here, we

describe the AGEP method and validate its utility in the analysis of microarray data

from normal and disease tissue types as well as the quantitative analysis of cell differ-

entiation patterns.

Results
Description of the AGEP method

We have created a tool to facilitate the comprehensive analysis and interpretation of

gene expression profiles from individual test samples by comparing them against a

reference dataset of previously analyzed, well-characterized and annotated samples

from different tissues, pathologies, cell types or treatments. The AGEP method is

based on the use of kernel density estimates for the expression levels of genes across

each of the reference sample types (e.g. tissues). Density estimates make it possible to

determine which gene expression states are characteristic for each gene in each tissue

type, and can be used to compare individual test samples against the reference data.

To illustrate the AGEP approach, we used a reference dataset consisting of normal-

ized Affymetrix gene expression microarray profiles from 1654 normal samples corre-

sponding to 44 distinct healthy tissues types from the GeneSapiens database [7]. The

1624 samples contained data for 6290-17220 genes, depending on the Affymetrix array

generation used. All available genes were used in the analysis. On average, each tissue

type was represented by 37 samples (Additional file 1). Obviously, any similar unified

dataset could be used as reference data for the AGEP method. The GeneSapiens data

arise from several different Affymetrix array generations that were normalized to uni-

versal expression units to generate a single unified dataset comparable across the
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sample types. For further description of the data or the normalization, see [7,21]. All

the individual test samples were similarly normalized to make them comparable against

the reference data.

For each gene in each tissue type in the reference data, we first calculated the density

estimate of expression values between zero and the maximum observed value in the

entire reference data,(Additional file 2A-B) using kernel density estimation. This

resulted in both gene- and tissue type-specific density estimates. Approximately 16% of

the genes had a bi- or multimodal distribution in the reference tissues highlighting the

importance of using density distributions as a base for the AGEP analysis.

After transforming the entire reference dataset into density estimates, data from indi-

vidual test samples can be compared against the density estimates of the reference data

(Figure 1A). In order to achieve this, we first quantify for each gene how well its

expression level in the test sample matches the levels seen in each of the tissue types

in the reference data. This similarity is defined as the tissue match score (tm-score) for

each gene in each reference data tissue type, ranging from 0 (no match) to 1 (perfect

match). The tm-score is defined by calculating the proportion of the expression range

for a gene where the density estimate in a particular reference tissue type is lower than

the value of that gene in test sample (Figure 1B). It can be thought of as the likelihood

that the test sample’s value matches with the most frequently observed expression

range for this gene in that specific tissue type. For example, if a gene is expressed in

the test sample at a level which has the highest density value in a reference tissue type,

then the tm-score for that gene is 1 for this reference tissue type. Therefore, based

only on this one gene, the test sample matches the reference tissue perfectly.

Tm-scores (Figure 1B) define how well the expression values in a test sample match

with each of the reference tissue types however they do not define how unique, or tis-

sue specific, those matches are among the various reference tissue types. In other

words, a gene in a test sample may have an expression value with a perfect match (tm-

score of 1) against a reference tissue, but compared to the tm-scores of other reference

tissues, this match may be completely unique or not unique at all (Additional file 2C).

To find out this uniqueness, we calculate tissue specificity scores (ts-scores) (Figure

1C). These are formed by comparing the tm-scores (Figure 1B) of a gene among all

the reference tissues types. For this purpose, we take the mean of the ratio of the

weighted differences between the tm-score of a single tissue and the tm-scores of tis-

sues. For example, in the Figure 1B, the tm-scores for gene 2 (highlighted in red) are

compared to find out how much the tm-scores for each reference tissue type differ

from the tm-scores of other tissue types. This results in ts-scores for gene 2 for all

reference tissue types as highlighted in red in the Figure 1C. Ts-scores vary between -1

and 1. A ts-score of 1 for a gene in a reference data tissue means that the test sample

had an expression level of the gene that perfectly matched the reference tissue (tm-

score 1) but did not match at all any other reference tissue (tm-scores close to zero

for all other reference data tissues). This means that the test sample had an expression

level for the gene which is very specific for the tissue type and therefore provides a

strong indication that the test sample originates from that tissue (Additional file 2C).

A ts-score of -1 means the opposite; i.e. the test sample did not match the tissue speci-

fic expression level of the reference data tissue in terms of the gene in question.
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Figure 1 Principle of the AGEP method, comparing microarray data from one test sample against a
large reference database of different tissue/cell types. A) The expression profile of a test sample is first
normalized to be compatible with reference data. Density estimates are then calculated for expression
levels of each gene in each reference tissue type. B) Data for each gene in the test sample is aligned with
the density estimates of all the normal reference tissue types to calculate an tissue match score (tm-score).
This defines the likelihood that the expression of the gene originates from the reference values, with the
score of 1 indicating that the gene in the input sample had the best match with the levels for that tissue
type. A tm-score of 0 means that the input sample had an expression level that did not match the
reference tissue type at all. C) Tissue specificity scores (ts-scores) for each gene of the test sample for each
tissue in the reference database are then calculated from the tm-score matrix (see methods). Ts-scores
range from -1 to 1 and indicate how uniquely the test sample resembles a certain tissue type according to
the gene’s expression level. D) Scatter plot visualization of tm- and ts-scores of all genes for a single query
sample against one reference tissue type. Genes highlighted with the green box have matching and tissue
specific expression level in the reference tissue and the query sample, genes highlighted with a blue box
do not have tissue specific expression level in this tissue but the expression level of the query sample
matched that, genes highlighted with a red box have tissue specific expression level in this tissue but the
expression level of the query sample did not match that E) Based on the mean of ts-scores for all genes
for each reference tissue type, similarity of the test sample against all the reference tissue types is
displayed as a bar graph.
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The comparison of individual test sample against the reference tissue types leads to a

matrix of tm-scores (Figure 1B) and a matrix of ts-scores (Figure 1C). The interpreta-

tion of both these scores for one individual test sample is summarized in Figure 1D

showing for all genes how good the match was (tm-scores on the x-axis) and how

unique the match was (ts-scores on the y-axis). Genes highlighted in green have both

high tm-scores and high ts-scores meaning that the test sample’s expression levels for

those genes both matched with that reference tissue type (high tm-score), and that this

match was also unique to that tissue type (high ts score). Genes highlighted in red are

such that they have a tissue specific expression level in the reference data tissue in

question but the expression values in the test sample did not match those. Their tm-

score for the reference tissue in question were very low, and the tm-scores for other

tissues were high, thus the ts-score ended negative. Genes highlighted in blue have

high tm-scores meaning that these genes’ expression in the test sample matched well

with the reference tissue type, but that these expression levels also matched with many

other reference tissues, implying little or no uniqueness (ts-scores around zero). Both

the tissue match (tm) and tissue specificity (ts) scores can be used to interpret the nat-

ure of a test sample. One such interpretation is to calculate the average of the ts-scores

for each of the reference tissue types (Figure 1E). This tissue similarity score can be

used as a metric to identify the tissue of origin of the test sample.

Detailed methods and formulae are provided in the methods section.

Comparing AGEP with existing methods

The idea of using existing microarray data to identify or categorize a new external

sample is not new. Many scientists are using unsupervised clustering methods, such as

hierarchical and k-means, to understand relationships between samples. Unsupervised

clustering is considered as a simple, yet effective method. However, if the reference

data are complicated and do not cluster according to their annotation, classification of

the outside sample is challenging if not impossible.

In comparison to existing methods, AGEP method can be termed a search & retrie-

val based method comparing single or multiple query samples against a reference data-

base [22-24]. Search & retrieval methods not only try to identify most similar reference

group, a task of traditional classifiers like nearest-neighbor (NN) [25,26] and support

vector machines (SVM) [27-29], but also to provide interpretation of the component-

wise (e.g. gene-by-gene) contributions to the similarity match.

AGEP performance in tissue identification task with both leave-one-out cross-valida-

tion (LOOCV) [30] of the entire reference database and with an external dataset was

compared to both a nearest-neighbor classifier [25,26], traditional instance-based lear-

ner, and to SVM [27-29], more complex algorithm with good classifying performance.

These both are supervised clustering methods, suitable for tissue identification tasks

and therefore suitable for benchmarking AGEP performance in the same task.

In LOOCV of the entire reference database AGEP reached overall accuracy of 93.6%

(with a range of 58.3-100% depending on tissue type) (Additional file 3, Table 1). Aver-

age sensitivity for the identification of tissue type of origin was 0.925 and average spe-

cificity 0.998 (Additional file 4). Secondary matches to other tissues often reflected

known anatomical and biological similarities (Additional file 5).
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LOOCV of the entire reference database with nearest-neighbor (NN) classification

produced 65.1% overall accuracy with Euclidean distance, and 90.2% with Pearson cor-

relation coefficient (Table 2). SVM resulted in 94.4% overall accuracy in 10-fold CV

(Table 1) of the entire reference database. 10-fold CV, another well established way to

evaluate classifier performance [30], was chosen instead of LOOCV for SVM due to

Table 1 Accuracy of the AGEP method to find a priori known annotation class as
primary hit in leave-one-out cross validation of the entire reference database against
itself and accuracy of the SVM to find a priori known annotation class in 10-fold cross-
validation of the entire reference database

AGEP Accuracy Nearest-neighbour (correlation) SVM Accuracy

Max 100% 100% 100%

75% percentile 100% 100% 100%

Median 96.4% 93.7% 96.7%

Mean 93.7% 90.7% 90.4%

25% percentile 90.3% 81.5% 91.7%

Min 58.3% 69.2% 9.1%

Overall 93.6% 90.2% 94.4%

Table 2 Summary of the tissue identification capabilities of most related methods

Method Strengths Limitations LOOCV (or 10-fold
CV)

Independent
validation

AGEP Good classifier.
Results available per
gene, with a
biologically
meaningful distance
metric.

Computationally
intensive. Weight of all
genes equal.

93.6% accuracy 96.9%
combined
accuracy

NN Relatively robust
and easy to setup.

Very sensitive to the
selection of parameters
and the distance metric
chosen. No simple
choice for distance
metric. No simple way
to interpret gene-by-
gene contribution to
the similairy.

90.2% accuracy 94.4%
combined
accuracy

SVM Powerful classifying
performance if
properly
customized for the
task

No simple solution for
selection of kernel. With
complex tasks
somewhat subject to
overfitting. No gene-by-
gene contribution
available in biologically
interpretable manner.

90.4% accuracy
NOTE: due to
computational
limitations was
actually 10-fold
cross-validation.

98.0%
combined
accuracy

DNA barcode (Zilliox et
al. 2007)

Good classifier.
Simple to
understand per
gene comparison.

Per gene classification is
binary, missing out a lot
of the variation.

Not tested Not tested

Cancer molecular
classification
(Parmigiani et al. 2002)

Good classifier.
Simple to
understand per
gene comparison.

Per gene classification is
ternary, missing out a
lot of the variation.

Not tested Not tested

Probabilistic retrieval
and visualization of
biologically relevant
microarray experiments
(Caldas et al. 2009)

Good at finding
experiments that
repeat biological
responses.

Works for gene sets
derived from
comparative
experiments

N/A N/A

Kilpinen et al. BioData Mining 2011, 4:5
http://www.biodatamining.org/content/4/1/5

Page 6 of 24



the computational requirements of SVM. Median imputation for missing values was

used, which was necessary with SVM as virtually none of its implementations can han-

dle missing values. This potentially enhanced the performance of SVM as the within

tissue variation for median imputed genes was considerably lower than for non-

imputed genes. Additionally, due to its constraints concerning missing data, SVM was

run using only 11 834 genes of the 17 225 present in the data.

We then proceeded to compare the performance of all three methods with an exter-

nal dataset of 195 healthy tissue samples from the Array Express [1] study E-GEOD-

7307. Overall accuracy of the AGEP method to identify tissue of origin within this

dataset was 96.9%, with 84.6% matching the exact tissue type and another 12.3%

matching closely similar tissue types. In fact, all of these similar tissues were from the

central nervous system and represented different anatomical parts of the brain. There-

fore, only 3.1% of the external samples were identified incorrectly in terms of the tissue

type (Additional file 6). With the same external dataset nearest-neighbour method

(with Pearson correlation coefficient as distance measure) resulted in 78.3% accuracy

to the exact tissue, and another 16.1% matching a similar tissue, leaving 5.6% of the

samples incorrectly identified. SVM resulted in 98.0% overall accuracy.

The nearest-neighbour classifier achieves almost the same absolute accuracy than

AGEP, but it has serious limitations. As highlighted by the LOOCV results, the choice

of distance method greatly affects the results, while no biologically reasonable single

distance method exists. Other commonly used instance-based learners, as k-nearest

neighbor (k-NN), are also very sensitive to parameter selection. In contrast to AGEP,

there is no simple way to understand the individual genes’ contribution to the similar-

ity. SVM offers a high accuracy as well, but does not offer gene-level data on the simi-

larities either. Also, SVM methods are better suited to binary classification tasks,

rather than choosing the correct group from a multitude of options. Ensembles of

SVM classifiers have been successfully implemented for complex classification tasks,

but they have a known tendency for over-fitting and usually require complex and diffi-

cult case-by-case selection of the optimal kernel [31].

A recently published method by Caldas et.al. [23] provided 82% accuracy for identifi-

cation of biologically relevant experiments when queried with data from external

experiments. This method uses gene set enrichment, not individual gene expression, as

the basis of its similarity. Therefore, data from individual samples cannot be analyzed,

and the categories are experiments where a comparison between two sample sets is

needed. This method also collapses the gene expression values by medians, thereby not

addressing the problem of multimodal gene expression distributions, which AGEP was

specifically designed to solve.

Other classification methods that operate per gene do exist, such as molecular classi-

fication of cancer [24] and gene expression barcode [22]. These methods have been

found to be accurate in determination of tissue type, but they bin the genes’ expression

profiles into on/off (bar code) or downregulated/normal/upregulated (molecular classi-

fication) before using them for classification purposes. AGEP also operates on a per

gene basis, but the way of looking at the expression profiles in the sample categories

differs fundamentally from the abovementioned methods.

Overall, these comparisons indicate (Table 2) that AGEP performs the tissue identifi-

cation at least as well as the existing classification and search & retrieval methods,
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while having the advantages that AGEP can i) compare a single query sample against a

reference database ii) take into account bi- and multimodal expression profile in refer-

ence sample sets iii) deal with bi- and multimodal expression profiles, thereby more

accurately reflecting the actual gene expression variability of in vivo samples iv) provide

biologically important gene-by-gene interpretation of the similarity against multiple

references v) handle missing datapoints.

Biological interpretation of the gene-by-gene contribution to the similarity match

As AGEP data for each gene is biologically interpretable we then evaluated and vali-

dated the method in the interpretation of actual biological experiments.

Interpretation of microarray data I: Dystrophic muscle

We analyzed data from ten Duchenne muscular dystrophy (DMD) samples against the

44 tissue types in the reference database. In all cases striated muscle was identified as

the primary alignment (Additional file 7). Heart and tongue also showed significant

similarities, with uterus and prostate both scoring positively, probably linked to the

relatively high smooth muscle content. Interestingly, adipose tissue was also among the

top four alignments for all samples. This may reflect the common mesenchymal origin

of these tissues as well as the fact that dystrophic muscle tissues may contain larger

than normal amounts of adipose tissue [32]. For patient number four, adipose tissue

was the second best normal tissue match. This sample may have contained more adi-

pose tissue than others due to the disease progression [32] or specific subtype of the

disease [33]. AGEP identified both the genes defining the similarity to the striated

muscle as well as those with adipose tissue. This reflects the power of AGEP to pro-

vide context-specific interpretation of microarray data.

AGEP analysis of dystrophic samples against healthy striated muscle reveals the dis-

ease-associated changes as as a decreasing level of alignment. For the sample from

patient 3, gene sets with aberrant expression (Figure 2B-C) as compared to the refer-

ence striated muscle included inflammation, complement mediated immunity and

muscle contraction (with 198.6, 70.9 and 7.1 fold enrichment of atypically expressed

genes as compared to normal muscle, with a p-value < 0.05 for each). These are

expected differences in DMD [32,34,35] and were seen for all other disease samples,

with the exception of patient 4, (Figure 2D).

We also explored the AGEP results at the individual gene level (Figure 3). First we

selected five genes (MYH7, C1S, C3, C1QA, CLTCL1 and DMD) previously known to

associate with DMD [33,32,36,37,35] and explored their alignment scores in individual

patient samples. The dystrophin gene, DMD, a gene whose mutations underlie most

muscular dystrophies [33], was underexpressed as compared to healthy muscle in all

but one patient (patient 4) and scored a mean 0.37 as the tm-score. In contrast, MYH3

and MYH8 displayed overexpression in all patients, both being known hallmarks of

dystrophic muscle [32,36], and received mean tm-scores 0.05 and 0.3, respectively.

MYH7 had lower expression than seen in healthy striated muscle with a mean tm-

score 0.5. CLTCL1 expression was heterogeneous, with four Duchenne patients having

reduced expression levels that did not match muscle-typical levels with a tm-score of

0.28. In contrast, the mean of the tm-scores for the remaining patients was 0.79.

CLTCL1 is involved in glucose transport in muscle tissue [38], a process known to be

affected in the Duchenne dystrophy [37]. C1S, C3 and C1QA genes, involved in

Kilpinen et al. BioData Mining 2011, 4:5
http://www.biodatamining.org/content/4/1/5

Page 8 of 24



Striated muscle

Heart
Adipose tissue

Striated muscle

Heart
Adipose tissue

A

B

7.1 fold

4.3 fold

Muscle contraction

Muscle contraction

Inflammation response 
57.6 fold

Complement mediated immunity

Complement mediated immunity

Genes

C

D

Genes
E

F

TN
N

I3
C

C
K

C
A

C
N

A
1H

TA
G

LN
3

TA
C

R
2

N
E

B
L

M
Y

L7
C

A
C

N
A

1C
TP

M
3

AV
P

R
1B

R
Y

R
2

C
N

N
1

C
A

M
K

2A
G

A
LR

3
TA

G
LN

TA
C

1
C

A
M

K
4

A
D

R
B

1
P

R
K

G
1

M
Y

LK
P

D
LI

M
3

TN
N

T2
O

X
TR

A
D

R
B

3
E

N
S

G
00

00
00

64
04

2
C

N
N

2
M

Y
B

P
C

3
M

Y
B

P
C

1
C

A
C

N
A

2D
2

O
X

T
K

C
N

M
B

1
K

C
N

J5
IT

P
R

2
C

A
C

N
B

4
E

D
N

R
A

A
D

O
R

A
1

G
A

L
C

H
R

N
D

C
A

C
N

A
1A

M
Y

L6
B

U
N

C
93

B
1

M
Y

O
T

E
D

N
R

B
TP

M
2

B
D

K
R

B
2

P
R

K
G

2
C

A
C

N
A

1F
C

A
C

N
A

1D
M

Y
L1

A
D

R
A

1B
A

D
O

R
A

2A
N

E
B

A
S

P
M

C
A

C
N

B
1

C
A

C
N

A
1B

C
H

R
N

G
IT

P
R

1
C

A
C

N
B

3
A

D
O

R
A

2B
TN

N
I2

P
D

LI
M

4
C

A
C

N
B

2
C

A
C

N
A

2D
3

C
C

D
C

19
P

TG
D

S
A

D
R

A
1D

G
A

S
T

K
C

N
M

A
1

E
N

S
G

00
00

01
80

20
9

IT
P

R
3

K
C

N
E

1
K

C
N

J2
M

Y
L4

M
Y

L9
C

H
R

N
E

TN
N

I1
P

TG
E

R
1

A
LP

K
3

D
TN

B
C

3A
R

1
C

A
C

N
A

1G
M

Y
H

4
U

TS
2

C
14

or
f2

1
TP

M
4

TN
N

T3
C

K
B

C
K

M
P

VA
LB

M
Y

H
1

S
G

C
B

E
N

S
G

00
00

01
18

68
0

S
R

I
D

TN
A

G
R

P
R

TN
N

T1
C

R
YA

A
AV

P
R

1A
C

N
N

3
B

D
K

R
B

1
S

C
N

7A
C

A
C

N
A

1E
LA

S
P

1
E

N
S

G
00

00
01

06
43

6
M

Y
H

15 V
IP

TP
M

1
S

E
TX

PA
LL

D
AV

P
G

A
LR

2
LM

O
7

B
R

S
3

M
Y

B
P

C
2

C
A

M
K

2B
C

A
C

N
A

1I
M

Y
L2

M
Y

O
H

D
1

C
H

R
N

B
1

M
Y

H
2

TN
N

C
1

M
Y

H
6

TN
N

C
2

A
D

R
A

1A
C

K
M

T2
M

Y
L3

N
M

B
R

M
Y

O
M

1
M

Y
H

7B
M

Y
O

M
2

P
D

LI
M

1
D

Y
S

F
C

H
R

N
A

1
P

H
K

G
1

M
Y

H
13

N
R

A
P

C
A

M
K

2G
M

Y
B

P
H

E
N

S
G

00
00

01
88

05
5

M
Y

L6
FE

R
1L

3
E

N
S

G
00

00
01

63
10

6
R

Y
R

1
C

A
C

N
A

1S
C

R
YA

B
M

Y
H

8
TI

A
F1

M
Y

H
7

M
Y

H
3

M
Y

L7
P

TG
E

R
1

C
A

C
N

B
4

R
Y

R
2

C
A

C
N

A
2D

2
A

D
R

B
3

TN
N

I3
TA

C
1

AV
P

C
C

K
C

A
C

N
A

1D
O

X
T

V
IP

C
H

R
N

G
E

N
S

G
00

00
00

64
04

2
C

A
C

N
A

1A
C

A
C

N
B

1
M

Y
H

2
C

A
M

K
4

C
A

C
N

A
1H

N
E

B
L

TN
N

T3
C

A
C

N
A

1F
C

A
M

K
2A

K
C

N
J5

E
D

N
R

B
M

Y
H

15
E

N
S

G
00

00
01

80
20

9
A

D
O

R
A

2A
M

Y
B

P
C

3
TA

C
R

2
C

14
or

f2
1

C
A

C
N

A
1I

U
N

C
93

B
1

C
A

C
N

A
1B

C
A

C
N

A
2D

3
C

A
C

N
A

1G
M

Y
O

T
TN

N
I2

A
D

R
A

1B
AV

P
R

1B
TA

G
LN

3
B

D
K

R
B

1
A

D
R

B
1

E
N

S
G

00
00

01
18

68
0

M
Y

B
P

C
1

IT
P

R
2

A
S

P
M

A
LP

K
3

P
D

LI
M

3
P

R
K

G
2

C
A

C
N

A
1E

K
C

N
M

A
1

A
D

R
A

1A
O

X
TR S
R

I
TN

N
T1

K
C

N
J2

C
N

N
1

D
Y

S
F

LM
O

7
C

A
C

N
B

2
N

E
B

G
A

L
C

A
C

N
B

3
G

A
LR

3
D

TN
B

TN
N

I1
S

E
TX

C
C

D
C

19
IT

P
R

3
S

C
N

7A
C

N
N

2
E

N
S

G
00

00
01

63
10

6
P

TG
D

S
M

Y
L3

A
D

O
R

A
2B

M
Y

LK
E

D
N

R
A

C
K

M
IT

P
R

1
TP

M
2

E
N

S
G

00
00

01
06

43
6

TI
A

F1
AV

P
R

1A
A

D
O

R
A

1
M

Y
L6

B
TP

M
3

P
VA

LB
C

A
C

N
A

1C
M

Y
H

13
C

K
M

T2
C

R
YA

A
K

C
N

M
B

1
D

TN
A

TA
G

LN
C

A
C

N
A

1S
M

Y
L1

TP
M

4
U

TS
2

B
R

S
3

C
K

B
TN

N
C

2
B

D
K

R
B

2
K

C
N

E
1

TN
N

C
1

C
H

R
N

E
M

Y
L4

G
A

S
T

M
Y

B
P

C
2

M
Y

O
H

D
1

M
Y

H
1

M
Y

H
7B

G
A

LR
2

C
A

M
K

2B
A

D
R

A
1D

P
D

LI
M

1
M

Y
H

4
M

Y
L2

C
R

YA
B

S
G

C
B

P
R

K
G

1
N

M
B

R
TP

M
1

N
R

A
P

C
H

R
N

B
1

M
Y

O
M

1
C

A
M

K
2G

M
Y

H
6

PA
LL

D
G

R
P

R
M

Y
O

M
2

C
H

R
N

A
1

E
N

S
G

00
00

01
88

05
5

M
Y

H
7

M
Y

L6
M

Y
L9

P
D

LI
M

4
R

Y
R

1
FE

R
1L

3
LA

S
P

1
C

3A
R

1
C

H
R

N
D

TN
N

T2
C

N
N

3
P

H
K

G
1

M
Y

B
P

H
M

Y
H

8
M

Y
H

3

IL
5R

A
ZA

P
70

V
TN

C
D

40
LA

M
C

2
IL

2R
A

C
D

28
TN

FR
S

F1
B

IL
2R

G
TN

FR
S

F1
A

IL
2R

B
IL

5
C

D
40

LG
IF

N
G

FN
1

C
D

86
LA

M
C

1
C

D
80 IL

2
IL

4
TH

B
S

3
LC

K
IL

4R
LA

M
A

5
LA

M
B

1
TH

B
S

1
C

O
L1

A
1

LA
M

B
2

C
O

L3
A

1

198.6 foldInflammation response 

C
FP

C
4B

P
B

A
M

A
C

R
C

D
46

C
R

2
C

6
C

9
M

A
S

P
1

C
1Q

L1
C

4B
PA C

5
C

FH
R

5
C

8A
C

D
55

C
8B

C
1R

L
M

A
S

P
2

C
1Q

TN
F1

C
1Q

B
P

M
B

L2
C

R
1

C
2

C
FH

R
2

C
FD

C
FB

C
1Q

B
C

1Q
A

C
FI

C
FH C

3
C

1S

70.9 fold

IL
2R

G
LC

K
IF

N
G

IL
2R

A
ZA

P
70

V
TN

LA
M

C
2

LA
M

A
5

C
D

80
TH

B
S

1
IL

4
C

D
86

IL
2R

B
IL

5R
A

C
D

40
C

D
28

C
D

40
LG IL

2
FN

1
TN

FR
S

F1
B

LA
M

B
2

LA
M

C
1

TN
FR

S
F1

A
C

O
L1

A
1

TH
B

S
3

IL
5

C
O

L3
A

1
IL

4R
LA

M
B

1

C
FP

C
R

2
C

1Q
TN

F1
C

4B
P

B
A

M
A

C
R C
5

C
4B

PA C
9

C
1Q

L1
C

R
1

C
FH

R
5

M
B

L2
C

FB
C

8A C
6

C
D

55
C

1Q
B

C
8B C

2
M

A
S

P
1

C
1Q

A
M

A
S

P
2

C
FH

R
2

C
1R

L
C

1Q
B

P
C

1S C
FI

C
D

46 C
3

C
FD

C
FH

30.3 fold

S
tr

ia
te

d 
m

us
cl

e
H

ea
rt

A
di

po
se

 ti
ss

ue
To

ng
ue

U
te

ru
s

P
ro

st
at

e
Lu

ng
B

re
as

t
Th

yr
oi

d 
gl

an
d

C
ol

or
ec

ta
l

S
to

m
ac

h
O

va
ry

K
id

ne
y

B
la

dd
er

P
N

S
 g

an
gl

io
n

A
dr

en
al

 g
la

nd
P

an
cr

ea
s

E
so

ph
ag

us
Ly

m
ph

 n
od

e
O

ra
l c

av
ity

B
ro

nc
hu

s
P

la
ce

nt
a

S
al

iv
ar

y 
gl

an
d

To
ns

il
A

du
lt 

st
em

 c
el

l
S

pl
ee

n
S

pi
na

l c
or

d
Li

ve
r

P
itu

ita
ry

 g
la

nd
C

er
eb

ru
m

Th
ym

us
B

ra
in

 s
te

m
C

er
eb

el
lu

m
Te

st
is

M
es

en
ch

ym
al

 s
te

m
 c

el
l

C
or

pu
s 

ca
llo

su
m

B
lo

od
 m

on
oc

yt
e

H
em

at
op

oi
et

ic
 s

te
m

 c
el

l
H

ai
r f

ol
lic

le
B

lo
od

 t-
ce

ll
B

lo
od

 d
en

rit
ic

 c
el

l
B

lo
od

 b
-c

el
l

B
on

e 
m

ar
ro

w
 g

ra
nu

lo
cy

te
R

et
ic

ul
oc

yt
e

Ti
ss

ue
 s

im
ila

rit
y

-0.10

-0.05

0.00

0.05

0.10

S
tri

at
ed

 m
us

cl
e

A
di

po
se

 ti
ss

ue
H

ea
rt

U
te

ru
s

P
ro

st
at

e
To

ng
ue

Th
yr

oi
d 

gl
an

d
Lu

ng
K

id
ne

y
S

to
m

ac
h

B
re

as
t

O
va

ry
B

la
dd

er
P

an
cr

ea
s

C
ol

or
ec

ta
l

A
du

lt 
st

em
 c

el
l

P
N

S
 g

an
gl

io
n

E
so

ph
ag

us
A

dr
en

al
 g

la
nd

Ly
m

ph
 n

od
e

O
ra

l c
av

ity
P

la
ce

nt
a

S
pl

ee
n

Th
ym

us
To

ns
il

S
pi

na
l c

or
d

B
ro

nc
hu

s
S

al
iv

ar
y 

gl
an

d
C

er
eb

ru
m

Li
ve

r
P

itu
ita

ry
 g

la
nd

C
er

eb
el

lu
m

H
ai

r f
ol

lic
le

B
ra

in
 s

te
m

H
em

at
op

oi
et

ic
 s

te
m

 c
el

l
M

es
en

ch
ym

al
 s

te
m

 c
el

l
Te

st
is

B
lo

od
 m

on
oc

yt
e

C
or

pu
s 

ca
llo

su
m

B
lo

od
 t-

ce
ll

B
lo

od
 d

en
rit

ic
 c

el
l

B
lo

od
 b

-c
el

l
B

on
e 

m
ar

ro
w

 g
ra

nu
lo

cy
te

R
et

ic
ul

oc
yt

e

Ti
ss

ue
 s

im
ila

rit
y

-0.15

-0.10

-0.05

0.00

0.05

0.10

Figure 2 Results of the AGEP analysis of microarray data from two Duchenne muscular dystrophy
samples against the reference database. A) The sample from patient 3 resembles most closely striated
muscle among the 44 reference tissues. B) Alignment of the patient’s transcriptome at the level of
individual genes. On the x-axis are genes (17 330) and on the y-axis the three most similar tissues. Green
color indicates that the genes have an expression level typical for that tissue, whereas red indicates
atypical expression levels. Genes have been ordered according to their level of similarity against the most
similar tissue (striated muscle). C) View of distinct gene sets and pathways for the most similar tissue
(striated muscle). Relative enrichment of atypical genes is shown on the right side to illustrate aberrant
gene expression levels for individual patient samples. Genes involved in inflammation response,
complement mediated immunity and muscle contraction had more atypical expression levels as compared
to healthy striated muscle (198.6, 70.9 and 7.1 fold enrichment of atypical genes, respectively), indicating
that these processes were altered in DMD in comparison to healthy muscle. D-F) The gene expression
profile from patient 4 resembled mostly striated muscle (primary match), but revealed adipose tissue as the
second best matching tissue. As compared to patient 3, this patient had a larger number of muscle typical
genes involved in inflammation response, complement mediated immunity and muscle contraction
suggesting a less severe disease for patient 4.

Kilpinen et al. BioData Mining 2011, 4:5
http://www.biodatamining.org/content/4/1/5
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Figure 3 A) Scatterplot of tm- and ts-scores of DMD patient (number 4) when compared against
healthy striated muscle. On the x-axis are tm-scores of the patient and on the y-axis are ts-scores of the
patient. As explained in the figure 1D, upper right corner (high tm- and ts-scores) indicate genes having
muscle specific expression and the query sample had expression level matching that. In this case there is
clearly a group of genes having expression level assumed and specific for muscle and for this part the
patients transcriptomic profile resembles healthy striated muscle. On the lower left corner are the genes
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sample did not have expression level matching it. Thus these genes are potentially related to DMD. Eight
a priori known DMD related genes are highlighted in red while novel gene in DMD (SAMD4A) is
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not have expression matching it. B) Visualization of the normalized expression levels of selected genes
from ten Duchenne Muscular Dystrophy samples in relation to the expression levels of these genes across
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DMD samples added to the far right. Patients illustrated in figure 3 are colored red. MYH3, MYH7 and
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complement mediated immunity contributing to muscular dystrophy [35], also showed

heterogeneous expression across the dystrophy samples, with corresponding changes in

tm-scores. Having demonstrated the capability of AGEP to provide patient-specific

alignment scores for the individual genes in a context-specific way, matching the pre-

vious biological knowledge on the disease biology (Figure 3), we then tested AGEPs

ability to pick novel genes that have a muscle-specific expression which gets lost in the

DMD disease samples. SAMD4A is highly muscle-specific gene, coding for a posttran-

scriptional regulator, but was among the 10 genes with the lowest ts-score of all genes

in the DMD samples (the smaller the ts-score is the less gene matches the expression

level unique for the tissue). SAMD4A had lost its muscle specific expression level in all

dystrophy patients (mean ts-score of all patients -0.57). To our knowledge, loss of

muscle specific expression of the SAMD4A gene has never been associated with DMD

before.

As compared to other patients, patient number 4 had a unique disease with similari-

ties to adipose tissue, less inflammation and immunity response, less impact on muscle

contraction genes and dramatically reduced CLCTL1 expression (tm- ts-score scatter-

plot displayed in Figure 3A), giving a powerful example of the ability for AGEP analysis

to rapidly reveal patient-specific characterization of molecular properties. The scatter-

plot identifies genes with a muscle specific expression pattern, and whether the query

sample matched that expression or not. Genes with a low tm-score (doesn’t match

muscle) and a negative ts-score (matches other tissues better) reside in the lower left

corner of the plot, indicating genes with muscle specific expression patterns that do

not match the query. Similarly, genes with a muscle specific expression matching the

query are located in the upper right corner.

Taken together, this DMD example indicates, how AGEP allows interpretation of

transcriptomic profiles of individual patients at a level of tissues, biological processes

and individual genes and will facilitate the molecular interpretation of microarray pro-

files from individual disease samples.

Application of the array alignment for the microarray data analysis II: stem cell

differentiation

We then explored the AGEP method in the analysis and interpretation of transcrip-

tional changes from a study of differentiating mesenchymal stem cells to adipocytes

with three replicate samples measured over 5 time points (0 h, 1 h, 3 h, 9 h and 7d).

Each of the 15 samples was aligned against 44 tissue types in the reference database to

uncover transcriptional changes.

As anticipated, all the samples were initially similar to MSCs (Figure 4A, Additional

file 8). Genes related to adipose tissue differentiation were expressed at the level

expected for MSCs, and at an atypical level for adipose tissue (fold enrichment 1253.3

with p-value < 0.05) (Figure 4B). During the time series, AGEP analysis indicated how

the transcriptomic program of the cells changed away from MSCs and gained similar-

ity to adipose tissue. At 7 days, two samples already resembled adipose tissue more

than MSCs. At this point, part of their transcriptome displayed heart-specific features

as well. While the extent of this change was unexpected, in vivo derived MSC tend to

differentiate in vitro to cardiac myocyte like cells [39].

Analysis of the biological processes involved (Figure 4B-C) indicates that all genes

related to adipose tissue differentiation have acquired an expression level expected for
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adipose tissue, whereas a significant proportion (fold enrichment 2759.1, with p-value <

0.05) of these genes are no longer expressed at the typical MSC level. Similarly lipid

and fatty acid transport genes have acquired expression values expected for adipose tis-

sue, and a large number of them are now atypical for MSCs (110.6 fold relative enrich-

ment with p-value < 0.05). In summary, during the differentiation, MSC-specific

transcriptomic program is gradually lost and adipose tissue like program gained. How-

ever, the cells do not reach the full in vivo adipose tissue transcriptomic profile.

We further studied the genes with the highest match to MSCs at the 0 h time point,

and those with adipose tissue as the highest match at the 7d time point replicates

(Figure 5). HAPLN1, STC2, JUB and DKK1 had the highest ts-scores for MSC similar-

ity at the 0 h time point. ADIPOQ, PLIN, THRSP and MOSC1 genes all gained full adi-

pocyte specific expression levels at 7 days, these genes are known to be adipose tissue

related [40-43]. As a summary, AGEP analysis of the data on stem cell differentiation

demonstrates the ability of the technology to quantitatively follow the gradual tran-

scriptomic changes during mesenchymal differentiation, revealing both expected (stem

cell to adipose tissue) and unexpected (heart tissue) differentiation, along with the

identification of the specific gene expression differences in each comparison.

A

20.9
35.1

23.9

20.4
13.4

30.3

0.0

84.7

80.1

345.0

198.9

1253.3

B

Fold Fold

Fold Fold

C

0.0

83.8

191.6

187.3

2759.1

80.0

Adipose tissue

Adult stem cell

Heart

Cerebrum

Bronchus

Lung

Hematopoietic stem cell

Mesenchymal stem cell

Bone marrow granulocyte

Blood t-cell
Thymus
Blood monocyte

Reticulocyte

Blood b-cell

Blood denritic cell

Lymph node

Tonsil

Oral cavity

Spleen

Tongue

Salivary gland
Esophagus

Stomach
Colorectal

Liver

Pancreas

Kidney

Bladder

Testis

Prostate

Ovary
Uterus
Placenta

Breast

Pituitary gland

Thyroid gland

Adrenal gland

Striated muscle

Hair follicle

Cerebellum

PNS ganglion

Brain stem

Corpus callosum
Spinal cord

Sample A 7d

Sample A 0h

1st match
2nd match
3rd match
4th match
5th match
6th match

d

Genes

Genes

Figure 4 Alignment of transcriptomes of two samples from a differentiation series of mesenchymal
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reference to all normal tissue types. On the left side is a phylogenic tree of all the 44 normal tissue types
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Application of the array alignment for the interpretation of transcriptome data from test

samples III: hematopoietic cell types and myeloid leukemias

Data from seven cell types of the myeloid lineage: hematopoietic stem cells (HSC),

myeloblasts, leukemic stem cells (LSC), acute myeloid leukemia (AML), granulocytes,

monoblasts and monocytes were compared against the 44 tissue types of the reference

data types. Figure 6 indicates the number of genes expressed in the test samples in a

cell-type specific manner (ts-score >0.75) when compared against three specific sample

types in the reference database (hematopoietic stem cells, granulocytes and mono-

cytes). As expected, data from the hematopoietic stem cells were aligned most closely

with HSCs in the reference database. Myeloblasts had roughly the same small number

of cell-type specific genes corresponding to each of the three reference cell types.

Monoblasts most closely resembled monocytes, but lacked specific genes expressed in

the monocytic samples. Leukemic stem cells resembled HSCs the most, but with less

HSC specific genes than the sample from the HSCs. The AML sample was further

from the HSCs than LSCs, with some equally small similarity with both granulocytes

and monocytes. Taken together, these data highlight the transcriptomic programs ran-

ging from hematopoietic stem cells to mature myeloid cells.
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Figure 5 Visualization of mesenchymal stem cell specific genes expression at time point 0 h (left
column) and adipose tissue -specific genes at 7d time point (right column). Each boxplot shows the
expression level of the corresponding gene in the reference data (from http://www.genesapiens.org) with
the data from external samples (A, B and C) shown at the far right in the two time-points. HAPLN1, STC2,
JUB and DKK1 have mesenchymal stem cell specific expression levels at the 0 h time point, while ADIPOQ,
PLIN, THRSP and MOSC1 have high levels in adipose tissue. At the 7d time point the patterns is reversed.
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Discussion
A large number of methods have been developed for the analysis of microarray gene

expression data, reflecting the tremendous complexity of the problem of transforming

information on the expression levels of 20,000 genes into meaningful biological

insights. Many microarray data analysis approaches are based on case-control study

designs like comparing treated and untreated cells or matched disease and control
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Figure 6 Comparison of gene expression similarities based on AGEP analysis of seven samples
representing various differentiation and/or malignancy states of myeloid cells (hematopoietic stem
cells, leukemic stem cells, myeloblasts, monoblasts, AML, granulocytes and monocytes). For each
sample, the number of tissue specific (ts-score >0.75) genes for the three reference tissue types
(hematopoietic stem cell, bone marrow granulocyte, blood monocyte) is shown as bar charts. There is a
gradual change in the transcriptomic program when moving from hematopoietic stem cells to the most
differentiated granulocytes and monocytes as well as to malignant AML cells. As expected, the
hematopoietic stem cell sample had several genes specific to the HSC reference cell type, while in the
myeloblast sample this number is much lower. The myeloblast sample did not express monocyte or
granulocyte specific genes. Leukemic stem cells have some HSC specific expression, while the AML
resembles slightly more the granulocyte reference than the HSC or monocyte reference.
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tissues. However, the control group may be hard to define and challenging to acquire.

In some cases, like with differentiating stem cells, multiple control groups would be

needed in order to achieve a comprehensive understanding of the differentiation path-

ways. The method presented in this paper, AGEP, allows highly informative compari-

son of a single microarray sample against an existing reference database of annotated,

previously analyzed microarray data.

The philosophy of AGEP is analogous to the sequence alignment methods in the

analysis and comparison of newly sequenced DNA. These methods are highly powerful

because of the availability of fully sequenced genomes and 108 million sequence

records as a reference in the Genbank. The key difference between sequence-based

and gene expression based methods is that the latter provides quantitative information,

not just qualitative sequence identities. Therefore, we had to take into account distri-

butions of gene expression levels in each reference tissue that are often multi-modal in

nature. In the AGEP method, this was accomplished by calculating kernel density esti-

mates for each gene in each reference tissue type, thereby generating reference data for

characteristic expression profiles of all genes in all the major normal tissue types.

We feel that a simple categorization of gene expression into two or three categories

(like underexpression, average and overexpression) is insufficient to capture the true

behavior of genes. The way AGEP works is that we assume that the whole spectrum of

expression values for a gene in a tissue reflects the true variation in vivo. Therefore,

when we compare the expression value from an external sample to a reference data-

base, we determine quantitatively how well that value fits the distribution in each refer-

ence tissue, instead of simply asking whether the gene is up- or down regulated in a

direct comparison with a reference tissues, as these types of analyses are usually done.

One of the key features of the AGEP method is the tm-score. We believe that it is

the best way to compare a single expression value to a host of values from any refer-

ence sample group, such as a single tissue. Unlike a single summary value (like mean

or median), it is able to account for any type of expression distribution, and takes into

account the observed expression range of the gene in question. It can also accommo-

date missing values, which is not the case for many other methods. It is also relatively

robust against annotation errors as mixing two tissue types together will create a bimo-

dal expression profile for at least some of genes and AGEP can accept that as a feature

of the (mixed) tissue class whereas methods based single summary statistic would gen-

erate values that are not correct for either tissue types of the mix.

AGEP performance in finding correct tissue of origin for a set of samples was bench-

marked by using both nearest-neighbor and SVM, the latter being one of the most

powerful classifying engines available [27-29]. As AGEP reached at least similar perfor-

mance levels as SVM, we do not anticipate that comparison to other methods would

change the conclusion that AGEP’s absolute accuracy in tissue identification is com-

parable to other key methods and adequate for most purposes.

For tissue classification purposes, tm-scores need to be evaluated in terms how well

they differentiate each tissue from all the reference sample types. Transforming tm-

scores to tissue specificity scores provides the necessary evaluation. The ts-score may

not necessarily be the optimal method for testing the classification of the query sample

against one tissue type. That being said, the high classification accuracy achieved by
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AGEP demonstrates that the tm-score is a good basis for comparing similarity of a sin-

gle gene expression value to a reference pool.

Importantly, AGEP not only provides a metric of the sample similarities, but also

defines the genes informative in comparison to all the reference tissues. This is impor-

tant in order to understand the biological basis of the transcriptomic similarities. That

is, rather than just asking the question “What tissues does this gene expression profile

resemble?”, AGEP can also answer questions like “which genes contribute to the simi-

larity to a certain tissue?” or “what biological processes are different in the test sample

as compared to the various tissues?”, as evidenced by the presented case studies.

Previous methods for similar comparisons are typically based on an upfront selection

of subsets of genes (gene sets or signatures) that are derived from the test samples and

reference sets. Examples of conceptually similar approaches include the connectivity

map [44,45], molecular concept mapping [46], and the relevancy metric [23], which all

provide the capability to link new experiments to existing ones. Selected gene sets are

most informative and powerful for the purpose they were designed for and depend

entirely on the identification and annotation of meaningful gene sets that may or may

not be available for a particular study. Also, gene sets may not transfer well from one

context to another, e.g. from one tissue to another. Other informative gene expression

patterns may be missed when focusing on gene sets or molecular concepts. AGEP

does not depend on a priori assumptions of subsets of genes being more informative

than others and it was designed to be used for the analysis of individual samples.

The AGEP method is widely applicable, but is particularly powerful when a deep

interpretation of microarray results is needed for samples for which an optimal control

tissue is not available due to technical, medical or biological considerations, such as

cell differentiation and stem cell research, where comparisons with multiple different

cell and tissue types are needed.

When selecting the reference data, we omitted any tissue with less than six samples.

Obviously, human normal tissue specimens are hard to obtain in large quantities.

Therefore, five is less than optimal as a statistical lower limit, as individual samples

have a huge impact on the shape of the kernel density with so few samples. As more

data become available, we would suggest raising the low limit to at least 20 samples, so

that each reference sample type would have the representation of the spectrum of

likely expression levels.

The computational requirements for AGEP are rather heavy, as the representation of

the expression distributions as density estimates requires considerable amounts of

memory. With the current implementation AGEP needs be run in a server with more

than 10 GB of memory, however this is largely dependent on the size of the reference

database used.

Conclusions
Alignment of samples from Duchenne muscular dystrophy (DMD) patients revealed

known critical and causative expression changes in the transcriptome of dystrophic

muscle. For example, the well-known role of inflammation in dystrophy was clearly

flagged by the AGEP analysis [33]. Known dystrophy related genes like MYH3, MYH7,

MYH8 and DMD [32,33,36] and genes previously unlinked to the dystrophic muscle,

such as the SAMD4 were identified by AGEP as having expression levels in dystrophic
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muscle not matching healthy muscle. Interestingly, CLTCL1, a gene related to glucose

metabolism, was expressed at levels matching those in normal muscle tissue in 6 dys-

trophy patients while 4 had clearly lower expression illustrating how AGEP can pro-

vide interpretation of molecular profiles of individual patients, and reveal pathogenetic

genes and pathways in a context-specific manner. Furthermore, as more annotated

reference data becomes available, this will facilitate molecular stratification of patients

suggesting many possible future applications in diagnostic molecular pathology.

In the examples on cell differentiation, the AGEP method facilitated understanding

of the changes in the transcriptomic programs of stem cell differentiation to adipose

tissue. Most MSC-specific genes (e.g. HPLN1, STC2, JUB and DKK1) lost their specific

expression levels and acquired levels typical for adipocyte while adipocyte-specific

genes (e.g. ADIPOQ, PLIN, THRSP and MOSC1) gained expression typical for adipo-

cytes during the differentiation. Illustrating the key advantage of AGEP method in con-

text-specific comparisons, we were able to identify that during the stem cell

differentiation cells also gained similarity with cardiomyocytes. This differentiation pat-

tern is well known [39], but the extent to which this takes place during adipocytic dif-

ferentiation has not been comprehensively characterized before. AGEP also helped to

unravel genes with unique expression levels in cell types of the myeloid differentiation

cascade. These analyses quantified the cellular differentiation states (and genes

involved) that could in the future be applied for developing diagnostic applications in

mapping differentiation states of normal and pathological hematopoietic lineages or

any other cellular differentiation cascade. In conclusion, our biological validation

experiments showed that AGEP is capable of identifying gene-by-gene contributions to

the similarity between query sample and reference database.

Even though tissue classification was not the primary aim of the study, the AGEP

method achieved high accuracy in identifying the tissue type of origin of test samples

and the biological processes and genes behind such similarities, thus facilitating under-

standing of biological concepts hidden in the complex transcriptomic profiles. Future

implementation of this line of research could lead to diagnostic approaches for analysis

of unknown primary tumors.

Taken together, the AGEP methodology provides a new paradigm for comprehensive

analysis of gene expression profiles from individual samples, making efficient use of

existing knowledge and collective data acquired by the research community. This

AGEP concept is similar to the widely applied sequence alignment tools, where a new

test sequence is compared against a large reference collection of known genomes and

sequence repositories. We therefore believe that the AGEP approach will incrementally

gain in value in the future, as the databases, annotations and statistical, bioinformatic,

data mining and artifical intelligence methods for learning based on prior information

continue to improve.

Methods
Reference data

As a reference data we have used 1667 healthy in vivo samples from GeneSapiens data-

base [7] representing 44 different tissue types (Additional file 1) with 6290-17220 genes

per sample. Varying gene number is depending on Affymetrix array generation used to

measure the sample.
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Transforming the expression profile of query sample into compatible form

Gene expression data from the query sample to be analyzed against the reference data

is transformed into compatible form by following procedure. MAS5 preprocessing

algorithm and subsequent EQ transformation is applied as specified in Kilpinen et al.

[7]. AGC correction method [7,21] is then applied for the sample. Gene and array gen-

eration specific correction factors needed in the AGC correction are fetched from the

reference database [7].

Calculation of gene expression density estimates

The density of expression values for each gene in each tissue type was calculated

(Additional file 2A-B) as follows: For computational efficiency we used fast Fourier

transformation based approximation to calculate kernel density estimates (R 2.7.2

[47]). Kernel densities were calculated by using Gaussian window with bandwidth

selection given by Scott et al. [48] (R function bw.nrd). Density is estimated from 0 to

maximum expression value in the entire dataset plus two times the highest bandwidth

for that gene, with 512 equally spaced points.

The modality of gene expression estimates was calculated by searching for peaks hav-

ing at least 0.1 of the total area of the density estimate. 14% of the genes were

excluded from the analysis primarily due to the ambiguous modality of expression

distributions.

Comparing a single query profile to the reference data

Gene and tissue specific expression density estimates (Additional file 1) are used to

calculate the likelihood of obtaining the expression values observed in the query profile

from each tissue type for gene g in tissue t as follows:

The value of the density diagram for gene g in tissue t corresponding to the expres-

sion value of gene g in the query sample is determined. Then that density value is

compared to the density values of the 512 evaluation points of the density diagram of

gene g in tissue t and the fraction of lower density values is calculated. This is called

the tissue match score (tm-score), with 1 meaning perfect match between the query

and tissue for expression of gene g and 0 meaning expression of the gene in the query

profile is outside the observed expression range of gene g in tissue t. This calculation

is repeated for each gene of the query profile against the density estimates of the same

genes in each tissue type of the reference data. The calculations are detailed in Equa-

tion 1. Based on the tm-scores the expression values of genes of query samples are

also classified typical or atypical for each of the reference tissues. This is done by

determining the tm-scores for all evaluation points, and weighting the abundance of

that tm-score by the value of the density diagram at that point. This is repeated for all

genes in all tissues. It essentially leads significance value of the tm-scores (less than 5%

likelyhood of having at least equal tm-score by chance when comparing samples of the

tissue against itself).

For the purpose of defining the similarity of the query sample at the level of tissues

we calculate a tissue specificity score (ts-score) for each gene in each tissue (Equation

2). The ts-score for gene g for tissue t is the mean of the ratio weighted differences of

tms(g, t) and all tms(g, not t). This gives us a score that indicates how well the tm-

score of g categorizes the query sample into t. The ratio weighing is done so that the
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larger the ratio of the tm-scores, the higher the resulting ts-score will be. For example,

a tm-score of 0.6 is deemed to better differentiate from a tm-score of 0.2 than a score

of 1 from 0.6, even though their differences are the same. The scaling is controlled by

the scaling factor (□), which was set to 0.25 for the analyses in this paper. It produces

scores of 1/2 to 5/6 with a difference of 0.5. Setting □ closer to 0 gives more weight to

the ratio, whereas a larger value decreases it. See Equation 2 for details. Ts-score varies

between 1 and -1 and describes how well gene g classifies the query profile into tissue

t. A score of 1 means the gene has a unique level of expression in the tissue and the

query profile has expression level matching it perfectly. 0 means that the expression

level observed in the query sample cannot differentiate the tissue from other tissues. -1

means gene has a unique level of expression for the tissue and the query profile does

not have that specific expression level.

The mean of tissue specificity scores (Equation 3) is used as similarity score at the

tissue level.

Equation 1

The distribution of random, tissue vs. self

tm - scores is defined as:

E = {evaluation points for gene g in tissue t}
ei = i:th evaluation point

for each i (1 .. |E| )
tm - score = tms(eix, t)

with weight =
eiy
1

|E|∑
i=1

eiy

Where

tms(t, g) = tm - score for tissue t, gene g

Equation 2

The tissue specificity score for tissue t and

gene g is:

tss(t, g) =
1
|T|

|T|∑

i=1

f (t, xi, g)

Where

T = {non − t tissues}
xi = i:th element of T

and

f (t, x, g) = {
1−(1+σ )(

tms(x, g) + σ

tms(t, g) + σ
−

σ

1 + σ
),for tms(t,g) � tms(x,g)

−(1−(1+σ )(
tms(t, g) + σ

tms(x, g) + σ
−

σ

1 + σ
)), for tms(t,g) ¡ tms(x,g)

σ = scaling variable

tms(t, g) = tissue match score for tissue t, gene g
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Equation 3

The similarity score for sample s and tissue t is:

similarity(s, t) =
1
|G|

n∑

i=1

tss(t, gi)

Where

G = {common genes between s and t}
gi = i:th element of G

An R implementation of the AGEP algorithm is available at https://github.com/

skilpinen/AGEP

Leave-one-out cross-validation (LOOCV)

In order to validate the accuracy of the method we performed leave-one-out cross-vali-

dation using 1667 healthy samples from the reference data. Density estimates for the

tissue from which the query sample was removed were recalculated, and then the

query sample was aligned to the tissues. From the results we calculated accuracy of

identifying correct tissue type as first hit (Figure 1) and distribution of first and sec-

ondary hits per each tissue (Additional file 5). The sensitivity and specificity for each

tissue were calculated (Additional file 4) as follows: for tissue t true negatives (tn) were

non-t tissue samples that matched non-t tissues, false negatives (fn) were tissue t sam-

ples that matched a non-t tissue, true positives (tp) were tissue t samples that matched

t and false positives (fp) were non-t tissue samples that matched t. Sensitivity was

defined as tp/(tp + fn) and specificity as tn/(tn + fp).

In nearest-neighbor classification method the average expression of each gene in

each tissue was calculated to form tissue average profiles. Samples were classified as

the tissue having smallest Euclidean distance to the sample in question. A separate

classification was made by classifying samples to the tissue with the highest Pearson

correlation coefficient. In all cases, the sample in question was excluded from the cal-

culation of average profiles.

With SVM we used libsvm package through R library e1071, with radial kernel. Since

SVM cannot effectively handle missing values we imputed missing values to the data

by using median value of data points in the tissues for the gene in question. Imputa-

tion was done for each tissue separately so that each missing value was replaced by

median non-missing values. If all samples of a tissue had missing value then the gene

was discarded from the analysis. This resulted in 11834 genes with no missing values

for each of the 1667 samples. Imputing missing values for SVM lowers variation within

the tissue and thus to some degree artificially enhances the performance of SVM,

which was tested with 10-fold cross validation of the entire database.

Independent validation with external dataset

External healthy in vivo samples used in additional independent validation were ran-

domly selected from Array Express [1] study E-GEOD-7307. 250 healthy in vivo sam-

ples were selected, and of these, 195 samples were from tissues that were also present

in the reference data, and were thus used for the validation.

All 195 samples were aligned against the reference data using AGEP, NN and SVM

methods, as detailed above.
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Datasets used in testing individual samples

Hematopoietic stem cell sample and leukemic stem cell sample were acquired from

Array Express [1] study E-GEOD-17054 (GSM426413.CEL and GSM426407.CEL,

respectively) [49], AML and bone marrow granulocyte samples were from GEO [3]

study GSE1159 [50] (GSM20692.CEL and GSM20971.CEL, respectively), Blood mono-

cyte sample was from GEO study GSE1133 [18] (3AMH02082315_PB_CD14Mono-

cytes.CEL). Both the granulocyte and monocyte samples were originally part of the

reference database [7] but were excluded from the density calculations to be used as

external samples. Myeloblast and monoblast samples were from Array Express [1]

study E-GEOD-12803 [51] (E-GEOD-12803-raw-cel-1712284859.cel and E-GEOD-

12803-raw-cel-1712284746.cel, respectively).

Duchenne muscular dystrophy samples were from Array Express [1] study E-GEOD-

3307 [34].

Mesenchymal stem cell differentiation series was from Array Express [1] study

E-MEXP-858. Within the study human mesenchymal stem cells, derived from

bone marrow aspirations of iliac crest of healthy transplantation donors, were

induced to differentiate into adipocytes with specific induction cocktail (described

in detail in experiment description file E-MEXP-858.idf.txt available through

Array Express).

Gene set enrichment analysis

In order to define the similarity of the query sample and the tissues at the level of

biological functions tissue match scores were analyzed in terms of a priori known

gene sets. For each gene set the relative enrichment of the members of gene set

among the atypical, for the tissue in question, part of the transcriptome was calcu-

lated. Gene sets were derived from molecular signatures database [52,53] and

Panther database [54].

Boxplots

In boxplots there is one box for each tissue of reference data. Lines signify median

expression; boxes extend to 25 and 75 percentiles while whiskers extend to the

1.5*IQR. Data points beyond are shown as individual points. Number of data points

for each tissue is shown in the parenthesis. Expression level of the gene in individual

samples is shown only as line after data of the reference database.

Tissue tree

The phylogenic tree for the tissues in the reference database was calculated as follows:

the density estimates for a gene in one tissue was compared to the density estimate for

the same gene in another tissue. The area of the non-overlapping part was calculated.

This was done for all genes that had density estimates in both tissues. The distance

between two tissues was set as the median of the non-overlapping areas of all their

common genes. The tree was calculated using the hclust() R function with the linkage

parameter of “complete”.

Kilpinen et al. BioData Mining 2011, 4:5
http://www.biodatamining.org/content/4/1/5

Page 21 of 24



Additional material

Additional file 1: A number of samples in the reference data for each tissue class. A number of samples in
the reference data for each tissue class.

Additional file 2: Schematic diagram illustrating the estimation of gene expression densities. A) Measured
expression levels of a gene in five tissues, 50 samples per each tissue. B) Density values for expression of the gene
in five tissues across entire observed expression range (from 0 to maximum) as estimated with 512 equally spaced
points. The area of each density estimate is normalized to 1. C) A boxplot representation of expression levels of a
gene across various tissues and in 2 individual test samples (the two rightmost entries). With the AGEP method
Sample A (highlighted in red) gets high tm-scores (close to 1) for the gene in question for the majority of tissues
having a similar very low expression level (such as mesenchymal stem cell), somewhat lower tm-scores for
example against skin and bone and very low (close to zero) for tissues like adipose tissue. Sample A also gets ts-
scores close to zero for the majority of tissues (there are no tissue specific expression levels for a majority of
tissues) but close to -1 for adipose tissue. This -1 is because the expression in adipose tissue for the gene in
question is nearly unique (adipose tissue is very nearly the only tissue only with expression levels above 3800).
Sample B (highlighted in blue) gets a low tm-score for majority of tissues as the expression level of this gene in
the sample does not match the low expression levels observed in the majority of tissues. However, sample B gets
a very high tm-score (close to 1) for adipose tissue as it perfectly matches the expression levels observed in that
tissue. Also, as the expression levels for adipose tissue are tissue specific, sample B gets a very high (near 1) ts-
score for adipose tissue.

Additional file 3: Results of the classification accuracy of the AGEP algorithm across all tissue types. A)
Fraction of the samples from each healthy tissue type, where AGEP correctly defined the a priori known tissue
type in leave-one-out cross validation B) Fraction of samples from each healthy tissue type using external samples
where AGEP correctly classified the exact tissue of origin, where the classification resulted in a biologically relevant
tissues (e.g. match to same organ but on different level of annotation), or a wrong match C) Summary of accuracy
of finding a priori known tissue type as primary match over all 195 tested samples.

Additional file 4: Specificities and sensitivites of AGEP. Specificities and sensitivities of the AGEP method in
identifying each tissue in LOO analysis.

Additional file 5: Results of leave-one-out validation. Results of leave-one-out validation of tissue match
accuracy of entire reference data. Distribution of primary and secondarily matching tissue types as fractions of
samples of each tissue type.

Additional file 6: Results of tissue match accuracy of external samples. For each randomly chosen sample
the primary match is shown as well as classification whether it was perfect match, similar match or incorrect
match. 29 samples were censored from the analysis with due to missing reference tissue or due to ambiguous
original annotation.

Additional file 7: Alignment of Duchenne samples. A) Alignment results of ten duchenne patient samples at
the level of tissues (five best matching tissues are shown) B) Expression profile of ADIPOQ, a known adipose tissue
specific gene, across the reference data and ten duchenne patient samples.

Additional file 8: Differentiation time series results. Results of applying array alignment tool for differentiation
serie of mesenchymal stem cell at the tissue similarity level. Between timepoints of 0 h and 3 h all replicates (A, B
and C) show highest similarity with mesenchymal stem cells and only slight increase in similarity with adipose
tissue. At 9 h time point similarity with mesenchymal stem cells begins to decrease. At 7d timepoint cells no
longer have transcriptomic profile of mesenchymal stem cells and have more increased similarity with adipose
tissue and heart.
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