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Abstract

A central challenge in systems biology and medical genetics is to understand how
interactions among genetic loci contribute to complex phenotypic traits and human
diseases. While most studies have so far relied on statistical modeling and
association testing procedures, machine learning and predictive modeling
approaches are increasingly being applied to mining genotype-phenotype
relationships, also among those associations that do not necessarily meet statistical
significance at the level of individual variants, yet still contributing to the combined
predictive power at the level of variant panels. Network-based analysis of genetic
variants and their interaction partners is another emerging trend by which to explore
how sub-network level features contribute to complex disease processes and related
phenotypes. In this review, we describe the basic concepts and algorithms behind
machine learning-based genetic feature selection approaches, their potential benefits
and limitations in genome-wide setting, and how physical or genetic interaction
networks could be used as a priori information for providing improved predictive
power and mechanistic insights into the disease networks. These developments are
geared toward explaining a part of the missing heritability, and when combined
with individual genomic profiling, such systems medicine approaches may also
provide a principled means for tailoring personalized treatment strategies in the
future.
Introduction
Most disease phenotypes are genetically complex, with contributions from combinations

of genetic variation in different loci. A major challenge of medical genetics is to deter-

mine a set of genetic markers, which when combined together with conventional risk

factors could be used in predicting an individual's susceptibility to developing various

complex disorders. The recent advances and wide availability of genetic technologies,

such as those based on genome-wide association (GWA) and next-generation sequencing

(NGS), have allowed for the in-depth analysis of the variation contained in the human

genome. In particular, these technologies are enabling the investigation of the genetic

architecture of complex diseases, with the aim of constructing more accurate disease risk

prediction models that would eventually facilitate effective approaches to personalized

prevention and treatment alternatives for many diseases [1,2]. While GWA studies have

successfully identified hundreds of genetic variants that are associated with complex
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human diseases and other traits [3-6], most variants identified so far using mainly statis-

tical association testing approaches only capture a small portion of the heritability and

even an aggregate of these effects is often not predictive enough for clinical utility, leaving

open the question of what may explain the remaining or ‘missing heritability’ [7].

Suggested explanations include, for instance, contributions from rare and structural

variants, genotype–environment and gene-gene interactions and sample stratification, or

simply that complex traits truly are affected by thousands of variants of small effect size

[8,9]. The relative contributions of these and other factors remain poorly understood,

which is hindering the development of improved models for disease risk assessment.

Given the multi-factorial nature of complex diseases, many authors have reiterated

the concept of interactions among genetic loci, so-called epistatic interactions, as one

of the major factors contributing to the missing heritability [9,10]. Epistatic genetic

interactions between or within genes are thought to be profoundly important in the de-

velopment of many complex diseases, but these interactions are often beyond the reach

of the conventional single-variant association testing procedures [11-14]. There exist

also increasingly complex interactions between genetic variants and environmental

factors that may contribute to the disease risk on an individualized basis. Consequently,

it has been argued that we should move away from the traditional ’one variant at a

time’ approach toward a more holistic, network-centric approaches, which take into ac-

count the complexity of the genotype-phenotype relationships characterized by mul-

tiple gene-gene and gene-environment interactions [15,16]. Although the conventional

statistical significance testing procedures have successfully identified several susceptibil-

ity loci, it has become clear that many of the true disease associations may be much

lower down on the ranked list of hits, compared to the top hits with the most statistical

support [4,17,18]. Ignoring the potential risk variants in this ‘gray zone’ of genetic infor-

mation is likely to result in models that are missing an important proportion of the

quantitative variation in heritability. Therefore, it may be that most of the heritability is

hidden rather than missing, but has not previously been detected because the individual

effects are too small to pass the stringent significance filters used in many studies, yet

still having significant contribution to the predictive power at the level of variant or

subject subsets, or when combined with non-genetic risk factors.

Here, we discuss how computational machine learning approaches can utilize hidden

interactions among panels of the genetic and other risk factors, predictive of the indi-

vidual disease risk by means of implementing genetic feature selection procedures and

network-guided predictive models. In contrast to the conventional population-level as-

sociation testing, which often detect only a few variants with statistical support beyond

the genome-wide significance level (e.g. p < 10-8), machine learning algorithms place

special emphasis on maximizing the predictive accuracy at the level of individual

subjects. The goal of feature selection is to identify such a panel of genetic and other

risk factors, which result in a model that optimally predicts the phenotypic response

variables, either the class labels in case-control classification (e.g. disease vs. healthy),

or quantitative phenotypes in regression problems (e.g. height prediction). While epi-

static genetic interactions may easily end up being averaged out in statistical association

models, machine learning-based predictive modeling can also take into account those

individual effects that are dependent on interactions with other variants or environ-

mental exposures, making these models convenient for developing predictive strategies
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for multi-factorial diseases. Indeed, it has been shown that single-locus p-value-based

selection strategies for constructing prediction models may lead to sub-optimal predic-

tion accuracies [17]. In another example, hundreds of genetic markers, many of which

did not originally meet the genome-wide level of statistical significance, were combined

into a predictive model of type 1 diabetes risk [18]. Even though diabetes is known to

involve many biological pathways, the large number of variants required may partly be

attributed also to the selection of variants based solely on their individual p-values,

which does not take into account any gene-gene interactions.

While machine learning-based computational approaches may provide a convenient

framework for making use of the whole spectrum of genetic information when

predicting an individual’s risk of developing a disease, these developments are still in

their very early stages. Implementation of highly scalable computational algorithms for

genetic feature selection is a key for making these frameworks effective enough for

mining data from current GWA studies, in which more than a million genetic variants

are assayed in thousands of individuals, not to mention the emerging data from NGS

studies, such as the 1000 Genomes project [19]. Recent improvements in constructing

accurate and scalable machine learning-based predictive models will be discussed in

Section 2. Another pressing problem inherent in every machine learning application is

the challenge of how to evaluate the predictive capability of the constructed models, in

order to avoid stating over-optimistic prediction results [20]. Model validation

approaches are described in Section 3. One approach to reducing the massive search

spaces and computational complexities is to use additional biological information in

the model construction process. There are already several successful examples of how

to make use of physical protein interaction networks when mining data from GWA

studies in the search of, for instance, regulatory models [16], epistatic interactions [21],

or disease genes [22]. In Section 4, we take the next step of network level analysis of

genetic variants and review recent data mining solutions capable of systematically util-

izing functional information from the interaction networks as a priori information

when building disease prediction models. Finally, in Section 5, we will list some current

challenges and possibilities as future directions toward improved understanding of indi-

vidual predisposition to genetically complex diseases such as cancers.
Selection of genetic risk factors for machine learning-based prediction
models
Rather surprisingly, the use of machine learning method in the context of genome-wide

data on genetic variants has yielded a relatively limited number of studies until the very

recent years (for a systematic literature review, see [20]), compared to the large number

of machine learning studies on other types of genomic datasets, especially genome-

wide gene expression profiles. Further, the combination of predictive modeling and

advanced feature selection algorithms have been implemented in an even more

restricted set of studies, even though these have generally yielded quite positive results

[15,23]. Indeed, many studies have demonstrated that the use of feature selection

approaches are capable of improving the prediction results beyond that when the same

model is implemented on features selected solely through prior knowledge of the dis-

ease or on those genetic variants which reach genome-wide statistical significance
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[18,23-25]. However, it is relatively challenging to extract the predictive signal from the

high-dimensional datasets originating from GWA or NGS studies, due to a number of

experimental and computational issues, many of which are different from those faced

when using data from microarray gene expression profiling. Further, in order to

construct accurate and reliable predictive models of complex phenotypes based on

genome-wide profiles of genetic variants, it is essential to have an understanding of

how to identify predictive features both individually and in groups of variant subsets,

and how different feature selection approaches can deal with issues such as epistatic

interactions and high-dimensional datasets [15]. Feature selection methods in machine

learning can broadly be divided into filter, wrapper and embedded methods. This

categorization is not strict, and each of the approaches has its own advantages and

disadvantages which are, in turn, very problem dependent. Next, we briefly describe

each feature selection category and consider some representative examples of each.
Filter methods

Filter methods for genetic feature selection are the most common in GWA studies due

to the simplicity of their implementation, low computational complexity, and the

human interpretability of the results. In their simplest form, filter methods calculate a

univariate test statistic separately for each genetic feature, and the features are then

ranked based on the observed statistic values. The highest ranked features form the

final set of selected features, on which a predictive model may be subsequently trained.

The number of features to be selected is either decided in advance or determined by a

pre-defined significance threshold for the test statistic. Several well-known statistical

tests have been used in GWA studies, including the Fisher’s exact test and Armitage

trend test [26-28], and an increasing number of statistical approaches are being

developed for rare variants and the NGS data [29-31]. Since this feature selection ap-

proach requires only a single pass through the whole data, single-locus filters can be

straightforwardly applied to even the largest genome sequencing datasets. Along with

the multiple testing problem, the primary drawback of the single-locus filter methods is

that they do not take account of the interactions between the features, which may lead

to selection of both false positives, such as redundant loci, and false negatives due to

epistasis interactions between or within loci [12,13,15]. More advanced filter methods

can also select specific risk variant combinations that are associated with a disease risk.

For instance, multifactor dimensionality reduction (MDR) is a non-parametric method

that can detect statistically significant genetic interactions among two or more loci in

the absence of any marginal effects, even in relatively small sample sizes [32]. While

proved to be useful for association testing, however, it has been argued that the

statistics being used to identify variants or their combinations, typically p-values for

disease risk association, are perhaps not the most appropriate means for evaluating the

predictive or clinical value of the genetic profiles [33].
Wrapper methods

Wrapper methods consist of three components: a search algorithm for systematically

traversing through the space of all possible feature subsets, a scoring function for evalu-

ating the predictive accuracy of the feature subsets, and the learning algorithm around
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which the feature selection procedure is wrapped [34]. Since the size of the power set

of the features grows exponentially with the number of genetic variants screened (say

n), testing all the feature subsets (2n) is computationally infeasible (n is on the order of

a million in a typical GWA study and much larger in NGS studies). Therefore, one

must resort in practice to local search methods that do not guarantee finding the opti-

mal subset but, nevertheless, usually lead to good local optima. For example, the greedy

forward selection adds one feature at a time to the set of selected features after

checking which of the remaining features would improve the value of the scoring func-

tion the most. Thus, the whole data set is traversed through once for each selected fea-

ture. To avoid getting trapped in poor local optima during the search in the complex

and high-dimensional genetic landscapes, modified local search strategies can be

utilized, including the backtracking option or several variations of evolutionary

algorithms. The most popular scoring functions used with wrapper methods are the

prediction error on the training set, a separate validation set, or cross-validation error.

The feature selection can be in principle wrapped around any learning method, but it is

beneficial if the method can be efficiently trained or if the already learned model can be

efficiently updated. Indeed, for some learning methods, such as regularized least-squares

(RLS), the search process can be considerably accelerated with computational short-cuts

for scoring function evaluation [23]. These inbuilt short-cuts bring the methods closer to

the next category of the selection methods, namely the embedded ones.
Embedded methods

Embedded methods have the feature selection mechanism built into the training algo-

rithm itself [35], that is, the predictive models they produce tend to depend only on a

subset of the original features. Perhaps the most well-known embedded method is

LASSO (least absolute shrinkage and selection operator), which is also recently being

applied to a larger number of GWA studies [20,25,36-38]. While only a few machine

learning approaches, in fact, allow for scaling-up to the genome-wide level, this has

been made possible in LASSO by the recently developed model training algorithms,

such as those based on the coordinate descent methods, which are computationally

very efficient. The problem setup resembles the wrapper approach in the sense that

there is an objective function for which one performs a stochastic search, such as cyclic

or stochastic coordinate descent, in order to find a global optimum. Basically, the

search algorithm goes through each feature at a time, and updates the corresponding

coefficient in the linear model under construction. The objective function consists of a

scoring metric such as the mean squared error (MSE) on the training data and a

regularization term that favors sparse linear models, that is, it tends to push the search

algorithm towards such models that have only a few nonzero parameters. Typically, co-

ordinate descent passes through the whole data set only a couple of times before con-

vergence, but the number of passes depends on the properties of the data, the desired

sparsity level, and the other possible hyperparameters. Wrappers and embedded

methods are known to have the ability to produce better results than filter methods in

many applications [23,25,39], but if not implemented correctly, they can easily lead to

the models failing to generalize beyond the training data, underscoring the importance

of rigid evaluation of the prediction models.
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The importance of evaluation of the predictive models for complex
phenotypes
One of the main challenges in feature selection is the accurate estimation of the predic-

tion performance of the machine learning models on new samples unseen at the

training phase, especially in settings in which the data is high-dimensional and the

number of labeled training data is relatively small. Given the massive dimensionality of

modern GWAS and NGS studies, it is in fact not very hard to find genetic features that

can almost perfectly fit to a small training set but fail to generalize to unseen data, a

phenomenon known as model overfitting. Therefore, the models learned from genetic

data should always be tested on independent data not used for training the model. In

case the number of labeled data is small, one must resort to cross-validation

techniques that repeatedly split the data into training and test sets, and the predictive

accuracy is reported as an average over the test folds. In many applications of genomic

predictors, there are a number of examples of the so-called selection bias [40], mean-

ing that the cross-validation is used to estimate the performance of the learning algo-

rithm only, but not the preliminary feature selection done on the whole data, therefore

leading to information leak and grossly over-optimistic results. Further, if cross-

validation is used for selecting the hyper-parameters of the learning algorithm or for

feature selection, this needs to be done within an internal cross-validation loop, separ-

ately during each round of an outer cross-validation loop [40-43]. This two-level tech-

nique is sometimes referred to as the nested cross-validation [42,44]. An example

demonstrating the behavior of a cross-validation error when it is used as a selection cri-

terion with greedy forward selection is presented in Figure 1. The error curve that con-

stantly decreases as a function of the number of selected features clearly indicates that

the cross-validation becomes a part of the training algorithm itself in the inner loop,

and therefore it cannot be trusted as a measure of true prediction performance for

unseen data.

The evaluation of the predictive power is important also when considering predictive

models constructed on the basis on statistical significant variants. For instance, there

are numerous observations showing that the increases in the proportion of variance

explained by significant variants does not go hand in hand with improved genetic pre-

diction of disease risk. For instance, when using statistical modeling on the single

training sample only, a panel of thousands of non-significant variants collectively could

capture over one-third of the heritability for schizophrenia, but the same panel only

explained a few percent of disease susceptibility in another replication cohort [8]. Simi-

larly, while the statistical explanation power of the genetic variation in human height

could be substantially increased by considering increasing number of common variants

in a single population sample [45], the proportion of variance accounted for in other

independent samples was much smaller [46]. These examples underscore the import-

ance of rigid validation of the predictive accuracy of the models based on genetic

profiles. While external cross-validation is a valid option, it is not free of any study-

specific factors. For example, if there is a problem during the genotyping phase, it will

appear also in any training and test data splits. These errors, stemming from problems

during the experimental design and/or quality control have led for the need to re-

evaluate the established methods and use caution when claiming replication [47]. The

recommended option for truly validating the generalizability of predictive risk models



Figure 1 The figure illustrates how the external and internal cross-validation results behave as
functions of the number of selected features. The external-cross validation consists of three training/test
splits. The wrapper-based feature selection method, greedy RLS [23], is separately run during each round of
the external cross-validation. Greedy RLS, in turn, employs an internal leave-one-out cross-validation on the
training set for scoring the feature set candidates. The red curve depicts the mean values over these
internal cross-validation errors. As can be easily observed from the blue curve, this internal cross-validation
MSE used for the model training keeps constantly improving, which is expected, because the internal cross-
validation quickly overfits to the training data when it is used as a selection measure. The blue curve
depicts the area under curve (AUC) on the test data, held out during the external cross-validation round,
that is, data completely unseen during the internal cross-validation and feature selection process. In
contrast to the red curve, the blue curve starts to level off soon after the number of selected variants
reaches around 10, indicating that adding extra features is not beneficial anymore even if the internal
scoring function keeps improving. The green curve depicts the AUC of the RLS model trained using
features selected by single-locus p-value based filter method, Fisher’s exact test, which is run with the same
external training/test split as the greedy selection method. Similarly to the blue curve, the green one also
stops improving soon after a relatively small set of features has been selected. The data used in the
experiments is the Wellcome Trust Case Controls Consortium (WTCCC) Hypertension dataset combined
with the UK National Blood Services’ controls.
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is to make use of a large enough set of independent samples in which there is no over-

lap between the examined cohorts [48]. However, here one should consider whether

the aim is to validate the predictive model itself (e.g. using external cross-validation or

independent validation samples), or the predictive variants selected by the model (repli-

cation of the model construction or its application to separate cohorts) [49].

Through the development of better model validation techniques and unbiased exam-

ination of all feature subsets in genome-wide scale, we are likely to continuously im-

prove the accuracy of the predictive models and increase their reproducibility on

independent population samples. A challenge here is that differences in the population

genetic structure, attributable to confounding factors such as the ethnicity or ancestry

of the subjects, may result in highly heterogeneous datasets with a number of hidden

subject sub-groups, which may associate with divergent disease phenotypes and

therefore cause an increased false-positive rates [50]. Related to this, while there are

comparisons among various feature selection methods and predictive modeling

frameworks on individual cohorts [23,24,27], there is not yet any definitive results

whether one method will universally lead to optimal results in other subject cohorts or

populations. Such confounding variability should also be taken into account in the

model construction and evaluation, perhaps in some form of population stratified

cross-validation. Failure to replicate a genetic association should not only be considered

as a negative result, as it may also provide important clues about genetic architecture

among study populations or genetic interactions among risk variants [51]. When
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epistasis interactions are involved, then it is likely that simple methods, such as single-

locus filters, will not alone be able to provide most optimal results, while in extremely

large datasets, wrapper methods may pose computational limitations if combined with

complex prediction models. Finally, even though the improvements obtained by the

machine learning wrappers, compared to those from the traditional p-value based

filters, may seem quite modest (e.g. Figure 1), it may turn out that even slight

improvements in the predictive accuracy can result in significant clinical benefits.

Moreover, it is argued that the modest predictive improvements may be further

aggregated through pathway and network-level analyses of the selected variants.
Molecular networks as a prior information for constructing predictive models
Even in the absence of significant single-locus marginal effects, multiple genetic loci

from a number of molecular pathways may act synergistically and lead to disease

phenotype when combined. Therefore, it has become popular to map the genetic loci

identified in GWA or NGS studies to established biological pathways in order to eluci-

date the potential cellular mechanisms behind the observed genetic and phenotypic

variation. There exist a wide variety of tools and guidelines on how to implement such

pathway analyses in the context of genetic association studies [52-56]. Building on

approaches originally developed in the context of microarray gene expression

experiments, the common theme in the pathway analysis approaches is that they exam-

ine whether a group of related loci in the same biological pathway are jointly associated

with a trait of interest. In line with the observations in microarray gene expression

studies, it has been shown that in those cases where there is only a modest overlap in

the variant or gene-level findings between different studies, due to factors such as

differences in the genetic structure, the pathway-level associations may be much more

reproducible even between different study populations [57-60]. These findings support

the concept that individuals with the same disease phenotype may have marked inter-

individual genetic heterogeneity in the sense that their disease predisposing variants

may lie in distinct loci within the same or related pathways [14]. Machine learning-

based predictive models constructed upon gene expression profiling have already

shown the benefits of using pathway activities as features in terms of improved classifi-

cation accuracy, compared to those models that consider merely individual gene ex-

pression levels [61]. It has also been demonstrated in the context of GWA datasets that

pathway analysis can provide not only mechanistic insights but also improved discrim-

ination power using tailored statistical data mining techniques, such as HyperLasso

[62] or so-called pathways of distinction analysis (PoDA) [63].

A limitation of constructing predictive models for a disease merely on the basis of

established pathways is that these models may become biased toward already known

biological processes, thereby potentially missing novel yet causal mechanisms predictive

of the disease risk [64]. It may also not be so straightforward to infer the set of

pathways that should be included in the model building process, in the absence of any

a priori knowledge. Perhaps more importantly, statistical analysis of separate biological

pathways or distinct gene sets undermines the effect of pathway cross-talk behind dis-

ease development, in which multiple genetic variants from distinct molecular pathways

show synergistic contribution to the disease phenotype. In practice, the regulatory
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relationships behind many phenotypes are determined by complex and highly

interconnected networks of physical and functional interplay between a multitude of

pathway components [16]. As an example, we constructed a network representation for

variants predictive of type 1 diabetes risk, which illustrate a selected portion of the

number of pathways and their relationships that may be predictive of the disease onset

(Figure 2). Given such high degree of interconnectivity, not only between the genetic

variants but also among the implicated pathways, it is not surprising that the first ma-

chine learning frameworks for explicitly accounting epistatic gene-gene interactions

have focused mostly on measures from information theory, such as those based on

additive models, information gain, conditional entropy, or mutual information

[24,65-67]. These models treat pairwise genetic interactions in a way that closely

resembles the classic definition of epistasis, involving single and double-deletion

experiments in model organisms [68]. However, even if allowing computationally effi-

cient exploration of genetic interactions, a posteriori detection and heuristic search

schemes cannot guarantee that the detected pairs of genetic risk factors will eventually

be the most essential ones for the improved predictive power among all the possible

variant combinations.

Toward more systematic network-centric analysis of genetic variants on a genome-

wide scale, molecular interaction networks can be used as a priori information in the

predictive models, in the form e.g. filters or integrators, with the aim of either reducing
Figure 2 Sample network visualization constructed for type 1 diabetes. The risk variants were selected
using the greedy RLS on the WTCCC type 1 diabetes GWAS data and the UK National Blood Services’
controls, extended with those genes selected in another work [62]. The biological processes and pathways
were then mapped using DAVID [112,113], and the network visualization was done with the Enrichment
Map plugin for Cytoscape [114,115]. The nodes represent pathways and the edges are the amount of
overlap between the members of the pathways. The visualized network represents a selected sub-network
of complex interconnections and cross-talks between a number of pathways, including MHC-related
processes and other biological pathways associated with diabetes phenotypes. The pathways were
identified initially using DAVID, with the criteria that they demonstrate enrichment when compared to the
genome-wide background. The retrieved pathways were subsequently filtered in Cytoscape through the
Enrichment Map plugin using the false-discovery rate and overlap coefficient to filter out
non-significant pathways.
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the massive size of the search space in the variant selection process or boosting the

signal-to-noise ratio through external knowledge incorporated in terms of physical or

functional molecular networks [69,70]. Network graphs provide a convenient mathem-

atical framework for modeling, integrating and mining high-dimensional genomic

datasets, in which to present the relationships among genetic loci, genes and diseases

[64,69-72]. Successful examples of combining individual-level gene expression

measurements with background networks of physical interactions between proteins

and transcription factor targets have demonstrated that it is possible to identify and

make use of disease-specific sub-networks, so-called modules, in order to reduce both

the number of false positives and negatives, caused by factors such as technical vari-

ability and genetic heterogeneity, respectively, as well as to improve individual-level

prediction of clinical outcomes, such as cancer metastasis or survival time [64,73-75].

There are also studies in the context of GWA datasets, which motivate the use of net-

work connectivity structures, such as sub-network modules or highly-connected net-

work hubs [22,64,76-78], as aggregate features in the disease prediction models.

However, what has been largely missing is a systematic approach that could combine

network topology as a priori information when constructing predictive models. Re-

cently, a particularly interesting approach was introduced as a principled method that

uses genetic algorithms guided by the structure of a given gene interaction network to

discover small groups of connected variants, which are jointly associated with a disease

outcome on a genome-wide scale [79]. Combined with more efficient, wrapper-type of

search algorithms, such network-guides feature selection approaches could be scaled-

up in the future to enable extracting also larger sub-networks with improved predict-

ive capability.
Future directions: lessons from model organisms and individualized medicine
Given the rather modest progress made so far in pursuing the expensive and subopti-

mal route of current drug discovery, there has been much interest lately in moving to-

wards personalized medicine strategies [80,81]. Another major paradigm shift in

disease treatment is moving away from the traditional 'one target, one drug' strategy to-

wards the so-called network pharmacology, a novel paradigm which provides more

global understanding of the mechanisms behind disease processed and drug action by

considering drug targets in their context of biological networks and pathways [82].

These emerging paradigms can offer holistic information on disease networks and drug

responses, with the aim of identifying more effective drug targets and their

combinations tailored for individualized treatment strategies. A prime challenge in

developing such strategies is to understand how genes function as interaction networks

to carry out and regulate cellular processes, and how perturbations in these cellular

networks cause certain phenotypes, such as human diseases, in some individuals, but

not in the others. There has been active research in model organisms addressing the

question why disease causing mutations do not cause the disease in all individuals [14].

Recent studies in yeast Saccharomyces cerevisiae, worm Caenorhabditis elegans, and fly

Drosophila melanogaster have demonstrated the importance of incorporating functional

genetic interaction partners of the mutated genes in the prediction of phenotypic vari-

ation and mutational outcomes at an individual level [83-85]. Pilot studies in human
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trials have also suggested that personal genomic approaches, such as those based on

GWA or NGS studies, may indeed yield useful and clinically relevant information for

individual patients [1,2]. However, a number of experimental, modeling and computa-

tional challenges have to be solved before the promises of personalized medicine can

be translated into routine clinical practice [5,81,86].

From the experimental point of view, the whole-genome sequencing efforts will en-

able us to delve deeper into the individual genomes by elucidating the role of low-

frequency variants in the genetic architecture of complex diseases. The sequencing

efforts, such as the 1000 Genomes project [10], are also being used to subsequently ex-

tend the coverage of the existing GWA datasets by means of imputation methods and

population-specific reference haplotypes [87,88]. However, while the emerging shift

from population-level common variants toward individual-level rare or even personal

variants holds great promise for medical research, it also represents with unique model-

ing challenges; in particular, the traditional statistical modeling frameworks that were

developed under settings where the number of study samples greatly exceeds the num-

ber of study variables may not to be ideally suited for the personalized medicine

settings, in which the individuals and disease subtypes are stratified into increasingly

smaller subgroups [89]. Although machine learning methods are better targeted at

individual-level prediction making, the feature selection methods would also benefit

from more stratified options, for instance, in terms of enabling phenotype-specific gen-

etic features, rather than assuming that all subjects share the same panel of predictive

genotypes. Also, since the binary disease outcomes, typically in the form of case or con-

trol dichotomy, may not provide the most reliable study phenotypes, the predictive

modeling frameworks might become more successful for predicting quantitative pheno-

typic traits [90-92]. This also raises related modeling questions, such as how to encode

imputed variants (e.g. expected or most likely genotype), how to treat missing data (ex-

clude or impute), or how to model the variants and their interactions (multiplicative,

additive, recessive or dominant models) [90-94]; these all may have an important effect

on the prediction performance, especially in the presence of epistatic interactions at an

individual level.

From the computational perspective, the ever increasing sizes of the raw NGS and

imputed GWA datasets pose great challenges to the computational algorithms. For in-

stance, while systematic genetic mappings in model organisms have revealed wide-

spread genetic interactions within individual species [85,95-97], epistasis interactions

have remained extremely difficult to identify on a global scale in human populations.

This can be attributed to the vast number of potential interaction partners, along with

complex genotype-phenotype relationships and their individual-level differences.

Improvements in computational performance have recently been obtained through ef-

fective usage of computer hardware, for instance, through graphics processing units,

Cloud-based computing environments, or multithread parallelization, when exploring

genetic variants or their interactions in GWA studies [98-101]. Furthermore, since the

memory consumption in the high-dimensional NGS applications can form even a

tighter bottleneck than the running time, there is also a need to develop space-efficient

implementations, which trade running time for decreased memory consumption [23].

Lessons from model organisms, such as yeast, have also demonstrated that data inte-

gration between complementary screening approaches, either functional or physical
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assays, can reveal novel genetic interactions and their modular organization which have

gone undetected by any of the individual approaches alone [95,96,102]. Also, integrating

diverse phenotypic readouts facilitates genetic interaction screens [103], and Bayesian

models have been shown especially useful for making use of multiple traits, gene-gene or

gene-environment interactions in disease risk prediction [104]. Finally, visualization

algorithms that can capture the hierarchical modularity of the physical and functional

interaction networks may help reveal interesting biological patterns and relationships

within the data, such as pathway components and biological processes, which can be fur-

ther investigated by follow-up computational and/or experimental analyses [105].

Better understanding of the general design principles underlying genetic interaction

networks in model organisms can provide important insights into the relationships be-

tween genotype and phenotype, toward better understanding and treating also complex

human diseases, such as cancers. Cancer phenotypes are known to arise and develop

from various genetic alterations, and therefore the same therapy often results in differ-

ent treatment responses. Moreover, the underlying genetic heterogeneity results in

alterations within multiple molecular pathways, which lead to various cancer phenotypes

and make most tumors resistant to single agents. Cancer sequencing efforts, such as The

Cancer Genome Atlas (TCGA), are systematically characterizing the structural basis of

cancer, by identifying the genomic mutations associated with each cancer type. These

efforts have revealed tremendous inter-individual mutational and phenotypic heterogen-

eity, which renders it difficult to translate the genetic information into clinically actionable

individualized treatment strategies [106-108]. Therefore, integrating the structural gen-

omic information with systematic functional assessment of genes for their contribution to

genetic dependencies and cancer vulnerabilities, such as oncogenic addictions or synthetic

lethalities [109,110], is likely needed for providing more comprehensive insight into the

molecular mechanisms and pathways behind specific cancer types and for improving their

prevention, diagnosis and treatment [106,111]. Machine learning-based predictive model-

ing approaches are well-powered to make the most of the exciting functional and genetic

screens toward revealing hidden genetic variants and their interactions behind cancer and

other complex phenotypes. When combined with network analyses, these integrated

systems medicine approaches may offer the possibility to identify key players and their

relationships responsible for multi-factorial behavior in disease networks, with many diag-

nostic, prognostic and pharmaceutical applications.
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