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Abstract

biomedical and statistical literature.

Background: Since the introduction of large-scale genotyping methods that can be utilized in genome-wide
association (GWA) studies for deciphering complex diseases, statistical genetics has been posed with a tremendous
challenge of how to most appropriately analyze such data. A plethora of advanced model-based methods for
genetic mapping of traits has been available for more than 10 years in animal and plant breeding. However, most
such methods are computationally intractable in the context of genome-wide studies. Therefore, it is hardly
surprising that GWA analyses have in practice been dominated by simple statistical tests concerned with a single
marker locus at a time, while the more advanced approaches have appeared only relatively recently in the

Results: We introduce a novel Bayesian modeling framework for association mapping which enables the detection
of multiple loci and their interactions that influence a dichotomous phenotype of interest. The method is shown to
perform well in a simulation study when compared to widely used standard alternatives and its computational
complexity is typically considerably smaller than that of a maximum likelihood based approach. We also discuss in
detail the sensitivity of the Bayesian inferences with respect to the choice of prior distributions in the GWA
context.

Conclusions: Our results show that the Bayesian model averaging approach which explicitly considers gene-gene

interactions may improve the detection of disease associated genetic markers in two respects: first, by providing
better estimates of the locations of the causal loci; second, by reducing the number of false positives. The benefits

are most apparent when the interacting genes exhibit no main effects. However, our findings also illustrate that
such an approach is somewhat sensitive to the prior distribution assigned on the model structure.

Background

Given the hugely decreased economic costs of utilizing
large-scale single-nucleotide-polymorphism (SNP) geno-
typing to study the genetic architecture of a phenotype
of interest, GWA analyses have become popular within
many areas of molecular medicine. An excellent review
[1] of the statistical challenges in GWA studies high-
lights the fact that no single approach has yet appeared
which would comply to all immediate desiderata in this
context, such as high power, reasonable control of spur-
ious findings and relatively inexpensive computational
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effort. The plethora of different modeling and testing
approaches for detecting single and multiple polymorph-
isms associated with a complex phenotype that has
recently appeared in the literature demonstrates the
urgent need for reliable and in practice applicable statis-
tical methods in this context [2-9]. A variety of causal
and graphical modeling ideas, as well as more standard
regression modelling methods have been investigated in
these works.

Some of the most challenging aspects of GWA ana-
lyses are how to sensibly handle the question of multiple
model comparisons and how to identify influential gene-
gene interactions since the number of putative model
terms is astronomic and some interactions may involve
polymorphisms that lack main effects, leading to
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reduced power with single-locus tests. From a theoreti-
cal statistical perspective it could be expected that the
Bayesian approach [10] would provide satisfactory
answers to these issues due to its ability to combine
information over many models with varying parametric
dimensionality. Advantages of the Bayesian methods in
genetic association studies have been discussed in a
recent review [11]. However, a primary burden is then
how to specify a sensible prior probability distribution
for all putative association models, which is a complex
task [1]. The fully Bayesian approach has been employed
in the context of GWA studies using regression and gra-
phical models; however, the published approaches have
not explicitly considered gene-gene interactions due to
the computational burden [4,7].

In the current work we have aimed to address these
challenges by developing an efficient Bayesian modeling
approach that explicitly considers gene-gene interac-
tions. Our work is partially inspired by the work of Mar-
cini et al. where Bayesian single-locus association tests
were developed [5]. Furthermore, we have examined in
parallel the Bayesian graphical modeling approach intro-
duced in [4] and discuss the particular sensitivity of
Bayesian inferences with respect to the choice of prior
distributions in the GWA context. We show how the
marginal likelihood score can be analytically derived for
a variety of Bayesian gene-gene interaction models,
which in turn enables the use of highly efficient non-
standard Monte Carlo model learning [12]. The advan-
tages of such an approach compared to standard
Markov chain Monte Carlo (MCMC) computation have
been demonstrated for very high-dimensional model
learning problems [12-14]. Moreover, contrasted with
the maximum likelihood estimation of comparable logis-
tic regression models as in [2], our method is consider-
ably faster, which is of primary importance given the
astronomic number of models that can be examined for
a single data set.

The present article is structured as follows. In the
Methods section we introduce our Bayesian model and
learning algorithm for multilocus association mapping,
provide a brief overview of alternative methods, and
describe a simulation study utilizing real genome-wide
SNP data as a basis for generating realistic levels of link-
age and molecular variation. The results from the simu-
lation study are presented in Results. In Discussion, we
summarize the advantages and disadvantages of our
approach and discuss some challenges encountered.
Conclusions concisely summarizes the main points.

Methods

Bayesian multilocus association model

Consider a case-control study involving N individuals
for which y; € {0, 1} denotes the phenotypic status such
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that y; = 1 and y; = 0 correspond to the presence and
absence of a disease, respectively, for i = 1, .., N. Let Z;;
€ {0, 1, 2}, i = 1, ..., N denote the observed genotype of
individual i at SNP locus j, j = 1, ..., L Furthermore, let
71; denote the probability of individual i carrying the dis-
ease, i.e. the event y; = 1. To simplify the notation in
the model definitions introduced below, we will occa-
sionally omit the index i from the disease probabilities
when there is no difference between the individuals.

In a typical GWA analysis, the loci (if any) that influ-
ence disease probabilities are unknown a priori, such
that the number of SNPs, their locations, and the form
of their main/interaction effects are all unknown quanti-
ties to be inferred from the observed genotype/pheno-
type data. The following five association models are
utilized as the basis of our mapping method. These
models have been partly motivated by the models used
in the simulation study in [2]:

M () =pol(Z; =0)+p(Z; =1)+p,I(Z;=2), (1)

My(j): 7 = pol(Z; = 0) + piI(Z € {1, 2}), )
2 2

My(j k)7 =3 Y pal(Zj=aand 2, =b),  (3)
a=0 b=0

My(j, k): m =pol(Z;=0and Z;, =0)
+pI(Z;=0and Z, € {1,2}) + p,I(Z; € {1,2} and Z}, = 0) (4)
+p51(Z;€ {1,2} and Z}, € {1, 2}),

and

+pI(Zje {1,2} and Z, € {1,2}), ©)
Where j, k =1, ..., L, j # k, and [ (-) is the indicator
function, which equals unity if the argument is true, and
zero otherwise. The models specify the probability of
carrying the disease given the genotype data and they
are denoted by M;(-), ..., M5 (), where the arguments
indicate the loci involved. Interpretations of these mod-
els are given as follows. Firstly, M; (j) is a full three-
parameter single-locus model having the interpretation
that individuals with different genotypes have different
probabilities of carrying the disease. Model Mj (j, k) is a
full nine-parameter two-locus model having the inter-
pretation that every allele combination at loci j and k
implies a different probability of carrying the disease.
Model M, (j) is a sub-model of M; (j), corresponding to
a dominant effect disease model. Models M, (j, k) and
Ms (j, k) are two-locus sub-models of M3 (j, k)
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Figure 1 Model specifications. Figures 1a) and 1b) represent visually the single-locus (M;(j), M>(j)) and two-locus (Ms(j, k), Ma(j, k), Ms(j, k))
elementary models, respectively. Figure 1¢) represents visually the model obtained by combining elementary models M(1) and Ms(2, 3). This
combined model is used as an example in the text.

corresponding to the dominant effect disease models
with or without main effects. These five model types
will be here termed as elementary models (see Figure
la-b for visual representations of the elementary mod-
els). Let M, denote the class of all distinct elementary
models, i.e.:

M, ={M,(j)[ae {12}, jefl,..., L} } U
{M,(j, k) |ae {3,4,5), {j ky c{1,..., L}, j = k}.

Each elementary model specifies unambiguously a par-
tition S = {sy, ..., s4} of the N individuals, i.e. the indivi-
duals are divided into d non-overlapping and non-empty
subsets or classes s, ..., s; associated with distinct dis-
ease probabilities. For instance, the elementary model
M; (j) specifies a partition with three classes, each cor-
responding to the individuals having a particular geno-
type at locus j (Z; equals 0, 1 or 2). The following
definition enables us to formally characterize our
model-learning strategy.

Definition 1. Let M, < M, be an arbitrary subset of
elementary association models. The combined models
with respect to M, are the models which can be defined
by combining elementary models in M, according to the
following rules. (1) Select n elementary models
M, (j1): - My (jn) belonging to M, , such that for any
I=1,.,na;€{1,.,5} and eitherj, € {1, .., L} orj; €
,..L?> depending on whether a; € {1, 2} ora; € {3, 4,
5}. (2) The locus indices ji, ..., j, must be disjoint, i.e. any
one locus j = 1, ..., L is allowed to be included in at most
one of the models selected. (3) Let S; ={sy,..., Sd,}be the
partition of individuals specified by the Ith selected ele-
mentary model, and let ¢c; = 1, ..., d; denote the index for
class S, of individuals in the partition Sy, for [ =1, ..., n.
(4) Then, an association model obtained by combining
Mg, (j1)r--s My, (Jn) is defined by:

d, d, n
=D Y e | i€ ﬂscl i=1,...,N,
=1 ¢,=1 I=1
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where P, ..., are arbitrary probabilities.

As an example of the combination operator, consider
the elementary models M,(1) and Ms5(2, 3). By omitting
the index i, a model obtained by combining these two
models is defined as:

r=p;I(Z,=0and (Z,=00r Z5;=0)) +

p12l(Z,=0and Z, € {1,2} and Z; € {1,2}) +
pl(Z,€ {1,2}and (Z, =0 or Z; =0))

pl(Z,€{1,2}and Z, € {1,2} and Z, € {1,2}).

See Figure 1c for a visual representation of this com-
bined model. More generally, a combined model has the
interpretation that when combining two models which
divide the individuals into d; and d, classes of unequal
disease probabilities, the resulting model specifies d;d,
classes with unequal disease probabilities. These d;d,
classes correspond to all possible intersections between
the classes of the two original models. Some important
observations should be made about the combined mod-
els. First, the elementary models themselves, as well as
the null model

Mgy =p,y,

are considered combined because they can be
obtained through a combination involving either the ele-
mentary model itself, or no models at all. Second, the
elementary models involved in a combination operation
should not include any overlapping sets of loci. To
demonstrate the necessity of such a restriction, consider
the elementary models M;(j) and M;(j, k). According to
the first model M,(j) there exists a main effect on the
disease probability when the genotype at locus j
changes. However, this contradicts the second model
Ms(j, k) according to which there is no such effect. The
purpose of the restriction imposed on the combination
operator is to prevent ambiguous model specifications
in this respect. Third, the combined models are formed
from main effects and two-way interactions, and do not
explicitly represent higher-order interactions. For exam-
ple, gene pairs AB and CD could be included, but not a
triplet ABC. Nevertheless, in our approach the combina-
tion of the full models of types M; and M; is always
permitted and it can represent even higher-order inter-
actions; however, this comes with the expense of some
redundant parameters. Indeed, the number of para-
meters (which is equal to the number of classes with
differing disease probabilities as specified by the com-
bined model) grows exponentially with respect to the
number of loci involved in the model. The growth rate
depends on whether we use full models or some lower
dimensional sub-models when formulating the
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combined model. For example, a six-locus interaction
model can have at maximum 9 = 729 and at minimum
2% = 8 parameters, depending on whether three models
of type M3 or Ms, respectively, are combined. Fourth,
we note that the set of elementary models considered
here is not exhaustive and it would be straightforward
to generalize the approach by including other types of
models, for example those with recessive main effects.
Here our particular emphasis is on the situation where
some causal SNPs lacking main effects have a joint
effect, as exemplified by models of type Ms. Such SNPs
are expected to be most challenging to detect in practice
when utilizing single SNP based statistical tests. Finally,
we note that models M3 and M,, although elementary,
can also be obtained by combining models of type M;
or M,, respectively. Our reason for including them as
such into the pool of elementary models is to enhance
the learning algorithm by making plausible two-locus
combinations immediately available as building blocks
for more complex models.

Next we provide some further details about the Baye-
sian multilocus association model. First, we derive expli-
citly the posterior probability P (M | Data) for a model,
which is defined as:

P(M | Data) o< P(Data | M)P(M), (6)

where the proportionality constant does not depend
on M. The first component of (6), the marginal likeli-
hood, is given by

P(Data | M) = J [Trwi10m©)d0. ?)

i=1

where i is the index for the genotyped individual and
6 denotes jointly all the parameters of the association
model. Let M be a combined model which divides the
individuals into classes with unequal disease probabil-
ities as specified by a partition S = {sy,..., s4. The likeli-
hood function is then given by

d
P(y;10)= Y pl(1=p) ViI(ic 5,), ®)

c=1

where p,, ¢ = 1, ..., d, are the model parameters. We
note that the likelihood (8) is prospective, i.e. it does
not condition on a possible matching of the controls to
the cases (see, e.g. [15]). For example, our simulation
setup is based on retrospective sampling on the basis of
which we know that the numbers of cases and controls
are equal. The advantage of the likelihood (8) is that it
is very efficient to calculate. We use independent,
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symmetric prior distributions assigned on each probabil-

ity p.:
p. ~beta(a, ), c =1, ..., d. 9)

The values used for the hyperparameter o in the
simulation analyses are specified in the Specification of
the search parameters section. Together, (9) and (8)
allow us to evaluate (7) analytically as:

: I'2a) . I'a+ngp)
P(Data|M)=Hr(2a+|SC|)g )

where 7., is the number of individuals i in class ¢ with
disease status y; = b and |s.| is the total number of indi-
viduals in class ¢: Formula (10) specifies the standard
marginal likelihood arising from the binomial likelihood
under the conjugate beta distribution (see, e.g. [16]).

We assign prior probabilities on the association mod-
els using a discretized exponential distribution, specified
by

(10)

P(M) o< Em, (11)

where L, is the number of SNPs included in the
model M and & € (0, 1). This prior specification implies
the following properties hold:

1. If M, and M, are two distinct models such that
M, includes one more SNP than M;, then

P(Mp) _
P(My)

5

2. The prior distribution is uniform over all com-
bined models which include the same number of
loci.

Thus, & can be interpreted as the penalty resulting
from an increase in the number of SNPs in a model. In
practice, it is reasonable to set ¢ equal to a small value
that depends inversely on the total number of investi-
gated SNPs. This prevents the learning of overly com-
plex models when the number of SNPs in a data set
increases. The parameter ¢ will be referred to as the
structure parameter in the text. The values of ¢ used in
the analyses are specified in the Specification of the
search parameters section.

Stochastic search for model learning

Utilizing the elementary and combined association mod-
els, we define a Bayesian model averaging strategy for
identifying evidence of disease associations among the
SNP loci considered. The rationale in averaging over a
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set of models is that SNPs occurring often in different
high-scoring models eventually get higher probabilities.
For example, if a SNP is involved in interactions with
many different SNPs, then the results will be averaged
over models containing the alternative interactions,
although all interactions are not necessarily included
simultaneously in any single model. The learning pro-
cess consists of the following four steps:

1. Calculate the posterior probability distribution
over all elementary models in M, . In the previous
section we derived analytical expressions for these
probabilities.

2. Select a set M, < M, of K elementary models
corresponding to the K highest posterior probabil-
ities, where K is a user-specified constant determin-
ing the accuracy of the approximate model averaging
(see below). Further, include all single-locus elemen-
tary models in M, .

3. Run a stochastic search in the space of combined
models of /\/le1 . For the search we use a non-rever-
sible MCMC algorithm [12]. Search operators are
described in closer detail below.

4. Let Aq* denote the set of all combined models
visited during the search algorithm in Step 3 and let
Mj c M™ denote the models in which jth locus is
included. Let X; € {0, 1} denote the indicator vari-
able of the event that locus j is included in the asso-
ciation model. The posterior probability of X; = 1
then equals:

ZMEMj P(M|Data)
> P(M|Data)’

P(X; =1| Data) = (12)

MeM’

where P (M | Data) is the posterior probability of
any particular association model M, for which the
exact expression was derived in the previous section.

For the purposes of a simulation study we define a
scoring scheme for loci based on the above posterior
distribution (12). The approximate Bayesian model aver-
aging (BMA) score of locus j is given by:

P(X j=1|Data)

/ (13)
P(X j=0|Data)

Spmalj) =log

which is the logarithm of the posterior odds in favor
of association.

Next we describe in detail the search operators uti-
lized in the algorithm. Let M denote the current state of
the search algorithm, corresponding to a combined
model. Recall that a combined model is characterized by
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a collection of elementary models such that none of
these include the same SNPs. In the following descrip-
tion, two elementary models are conflicting if they
include the same SNPs. In the stochastic search algo-
rithm we use the following three different search opera-
tors for modifying the current model.

1. Add a new randomly selected elementary model
to the current model M. Remove from M all ele-
mentary models which conflict with the added ele-
mentary model.

2. Remove a randomly selected elementary model
from M.

3. Switch an elementary model in M with another
elementary model from M, . The operator simply
considers jointly steps 2 and 1, in this order.

At each iteration these operators are used with the
probabilities [0.5, 0.45, 0.05].

The specific feature of the non-reversible MCMC
strategy developed in [12] is that the acceptance prob-
ability corresponding to a Metropolis-Hastings transition
kernel is defined as

min{l, P(Data]M )P(M") } 14

P(Data|M)P(M)

where M* is the proposed model. Note that the ratio
of proposal probabilities is omitted from the second
term in (14). This defines a non-reversible Metropolis-
Hastings algorithm satisfying the conditions under
which it was proved in [12] that the posterior probabil-
ities can be consistently estimated with

P(Data|M)P(M)
. P(Data|M)P(M) "

P(M|Data) = 5

MeM

where Aq* is the set of models visited during the sto-
chastic search. This estimation strategy is made possible
by the fact that P (Data | M) P (M) is available analyti-
cally for all models. For a discussion of the advantages
of using the non-reversible sampler in a general Baye-
sian model learning context, see the original article or
[17], where even milder conditions for the convergence
of the algorithm were provided. The stochastic search
method and all alternative methods described in the
next section were implemented in Matlab.

Alternative methods for association mapping

As the first alternative scoring method for association
mapping we use the p-values based on the standard log-
likelihood ratio test for logistic regression models. The
p-value for the jth locus is calculated from the log-
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likelihood ratio between the full three-parameter model

2
log(lir ): Zﬂal(zj =a),
a=0

and the null model M,. The log-likelihood ratio statis-
tic A; has asymptotically a x* distribution with 2 degrees
of freedom (see [18]). Thus, the marginal p-value based
score is defined by:
Sp—value(j) = —logm(P(%zz > Aj))' (15)
The second alternative score for a locus j is derived by
calculating p-values for interaction models (abbreviated
as GxG models) between loci j and &, for all k, using the
logistic regression model:

log[ﬁ ): Bo + Bil(Z; > 0) + B,I(Z, > 0) + B5I(Z; >0 and Z;, > 0)

The fitted interaction models have four parameters
analogously to the elementary model M,, and the corre-
sponding log-likelihood ratio statistic Ay follows asymp-
totically a y* distribution with three degrees of freedom.
The interaction p-value based score is thus defined by:

SGxG’ p—value(j) = e IIIQLX {_ loglO(P(%§ > Ajk))}' (16)

=1,...,.L,k#j

A similar p-value could alternatively be calculated
using the Mantel-Haenszel test (see, e.g. [15]).

The third alternative is similar to the second one in
the sense that it tests marginally (in the posterior sense)
the disease association for each pair of loci. However,
the score is based on Bayes factors [19]:

. P(Data|M(j,k))
= l _— 7 77 ,
Scxc, 5r(7) k—l?f}k#{ 08( P(Data]Mg) (17)

where

5
P(Data | M(j, k) = %z P(Data| M,(j, k), (18)

a=3

where P (Data | M, (j, k)) is the marginal likelihood
based on the two-locus elementary model M, (j, k) (see
Bayesian multilocus association model), and M is the
null model according to which all individuals have the
same disease probability. Thus, the probability of the
data under the two-locus association model (18) is given
by a mixture of three interaction models of different
complexities, each having a prior weight of 1/3. (As an
alternative to averaging over the three models, we also
considered taking the maximum over the models;
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however, no notable changes in the results were
detected.) Notice the difference between the Bayesian
scores (13) and (17). In (13) the posterior probability of
disease association for locus j is obtained by summing the
posterior probabilities of all models in which j is included.
In (17) the posterior probability of association for locus j is
based on a single two-locus interaction model (which,
however, is a mixture of three models) maximizing the
probability of data. Analytical expression for the above
Bayes factor is based on the derivations provided in the
section Bayesian multilocus association model.

Simulated data sets

As the basis of our simulations we use data on 2131 real
human subjects with approximately 500,000 SNPs from
the autosomal and X chromosomes. The data belong to
GenMets sample collected as part of the Health2000
study. Less than 0.1 percent of the observed SNPs were
missing in the original data. For the purposes of the
simulation study, we impute the missing values by draw-
ing the missing alleles from the marginal allele distribu-
tions of the corresponding SNPs. Further details about
the characteristics of the data can be found from pre-
viously published studies utilizing the data [20,21]. We
carry out experiments with two types of data sets: smal-
ler data sets consisting of 460 SNPs are used in replicate
experiments to investigate the average performance
under various biological scenarios, and larger whole
chromosome data sets consisting of approximately 8,700
SNPs are used as examples of the performance in a
computationally more challenging scenario.

The simulated data sets for the replicate experiments
contain subsets of the actual genotype data and the dis-
ease status is generated for the corresponding indivi-
duals according to one of three different disease models,
inspired by the simulation settings used in [2] and [4].
This mechanism of data synthesization preserves well
the level of challenge related to screening disease-related
loci from real data. The outline of the simulation proce-
dure for generating a single data set is as follows:

1. We specify genotype relative risk (GRR), minor
allele frequency (MAF) for the causal SNPs, and a
generative model for the disease status (see below).

2. We randomly select from among the 500,000 ori-
ginal loci four causal SNPs from different chromo-
somes whose empirical allele frequencies (calculated
from all 2131 individuals) match closely (K1%) the
specified MAF. For each of the selected causal SNPs,
we select the genomic area surrounding the causal
SNP such that 20 closest flanking SNPs having MAF
> 0.1 on both sides of the SNP are included in the
area. The restriction to SNPs with MAF > 0.1
reflects the ascertainment bias, and is similar to the
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simulations in [4]. The true causal SNP is then
excluded from the data for the corresponding area,
which mimics the situation where causal variants are
linked to the genotyped loci but their exact locations
remain hidden in a study. This procedure yields 4
genomic intervals, each of length 40 SNPs, such that
the causal SNPs are located in the centers of the
intervals (but not included in the observed data).
These intervals represent disease associated genomic
areas. We note that the linkage between the causal
SNP and the neighboring SNPs is not constant in
the resulting data sets; however, the results are aver-
aged over in this respect in the simulations.

3. We randomly select three intervals of length 100
SNPs from chromosomes not harboring any of the
selected causal SNPs. These intervals represent
genomic areas not associated with the disease.

4. We concatenate the genomic intervals to a multi-
locus genotype sequence of length 460 SNPs such
that the intervals from Step 3 are inserted between
the disease associated intervals from Step 2.

5. Based on the four causal SNPs and the specified dis-
ease model, we generate a disease status for each of
the 2131 individuals in our real genotype data using
their observed genotypes. We select the values of the
parameters in the disease models to get a prevalence
of 40 percent (for details see below). This leads to
approximately 850 observed cases in a single data set.
6. We select randomly the controls from the remain-
ing set of appr. 1280 individuals to obtain a data set
with an equal number of cases and controls. The final
data consist of the genotypes of the selected cases
and controls at the 460 SNPs and their simulated dis-
ease statuses according to the generating model.

We generate 100 replicates of synthetic data sets for
each combination of the simulation parameters (for
details see below) and use these to assess the relative
performance of the association mapping methods con-
sidered. Let jj, ..., j4 denote the causal SNPs selected.
The following three models are used for generating the
disease statuses:

1(Z;, >0)+1(Z;,>0)+I(Z;, >0)+I(Z ;, >0) (19)

7 =By *GRR

Z;>0and Z;,>0 Z;;>0and Z;,>0)

7 =By * GRR" )+ GRR' , (20)
and
7=By* GRRI(ZI»1>O and Z;,=0y"2;, GRRI(ZM >o)/2, 1)

where [, is baseline risk chosen such that the result-
ing prevalence meets the value specified in Step 5
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above. According to the first generative model, the risk
of having the disease increases multiplicatively (i.e. addi-
tively on the log scale) by (GRR - 1) * 100% whenever
any of the loci involved has at least one disease-related
allele. According to the second model we have two pairs
of interacting loci, (ji, j») and (js, j4), such that the risk
of having the disease is increased by (GRR - 1) * 100% if
both loci in either pair have at least one risk allele, and
the risk is multiplicative across the locus pairs. The
third generative model requires simultaneously that
Z;, =0, Z; =0 and Z; >0, before the risk
increases. This increase is then multiplicative with the
increase caused by j, alone. The generative models will
be referred to as “multiplicative”, “threshold” and “tri-
plet”, respectively.

In the simulation setup, we use values: GRR = (1.3,
1.6, 2.0) and MAF = (0.05, 0.1, 0.2) for the causal SNPs.
For each of these MAF values, the original data set
includes more than 23,000 SNPs to choose from. The
simulation setup thus leads to 27 different parameter
settings (9 for each of multiplicative, threshold and tri-
plet generative models) and 100 replicate data sets are
generated for each setting.

In addition to the 2,700 data sets of size 460 SNPs
generated in the way described above, we simulate two
whole chromosome data sets which include approxi-
mately 8,700 SNPs each. These data sets are generated
using the threshold model with values GRR = (1.6, 2.0)
and MAF = 0.2. The disease associated genomic areas
and disease statuses are generated exactly as before,
except that chromosome 21 is excluded as a possible
origin for any of the causal SNPs. The areas not asso-
ciated with the disease are created by dividing all SNPs
in the 21st chromosome into five intervals of approxi-
mately the same size, and the complete data sets are
obtained by inserting the disease associated genomic
areas between these intervals.

Specification of the search parameters

As the initial model for the search, we used the empty
model which includes no SNPs. To fully specify the
search algorithm, K and Ny, must be set, where K is
the number of elementary models whose combinations
define the search space and Ny, is the number of itera-
tions in the stochastic search algorithm. These para-
meters were specified and the convergence of the search
was monitored in the different simulations as follows:

« In the analyses of the data sets with 460 SNPs we
used K = 5, 000 and N, = 200, 000. The conver-
gence of the search algorithm is investigated by
manually inspecting the marginal likelihood trace
plots for approximately ten different data sets and
the convergence was always reached within the first
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20,000 iterations. The same values were used in the
search for all the data sets.

+ In the analyses of the two whole chromosome data
sets we used K = 50, 000 and Nj., = 3, 500, 000.
The convergence of the search was investigated by
manually inspecting the trace plot after each 500,
000 iterations. For both data sets, the convergence
was reached during the first set of 500,000 iterations.
Further, the highest scoring model did not change
after the first 500, 000 iterations in either of the
analyses.

Although the likelihood (8) is based on a prospective
model (see the section Bayesian multilocus association
model), we can utilize the prior knowledge that the
numbers of cases and controls in a data set are equal by
selecting the hyperparameter ¢ in the distribution (9) to
reflect this information. This hyperparameter specifies
the distribution of the disease probability parameters,
and specifically, by selecting ¢ > 1 we give more weight
to disease probabilities close to 0.5. In the supplemen-
tary material of their article, Marchini et al. interpret
the hyperparameter in terms of odds-ratios, and con-
clude that hyperparameter values larger than unity are
better in line with odds-ratios one would expect from
typical diseases than values less than unity [5]. If not
stated otherwise, we used « equal to 3 in our analyses.
However, we note that this choice is still fairly non-
informative, and the results obtained were practically
identical when o = 1 was used (see the next section).
Furthermore, in the replicate simulations we used the
value 1/460 for the structure parameter ¢ in (11). In the
investigation of the sensitivity of the inferences with
respect to the priors, we considered also values o = 1, 3,
10 and & = 1/46, 1/460, 1/4600. In the whole chromo-
some analyses we used ¢ = 1/1000.

Results

Simulations

The statistical performance of a method can be evalu-
ated by considering a subset of highest ranking SNPs
and investigating how many disease associated areas are
detected by these SNPs and how many false positive
findings, i.e. SNPs from outside of the disease associated
areas, are included in the subset. To refrain from fixing
the size of the subset, we utilize a graphical representa-
tion where the number of disease associated areas
detected is plotted against the count of false positive
SNPs. We call these curves ROC curves due to the
apparent similarity with the commonly used receiver
operating characteristic (ROC) curves [22], where the
true positive rate is plotted against the false positive
rate. However, in our presentation the true positive rate
is replaced by the number of disease associated areas
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detected, because we do not expect that all SNPs within  value was nearly identical with the curve shown in the
a single disease associated area would be assigned high  figure (exact results not shown). Note that this baseline
scores. Figures 2, 3 and 4 show the ROC curves for the curve is not a straight line, because, unlike in standard
BMA (blue) and p-value (red) methods in the replicate ROC curves, the vertical axis does not here represent
simulations when the data sets are generated using mul-  the number of true positive SNPs, but the number of
tiplicative, threshold or triplet models, respectively. The true positive disease associated areas detected. The fol-
curves are averaged by calculating the mean count of lowing conclusions can be drawn from the figures:
false positive SNPs in the 100 replicate data sets for

each number of disease associated areas detected. The + Detection of causal areas improves with increasing
vertical axis corresponds to the number of detected dis- GRR and MAF. Especially under the threshold and
ease associated areas and the mean count of false posi- triplet simulations, if the conditions GRR > 1.6 and
tives is shown on the horizontal axis. Variability over MAF > 0.1 are not satisfied, no method is clearly
data sets is displayed by the 2.5th and 97.5th percentile better than the baseline.
curves (dotted blue) for the BMA method. These per- + There is considerable variability between the
centiles represent the tails of the distribution of counts curves for different data sets, as can be seen from
of false positives evaluated at each number of disease the wide 95% intervals for the curves. This is
associated genomic areas detected. When interpreting expected as the data sets are based on subsets of
the results, the red curve for the threshold model with real genotype data and may exhibit different levels of
GRR = 1.3 and MAF = 0.05 (Figure 3, lower left-hand linkage between the causal and neighboring SNPs.
panel) can be used as a baseline showing the highest + The performance of the methods is highest with
relative false positive rate. When we decreased the effect multiplicative data sets and lowest with triplet data
size further from 1.3 to 1, the resulting curve for the p- sets.
GRR=2, MAF=0.05 GRR=2, MAF=0.1 GRR=2, MAF=0.2
4 4V 4V
2 2| 2
ok 0 0
0 10 20 0 10 20 0 10 20
GRR=1.6, MAF=0.05 GRR=1.6, MAF=0.1 GRR=1.6, MAF=0.2
4 4% 4(
2 2 2|
ok 0 0
0 10 20 0 10 20 0 10 20
GRR=1.3, MAF=0.05 GRR=1.3, MAF=0.1 GRR=1.3, MAF=0.2
4
2
0l— ok ok
0 10 20 0 10 20 0 10 20

Figure 2 Mean ROC curves, multiplicative model. The figure shows the average ROC curve (thick blue line) together with 2.5th and 97.5th
percentiles (dotted lines) for the BMA method (see the text for further explanation). For comparison, the average ROC curve corresponding to
the p-value method is shown (red line). The horizontal axis corresponds to the average count of false positives and the vertical axis shows the
number of detected disease associated areas. The plot in each panel is based on 100 simulated data sets. The data sets were generated
according to the multiplicative model, and the values of GRR and MAF parameters are shown on top of the respective panels. Notice that the
scale of the horizontal axis in this figure is different from the scales in Figures 3 and 4.
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Figure 3 Mean ROC curves, threshold model. The figure is interpreted similarly to Figure 2, except that the data sets were generated

according to the threshold model.
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Figure 4 Mean ROC curves, triplet model. The figure is interpreted similarly to Figure 2, except that the data sets were generated according

to the triplet model.
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« The mean curve for the BMA is consistently above
the p-value curve in triplet and threshold simula-
tions. In multiplicative simulations the curve for the
p-value is above the curve for the BMA, except
when MAF = 0.05 and GRR = 1.3 or 1.6. We note
that when the signal gets stronger, even the marginal
p-value is able to identify interacting SNPs without
main effects, because such SNPs show some effect
also marginally when averaged over the other SNP.

For clarity, the ROC curves for the GxG p-value and
GxG BF methods are excluded from Figures 2, 3 and 4.
Usually these curves reside between the p-value and
BMA curves (exact results not shown).

To numerically compare the alternative methods, we
normalize the axes in our ROC curves to unity and
calculate the area under the ROC curve (AUC). In
general, the higher the AUC value, the better a
method is performing in the identification of the dis-
ease associated genomic regions. We performed a
pairwise comparison of the results for each data set
created in the replicate simulations between BMA and
the alternative methods (p-value, GxG p-value and
GxG BF). Two different criteria are used: first, the
AUC value; second, the location accuracy. The loca-
tion accuracy is defined by taking the highest ranking
SNP and measuring its distance in terms of SNP mar-
kers to the nearest causal position. If the highest rank-
ing SNP resides outside of any causal area the distance
is set to be the maximum possible value (which equals
20, since all disease associated areas had length 40
and the true causal SNPs were located between the
20th and 21st SNPs). However, in the triplet simula-
tions we modify the location accuracy criterion so that
we only consider SNPs outside the causal area related
to the causal SNP Z; in Equation (21). The reason
for this is that the SNP Z; is the only SNP in the
triplet model (21) which has a main effect, and for
this reason it is usually easiest to detect and gets the
highest rank. In the multiplicative simulations the
location accuracy is already investigated using causal
SNPs with main effects, therefore it would be unne-
cessary to repeat this with the triplet simulations. The
results of the comparisons are jointly presented in Fig-
ures 5 and 6, and they reveal that:

+ When AUC is considered, BMA is significantly
better than any other method in triplet simulations,
and, in threshold simulations, only the GxG BF
method is competitive with the BMA method. On
the other hand, in multiplicative simulations, espe-
cially when the signal is strongest (upper right cor-
ner), BMA gets lower AUC values than the
alternatives.
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+ When the location accuracy is considered, BMA
has consistently better or approximately equal per-
formance compared to the alternatives. In multipli-
cative data sets the preference for the BMA is
strongest.

The most striking feature in the results is the fact that
the BMA method is clearly inferior in terms of AUC
when the data sets are generated according to the multi-
plicative model and the signal is strongest, and, at the
same time, clearly superior to the other methods with
multiplicative data sets when measured in terms of loca-
tion accuracy. The relatively low performance of BMA
in terms of AUC for this setting can be explained as fol-
lows. When the signal was strongest and the risk
increased multiplicatively over the causal loci, it hap-
pened with some few data sets that BMA did not show
any signal to one of the four causal loci. Consequently,
many false positives needed to be included before all
four disease associated areas could be appropriately
detected. This is also visible in Figure 2, where, for
example, in the panel corresponding to GRR = 2.0 and
MAF = 0.2 the mean ROC curves for BMA and p-value
are overlapping up to three detected causal areas, but
the 97.5th percentile deviates strongly from the mean
curves at the level of four detected disease associated
regions. The reason why models with four causal SNPs
included sometimes get lower posterior probabilities
than models with three causal SNPs can be explained by
considering the generating multiplicative model. When
the increase in risk is maximal, the risk is already con-
siderably high after including any three SNPs in the
model, and, consequently, only a minor increase in risk
is left to be explained by the fourth causal SNP. Thus,
the benefit from adding this particular SNP to the
model will not always compensate the penalty resulting
from the corresponding increase in the number of para-
meters. On the other hand, the location accuracy criter-
ion only compares the location accuracy of the highest
ranking SNP in the data set, and is therefore unaffected
by this phenomenon.

As a final illustration of the results from the replicate
simulations, Table 1 shows summary information about
the variation in posterior odds values that was observed
in the replicate simulations for SNPs in disease asso-
ciated areas with different levels of MAF and GRR.
These results confirm the expectation that the larger the
effect, the higher the scores related to the disease asso-
ciated areas. The table also shows the proportion of
data sets in which some SNP from a disease associated
area was assigned the highest score among all SNPs in
a data set. Because the disease associated areas cover
160/460 ~ 0.35 of the sequence in these data sets, the
baseline proportion is about equal to 0.35. The results



Marttinen and Corander BMC Bioinformatics 2010, 11:443
http://www.biomedcentral.com/1471-2105/11/443

Page 12 of 20

GxG p-value GxG BF

p-value

Multiplicative

0.05 0.1 0.2
(BMA) 259/312 (alt)

0.05 0.1 0.2
(BMA) 250/326 (alt)

0.05 0.1 0.2
(BMA) 247/299 (alt)

Threshold

0.05 0.1 0.2
(BMA) 406/368 (alt)

0.05 0.1 0.2
(BMA) 518/299 (alt)

0.05 0.1 0.2
(BMA) 373/390 (alt)

2.0 2.0
—
<@
Q16 1.6
S
|_

1.3 1.3

0.05 0.1 0.2 0.05 0.1 0.2
(BMA) 514/354 (alt) (BMA) 506/373 (alt)

Figure 5 Comparison of AUC. The figure summarizes pairwise comparisons based on AUC values between BMA and alternative methods.
There are nine panels in total, corresponding to all possible pairs of generating model (multiplicative, threshold, triplet) and alternative method
(GxG p-value, p-value and GxG BF). The rows of panels correspond to different generating models, as specified on the left side of the rows, the
columns of panels correspond to comparisons with different alternative methods, which have been specified on top of the columns. Each panel
is divided into nine cells, and each cell summarizes results from one hundred simulated data sets. MAF values 0.05, 0.1 and 0.2 are in columns 1-
3, respectively, whereas GRR values 1.3, 1.6 and 2.0 correspond to the rows 1-3 (from bottom to top), respectively. For each cell, we calculated
the number of times AUC value was higher/lower for BMA than for the alternative method among 100 simulated data sets, whenever the
methods had different values. A cell is colored to reflect the result of this comparison, and the colors are interpreted as follows: Red: BMA
achieves a higher AUC value more often than the alternative method and the difference is statistically significant. Light red: BMA achieves a
higher AUC value more often, but the difference is not statistically significant. White: the difference between the number of data sets in which
BMA gets a higher score and in which BMA gets a lower score is less than 5, meaning that there is in practice no difference between the
methods. Light blue: BMA achieves a higher score less often than the alternative method, but the difference is not statistically significant. Blue:
BMA achieves a higher score less often than the alternative method, and the difference is statistically significant. The statistical significance of the
difference is measured using a two-tailed p-value based on a binomial distribution using significance level of 0.05. Below each panel we show
two values a/b, where a is the number of times BMA gets a higher AUC score, and b the number of times BMA gets a lower score than the
alternative method over all the nine cells.

0.05 0.1 0.2
(BMA) 495/366 (alt)

confirm that when GRR = 1.3 or 1.6 and MAF = 0.05 or  average higher rankings to SNPs from disease associated

0.1 in the threshold simulations, or GRR = 1.3 and
MATF = 0.05 in the triplet simulations, the improvement
in the detection of disease associated areas provided by
the BMA method is negligible.

The results for the whole chromosome analyses are
shown in Figure 7. These results illustrate in particular
what benefits BMA based approach can provide over p-
values when applied to larger genomic segments. For
both data sets analyzed, the BMA method gives on

regions. The benefit is clear especially when GRR = 2.0
and MAF = 0.2, when the BMA is able to identify all
four disease associated areas whereas p-value misses one
disease associated area completely.

Time intensity of the methods

Obviously, calculation of the marginal p-values is the
optimal approach in terms of time intensity as the time
required is linear with the number of SNPs L in a data
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Figure 6 Comparison of location accuracy. The figure summarizes pairwise comparisons of location accuracy between BMA and alternative
methods. The figure should be interpreted analogously to Figure 5, except that the comparison is based on location accuracy instead of AUC
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set, whereas going through all gene pairs for obtaining
the GxG p-values takes a time proportional to ( 5)
The calculation of GxG BF scores takes approximately
one third of the time required for the calculation of
GxG p-value scores and this ratio does not depend on
the characteristics of simulated data sets. Most of the
calculation time for GxG p-values was consumed by the
fitting of the logistic regression model, for which pur-
pose we used glmfit from the Matlab statistics toolbox.
The numerical fitting takes considerably longer time
than the analytical evaluation of the GxG Bayes factors.
Notice also that GxG Bayes factors are based on the
average of three models as opposed to the single model
in the GxG p-value. The time consumed by the stochas-
tic search algorithm for BMA depends on the number
of elementary models K, whose combinations define the
search space, and the number of iterations of the search
algorithm. In our analyses of the chromosome-wide data
the calculation of all GxG Bayes factors took about 12
hours on a single desktop computer, while the stochastic

search required only about 15 minutes when GRR = 1.6
and 50 minutes when GRR = 2.0. This difference in the
times is a consequence of the fact that when the signal
is strong the algorithm visits higher-order models more
often and the evaluations of such models take longer.

Sensitivity to prior

The sensitivity of the BMA score, i.e. the logarithm of the
posterior odds, to different choices of prior parameters is
illustrated in Figure 8, which shows the results for a ran-
domly selected threshold data set with GRR = 1.6 and
MAEF = 0.2 using three alternative hyperparameter or
structure parameter values. By examining Figure 8, it is
obvious that the structure prior parameter ¢ has a consid-
erable effect on the calculated BMA scores. In particular,
making ¢ larger increases the variance of the scores. On
the other hand, the hyperparameter has only a small
impact on the results, as the curves in the second plot in
Figure 8 are very closely overlapping. Notice that few
downward “spikes” in scores in the lower plot were not
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Table 1 SNP posterior odds summaries

Type GRR MAF Max Score Accuracy
Multiplicative 13 0.05 [-6.1,1.6] 0.57
13 0.1 [-4.6,7.0] 0.89
13 0.2 [20,11.3] 0.96
1.6 0.05 [-6.0,6.8] 0.88
1.6 0.1 [-0.544.9] 0.96
1.6 0.2 [06,71.9] 1.00
20 0.05 [-0.6,23.9] 0.95
20 0.1 [1.2,77.6] 1.00
20 0.2 [3.8,1294] 099
Threshold 13 0.05 [-6.8-1.0] 038
13 0.1 [-6.4,-0.6] 034
13 0.2 [-6.20.2] 0.55
1.6 0.05 [-70-1.3] 0.34
1.6 0.1 [-74,03] 0.38
1.6 0.2 [-34,163] 0.96
20 0.05 [-6.3,-0.6] 040
20 0.1 [-6.1,8.1] 0.80
20 0.2 [-0.7,43.5] 1.00
Triplet 13 0.05 [-6.2-1.3] 0.28
13 0.1 [-6.3,1.1] 041
13 0.2 [-7.7,0.5] 047
16 0.05 [-6.9,0.6] 041
1.6 0.1 [-9.9,0.6] 059
1.6 0.2 [-54,4.6] 0.85
20 0.05 [-7.2,1.6] 043
20 0.1 [-5511.7] 0.80
20 0.2 [-2.7,22.8] 0.95

The table shows summary information about the maximum BMA scores, i.e.
log posterior odds values, obtained for SNPs residing in the causal areas in
the simulated data sets. The Max Score column reports the empirical 95%
interval for the highest score observed for a SNP within any causal area in a
data set. The Accuracy column reports the proportion of all data sets in which
the SNP assigned the highest score among all SNPs in a data set belonged to
a causal area. The values reported on each row are based on 100 simulated
data sets.

caused by different prior parameters but by the fact that
the search algorithm failed in some analyses to visit a
low-scoring model visited in other analyses, and, conse-
quently, the posterior odds for the corresponding SNP
were exceptionally low. Such problems could be circum-
vented by running a longer search. However, as these
downward spikes were always observed in SNPs that
would nevertheless be assigned low scores in the end, we
do not consider this to represent a serious issue. Of
course, there is no absolute guarantee that such events
would not happen for SNPs that should in reality get
high scores, unless the search is run infinitely long. In
practice this is still unlikely to happen, because the search
is directed toward models with high scores.

The prior on the model structure affects the calcu-
lated model averaged results in two ways. First, the
prior probabilities of the models over which the
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averaging is perfomed change as a function of the struc-
tural prior. Second, the set of models over which the
averaging is done can change as well, because the
MCMC algorithm will eventually traverse a subspace of
different models. A major challenge in specifying rea-
sonable priors is that there is a large difference in the
numbers of models of different dimensions. For exam-
ple, a single SNP can be selected to the model in L
ways, where L is the total number of SNPs, two SNPs
can be selected in ( %g ways etc. If we specify a reason-
able prior on the number of SNPs, e.g. a binomial distri-
bution with some mean g, then adding a SNP to the
association model decreases the prior probability
approximately by a factor equal to u/L: When L
becomes large the factor diminishes. Thus, although the
models of higher dimension might together affect the
posterior probabilities significantly, any single model of
higher dimension is per se so improbable that an
MCMC algorithm will only seldom accept a visit to
such a model and consequently the search process will
visit only a fraction of the putative higher dimensional
models. The sensitivity of the Bayesian model averaging
to the prior probabilities on model structure seems not
to be specifically related to our formulation of the asso-
ciation model. For example, [4] used Bayesian graphical
models to identify disease associations. We have imple-
mented the approach described in their article, except
that the posterior probabilities are calculated by using
(12), instead. Figure 9 shows the results from that alter-
native method for a randomly selected synthetic thresh-
old data set. The data are analyzed with three different
Poisson priors on the number of disease associated
components in the graph considered, corresponding to
the mean parameters 0.1, 0.01, 0.001, where 0.01 is the
value used in [4]. However, their prior definition leaves
some room for interpretation. Namely, it is not explicitly
stated how the prior probability mass is distributed over
the different models having the same number of disease
associated components in the graph. Thus, the Poisson
prior can be considered to imply either that the Poisson
probability mass p(K) is evenly distributed among all
models with K disease associated components, or that
all possible models in the considered model space have
a prior probability directly proportional to p(K). The
former interpretation leads to an extremely conservative
prior, which is unlikely to lead to the detection of any
disease associations, and thus, we chose the latter inter-
pretation in our implementation. Notice that although
the Poisson prior with mean 0.01 seems conservative
under the latter interpretation, as the model with no
associations is approximately 100-fold more probable
than any particular model with a single association, the
total prior probability given to models with associations
is still large compared to the probability of no
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Figure 7 Whole chromosome examples. The figure shows results for the two simulated whole chromosome data sets. The two panels on top
show BMA and p-value scores for each sequence position in the first data set, the lowest two plots show corresponding results for the second
data set. The numbering of the sequence positions is the same in all panels, and it is shown only below the lowest panel. The four disease
associated areas are highlighted using grey backgound. The highest score within each disease associated area is marked by a red circle and its
ranking among all SNPs is shown next to the disease associated area. The data sets were generated using the threshold model and the values

association, since the number of models with at least
one or more associations is very large. These observa-
tions illustrate well the challenge related to the choice
of a sensible prior in the current context, as one needs
to balance between the two extremes of assigning too
little or too much prior belief in the existence of
associations.

Discussion

Rationale of the multilocus modeling

A strong rationale behind the models which involve
multiple SNPs simultaneously is that only the SNPs pro-
viding additional information about disease risk over the
SNPs already included in the model have a non-negligi-
ble chance of becoming eventually added to the model.
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Figure 8 Prior sensitivity illustration. The figure shows the effect of varying the priors when calculating BMA scores for a single data set. In
the upper panel, values 1/46, 1/460, 1/4600 (green, blue, red) were used for the structure prior parameter ¢ with a fixed hyperparameter o equal
to 3. In the lower panel, hyperparameter values 1, 3, 10 (green, blue, red) were used for e in the analysis with the structure prior parameter ¢
fixed to 1/460.

Therefore, fewer SNPs corresponding to the strongest
signals per disease associated genomic area attain high
scores when the models are averaged over (for an illus-
tration, compare panels a and c in Figure 10). From the
theoretical point of view, the expected benefits include
the lower number of false positives, improved power,
and improved localization of the causal SNPs. In the
GWA setting, these advantages have been illustrated in
practice using a multilocus regression model [7], how-
ever, without including the gene-gene interactions.

Our primary target was to develop a model-aver-
aging approach in which gene-gene interactions are
explicitly considered. Another possibility for imple-
menting this would be to consider enumeratively all
single-SNP and GxG models as in our approach, while
doing the model averaging over all these models. We
considered this alternative at an initial stage of our
method development; however, such an approach was
discovered to generally suffer from a specific defi-
ciency. To illustrate this, suppose for example that
there exist two separate underlying interactions for a
particular data set, i.e. corresponding to four causal
SNPs in total. Then it is likely that the individual GxG
models for each of these interactions are assigned high
scores relative to the null model. Nevertheless, due to
stochasticity of the genotype counts, it may also easily
happen that one of the GxG models is assigned a
clearly higher score than the other. Because this

model includes only one of the interactions, and
excludes the other, evidence against the other interac-
tion is obtained. As a consequence of this, the interac-
tion associated with the lower score will get a very
low posterior weight when the averaging over all mod-
els is performed (for an illustration, compare panels b
and c in Figure 10). To resolve this issue, it is neces-
sary to have the ability to include both interactions
simultaneously in a model. This insight from the
initial investigations led us to propose our final
approach based on the combined models. An addi-
tional benefit of the combined models is that they can
represent even higher-order interactions, however, this
comes with the expense of an increase in the number
of redundant parameters, which is likely to reduce the
applicability when the number of SNPs involved in the
combination is large.

Summary of the results

To compare our novel approach with some standard
approaches we carried out a comprehensive simulation
study. The simulation study was particularly challenging
as the causal variants were not included among observa-
tions in the simulated data sets. In the simulations,
three types of causal SNPs were considered, 1) SNPs
with main effects, 2) SNPs without main effects but
with a pairwise interaction effect, and 3) SNPs included
in a three-way interaction without pairwise effects. The
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Figure 9 Example, Bayesian graphical models. The top three panels show marginal probabilities of association obtained by a Bayesian
graphical model analysis (see text). The results are shown for a single example data set generated according to the threshold model with GRR =
1.6 and MAF = 0.2. The results are obtained by using three different mean paramater values for the Poisson prior distribution and the values
used are shown in the labels of the panels. The SNPs with non-zero probabilities are further highlighted by red circles on top of each of the
panels. Disease associated genomic areas are indicated with gray background. The lowest panel shows the marginal p-values for reference.

results show that even if multilocus association findings
may lack statistical significance under stringent criteria
for the posterior odds score, the calculated relative
scores still often correctly highlight the disease asso-
ciated genomic areas.

The results concerning the detection rate versus false
positive rate can be summarized as follows.

+ When the causal SNPs had main effects, the BMA
did not provide improvement over the other meth-
ods. On the contrary, some signals detected by the
other methods (p-value, GxG p-value, GxG BF)
investigating SNPs or SNP-pairs marginally went
undetected in some of the simulations where the
causal SNPs had main effects.

+ When causal SNPs with two-way interaction
effects were considered, all methods considering
GxG interactions (BMA, GxG p-value, GxG BF)
yielded more satisfactory results than the marginal
p-value.

+ When causal models with three-way interactions
were considered the BMA showed better perfor-
mance than any of the alternatives.

The final aspect in the list above suggests that when
higher-order interactions are present in data, taking
them into account in the model may improve their
detection. However, we further note that as the effect
sizes got larger, even the simplest model, the marginal
p-value, was able to identify most of the causal areas,
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Figure 10 Naive Bayesian model averaging illustration. The figure shows association probabilities for SNPs in a single data set obtained
using three different approaches. The data set is generated according to the threshold model, i.e. it includes two pairs of interacting SNPs.
However, for purposes of illustration, this data set is simpler than those analyzed in the simulation experiments as the causal SNPs are included
in this data set. Furthermore, the relative risks for the different interactions were selected unequal: the interaction involving SNPs denoted by red
circles has relative risk 2.0 and the one involving SNPs denoted by magenta squares has relative risk 1.8. The probabilities in panel a) are
calculated by comparing a single-SNP association model with the null model for each SNP in turn. Panel b) shows the probabilities from naive
model averaging, where the averaging is done over all elementary single-SNP and GxG models selected for the analysis, but not including
combined models. Panel ¢) shows the probabilities obtained from the full BMA analysis.

even if the causal SNPs did not have main effects. The
improved localization of the BMA method was most
clearly seen when causal SNPs had main effects.

In general, the GxG Bayes factor seemed more compe-
titive than the GxG p-value when compared with the
BMA method. This may be partly explained by the fact
that the GxG p-value handles only a single interaction
model at a time, whereas the GxG BF considers an aver-
age of three different models.

Especially in the simulations with underlying three-
way interactions, the model corresponding to the GxG
p-value may be too limited to appropriately fit the com-
plex interaction model, and consequently, a model with
more parameters might perform better. On the other
hand, increasing the complexity of the model would
decrease the performance of the GxG p-value in the
simpler simulation settings due to additional redundant
parameters.

Issues in the Bayesian model averaging

The bottleneck in terms of computational complexity in
our approach is the enumeration of all locus pairs once
and evaluating the posterior probabilities of the corre-
sponding elementary models. After this has been done,
the stochastic search increases only modestly the total
time required. The O(L?) time complexity seems una-
voidable for any method explicitly considering gene-
gene interactions. Although the enumeration of all locus
pairs is feasible with present day cluster computers even
on the scale of GWA studies, a straightforward enhance-
ment in terms of time intensity is to carry out a pre-
screening of SNPs using e.g. a marginal p-value test
with some liberal significance threshold, say, equal to
0.1. It is shown in [2] that such an approach leads to
approximately equal power in identification of gene-
gene interactions compared to the exhaustive enumera-
tion of all gene pairs.
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According to our experiences, the sensitivity with
respect to the prior on the model structure may repre-
sent the primary obstacle to be appropriately handled
when Bayesian model averaging type methods are
applied to data sets with a very large number of SNPs.
One solution provided by the Bayesian approach itself is
that, instead of uniformly decreasing the value of the
structure parameter ¢ (penalty from adding another SNP
to the model) as the number of SNPs in a data set
increases, we could assign different &; parameters to dif-
ferent SNPs based on external knowledge about the par-
ticular loci [11]. For example, & might be set equal to
0.01, 0.001 or 0.0001 depending on whether a SNP
belongs to a gene whose function is expected to be
related with the disease, any gene at all, or far away
from any known gene, respectively. There does not
seem to be a simple way for including continuous cov-
ariates in our model if one wishes to preserve the ability
to analytically integrate out the model parameters,
which constitutes the basis of efficient computation. On
the other hand, including categorical covariates (such as
sex, or age after some appropriate discretization) in our
model is straightforward in principle, by treating them
similarly as the observed genotypes. However, in prac-
tice the increase in the number of parameters may over-
whelm the benefits. A possible solution might be to
average over models such that the covariates are in turn
either included or excluded. Finding an optimal way of
doing this is subject to future research.

Conclusions
We have considered the problem of identifying disease
associated marker loci when several SNPs have a joint
effect on the disease probabilities. We have introduced a
novel Bayesian model averaging approach, whose advan-
tages include explicit consideration of the GxG interac-
tions, ability to describe higher-order interactions, and
the ability to evaluate the marginal likelihood analyti-
cally enabling efficient computation. Our approximate
model averaging algorithm makes it possible to include
GxG interactions in the analysis even with large data
sets. Furthermore, it would be fairly straightforward to
modify the algorithm for learning with other model
families than the one considered in this article, for
example regression models commonly utilized in genetic
association studies. Such a generalization would require
that the model parameters can be integrated out either
analytically or approximately using e.g. the Laplace
approximation (see the supplementary material of [5]).
To conclude, our simulations confirm that an appro-
priate approach to initializing a GWA screening is to
investigate marginally each SNP, either by p-values or
corresponding Bayes factors (see, e.g. [11]), as this is the
computationally most straightforward and fastest
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approach, and, in many cases, capable of finding the sig-
nals present in data. The relevance of the more complex
modeling approaches including GxG interactions is that
they may help to detect some causal SNPs which are
not visible marginally. Thus, in our opinion, using dif-
ferent approaches side-by-side may provide a more
detailed description of the data and aid in finding the
missing heritability in complex diseases [23].
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