
BioMed CentralBMC Bioinformatics

ss

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto
Open AcceMethodology article
Generation of Gene Ontology benchmark datasets with various
types of positive signal
Petri Törönen*1, Petri Pehkonen3 and Liisa Holm1,2

Address: 1The Holm Group, Biocenter II, Institute of Biotechnology, PO Box 56, 00014 University of Helsinki, Finland, 2Department of Biological
and Environmental Sciences, P.O. Box 56, 00014 University of Helsinki, Finland and 3Department of Biosciences, P.O. Box 1627, 70211
University of Kuopio, Finland

Email: Petri Törönen* - petri.toronen@helsinki.fi; Petri Pehkonen - petri.pehkonen@uku.fi; Liisa Holm - liisa.holm@helsinki.fi

* Corresponding author

Abstract
Background: The analysis of over-represented functional classes in a list of genes is one of the
most essential bioinformatics research topics. Typical examples of such lists are the differentially
expressed genes from transcriptional analysis which need to be linked to functional information
represented in the Gene Ontology (GO). Despite the importance of this procedure, there is a little
work on consistent evaluation of various GO analysis methods. Especially, there is no literature on
creating benchmark datasets for GO analysis tools.

Results: We propose a methodology for the evaluation of GO analysis tools, which consists of
creating gene lists with a selected signal level and a selected number of independent over-
represented classes. The methodology starts with a real life GO data matrix, and therefore the
generated datasets have similar features to real positive datasets. The user can select the signal level
for over-representation, the number of independent positive classes in the dataset, and the size of
the final gene list. We present the use of the effective number and various normalizations while
embedding the signal to a selected class or classes and the use of binary correlation to ensure that
the selected signal classes are independent with each other. The usefulness of generated datasets
is demonstrated by comparing different GO class ranking and GO clustering methods.

Conclusion: The presented methods aid the development and evaluation of GO analysis methods
as they enable thorough testing with different signal types and different signal levels. As an example,
our comparisons reveal clear differences between compared GO clustering and GO de-correlation
methods. The implementation is coded in Matlab and is freely available at the dedicated website
http://ekhidna.biocenter.helsinki.fi/users/petri/public/POSGODA/POSGODA.html.

Background
The increasing usage of high-throughput methods is
changing the biosciences. The analysis of the resulting
data often generates a list of genes that fulfil certain selec-
tion criteria. Such a list can be, for example, a cluster of co-
expressed genes, genes up-regulated in disease samples or
genes representing a similar phenotype in a knock-out

experiment. The resulting gene lists are often too large for
direct manual analysis, and they regularly contain many
false positive genes. Therefore, it is standard practice to
use large scale functional classifications, like Gene Ontol-
ogy (GO [1]) or MIPS funcat [2], to aid the analysis. These
functional classifications in combination with statistical
analysis methods enable the filtering of occasional false-

Published: 7 October 2009

BMC Bioinformatics 2009, 10:319 doi:10.1186/1471-2105-10-319

Received: 10 December 2008
Accepted: 7 October 2009

This article is available from: http://www.biomedcentral.com/1471-2105/10/319

© 2009 Törönen et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 14
(page number not for citation purposes)

https://core.ac.uk/display/43337029?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.biomedcentral.com/1471-2105/10/319
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19811632
http://ekhidna.biocenter.helsinki.fi/users/petri/public/POSGODA/POSGODA.html
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2009, 10:319 http://www.biomedcentral.com/1471-2105/10/319
positive genes, emphasize over-represented functional
classes and generally facilitate the analysis (see, for exam-
ple, [3-7]). This has taken the analysis of biological func-
tion from the single gene level to the more informative
biological process level. Functional classes can also be
used to select the optimal set of clusters [5], to find heter-
ogeneity in the expression of functional groups [8], to
evaluate clustering results [9], to analyze differential gene
expression at the gene class levels [10], as an input data for
the prediction of interacting genes [11], or to analyze the
functional heterogeneity of the genes in the reported gene
list [12]. Indeed, the field has seen an explosion of meth-
ods, which aim to report the most important functional
features for a group of genes or proteins [7].

Despite its significant benefits, the standard enrichment
analysis of functional classes has still some notable
unsolved problems. Good quality annotation is one of the
most critical requirements for class data analysis. This
quality can be weakened by the lack of information or
disinformation in the class annotations for the analyzed
organism [7]. The functional class analysis also requires
gene ID mapping. This is often a nontrivial task as there
are frequently ID matching and conversion problems
(referred also as Name-Space mapping between different
databases [7]). The ID matching and conversion problems
again increase the disinformation in the used annota-
tions. One further challenge in the analysis of the over-
represented functional classes is the existence of multiple
biologically very similar GO classes. These are caused by
the strong correlations between the analyzed functional
classes. The repetitive occurrence of similar classes related
to the same biological theme often masks other weaker
but biologically equally relevant themes from the end user
[12,13]. Further problems in the analysis with functional
classes include the selection of a suitable null hypothesis
[14], sharp binarization of continuous data for over-rep-
resentation analysis [6] and others [15]. However, these
are considered to be outside the scope of this manuscript.

The wealth of available GO analysis methods and the
analysis related problems raise the need for detailed eval-
uation of the available GO analysis tools. Indeed, publica-
tions simply often report findings from some real-life
datasets, by the promoted method. However, this does
not unambiguously quantify the performance of the com-
pared methods. Such quantification would require that
we would clearly define positive and negative features and
test methods on how well they can be separated.

There are two potential ways for a detailed evaluation of
GO analysis. One can do the analysis using various very
well known datasets, and test whether the obtained results
correspond with earlier knowledge. The drawback of this
method is that currently there are, to our knowledge, no
datasets available, where all the reported functional

classes could be classified clearly as either true or false
positive. This makes it hard to quantify the performance
of compared methods with real data. Furthermore, this
method does not allow repetitive testing with a large
number of positive and negative datasets. Another option
would be to generate a large set of artificial datasets with
both positive and random signal and to see how well the
analysed method separates them. Although the genera-
tion of negative signal can be a simple random sampling
from the gene pool, the generation of a positive test signal
has not been clearly discussed in the literature.

In order to aid the comparison of various methods, the
current work proposes a novel methodology for creating
benchmark GO datasets with known over-represented
(i.e. signal) classes. POSGODA (POSitive artificial GO
DAta generator) takes as an input a large set of genes with
GO classifications. This set can be, for example, all known
genes in the analyzed genome or all the genes from a pop-
ular gene expression chip. Datasets can be created with
varying size of gene lists, with varying level of over-repre-
sentation signal and with varying number of independent
signal classes. To compensate the larger overall signal,
which automatically arises from the larger number of
independent signal classes, POSGODA allows the choice
between a number of methods for normalizing the overall
signal. Note that by starting with a real classification, the
generated datasets will represent all the features present in
the real data, such as class correlation and hierarchical
class structure. An earlier work [16] used the term plasmode
dataset to separate similar gene expression datasets from
purely artificial datasets.

The inputs for POSGODA are the signal range of p-values,
the size of the output gene list, and the number of inde-
pendent signal classes. Its outputs include a list of inde-
pendent GO terms, selected as positive, a gene list which
shows signals in the selected classes, and the p-value sig-
nal embedded in the GO class. POSGODA takes the input
signal range of p-values and, if required, adjusts them
using the number of signal classes. Next, it selects the
independent signal classes from the randomly ordered
GO class list. These independent classes are tested, one at
the time, looking for the class over-representation level
that is closest to the selected signal level. If the resulting
signal from the class deviates too much from the desired
signal level, the search is redone a few times with the same
class, before moving to the next class in the class list. This
is repeated until the desired number of signal classes is
reached. Once the signal classes have been defined, POS-
GODA creates the gene list, with the required number of
members from each signal class. If this resulting gene list
is smaller than the desired gene list size, POSGODA adds
randomly selected false positive genes to obtain the
required size.
Page 2 of 14
(page number not for citation purposes)

BMC Bioinformatics 2009, 10:319 http://www.biomedcentral.com/1471-2105/10/319
Related work has been presented before [13]. However,
there are major differences. i) POSGODA defines the
added number of class members based on the resulting
hypergeometric p-value, which has to be within the signal
range given by the user. Earlier works defined this as raw
percentage of class size, which will generate different sig-
nal levels for different size of classes and gene list. ii) POS-
GODA controls the potential correlations between the
classes that yield a positive signal and furthermore the
potential correlation between GO terms via a third inter-
mediate class. These limitations ensure that we generate
two separate signals instead of multiplying the same sig-
nal twice, and thus generating a single stronger signal. iii)
POSGODA includes various methods that can be used to
scale the signal, when embedding it to a larger number of
signal classes. Here, the scaling helps the positive signals
to stand out from the large pool of random signals. How-
ever, it should noted that POSGODA can be used also
without the signal scaling.

We hope that POSGODA will improve GO analysis espe-
cially by allowing the repetitive testing of tools on artifi-
cial datasets. These enable the evaluation using statistical
methods, like the Receiver-Operating Characteristics
(ROC) curve or T-test to quantify the separation between
positive and negative features or datasets. Furthermore,
the analysis can be repeated with different signal parame-
ters, to see areas of optimal performance for various meth-
ods. In addition, we highlight specific topics in which
POSGODA can be used:

• The generated datasets can be used to test the existing
or novel methods that filter correlations from GO
structure [12,13,17]. This shows how well they are
able to report positive GO classes or GO classes that
are strongly linked to positive GO classes.

• The generated datasets can be used to test GO data
clustering methods [12,18], as genes belonging to dif-
ferent positive classes are expected to represent sepa-
rate clusters or cores for clusters. Datasets can be used
also to test clustering of GO classes.

• Evaluating how well asymptotic methods (Chi
square, log likelihood etc.) approximate the hypergeo-
metric test.

• Testing and evaluating methods and their parame-
ters during method development.

It is also relevant to notice that there are two issues that
POSGODA cannot evaluate. These are the correctness of
the input GO data matrix, and the testing of enrichment
scoring functions that are potentially better than the
hypergeometric p-value.

We demonstrate the usefulness of POSGODA by generat-
ing a large pool of datasets with positive signals for testing
various GO analysis tools. The main emphasis in our
comparison is on the evaluation of various methods that
filter correlation from the GO structure. Our results show
significant variation between methods in their ability to
emphasise the independent over-represented GO classes.

Results
Due to the nature of the current work, the results section
first shows some of the features of the positive datasets
generated by the methodology. We briefly describe the
workflow of POSGODA, as a part of the results. The
details on each step are given in the Materials and Meth-
ods. Further details are given in supplementary text. We
also demonstrate the usage of the generated datasets in
two comparisons. The methods, some of the results from
the performed comparisons and demo datasets are availa-
ble from our web site http://ekhidna.biocenter.helsinki.fi/
users/petri/public/POSGODA/POSGODA.html.

Complete method workflow
POSGODA requires from the user a binary GO matrix
(genes in rows, classes in columns), where one denotes
the membership of the gene in the specific class. With this
real GO dataset we make sure that our data has the type of
structure that actual biological datasets also have. POS-
GODA also requires the user to calculate the Nclass * Nclass
correlation matrix that represents the correlation of the
GO classes, and an estimate for effective number, Neff
[19,20]. Nclass refers here to the exact number of classes,
whereas Neff refers to the estimated actual number of inde-
pendent classes (see materials and methods for details).
The correlation matrix is used to evaluate the independ-
ence of the signal classes and Neff is used to scale the signal
levels. A standard matrix rank function is used for the esti-
mation of Neff throughout the current work.

The user is required to input the minimum and maximum
p-values, which define the signal range; the size of the
reported gene list; the number of signal classes; and the
method for normalizing the signal with multiple classes.
Here normalization refers to inverse function for selected
multiple testing correction.

The first steps of POSGODA are shown in figure 1. A more
detailed description in pseudocode is given in the supple-
mentary text S1 [see additional file 1]. POSGODA starts
by normalizing the minimum and maximum p-values,
given by the user (step 1. in figure 1.). The normalization
depend on the effective number and the selected signal
normalization method. Then POSGODA selects suitable
functional classes by looking at the randomly ordered
classes, and excluding classes that have unwanted correla-
tion with classes already included in the class list (steps 2.
Page 3 of 14
(page number not for citation purposes)

http://ekhidna.biocenter.helsinki.fi/users/petri/public/POSGODA/POSGODA.html
http://ekhidna.biocenter.helsinki.fi/users/petri/public/POSGODA/POSGODA.html

BMC Bioinformatics 2009, 10:319 http://www.biomedcentral.com/1471-2105/10/319

Page 4 of 14
(page number not for citation purposes)

Flow chart representation of the first steps of POSGODAFigure 1
Flow chart representation of the first steps of POSGODA. A simplified representation of the flow chart of the function
used to select independent classes, to define the multiple testing corrected p-value signal levels, and to define the class out-
come closest to the signal level. Input parameters and data are represented with light blue, intermediate steps are represented
with green and end states are represented with gray. Steps associated with numbers are explained in the text. For more
detailed un-simplified representation see the supplementary text.

required p-value signal range

number of signal classes

Selection of correction method
for multiple testing

Calculation of
M*M GO class
correlation matrix

N*M binary
GO data matrix

Estimation of
effective number

Scaling of p-values
with selected method
and effective number

Select a GO class
from the generated
list of classes

Look for the class outcome
that is closest to
the selected p-value

select class and
the class outcome

Sample a p-value
from the selected
range of p-values

Filter out the GO classes
that correlate with classes
earlier in the list

Randomize the order of
GO classes in data.
Clear the reported class list

Is the error
to signal range
small enough?

retry with
same class?

is there any
classes left in
the class list?

Has this step
been visited
too many times

Is the number
of signal classes
obtained?

NO

YES

YES

YES

YES

YES

NO

NO

NO

Program ends
with error

Program ends

NO

Input data

Input parameters

1. 2.

5.
3.

6.

7. 8.

4.

BMC Bioinformatics 2009, 10:319 http://www.biomedcentral.com/1471-2105/10/319
and 3. in figure 1.). The resulting GO class list will be then
used as an input to step 4. A target signal level is randomly
selected between the minimum and maximum p-values
(step 5. in figure 1.) After this, POSGODA tests whether it
is possible to obtain a close enough signal with the
selected class (steps 6. and 7.). This might not be possible
with classes having very few members or classes that
include practically all the genes. If the search fails, new sig-
nals, sampled from the signal range, are tested with the
same class a few times (the yes return from the step 8. to
step 5.), before moving to the next class in the class list
(the return to step 4.). This algorithm reports the required
number of genes from one class for the suitable signal
level. If the desired number of signal classes cannot be
found, the class list is re-sampled and the whole search
process is started again (the return to step 2.). As different
classes have a different number of correlating classes, the
order in which the classes are selected in the random proc-
ess affects the number of available independent GO
classes. However, in most of our tests, the first or second
random list of classes generated adequate results.

The final steps of the workflow are shown in figure 2.
These steps select the actual genes to the generated gene
list. Here, the required number of genes is selected from
the class members to the gene list. Selection favours genes
that are not members of any other signal class. This avoids
the addition of extra members to other signal classes,
while selecting members for one class. Finally, the size of
the resulting gene list has to be controlled. Too small a
gene list is corrected by adding genes that do not belong
to any of the selected signal classes (false positive genes)
to the gene list. Too large a gene list is corrected by redoing
the whole search process.

As an output, the method reports the binary vector for
genes represented by the GO matrix, having one for the
genes that were selected to the gene list. Also a list of col-
umn numbers for the classes having the positive signal is
reported. Furthermore, our supplementary functions can
be used to print the corresponding gene names or positive
class names to text files. The whole program is coded in
Matlab (Mathworks inc.). The purpose of using a script
language is that other method developers could easily cre-
ate scripts for repetitive testing of various methods and
also to allow easy modification of the generated method.

Signal level evaluation
Throughout the first analysis steps we use GO data for a
subset of the yeast genome (regulated genes selected in
[5]) with all the three subsets of GO (July 2005). We use
a gene list (cluster) size of 300 genes and matrix rank to
estimate Neff. We also calculated the binary correlations
for this test dataset. The dataset, the calculated correla-
tions and Neff estimates are available in the supplementary
web page. Note that the results should not be affected by

the selection of different species, selecting various subsets
of the genome pool or using only one subset of GO or
even a totally different hierarchical classification dataset.

First, we wanted to know if we are able to create the correct
signal level for the selected signal classes, when we scale
the signal using the selected p-value combination meth-
ods. To confirm this, we produced 200 datasets with i) 5
or 10 signal classes ii) using FDR or Holm's method for
signal normalization iii) with p-value signal ranging from
0.01 to 0.05. The process creates altogether 2000 signal
classes for evaluation, when 10 signal classes was used
and 1000 classes when 5 signal classes was used. Table 1
summarizes the results for each dataset. What we hope to
see is that when we reverse the signal normalization, we
would have p-values in the aimed signal range. Table 1
shows the selected percentiles from each dataset for p-val-
ues calculated for signal GO classes with and without the
signal normalization.

The results show that 90% of the data fall within the
aimed 0.01 - 0.05 signal range. Furthermore, the devia-
tions from this signal range are quite small. The deviations
are approximately 10% from the aimed signal level, which
should not disturb the analysis based on these datasets.
Note that we are bound to have some error as we are try-
ing to match a discrete variable (the number of class mem-
bers in a cluster) with a continuous signal level. Therefore
POSGODA has been designed to allow a small error from
signal range.

Signals obtained from one example dataset
The signal that is obtained from the data is illustrated in
detail with the top-scoring GO classes for one of the data-
sets in table 2. Data was produced with FDR normalized
signal levels and with five signal classes. The required sig-
nal level was set to [0.01-0.05]. Table 2 shows the reported
classes. What can be seen immediately is that embedding
a signal in one class usually causes a similar signal also in
other similar classes. These classes show strong correlation
with the original signal class. The repetitive occurence of
GO classes representing very similar functions is often
also noticed in the real datasets [12]. These results confirm
the benefits of filtering correlating classes, as many of the
strongly correlating classes represent practically the same
signal. Without the filtering, one could have selected
repetitively these almost identical classes as signal classes,
resulting in the multiplication of the same signal. Further-
more, one can see that the number of classes with strong
correlations varies significantly. For example, we see four
classes having correlation stronger than 0.9, and addition-
ally three classes having correlation stronger than 0.8 with
class 'RNA ligase activity', whereas the class 'response to
inorganic substance' has not got any correlations with
other classes in the result list. Table 2 also demonstrates
that the selected signal classes do not correlate with each
Page 5 of 14
(page number not for citation purposes)

BMC Bioinformatics 2009, 10:319 http://www.biomedcentral.com/1471-2105/10/319

Page 6 of 14
(page number not for citation purposes)

Flow chart representation of the last steps of POSGODAFigure 2
Flow chart representation of the last steps of POSGODA. A simplified representation of the flow chart of the function
used to map genes to the generated gene list. Colouring is similar to fig. 1. The detailed representation is in the supplementary
text.

selected positive GO classes

required class outcome
for each GO class

Required gene set size

Order the genes so
that the ones with
smallest sum are first

Select the genes that
belong to th signal classi

Randomize the order of
genes in the dataset.

Is there any
remaining
positive classes

YES

NO

Input data

Input data from the earlier function

N*M binary
GO data matrix

Calculate a sum of GO
data matrix for each gene
over the other selected
signal classes

Program ends

Add genes that do not
belong to any of the
positive classes to obtain
the required gene set size

Select K top genes
as positive

BMC Bioinformatics 2009, 10:319 http://www.biomedcentral.com/1471-2105/10/319

Page 7 of 14
(page number not for citation purposes)

Table 1: Evaluation of embedded signal levels with two signal normalizations

selected percentiles
M.T. meth. Signal

Classes
0 5 25 50 75 95 100

Holm 5 uncorr. 2.54E-05 2.01E-05 1.59E-05 9.99E-06 5.8E-06 4.73E-06 4.26E-06
Holm 10 corrected 0.0556 0.044 0.0348 0.0219 0.0127 0.0104 0.0093
Holm 5 uncorr. 2.54E-05 2E-05 1.58E-05 9.99E-06 5.58E-06 4.73E-06 4.18E-06
Holm 10 corrected 0.0555 0.0437 0.0346 0.0218 0.0122 0.0103 0.0091
FDR 5 uncorr. 0.000124 0.000107 8.69E-05 5.38E-05 4.04E-05 2.75E-05 0.000021
FDR 10 corrected 0.054 0.0481 0.044 0.0281 0.0191 0.0114 0.0093
FDR 5 uncorr. 0.000246 0.000219 0.0002 0.000128 8.69E-05 0.000052 4.23E-05
FDR 10 corrected 0.0547 0.0468 0.0382 0.0236 0.0177 0.0121 0.0092

Table shows the summary of results with reported percentiles. Signal generation is tested with 5 and 10 positive classes and with signal
normalizations that use Holm's method and FDR. Note that 5 percentile limit and 95 percentile limit stay within the required 0.01-0.05 range.
Minimum and maximum show deviation from the signal range but the deviation is always only appr. 10% of the allowed signal.

Table 2: Top scoring GO classes from one of the positive datasets

Correlation with signal classes
cl. Num. log10(p) Class names 13 12 9 5 6

1 5.152 metal ion transporter activity -0.005 -0.0078 -0.0068 -0.0067 0.9068
2 4.8916 carboxylic acid transport 0.0266 -0.0088 -0.0076 0.8561 0.0165
3 4.7933 organic acid transport 0.0262 -0.0089 -0.0077 0.8475 0.0162
4 4.6381 tRNA ligase activity -0.0048 -0.0075 0.9863 -0.0064 -0.0064
5 4.6381 amino acid transport -0.0048 -0.0075 -0.0065 1 -0.0064
6 4.6381 di-, tri-valent inorganic cation transporter activity -0.0048 -0.0075 -0.0065 -0.0064 1
7 4.6381 ligase activity, forming carbon-oxygen bonds -0.0048 -0.0075 0.9863 -0.0064 -0.0064
8 4.6381 ligase activity, formingaminoacyl-tRNA and relatedcompounds -0.0048 -0.0075 0.9863 -0.0064 -0.0064
9 4.5219 RNA ligase activity -0.0048 -0.0076 1 -0.0065 -0.0065

10 4.2093 carboxylic acid transporter activity 0.0269 -0.0087 -0.0075 0.7439 0.0168
11 4.1976 ligase activity, forming phosphoric ester bonds -0.005 -0.0079 0.9615 -0.0068 -0.0068
12 4.1196 bud tip -0.0056 1 -0.0076 -0.0075 -0.0075
13 4.0201 response to inorganic substance 1 -0.0056 -0.0048 -0.0048 -0.0048
14 3.9477 organic acid transporter activity 0.0258 -0.0089 -0.0078 0.7214 0.0159
15 3.8469 transition metal ion transporter activity -0.0042 -0.0066 -0.0057 -0.0057 0.8813
16 3.7791 iron ion transporter activity -0.0025 -0.0039 -0.0034 -0.0034 0.5258
17 3.6126 tRNA aminoacylation for protein translation -0.0044 -0.0068 0.8395 -0.0059 -0.0059
18 3.6126 amino acid activation -0.0044 -0.0068 0.8395 -0.0059 -0.0059
19 3.6126 tRNA aminoacylation -0.0044 -0.0068 0.8395 -0.0059 -0.0059
20 3.5079 ion transporter activity -0.0092 -0.0144 -0.0125 -0.0123 0.5218
21 3.4751 amine transport -0.0055 0.0121 -0.0075 0.8651 -0.0074
22 3.3985 amino acid transporter activity -0.0045 -0.0071 -0.0061 0.9128 -0.0061
23 3.2561 cation transporter activity -0.0085 -0.0134 -0.0116 -0.0115 0.5605
24 3.246 di-, tri-valent inorganic cation transport 0.0258 -0.0089 -0.0078 0.0159 0.7685
25 3.1866 transporter activity -0.0055 -0.0192 -0.023 0.2493 0.2833
26 3.1644 transition metal ion transport 0.0291 -0.0082 -0.0071 0.0186 0.6841
27 3.0334 basic amino acid transporter activity -0.0022 -0.0035 -0.0031 0.4702 -0.003
28 2.9412 siderophore-iron transporter activity -0.0016 -0.0025 -0.0022 -0.0021 0.3324
29 2.9412 siderophore transporter activity -0.0016 -0.0025 -0.0022 -0.0021 0.3324
30 2.9035 metal ion transport 0.0241 -0.0094 -0.0081 0.0144 0.733

Table shows 30 most over-represented GO classes from the dataset, ordered with the log10(p-values). Dataset was generated with artificial signal
embedded to five classes, shown with bold font in the class list. Table shows also correlation of each reported class with these signal classes. The
clear strongest correlation is shown here with bold font. Signal classes are marked in columns using their ranking in the result list. Notice the
varying number of strong correlations that different signal classes have.

BMC Bioinformatics 2009, 10:319 http://www.biomedcentral.com/1471-2105/10/319
other. This is natural as POSGODA does not accept signal
classes that are correlated with each other.

Comparison of different GO class ranking methods
Here we demonstrate the usefulness of POSGODA by
comparing different GO class ranking methods. We com-
pare the ability of different methods to report positive
classes among their top k classes (k = 1, 2..50). We com-
pare three methods: Standard GO class list obtained from
the DAVID server [21], and the parent-child [17] and the
topology-elimination [13] algorithms implemented in
Ontologizer software [17].

It is current standard to analyze the obtained results from
class over-representation methods using the number of
positive classes over different ranks in the sorted class list
[13,17]. However, we take a slightly different approach
and focus on the difference in the cumulative sum of positive
classes between two compared methods. This analysis puts
emphasis on the difference in results, rather than the
actual results. Furthermore, we plot the various percen-
tiles (0, 25, 50, 75, 100) in order to show how stable the
difference is between the compared methods.

Most over-representation analysis methods may report a
class that is close in the GO class structure to the positive
class instead of the exact positive class. We considered that
these should be also included in the evaluation. However,
we wanted to down-weight their contribution to the final
result. Therefore, we decided to weight these classes
according to their correlation with the correct signal class.
This is a unique, simple and intuitive method that auto-
matically evaluates how similar the reported class is to the
correct signal class.

Figures 3, 4 show differences in cumulative sums, when
both Ontologizer algorithms are compared with the
standard GO list. Figure 3 shows that the topology-elimi-
nation algorithm clearly outperforms the standard list,
especially across the top-15 ranks. This is highlighted by
the 25th percentile, showing that in three quarters of the
test runs topology-elimination outperformed the stand-
ard sorted GO list.

Figure 4 shows the corresponding results for the parent-
child algorithm, a default algorithm in Ontologizer. Here
the difference is surprisingly smaller than with topology
elimination. Especially the median line shows zero differ-
ence between the two methods. This result seems to con-
tradict earlier comparisons of these algorithms [17].

In summary, the comparison suggests that the best per-
formance is obtained with the topology-elimination algo-
rithm whereas the difference between parent-child
algorithm and standard GO list was not clear cut. How-
ever, this analysis should be repeated using different

parameters for artificial data generation to further confirm
the results.

Comparison of two GO data clustering methods
We further demonstrate the usefulness of POSGODA by
demonstrating its use in the comparison of GO clustering
methods. Here our aim is to see how well the generated
clustering can separate the embedded signal classes, and
also to monitor how large a portion the positive classes, or
positive clusters, form of the clustering output.

We selected two algorithms, with different approaches, for
our evaluation. One method, called GENERATOR [12],
clusters genes using the available GO data. These gene
clusters are then used to look for over-represented GO
classes (see [12] for more details). Another method,
implemented in the DAVID webserver [18], clusters the
same data, but instead of clustering genes it clusters GO
classes. It combines the correlating classes together as a
single cluster. Both methods aim to represent the hetero-
geneity of the reported functional annotations and to
limit the number of correlating classes that are seen with
the over-represented classes.

Comparison of topology-elimination algorithm and standard ranked listFigure 3
Comparison of topology-elimination algorithm and
standard ranked list. A performance comparison between
standard GO list from DAVID and Ontologizer output with
the topology-elimination algorithm. We show the difference
in the cumulative sum of positive GO classes across the top
ranks. X-axis shows the rank, whereas the Y-axis shows the
difference. Positive value indicate better performance by the
Ontologizer algorithm and negative value better perform-
ance by the DAVID GO list. We summarize the comparison
with 20 datasets showing five percentiles for each rank posi-
tion: median (black line), 25 and 75 percentile (blue line) and
minimum and maximum (cyan line). Notice that topology-
elimination shows better performance across the top-15
ranks.

0 5 10 15 20 25 30 35 40 45 50
−4

−3

−2

−1

0

1

2

3

4
Comparison of Ontologizer top−eliminate alg. and normal GO list

D
iff

er
en

ce
 in

 s
um

 o
f o

bs
er

ve
d

po
si

tiv
e

cl
as

se
s

Rank threshold for analyzed top classes
Page 8 of 14
(page number not for citation purposes)

BMC Bioinformatics 2009, 10:319 http://www.biomedcentral.com/1471-2105/10/319
There is no fixed way currently to the analysis GO cluster-
ing tools. Therefore, we propose a few simple rules for
evaluation:

• GO clustering tools try to predict the positive classes.
Therefore we have used prediction related measures,
Positive Predictive Value (PPV), sensitivity and F1
score, to quantify the prediction performance.

• We selected three top GO classes from each cluster as
the result, i.e. the predicted positive GO classes.

• Although we ranked clusters within the clustering,
we decided to treat them here as equally good.

We omit details from our analysis. Briefly, GENERATOR
generated between 6 to 13 clusters, whereas DAVID gen-
erated between 42 to 72 clusters. This suggests that GEN-
ERATOR clustering is closer to the correct cluster number,
five. DAVID, on the other hand, usually ranked the posi-
tive class better in the ranked list of the reported clusters.
We summarize the results in table 3. The table shows the
portion of true positive GO classes among the predicted
positive classes, represented by PPV (Positive Predictive
Value), and the portion of predicted positive classes of the
positive classes, represented by sensitivity. These two
measures are combined in the F1 score. The results suggest
that GENERATOR performs clearly better with this type of
datasets. Although its sensitivity is slightly smaller, the

Comparison of parent-child algorithm and standard ranked listFigure 4
Comparison of parent-child algorithm and standard
ranked list. A performance comparison between standard
GO list from DAVID and Ontologizer output with parent-
child algorithm. X and Y axis are similar to figure 3. Positive
value refers to better performance by Ontologizer algorithm
and negative value better performance by DAVID GO list.
Percentiles and their colouring is also identical to earlier fig.
4. Here the difference, in favor of the parent-child algorithm
seems small.

0 5 10 15 20 25 30 35 40 45 50
−3

−2

−1

0

1

2

3
Comparison of Ontologizer par−child alg. and normal GO list

D
iff

er
en

ce
 in

 s
um

 o
f o

bs
er

ve
d

po
si

tiv
e

cl
as

se
s

Rank threshold for analyzed top classes

Table 3: Evaluation of DAVID and GENERATOR clustering using the generated test datasets

dataset num. PPV GEN. PPV DAVID Sens. GEN. Sens. DAVID F1 GEN. F1 DAVID GEN. -DAVID

1 0.3 0.09 0.6 1 0.4 0.17 0.23
2 0.38 0.06 0.75 1 0.5 0.12 0.38
3 0.38 0.07 0.6 0.8 0.46 0.13 0.33
4 0.36 0.04 0.8 0.4 0.5 0.07 0.43
5 0.33 0.07 0.6 1 0.43 0.14 0.29
6 0.23 0.05 1 1 0.38 0.1 0.28
7 0.14 0.04 0.33 0.67 0.2 0.07 0.13
8 0.15 0.02 0.67 0.33 0.25 0.04 0.21
9 0.36 0.03 0.8 0.4 0.5 0.05 0.45
10 0.38 0.09 0.6 1 0.46 0.16 0.3
11 0.67 0.07 0.8 0.8 0.73 0.13 0.59
12 0.42 0.05 1 0.6 0.59 0.09 0.5
13 0.43 0.07 0.6 0.8 0.5 0.13 0.38
14 0.5 0.04 1 0.5 0.67 0.07 0.6
15 0.5 0.09 1 1 0.67 0.16 0.51
16 0.33 0.03 0.67 0.67 0.44 0.06 0.38
17 0.09 0.03 0.33 0.67 0.14 0.07 0.08
18 0.42 0.07 1 1 0.59 0.13 0.46
19 0.38 0.05 0.75 0.75 0.5 0.09 0.41
20 0.13 0.03 0.33 0.67 0.18 0.06 0.12

Table presents the Positive Predictive Value (PPV), sensitivity (sens.) and F1 score for GENERATOR(GEN.) and DAVID clustering results.
Furthermore, we show the difference of F1 scores between two methods. Notice that the F1 score for GENERATOR is consistently better, as is
shown by the difference in the last column. DAVID outperforms GENERATOR only in sensitivity, but this is natural as DAVID created 3-10 times
more clusters.
Page 9 of 14
(page number not for citation purposes)

BMC Bioinformatics 2009, 10:319 http://www.biomedcentral.com/1471-2105/10/319
PPV for GENERATOR is frequently ten times better.
Weaker sensitivity might result from the selection of sin-
gle clustering level from the GENERATOR output for the
evaluation (see Materials and Methods for details). How-
ever, this could be corrected in manual analysis by moni-
toring several levels from the reported non-nested
hierarchical clustering [12].

Discussion
We have presented a methodology (POSGODA) with sup-
plementary tools for generating positive GO datasets. The
results suggest that POSGODA generates datasets with the
required signal. We present the analysis of effective
number, a variable used for scaling the signal, similarly to
earlier work [20]. However, we have used here a simpler
approach, implementing the matrix rank function. Cur-
rently, it still seems to be common to use the number of
classes as the normalizing variable, although the number
of classes ignores the correlations in the GO datasets, and
is often bound to create a too strong correction to signal
levels. Our results in table 2 illustrate this, as randomly
selected classes can have up to 7 strong correlations.

POSGODA includes a simple unique evaluation of the
independence of the GO signal classes. This evaluation is
based on the correlation of the GO classes [5]. This meas-
ure is independent from the graph distance between the
GO classes and simply answers to the question: How sim-
ilar are the classes being compared? The measure can be
used also to compare, say, MIPS functional classifications,
SwissProt keywords and GO classifications with each
other. Also, the whole proposed methodology could be
similarly used with any binary classification matrix or
combination of binary matrices.

There are a number of ways to use POSGODA. It could be
used to evaluate methods on how close the reported p-val-
ues get to the p-value signals used in the POSGODA data
generation. However, such analysis would require that the
data matrix used by POSGODA comes from a very reliable
source. The correctness of signal levels also depend on the
effective number and the used signal correction method.
Furthermore, potential differences could be caused by the
exclusion of some GO evidence codes in the evaluated
method and there are no 'golden rules' stating which evi-
dence codes should be included in the analysis and which
should be excluded. Therefore, we chose to monitor the
rank of positive GO classes in the reported GO class list.
Ranked list analysis is a robust approach that omits the
actual p-value scores. It also resembles the explorative
analysis frequently done with GO analysis tools. Our
unique and simple addition to this analysis was the inclu-
sion of GO classes that show strong correlation with one
of the positive classes, as also positive. However, we
weighted them using the correlation with the correct pos-

itive class. This is a novel, simple and intuitive way to
downweight those classes as weaker hits than the correct
positive classes.

Our comparison also included methods that generate
clusters from GO data. Here we again looked for the abil-
ity of the methods to select the signal classes or other class
that correlates strongly with a signal class. The results sug-
gest, with clear difference, that the clustering created with
GENERATOR is better than the clustering by DAVID.
However, the results might change when testing with dif-
ferent dataset parameters and if false positives and false
negatives are not weighted equally.

The compared tools used different versions of GO, with
the DAVID server having GO structure from Jan 2008. The
differences between this and newer GO structures might
explain part of the differences between methods. How-
ever, out of all the classes that were in our test dataset, less
than a half a percent was missing from the oldest GO
structure (DAVID server). Furthermore, this effect is less-
ened in our analysis by counting also strongly correlating
classes as positive. This helps, as the old version of GO
structure has most likely already neighboring classes
which correlate with added class.

POSGODA has potential further applications. One could
link the genes with differential expression score and com-
pare the various GO based threshold free gene expression
analysis methods. This would simply require the selection
of a potential model for positive and negative signal, like
in some earlier research [22,23]. Our method differs from
these two publications in that these works tested for the
performance at the artificial GO class level, whereas our
test datasets allows testing with the whole correlation
structure of GO. We have implemented POSGODA for
monitoring the separation between the positive and neg-
ative GO classes within each positive GO dataset. How-
ever, it would be interesting to test various methods that
summarize the total signal across all the GO classes
[8,9,24]. These methods could be tested by using positive
datasets, generated by POSGODA, and similar random
samples from the background population. Such analysis,
however, would require testing of a large number of arti-
ficial datasets with varying parameters. Finally, we wish to
point that the evaluation using artificial datasets cannot
replace the evaluation done with real datasets, which
should be used in combination with artificial datasets in
evaluations.

Conclusion
We hope that the proposed methodology would encour-
age the scientific community to more thoroughly test the
various methods available for various functional genom-
ics and GO datasets, and to stimulate discussion about the
Page 10 of 14
(page number not for citation purposes)

BMC Bioinformatics 2009, 10:319 http://www.biomedcentral.com/1471-2105/10/319
possibilities on testing these methods. Furthermore, we
want to draw attention to some of the problems in the
positive data generation, observed when using the real
data GO matrix.

Methods
Problem setting
Our positive dataset generation is based on a few natural
assumptions. The cluster of genes or gene list with positive
signal is assumed to have true positive and false positive
genes. True positive genes are assumed to represent bio-
logical functional group(s) (GO classes). The larger the
portion of the positive genes, the stronger the associated
signal. As a negative model, we consider a totally random
sample from the total pool of genes, although this null
hypothesis has been criticized [14]. We chose this random
sampling for its simplicity. The other potential null and
signal models should be easy to implement later in POS-
GODA. A single over-represented functional group from
the hierarchical GO structure is expected to show the best
match to our true positive functional gene group, whereas
other GO classes close to the positive class in the GO hier-
archy are expected to repeat the same signal at weaker sig-
nal levels [13,17]. Also, the true positive genes can come
from one or a few independent (separate) functional
groups. When we have signal from several independent
gene groups, they can be considered to represent joint
support against the null hypothesis, as they reduce the
randomness of the gene list.

Definition of the positive signal
In order to produce datasets with positive signal, we must
first define the type of signal that we are embedding in the
data. We are mainly interested in the surprising deviation
from the expected number of class members in the
reported gene list (for example, a cluster or a set of up-reg-
ulated genes), when comparing it to the reference group
(usually the rest of the genome). Although there are vari-
ous ways of measuring the deviation, hypergeometric dis-
tribution (HGD) based p-values have gained a lot of
popularity. HGD methods measure the deviation, using
the size of the cluster, class and the whole dataset (contin-
gency table test conditional on the row and column
sums). We have selected the reported p-value as a measure
of the signal level that a user can feed into the data gener-
ation process.

There are currently three ways of calculating p-values from
HGD: a) the distribution can be summed always towards
the maximum value (the upper tail of the distribution,
evaluation of over-representation [3]), b) the distribution
can be summed by including all the outcomes with
smaller probability (standard two-tailed test, often
applied with Fisher's exact test), c) the distribution can be
summed towards the closer tail (to minimum or maxi-
mum value) away from the mode of the distribution (one-

tailed test) and multiplied with 2. Options a and c are
demonstrated in the supplementary information in [5].
Here we have used the last option similarly to earlier work
[5], with the exception that we multiply the obtained
result by 2 (missing from the application in [5]) and set
all the p-values larger than 1, after the multiplication, to
be equal to 1. Still it should be noted that all the previous
options (a, b, c) and also others, like the Log-likelihood-
ratio based G-test, could be used during the signal defini-
tion.

Definition of effective number and scaling for the multiple
testing phenomena
Typical to any GO dataset is the large number of classes
with complex correlation structure [12,13,25,26]. The
large number of classes creates a multiple testing problem,
in which we are more likely to see seemingly significant
results arising from the random background distribution.
Therefore it is standard, when testing multiple classes, to
require a larger signal for significance. This affects simi-
larly also the signal generation, as the signal has to be
scaled accordingly to stand out from the background dis-
tribution. In order to compensate for this, the proposed
method enhances the signal using the estimated number
of independent classes (often referred as effective number,
Neff) in the analyzed GO dataset (the actual details are
shown later). This procedure is further modified when
creating a signal with multiple signal classes.

A commonly used naïve estimate for Neff is to simply use
the number of classes in the dataset. This often causes too
strong a correction, as it does not take into consideration
the correlations within the dataset [19]. An alternative is
to estimate Neff using one of the many available methods
[19,20,27]. Here we have used a simple estimate obtained
by using the matrix rank. This standard linear algebra
function gives the maximal number of linearly independ-
ent columns (i.e. GO classes) in the dataset.

Our current work selected three different simple methods
for normalizing the signal with the number of independ-
ent signal classes and Neff. These were based on the False
Discovery Rate (FDR [28]), Holm's method [29] and Bon-
ferroni correction. Furthermore, one can omit the signal
normalization totally and adjust the p-values before feed-
ing them to the analysis.

Bonferroni correction is probably one of the most popular
methods to address the multiple testing problem. It gen-
erates exactly the same correction independently from the
number of the used signal classes, and therefore it behaves
differently from the other methods, used here. It simply
multiplies the reported p-value with the Neff: p-valuebonf =
p-value*Neff. The inverse function for this correction is
simply:
Page 11 of 14
(page number not for citation purposes)

BMC Bioinformatics 2009, 10:319 http://www.biomedcentral.com/1471-2105/10/319
where the p-value given by the user is simply divided with
the Neff. FDR is another popular method that adjusts the
p-values according to the risk of false discovery and its cor-
rection is based on the equation:

where p-valuen stands for the nth p-value in the ordered
ascending list of p-values and n is the rank. The minimum
value of equation (2) over the ordered list of p-values is
the q-value, proposed in [28]). It is interesting to note that
for the smallest p-value, this equation turns out to be
identical to Bonferroni's correction for multiple testing, p-
valuefdr = p-value*Neff. The inverse function of FDR correc-
tion is simply:

So this signal correction simply multiplies the user-
selected p-value with the number of signal classes n
divided by Neff. The obtained datasets, with the same user
defined p-value and varying number of signal classes,
should have similar FDR scores.

Another popular method to correct p-values in multiple
testing is Holm's method [29]. Here the Bonferroni cor-
rection is sequentially modified in the ranked list of p-val-
ues so that the Neff decreases by 1 after every processed p-
value in the sorted list. This generates for each rank n the
following correction:

From this one can easily generate the inverse function

It should be noted that also other more sophisticated
methods exist, like "truncated product method" [30], beta
uniform mixture [31] and others [32,33]. These could be
also used for normalization in the data generation proc-
ess. However, we selected the methods above due to their
simplicity.

Ensuring the independence of the positive signals
Due to the complex correlation structure of GO data sets,
it is important to confirm that the selected positive classes
are not referring to practically the same gene sets (depend-

ent classes). We make this confirmation by looking at the
pair-wise correlations between all GO categories. Note
that this also has been used earlier for similar purpose [5]
to filter correlating GO classes. Correlations larger than 0
and smaller than -0.2 are used here to exclude classes from
the list of potential signal classes. Therefore this filtering
allows only classes with weak negative correlation. We
used correlation to filter out all the classes that show mon-
itored correlation with any of the already selected poten-
tial signal classes (See Results for details). This step is
demonstrated by filtering of classes A and C in the toy
example shown by figure 5.

The complex hierarchical structure of GO places another
requirement when ensuring the n copies of independent
signals. Instead of multiple independent signals in the GO
structure, the union of independent signal classes can
actually match a class higher in the hierarchy, and there-
fore create a single stronger signal instead of two separate
ones. To lessen this phenomenon a second level of filter-
ing was included. At this level we exclude any class that
can be connected, with mild correlations, to an already
selected signal class via a third class. This is demonstrated
by filtering of class E in the figure 3. These classes that do
not need to have a strong direct pair-wise interaction with
signal classes. A correlation stronger than 0.4 was used as
a threshold here.

These filtering steps could also be based on some deriva-
tive of the graph distance between the classes in the GO

p value
p value

Neff
inv bonf− = −

. , (1)

FDR
p valuenNeff

n
=

−
, (2)

p value
p valuen

Neff
inv fdr− = −

. (3)

p value p value N nholm n eff− = − − +()1 (4)

p value
p valuen
Neff ninv holm− = −

− +. 1
(5)

A toy example of the filtering using correlationFigure 5
A toy example of the filtering using correlation. Cir-
cles represent various classes and thick line shows correla-
tion between classes and dotted line an weak correlation.
Classes have no correlation, when they lack a connecting
line. Figure shows that if we have already class A among
selected signal classes the first filtering discards classes B and
E. Note that second filtering discards class C as we have a
path of strong correlations through class B to it. Class D is
left unfiltered. Positioning of circles in the figure is unrelated
to the GO structure.
Page 12 of 14
(page number not for citation purposes)

BMC Bioinformatics 2009, 10:319 http://www.biomedcentral.com/1471-2105/10/319
graph. A drawback of such methods is that the 'distance'
between two consecutive classes is not in reality a stand-
ard [25]. Also the graph distance does not show the corre-
lations existing between the classes in totally different GO
sub-graphs [25,26] The similarity or distance can be con-
sidered to change even when the analyzed total pool of
genes is changed, say from total genome to genes found
on an microarray. Therefore we consider the binary corre-
lation of the GO classes (within the used GO dataset) to
be the most reliable measure for the similarity of the sig-
nal within the two classes. Independence is ensured by
omitting the classes having too strong correlation with
already selected signal classes, during the selection of the
new signal classes.

Comparison of different GO analysis methods
We tested two types of enrichment analysis tools in our
comparison. First, we compared two different tools which
analyze the gene set in order to report a sorted list of
enriched Gene Ontology terms [1] for the user. The first of
these tools, DAVID [21], uses the standard approach
where the user gets a list of GO terms sorted according to
Fisher's Exact test p-value. DAVID uses GO database ver-
sion Jan 2008. The second tool, Ontologizer [17], con-
tains several algorithms for finding informative GO terms
from the GO tree structure. For our comparison, we tested
the parent-child [17] and topology-elimination [13] algo-
rithms. As data, we used GO database version May 2009,
and ENSEMBL gene GO annotations from ENSEMBL ver-
sion 54.

Next, we compared methods that reduce the amount of
information by clustering the list of genes into groups
homogeneous in GO terms or by clustering the GO terms
sharing similarity in the user given gene set. The first of
these methods, GENERATOR [12], partitions genes into
different numbers of clusters. We used an improved ver-
sion of GENERATOR (Kurki et al., manuscript in submis-
sion) where different solutions are evaluated using the
Akaike Information Criterion [34], and one of the solu-
tions is chosen as representative. For each cluster, GENER-
ATOR shows the GO terms that are over-represented in
the cluster versus genome. GO terms that have enrich-
ment p > 0.005 in the whole gene list are filtered out in
order not to show GO terms not associated with the ana-
lyzed dataset to the user (see explanation from [12]).
Clusters are sorted according to the lowest p-value in each
cluster. As data, this tool uses GO database version from
March 2009, and ENSEMBL gene GO annotations from
ENSEMBL version 54. The other method, DAVID [18],
combines GO terms based on their similarity using clus-
tering. For each cluster of combined GO terms, a joint
enrichment score is calculated, and the clusters are
reported to the user as a sorted list according to this score.
The versions of the annotations are the same as reported

above. With all of the methods we used GO ontologies
biological process and molecular function as data, as
these were available in GENERATOR.

Throughout our analysis the compared programs may use
different, older versions of GO and this might partially
affect the results. However, the GO classes that were miss-
ing from the oldest GO version, used in our comparison,
constituted only 0.43% of all the GO classes in our test
dataset. Therefore, the different GO versions have most
likely negligible effect on the results shown.

Authors' contributions
PT and LH jointly developed the method. PP and PT did
the evaluation of GO tools and all contributed to writing
manuscript.

Additional material

Acknowledgements
PT would like to thank the members of the Holm Group, Jukka Corander,
Kari Mauranen, Pirjo Halonen for discussions, statistical tips & comments;
research was done using computing facilities of CSC - IT Center for Sci-
ence. The authors would like to also thank the reviewers for constructive
criticism.

References
1. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM,

Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-
Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M,
Rubin GM, Sherlock G: Gene ontology: tool for the unification
of biology. The Gene Ontology Consortium. Nature genetics
2000, 25:25-29.

2. Mewes HW, Frishman D, Guldener U, Mannhaupt G, Mayer K,
Mokrejs M, Morgenstern B, Munsterkotter M, Rudd S, Weil B: MIPS:
a database for genomes and protein sequences. Nucleic acids
research 2002, 30:31-34.

3. Wu LF, Hughes TR, Davierwala AP, Robinson MD, Stoughton R, Alt-
schuler SJ: Large-scale prediction of Saccharomyces cerevi-
siae gene function using overlapping transcriptional clusters.
Nature genetics 2002, 31(3):255-265.

4. Zhang W, Morris QD, Chang R, Shai O, Bakowski MA, Mitsakakis N,
Mohammad N, Robinson MD, Zirngibl R, Somogyi E, Laurin N,
Eftekharpour E, Sat E, Grigull J, Pan Q, Peng WT, Krogan N, Green-
blatt J, Fehlings M, Kooy D van der, Aubin J, Bruneau BG, Rossant J,
Blencowe BJ, Frey BJ, Hughes TR: The functional landscape of
mouse gene expression. Journal of biology 2004, 3(5):21.

5. Toronen P: Selection of informative clusters from hierarchical
cluster tree with gene classes. BMC bioinformatics 2004, 5:32.

6. Allison DB, Cui X, Page GP, Sabripour M: Microarray data analy-
sis: from disarray to consolidation and consensus. Nature
reviews Genetics 2006, 7:55-65.

7. Khatri P, Draghici S: Ontological analysis of gene expression
data: current tools, limitations, and open problems. Bioinfor-
matics 2005, 21(18):3587-3595.

Additional file 1
Supplementary text. We show the detailed descriptions of the developed
functions.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-319-S1.PDF]
Page 13 of 14
(page number not for citation purposes)

http://www.biomedcentral.com/content/supplementary/1471-2105-10-319-S1.PDF
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10802651
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10802651
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11752246
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11752246
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12089522
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12089522
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15588312
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15588312
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15043761
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15043761
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16369572
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16369572
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15994189
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15994189

BMC Bioinformatics 2009, 10:319 http://www.biomedcentral.com/1471-2105/10/319
Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

8. Nikkila J, Toronen P, Kaski S, Venna J, Castren E, Wong G: Analysis
and visualization of gene expression data using self-organiz-
ing maps. Neural networks 2002, 15(8-9):953-966.

9. Gibbons FD, Roth FP: Judging the quality of gene expression-
based clustering methods using gene annotation. Genome
research 2002, 12(10):1574-1581.

10. Pavlidis P, Lewis DP, Noble WS: Exploring gene expression data
with class scores. Pacific Symposium on Biocomputing 2002:474-485.

11. Chou KC, Shen HB: Cell-PLoc: a package of Web servers for
predicting subcellular localization of proteins in various
organisms. Nature protocols 2008, 3(2):153-162.

12. Pehkonen P, Wong G, Toronen P: Theme discovery from gene
lists for identification and viewing of multiple functional
groups. BMC bioinformatics 2005, 6:162.

13. Alexa A, Rahnenfuhrer J, Lengauer T: Improved scoring of func-
tional groups from gene expression data by decorrelating
GO graph structure. Bioinformatics 2006, 22(13):1600-1607.

14. Goeman JJ, Buhlmann P: Analyzing gene expression data in
terms of gene sets: methodological issues. Bioinformatics 2007,
23(8):980-987.

15. Rhee SY, Wood V, Dolinski K, Draghici S: Use and misuse of the
gene ontology annotations. Nature reviews Genetics 2008,
9(7):509-515.

16. Gadbury GL, Xiang Q, Yang L, Barnes S, Page GP, Allison DB: Eval-
uating statistical methods using plasmode data sets in the
age of massive public databases: an illustration using false
discovery rates. PLoS genetics 2008, 4(6):e1000098.

17. Grossmann S, Bauer S, Robinson PN, Vingron M: Improved detec-
tion of overrepresentation of Gene-Ontology annotations
with parent child analysis. Bioinformatics 2007,
23(22):3024-3031.

18. da WH, Sherman BT, Tan Q, Collins JR, Alvord WG, Roayaei J,
Stephens R, Baseler MW, Lane HC, Lempicki RA: The DAVID
Gene Functional Classification Tool: a novel biological mod-
ule-centric algorithm to functionally analyze large gene lists.
Genome biology 2007, 8(9):R183.

19. Cheverud JM: A simple correction for multiple comparisons in
interval mapping genome scans. Heredity 2001, 87(Pt 1):52-58.

20. Breslin T, Eden P, Krogh M: Comparing functional annotation
analyses with Catmap. BMC bioinformatics 2004, 5:193.

21. Jr GD, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki
RA: DAVID: Database for Annotation, Visualization, and
Integrated Discovery. Genome biology 2003, 4(5):P3.

22. Nilsson B, Hakansson P, Johansson M, Nelander S, Fioretos T:
Threshold-free high-power methods for the ontological anal-
ysis of genome-wide gene expression studies. Genome biology
2007, 8(5):R74.

23. Ben-Shaul Y, Bergman H, Soreq H: Identifying subtle interrelated
changes in functional gene categories using continuous
measures of gene expression. Bioinformatics 2005,
21(7):1129-1137.

24. Kaski S, Nikkila J, Oja M, Venna J, Toronen P, Castren E: Trustwor-
thiness and metrics in visualizing similarity of gene expres-
sion. BMC bioinformatics 2003, 4:48.

25. Chagoyen M, Carmona-Saez P, Gil C, Carazo JM, Pascual-Montano A:
A literature-based similarity metric for biological processes.
BMC bioinformatics 2006, 7:363.

26. Myhre S, Tveit H, Mollestad T, Laegreid A: Additional gene ontol-
ogy structure for improved biological reasoning. Bioinformatics
2006, 22(16):2020-2027.

27. Li J, Ji L: Adjusting multiple testing in multilocus analyses
using the eigenvalues of a correlation matrix. Heredity 2005,
95(3):221-227.

28. Storey JD: The positive false discovery rate: a Bayesian inter-
pretation and the q-value. 2003 [http://ProjectEuclid.org/
getRecord?id=euclid.aos/1074290335%].

29. Holm S: A Simple Sequentially Rejective Multiple Test Proce-
dure. Scandinavian Journal of Statistics 1979, 6(2):65-70.

30. Zaykin DV, Zhivotovsky LA, Westfall P, Weir BS: Truncated prod-
uct method for combining P-values. Genetic Epidemiology 2002,
22:170-185.

31. Pounds S, Morris SW: Estimating the occurrence of false posi-
tives and false negatives in microarray studies by approxi-
mating and partitioning the empirical distribution of p-
values. Bioinformatics 2003, 19(10):1236-1242.

32. Donoho D, Jin J: Higher criticism for detecting sparse hetero-
geneous mixtures. Annals of Statistics 2004, 32(3):.

33. Hwang D, Rust AG, Ramsey S, Smith JJ, Leslie DM, Weston AD, de
Atauri P, Aitchison JD, Hood L, Siegel AF, Bolouri H: A data inte-
gration methodology for systems biology. Proceedings of the
National Academy of Sciences of the United States of America 2005,
102(48):17296-17301.

34. Akaike H: A new look at the statistical model identification.
1974, 19:716-723.
Page 14 of 14
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12416686
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12416686
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12416686
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12368250
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12368250
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11928500
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11928500
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18274516
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18274516
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18274516
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15987504
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15987504
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15987504
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16606683
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16606683
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16606683
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17303618
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17303618
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18475267
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18475267
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18566659
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18566659
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18566659
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17848398
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17848398
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17848398
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17784955
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17784955
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11678987
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11678987
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15588298
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15588298
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12734009
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12734009
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17488501
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17488501
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17488501
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15550480
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15550480
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15550480
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14552657
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14552657
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14552657
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16872502
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16872502
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16787968
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16787968
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16077740
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16077740
http://ProjectEuclid.org/getRecord?id=euclid.aos/1074290335%
http://ProjectEuclid.org/getRecord?id=euclid.aos/1074290335%
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11788962
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11788962
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12835267
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12835267
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12835267
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16301537
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16301537
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=4445237
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	Complete method workflow
	Signal level evaluation
	Signals obtained from one example dataset
	Comparison of different GO class ranking methods
	Comparison of two GO data clustering methods

	Discussion
	Conclusion
	Methods
	Problem setting
	Definition of the positive signal
	Definition of effective number and scaling for the multiple testing phenomena
	Ensuring the independence of the positive signals
	Comparison of different GO analysis methods

	Authors' contributions
	Additional material
	Acknowledgements
	References

