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Abstract

Background: Multi-assembly problems have gathered much attention in the last years, as Next-Generation
Sequencing technologies have started being applied to mixed settings, such as reads from the transcriptome
(RNA-Seq), or from viral quasi-species. One classical model that has resurfaced in many multi-assembly methods
(e.g. in Cufflinks, ShoRAH, BRANCH, CLASS) is the Minimum Path Cover (MPC) Problem, which asks for the
minimum number of directed paths that cover all the nodes of a directed acyclic graph. The MPC Problem is
highly popular because the acyclicity of the graph ensures its polynomial-time solvability.

Results: In this paper, we consider two generalizations of it dealing with integrating constraints arising from long
reads or paired-end reads; these extensions have also been considered by two recent methods, but not fully
solved. More specifically, we study the two problems where also a set of subpaths, or pairs of subpaths, of the
graph have to be entirely covered by some path in the MPC. We show that in the case of long reads (subpaths),
the generalized problem can be solved in polynomial-time by a reduction to the classical MPC Problem. We also
consider the weighted case, and show that it can be solved in polynomial-time by a reduction to a min-cost
circulation problem. As a side result, we also improve the time complexity of the classical minimum weight MPC
Problem. In the case of paired-end reads (pairs of subpaths), the generalized problem becomes NP-hard, but we
show that it is fixed-parameter tractable (FPT) in the total number of constraints. This computational dichotomy
between long reads and paired-end reads is also a general insight into multi-assembly problems.

Introduction
Background
The last years have witnessed Next-Generation Sequen-
cing technologies applied to mixed settings in which the
input sample consists of different, but highly related,
genomic sequences. A major problem in this setting is
to assemble the NGS reads produced from these differ-
ent sequences, problem called multi-assembly [1].
An emblematic example is the multi-assembly of the

expressed transcripts of a gene from RNA-Seq reads
[2,3]. The RNA transcripts of a gene are concatenations
of exons, which can be shared among them, and whose
length is typically much longer than the short read

length. The RNA-Seq technology has proved essential in
characterizing gene regulation and function, understand-
ing development, disease, and disorders, including cancer
[4-7]. The most popular tool for multi-assembly of RNA-
Seq reads is Cufflinks [8], but the great interest in the
community has led to a recent proliferation of methods
and tools, such as [9-20]. Another example is the multi-
assembly of NGS reads from viral quasi-species [21].
Since many viruses, such as HIV or HCV, encode their
genomes in RNA rather than DNA, they lack DNA poly-
merase and are unable to repair mistakes in their gen-
omes as they reproduce. Over the course of infection, the
mistakes made in the replication of the virus are passed
down to descendants, producing a family of related var-
iants of the original viral genome, referred to as quasi-
species. Among all of the new quasi-species produced,
some may be more virulent than others, and it is of great
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epidemiological interest to identify them. Methods for
this problem include [22-27].
The vast majority of the multi-assembly tools are

genome-guided, in the sense that they have access to one
reference genome. Consequently, the analysis proceeds
by aligning the reads to this reference, and constructing
one of two major graph models. In the first, called an
overlap graph, the nodes stand for reads and the edges
stand for overlaps between reads. This model is
employed both for RNA-Seq reads (by Cufflinks [8]), and
for pyrosequencing reads from a viral population
(ShoRAH [25,26]). In the second model, called a splicing
graph and used mainly for RNA-Seq reads, the nodes
stand for contiguous stretches of DNA present entirely in
some transcript (pseudo-exons); its edges stand for reads
spanning two pseudo-exons and indicate that they are
consecutive in some transcript. This model is employed
by most of the other methods for the multi-assembly of
RNA-Seq reads [9-20]. Since both graph models arise
from alignments to a reference sequence, they are also
directed and acyclic (DAGs). Moreover, the nodes and
the edges of the graph are weighted according to the
observed coverage, and different strategies exist for inte-
grating them into the formulation of the multi-assembly
problem. For example, in Cufflinks [8], the weight of an
edge reflects the belief that its two endpoints originate
from different transcripts, and is computed using the per-
cent-spliced-in metric proposed in [28].

Motivation
Given an overlap or a splicing DAG, many methods
[8,19,20,25-27] model the multi-assembly problem as a
Minimum Path Cover Problem; these include the well-
known tool for RNA-Seq reads Cufflinks [8]. A path
cover in a directed graph G is a set of paths which cover
all the nodes of G. A minimum path cover (MPC) is a
path cover of minimum cardinality. Often, the edges of
the DAG are weighted, and one is then interested in a
minimum weight MPC. Even though this problem is in
general NP-complete (a path cover has cardinality 1 if
and only if the directed graph has a Hamiltonian path),
it is solvable in polynomial time on DAGs [29]. This
fact is one of the main reasons why the MPC Problem
has attracted so much interest. Therefore, it makes
sense to extend it with other biological information,
while maintaining its polynomial-time solvability.
In this paper we consider additional information aris-

ing from paired-end reads or long reads. Observe that,
currently, both graph models and the associated MPC
Problem include constraints only on pairs of nodes
which must be consecutive in the (same) genomic
sequence. However, on the one hand, most sequencers
produce paired-end reads; these two reads correspond

to nodes that must be in the same genomic sequence,
but they are no longer consecutive in it. On the other
hand, Third-Generation Sequencing technologies, like
Pacific Biosciences [30], produce long reads whose
length is in the range of thousands of base-pairs. If
properly error-corrected, they introduce additional con-
straints on the sequences of nodes which must appear as
consecutive in the same assembled genomic sequences.
In the case of a splicing graph, such additional con-
straints can be introduced even from short reads com-
pletely overlapping a short middle pseudo-exon (such as
in the case of alternative donor/acceptor sites [31]).
Two different problem formulations have been

recently proposed to better guide the multi-assembly
using paired-end or long reads. In the first [20], a partial
assembly of the RNA transcripts is assumed (transfrags),
and the following problem, which we call Minimum
Path Cover with Subpath Constraints (MPC-SC), is pro-
posed. Given a DAG G and a set of subpaths in G (the
transfrags, or the long reads), we are asked to find a
MPC such that each given subpath is contained comple-
tely in some path of the path cover. In [20], the authors
consider in fact the weighted version of the problem,
and propose a polynomial-time reduction to the classical
weighted MPC Problem. However, their reduction is
incomplete as it does not deal with the case when two
subpaths P1 and P2 are such that a suffix of P1 is a pre-
fix of P2. In the second formulation [19], given a DAG
G and a set of paired-end RNA-Seq read alignments to
the nodes of G, we are asked to find a minimum path
cover whose paths contain all given paired-end reads.
We call this problem Minimum Path Cover with Paired
Subpaths Constraints (MPC-PSC). In [19], the authors
tackle the MPC-PSC Problem by modeling it as the NP-
complete set cover problem.

Results and discussion
In this paper, we solve both the MPC-SC and the MPC-
PSC Problem. Namely, we state the MPC-SC Problem
more generally than in [20], and give a correct and
robust polynomial-time reduction of it to the classical
MPC Problem on a DAG. Denote by n the number of
nodes of the input DAG, by m its number of edges, by c
the total number of subpath constraints, and by N the
sum of their lengths. Constructing this reduction to the
classical MPC Problem requires a pre-processing step,
which, if implemented trivially, takes O(c2n2) time;
however, we can reduce that to O(N + c2) by use of a
suffix tree construction suitable for large alphabets [32],
and of an optimal-time algorithm for computing all
pairs longest suffix-prefix overlaps [33,34]. The com-
plexity of solving Problem MPC-SC thus becomes
O

(
N + c2 +

√
(n + c)

(
n2 + c

))
.
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We also consider the weighted version of Problem
MPC-SC, and show that it can be solved in time O(N +
(n + c)2 log(n + c) + (n + c)(m + c)) by a reduction to a
min-cost circulation problem on a network with flow
lower bounds only [35]. Moreover, we prove that the
MPC-PSC Problem itself is NP-complete, but we show
that it is fixed-parameter tractable (FPT) in the total
number of constraints on the DAG.
As a side result of this paper, we obtain a simple algo-

rithm for the classical minimum weight MPC Problem
running in time O(n2log n + nm), based on a recent
reduction to a network flow problem [36]. This
improves the current best bound O(n2 log n + nt(G)),

where t (G) ∈
{
m,m + 1, . . . ,

(
n
2

)}
is the number of

edges in the transitive closure of G, arising from the
reduction in [29].
In view of this computational dichotomy between

paired-end reads and long reads/transfrags, an alternative
title of this paper could have been “Long reads are better
than paired-end reads in multi-asssembly problems”.
In fact, in the experiments we conducted for our own
tool for RNA-Seq multi-assembly Traph [37,38], we fed
Cufflinks [8], IsoLasso [10], SLIDE [12] and Traph both
with single-end and paired-end reads, but did not notice
any significant change in the multi-assembly accuracy.
Nevertheless, an immediate solution to the negative
result concerning the complexity of the MPC-PSC Pro-
blem could be to simply transform paired-end reads into
long reads by a local assembly method which fills the gap
between them, such as [39,40].
As a preliminary experiment, in the Supplementary

Material we show the solutions of Problem MPC-SC on
simulated RNA-Seq data from six cancer-related genes.
These results are compared to the ground truth, and to
Cufflinks’ solutions (given that Cufflinks uses the classical
MPC model). These preliminary results indicate that,
thanks to the additional long read constraints to the MPC
problem, Problem MPC-SC reports more transcripts than
Cufflinks, and they are generally more accurate.
Both MPC-SC and MPC-PSC Problems are natural

extensions of the classical MPC problem, and can be
applied to any graph model for multi-assembly, such as
an overlap graph or a splicing graph. The MPC Problem
has received great interest in the multi-assembly commu-
nity, and pair-end reads, long reads, or transfrags are
either already, or expected to be easily available in the
near future. Our positive result concerning the MPC-SC
Problem, and the two proposed solutions for the MPC-
PSC Problem, give efficient ways to incorporate addi-
tional information that an NGS pipeline can provide.
Moreover, all of our solutions are based on easy to imple-
ment reductions, and resort to well-known problems in

combinatorial optimization, for which there are many
existing solvers.
Independently and parallel to this work, [41] gave ana-

logs of our Thm. 4 and Lemma 2 for Problem MPC-
PSC.

Methods
A faster algorithm for the weighted Minimum Path Cover
(MPC) Problem
Given a directed graph G, we say that a family
P = {P1, . . . ,Pk} of paths in G is a path cover of G if
every v ∈ V (G) belongs to some Pi. Throughout this
paper, we let n stand for the number of vertices of G
and m stand for the number of edges of G. A minimum
path cover (MPC) of G is a path cover of G of minimum
cardinality. If each edge e of G has a non-negative
weight w(e), then a minimum weight minimum path
cover is a minimum path cover P which minimizes the
sum of the weights of the edges of the paths of P , that

is,
∑

P∈P
Σe∈Pw(e).

A well-known result on path covers in directed acyclic
graphs (DAGs) is Dilworth’s theorem [42], which equates
the minimum number of paths in a path cover to the
maximum cardinality of an anti-chain (this cardinality is
sometimes called width); an anti-chain is a set of nodes
with no directed path between any two of them. A con-
structive proof of this theorem, due to Fulkerson [29],
shows that the MPC problem can be reduced to a maxi-
mum matching problem in a bipartite graph, as follows.
Given a directed graph G, let T(G) denote the transitive
closure of G, that is, the digraph obtained from G by
repeatedly adding, until no longer possible, an edge (u, v)
whenever (u, v) ∉ E(G) but there exist w ∈ V (G) such
that (u, w), (w, v) � E(G); we let t(G) denote the number
of edges of T(G). Note that if G is a DAG, then T(G) can
be computed in time O(t(G)). Fulkerson showed that a
MPC can be obtained by computing a maximum match-
ing in a bipartite graph associated to G, having two
copies of V (G) as nodes and the edges of T(G) as edges
(see Figures 1(a) and 1(b)). Therefore, using the
Hopcroft-Karp maximum matching algorithm, a MPC
can be computed in time O

(√
nt (G)

)
[43]. To compute

a minimum weight MPC, the same bipartite graph can be
constructed, having edge weights induced from path
weights in G. A minimum weight MPC corresponds to a
minimum weight maximum matching on this graph,
which can be computed in time O(n2 log n + nt(G)) [44].
A recent solution for the MPC Problem reduces it

instead to a min-flow problem [36], as follows. Each node
of G is replaced by an arc with lower bound 1 (all other
edges of G have lower bound 0), and a new global source s
and sink t are added to G and connected to all sources

Rizzi et al. BMC Bioinformatics 2014, 15(Suppl 9):S5
http://www.biomedcentral.com/1471-2105/15/S9/S5

Page 3 of 11



and sinks of G, respectively (see Figures 1(a) and 1(c)).
A min-flow on this digraph is a flow of minimum value
satisfying all lower bounds. The value of the min-flow on
this network equals the maximum size of an anti-chain of
G, and any decomposition of it into paths gives a MPC
[36]. A decomposition of a flow on a DAG into paths can
be computed in time linear in the number of edges, by tra-
versing the edges used by the flow [45]. A min-flow pro-
blem can be solved by two applications of a max-flow
algorithm [45]. Therefore, using the recent result on max-
flows [46], this approach finds a MPC in time O(nm).
If in the unweighted case, the complexity of the

method of [36] is incomparable with the complexity of
solving the MPC Problem by a maximum matching pro-
blem, in the weighted case, the method of [36] leads to
one of improved complexity. This is obtained by an
algorithm for the following restricted variant of the
min-cost circulation problem [45,47]: given a directed
graph, and a flow lower bound for each edge and a cost
per flow unit for each edge, the task is to find a circula-
tion of minimum total cost satisfying all lower bounds.
A circulation is a function assigning a flow value to
each edge such that the flow conservation property is
satisfied for all nodes; consequently, the flow network
cannot have sources or sinks.
To solve the minimum weight MPC Problem, we

extend the reduction in [36] by associating to the edges
either cost 0, if they correspond to the nodes of G or are
incident to s or t; or their weight in G, if they correspond
to edges of G. Moreover, we add a new edge from t to s
with lower bound 0 and having as cost the sum of all
edge weights (plus a positive constant if all are 0). This
implies that all min-cost circulations induce a min-flow
(removing the edge from t to s), and thus, by [36], induce

also a MPC that is of minimum weight; obviously, vice
versa, a minimum weight MPC induces a min-cost circu-
lation on the constructed flow network.
There are many algorithms and solvers for the min-

cost circulation problem, with various time complexity
upper bounds [47], for example O(nm log log C log
(nK)) [48], where C is the maximum edge bound, and K
is the maximum cost. If edges have only lower bounds,
as in our case, the min-cost circulation problem can be
solved in time O(n log C(m + n log n)) [35]; since we
have C = 1, this reduces to O(n2 log n + nm). Therefore,
we have the following theorem.
Theorem 1 A minimum weight MPC of a DAG with n

nodes and m edges can be computed in time O(n2log n +
nm), by a reduction to a min-cost circulation problem.

The new problem formulations
We first consider the problem arising from long reads, or
from transfrags. We introduce a slight generalization of a
path cover of a DAG G, namely a set of paths which
cover only a given subset V ′ of the nodes. We are also
given a subset E′ of the edges of G, and a family of sub-
paths P in in G that all have to be entirely covered by
some path of the path cover. We could have modeled
each edge constraint in E′ as a path of length 1 in P in ,
but for clarity, we keep these separate. Formally, we have:

Minimum Path Cover with Subpath Constraints (MPC-SC)
Problem INPUT: A DAG G and

1 A subset V ′ of V (G)
2 A subset E′ of E(G)
3 A family P in =

{
Pin
1 , . . . ,P

in
t

}
of directed paths

in G

Figure 1 In Fig. 1(a), an input DAG G. In Fig. 1(b), the reduction to the maximum matching problem: a bipartite graph B(G) having as vertices
two copies of V(G) and an edge between the first copy of v1 ∈ V(G) and the second copy of v2 ∈ V(G) iff there is a directed path in G from v1 to
v2. The edges of a maximum matching of B(G) are highlighted, and a MPC for G is obtained by putting v1 and v2 in the same path there is an
edge between v1 and v2 and is selected by the maximum matching. In Fig. 1(c), a network flow N(G) corresponding to G; the labels ‘1’ on some
edges are the lower bounds on that edges; all other edges have lower bound 0. The min-flow on N(G) has value 2; the edges with flow value 1
are highlighted; any decomposition of this flow into paths gives a MPC.
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TASK: Find a minimum number k of directed paths

Psol
1 , . . . ,Psol

k in G such that

1 Every node in V ′ occurs in some Psol
i

2 Every edge in E′ occurs in some Psol
i

3 Every path Pin � P in is entirely contained in some

Psol
i

We call the elements of the sets V ′ ,E′ , P in con-
straints, and we say that the k paths in a solution satisfy
these constraints.
Let us briefly argue that the solution in [20,

Sec. 2.4.1. and 2.4.2] for MPC-SC Problem (without
the generalization at points 1 and 2) is not complete.
(Actually, [20] tackles the Minimum Weight MPC with
Subpath Constraints Problem–see below–, but the
weights are not relevant for this discussion.) The idea
of [20] is to reduce this problem to the classical MPC
problem. Consequently, each subpath constraint P is
modeled by a single edge having the same endpoints
as P , which is subdivided by introducing a node vP in
the middle (which must be covered by the MPC). The
connections between the first or last node of P and the
other nodes of the DAG are maintained, but since the
internal nodes of P can no longer be required to be
covered by the path cover, they are removed. More-
over, for all nodes v1 and v2 such that there is a path
between v1 and v2 in the DAG using a proper subpath
of P, a new transitive edge (v1, v2) is added. However,
this reduction is missing the case in which two sub-
path constraints P1 and P2 are such that a suffix of P1
is a prefix of P2. As a matter of fact, our proof will
show that the most problematic case is when also a
suffix of different length of P1 is a prefix of some
other subpath constraint P3 (see Figure 2 and the
proof of Lemma 1).
In the second problem, we consider the weighted case,

with one further generalization, as follows. As also noted
by [20], in practice the paths in the path cover should
start only in source nodes or in a specific subset of other
nodes of G; similarly for their ending nodes. For example,
in our method for the multi-assembly of RNA-transcripts
[37,38], these nodes are identified when there is a sharp

increase/decrease in read coverage in the middle of an
exon, indicating the start/end of a transcript.

Minimum Weight Minimum Path Cover with Subpath
Constraints (MW-MPC-SC) Problem
INPUT: A DAG G and

1 A subset V ′ of V (G)
2 A subset E′ of E(G)
3 A family P in =

{
Pin
1 , . . . ,P

in
t

}
of directed paths in G

4 A superset S of the sources of G, and a superset T
of the sinks of G
5 A weight w(e) for each e ∈ E(G)

TASK: Find a minimum number k of directed paths

Psol
1 , . . . ,Psol

k in G such that

1 Every node in V ′ occurs in some Psol
i

2 Every edge in E′ occurs in some Psol
i

3 Every path P in ∈ P in is entirely contained in

some Psol
i

4 Every path Psol
i starts in a node of S and ends in a

node of T

5

∑
i∈{1,...,k}

∑
edge e∈Psoli

w (e) is minimum among all

tuples of k paths satisfying properties 1-4

When only paired-end reads are available, each such
pair of reads corresponds to a pair of subpaths that
must both be covered by the same path in the path
cover. Formally, we have:

Minimum Path Cover with Paired Subpath Constraints
(MPC-PSC) Problem
INPUT: A DAG G and

1 A subset V ′ of V (G)
2 A subset E′ of E(G)
3 A family P in =

{(
Pin
1,1,P

in
1,2

)
, . . . ,

(
Pin
t,1,P

in
t,2

)}
of

pairs of directed paths in G

Figure 2 In Fig. 2(a), subpath constraint P , in Fig. 2(b) the reduction of [20] which replaces path P by node vP connected to the end points of
P , removes all internal nodes of P , and adds all transitive edges from and to v1 and v2. In Fig. 2(c), a case not covered by the reduction in [20].
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TASK: Find a minimum number k of directed paths

Psol
1 , . . . ,Psol

k in G such that

1 Every node in V ′ occurs in some Psol
i

2 Every edge in E′ occurs in some Psol
i

3 For every pair
(
Pin
j,1,P

in
j,2

)
∈ P in , there exists such

Psol
i that both Pin

j,1 and Pin
j,2 are entirely contained in

Psol
i

The MPC with Subpath Constraints (MPC-SC) Problem
The unweighted case
In this section, we reduce the MPC-SC Problem to the
classical MPC Problem. We describe our reduction as a
sequence of commented algorithmic steps.
Step 1. for every (u, v) ∈ E′ do: V ′ := V ′\ {u, v};
If the MPC has a path P covering the arc (u, v), then P

also covers both u and v. Therefore, the constraints u, v
can be dropped from V ′ (if present).
Step 2. for every path Pin

j ∈ P in and for every edge

(u, v) ∈ Pin
j do:

V ′ := V ′\ {u, v} ;E′ := E′\ {u, v} ;
Similarly to Step 1, if the MPC has a path P covering a

subpath Pin
j ∈ P in , then P also covers every node and

edge of Pin
j , thus these constraints can be dropped from V ′

and E′ (if present).
Step 3. while there exist two paths Pin

i and Pin
j in P in

such that Pin
i is contained in Pin

j do:

P in := P in\Pin
i ;

After this step, no subpath constraint is completely
included into another; this is key for the correctness of
Step 4 below.
Step 4. while there exist two paths Pin

i , Pin
j ∈ P in

such that a suffix of Pin
i is a prefix of Pin

j do:

let Pin
i , Pin

j ∈ P in be as above and with the common

part (i.e., the suffix of Pin
i which is a prefix of Pin

j )

the longest possible;

let Pin
new := the path Pin

i ∪ Pin
j which starts as Pin

i and
ends as Pin

j ;

P in :=
(
P in\

{
Pin
i ,P

in
j

}
∪ {

Pin
new

})
;

In this step, we merge paths sharing a suffix/prefix.
We do this iteratively, at each step merging that pair of

paths for which the shared suffix/prefix is longest possi-
ble. The correctness of this step is guaranteed by
Lemma 1 below.
Lemma 1 If the MPC-SC Problem on an instance(
G,V ′,E′,P in

)
admits a solution with k paths, then also

the problem instance transformed by applying Steps 1-4
admits a solution with k paths, and this solution also
satisfies the original constraints V ′ , E′ , P in .
Proof The correctness of Steps 1-3 was argued next to

their introduction. Assume that G,V ′,E′,P in have been
transformed by these first three steps, and let

Pin
i ,P

in
j ∈ P in be such that their common part (i.e., the

suffix of Pin
i which is a prefix of Pin

j ) is longest possible.

Suppose that the original problem admits a solution

P sol =
{
Psol
1 , . . . ,Psol

k

}
such that Pin

i ,P
in
j are covered by

different solution paths say Psol
a and Psol

b , respectively.

We show that the transformed problem admits a solu-

tion P∗ =
({
Psol
1 , . . . ,Psol

k

} \ {
Psol
a ,Psol

b

} ∪ {
P∗
a ,P

∗
b

})
, having

the same cardinality as P , in which Pin
i ,P

in
j are covered

by the same path P∗
a , and P∗ also satisfies the original

constraints V ′,E′,P in .

Suppose that Pin
i starts with node ui and ends with

node vi, and that Pin
j starts with node uj and ends with

node vj . Let (cf. Figures 3(a) and 3(b)):

• P∗
a be the path obtained as the concatenation of

the path Psol
a taken from its starting node until vi

with the path Psol
b taken from vi until its end node

(so that P∗
a covers both Pin

i and Pin
j ).

• P∗
b be the path obtained as the concatenation of

the path Psol
b taken from its starting node until vi

with the path Psol
a taken from vi until its end node.

We have to show that the path cover

P∗ =
({

Psol
1 , . . . ,Psol

k

}
\
{
Psol
a ,Psol

b

})
∪ {

P∗
a ,P

∗
b

}
satisfies

the original constraints V ′,E′,P in . Since P∗
a and P∗

b use

exactly the same edges as Psol
a and Psol

b , then V ′ and E′

are satisfied. Moreover, the only two problematic cases

are when there is a subpath constraint Pin
k which has vi

as internal node and is satisfied only by Psol
a , or it is

satisfied only by Psol
b . Denote, analogously, by uk and vk

the endpoints of Pin
k . From the fact that the input was

transformed at Step 3, Pin
i and Pin

j are not completely

included in Pin
k .
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Case 1. Pin
k is satisfied only by Psol

a (Figures 3(a) and 3(b)).

Since Pin
i is not completely included in Pin

k , uk is an internal

node of Pin
i ; thus, a suffix of Pin

i is prefix also of Pin
k . From

the fact that the common part between Pin
i and Pin

j is long-

est possible, we have that vertices uj , uk , vi appear in this

order in Pin
i . Thus, Pin

k is also satisfied by P∗
b , since uk

appears after uj on P
i.

Case 2. Pin
k is satisfied only by Psol

b , and it is not satisfied

by P∗
a (Figure 3(c)). This means that Pin

k starts on Psol
b

before uj and, since it contains vi, it ends on Psol
b after vi.

From the fact that Pin
j in not completely included in Pin

k ,

vk is an internal node of Pin
j , and thus a suffix of Pin

k

equals a prefix of Pin
j . This common part is now longer

than the common suffix/prefix between Pin
i and Pin

j ,

which contradicts maximality of the suffix/prefix between

Pin
i and Pin

j . This proves the lemma.
The remaining steps can be seen as analogous to the

reduction in [20].
Step 5. for every path Pin

i ∈ P in do:
say Pin

i starts in node s and ends in node t;

P in := P in\ {
Pin
i

}
;

E (G) := E (G) ∪ {(s, t)} ;

E′ = E′ ∪ {(s, t)} ;
In this step, we represent each subpath constraint by

an edge constraint. Its correctness is guaranteed by the
fact that by now, no two subpath constraints are such
that a suffix of the first is a prefix of the second. We
should stress out that if there are more paths with the
same endpoints, we may add parallel edges to the DAG.
However, in Step 6 below these parallel edges will be
transformed into parallel paths of length 2, rendering
the DAG simple again.
Step 6. for every edge e ∈ E′ do:

E′ := E′ {e} ;

subdivide the edge e by introducing a node ve in the
middle of it;

V ′ := V ′ ∪ {e} ;
At this point, we have transformed all subpath con-

straints into edge constraints. The edge constraints can
be modeled as node constraints by simply subdividing
each edge and introducing a new node in the middle of
it; this node is then added to V ′ .
Step 7. G:= T(G)
We replace G by its transitive closure, since in Step 8

below we are going to remove from G all vertices not
in V ′ .
Step 8. Remove from G all nodes not in V ′ ;
Since only the nodes in V ′ have to be covered by the

paths in the path cover, we remove all other nodes. This
is correct, since, at Step 7 above, we introduced all
edges between nodes v and V ′ such that V ′ was reach-
able from v through some nodes not in V ′ .
Step 9. Compute a MPC for the resulting graph G;
This can be done by any method discussed previously.
Step 10. Postprocess the paths obtained at Step 9

above by reverting the transformations executed at
Steps 1-8, in reverse order.
Theorem 2 Problem MPC-SC on a graph with n nodes,

m edges, c subpath or edge constraints, and with N being
the sum of subpath constraint lengths, can be solved by sol-
ving the classical MPC Problem in a graph with O(n + c)
nodes and O(n2 + c) edges. This graph can be computed
in time O(N + c2 + n2), thus the complexity of Problem

MPC-SC is O
(
N + c2 +

√
(n + c)

(
n2 + c

))
.

Proof The complexity of the pre-processing phase is
dominated by Steps 3 and 4. Step 3 can be solved by first
building a (generalized) suffix tree on the concatenation
of subpath constraints with a distinct symbol #i added

after each constraint sequence Pin
i . This can be done in

O(N) time even on our alphabet of size O(n) [32].
Then one can do as follows during depth-first traver-

sal of the tree: If a leaf corresponding to the suffix start-

ing at the beginning of subpath constraint Pin
i has an

incoming edge labeled by only #i and its parent has still
other children, then the constraint is a substring of

Figure 3 A visual proof of Lemma 1.
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another constraint and must be removed (together with
the leaf).
For Step 4, we compute all pairs longest suffix-prefix over-

laps between the subpath constraints using an O(N + c2)
time algorithm in [33, Theorem 7.10.1, page 137], [45] with
[32] as a subroutine for the sake of large alphabet. The out-
put can be casted to a double-linked list L containing ele-
ments of the form (i, j, len, previ, nexti, prevj , nextj ) in
decreasing order of the overlap length, len, between con-

straints Pin
i and Pin

j . Pointers previ, nexti, prevj, and nextj
tell the previous/next occurrences of the tuple having i as
the first element and j as the second element, respectively.
Then popping the first tuple from L tells us the first con-
straints to merge, and following prev* and next* pointers we
can remove all overlaps no longer relevant for next mer-
gings; when removing, we need to make sure the nested
double-linked lists formed by the prev* and next* pointers
are also updated. Continuing like this until the list L is
empty gives all the overlaps in total O(c2) time. Notice that
the new merged constraints do not need to be separately
taken into account in overlap computation; no completely
new overlaps can be created due to Step 3.
Merging itself requires a similar linked list structure

being a special case of unionfind: All the constraints are
represented as double-linked lists with node numbers as
elements. Merging can be done by linking the double-
linked lists together, removing the extra overlapping part
from the latter list and redirecting its start pointer to point
inside the newly formed merged list. When finished with
merging, the new constraints are exactly those old con-
straints whose start pointers still point to the beginning of
a node list. The complexity of merging is thus O(N).
The weighted case
To solve the MW-MPC-SC Problem, we build on the
reduction in [36] to a network flow problem. This

reduction will allow the addition of edge weights and of
constraints on the starting/ending nodes of the solution
paths. Note that these constraints S and T cannot be
included in the reduction of the MPC Problem to a
bipartite matching problem. Moreover, the heuristic in
[20, Sec. 2.4.2] of arbitrarily extending the paths in a
minimum weight MPC towards sources/sinks cannot be
proved to be correct.
Given an input

(
G,V ′,E′, S,T,w

)
for the MW-MPC-

SC Problem, we pre-process the graph G by Steps 1-6
of the unweighted case (shown in the previous section).
After this pre-processing, we have correctly modeled all
subpath constraints by node constraints. On the trans-
formed graph G, we then do a similar reduction as for
Thm. 1 (see Figure 4):

1 We replace each node v ∈ V ′ by an edge (v1, v2)
such that all in-neighbors of v are now in-neighbors
of v1, and all out-neighbors of v are now out-neigh-
bors of v2. If node v was introduced at Step 6 to
model an edge coming from a subpath constraint P,
then the cost per unit of flow of (v1, v2) is the sum
of the weights of the edges of P ; otherwise, it is 0.
2. For each edge e of G, if e is an original edge of G,
we set its flow lower bound to 0 and its cost per
unit of flow to w(e); otherwise we set both to 0.
3. The global source s has out-going edges precisely
to the nodes in the set S, and the global sink t has
in-coming edges precisely from the nodes in T; we
also add the edge (t, s). All edges incident to s or t
have flow flower bound 0 and cost 0, except for the
edge (t, s) having as cost the sum of all edge weights
(plus a positive constant if all are 0). This guaran-
tees, like before, that any min-cost circulation is also
a min-flow.

Figure 4 In Fig. 4(a), an input DAG G with two subpath constraints P1 and P2; we take. V ′ = V (G) , E′ =� 0 , S = {a, d, e} and T = {f, c};

weights are not drawn. In Fig. 4(b), the graph transformed by Steps 1-6; the vertices still in V ′ are drawn as circles, other vertices as squares. In
Fig. 4(c), the reduction to a min-cost circulation problem; the edges with flow lower bound 1 are labeled as ‘1’; other edges have flow lower
bound 0. In a min-cost circulation of value 3, all highlighted edges have flow value 1, except for (f, t) with flow value 2, and (t, s) with value 3.
Any decomposition of the min-cost circulation into 3 paths gives the solution for Problem MW-MPC-SC.
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Note that, by reducing to a flow problem, we do not
have to perform Steps 7 and 8 anymore, since the cover-
age constraints are now modeled as flow lower bound
constraints. As in the case of Thm. 1, we compute a
min-cost circulation on this transformed input G, that
is, a function f : E(G) ® N which satisfies all the flow
conservation property for all nodes, satisfies all edge

lower bounds, and minimizes
∑

e∈E(G) f (e) . We then
decompose the circulation (from which we remove the
edge (t, s)) into paths, and covert these paths into paths
of the original input graph. This is done by reverting
the transformations executed at Steps 1-6, in reverse
order (as done for the MPC-SC Problem). As before,
these paths form a MPC satisfying all constraints, and
they also start and end in vertices of S and T , respec-
tively (because of the way s and t were connected to the
other nodes of the graph). Since these paths arise from
a min-cost circulation, then they also form a minimum
weight MPC satisfying the input constraints. The flow
network has only flow lower bounds, thus we can again
apply the algorithm of [49], to get the following:
Theorem 3 Problem MW-MPC-SC on a graph with

n nodes, m edges, c subpath or edge constraints, and with
N being the sum of subpath constraint lengths, can be solved
by reducing it to a min-cost circulation problem on a network
with O(n + c) nodes and O(m + c) edges, and with flow lower
bounds only. This network can be computed in time O(N +
c2 + m), and the complexity of Problem MW-MPC-SC
becomes O(N + (n + c)2 log(n + c) + (n + c)(m + c)).

The MPC with Paired Subpaths Constraints (MPC-PSC)
Problem
The NP-completeness proof
In this section we show that the MPC-PSC Problem is
NP-complete. Our reduction is from the NP-complete
problem of deciding whether the chromatic number of a
graph G, c(G), is 3 [50]. We will show that it is actually
NP-complete to determine if the MPC-PSC Problem
admits a solution with just 3 paths, even on planar DAGs,
of width 2, series-parallel, when only paired subpath con-
straints are imposed, and all subpaths are just edges.
Let G = (V, E) with V = {v1,..., vn} and E = {e1,..., em}

be any non-bipartite graph; our question is whether

c(G) = 3. We reformulate this question by building up
the DAG P(G) drawn in Figure 5. P(G) consists of a first
stage of n blocks corresponding to the n vertices of G,
and a second stage of m blocks corresponding to each
edge ek = vik vjk of G, k ∈ {1, ..., m}. Only some of the
nodes and edges of P (G) have been labeled; when an
edge is labeled [L], we mean that in the family of paired
subpath constraints we have the constraint (L, [L]).
Theorem 4 Problem MPC-PSC is NP-complete.
Proof We show that the graph G = (V, E) has c(G) = 3

if and only if the DAG P(G) drawn in Figure 5 admits a
solution to Problem MPC-PSC with 3 paths.

(⇒) Suppose that c(G) = 3. Definitely, we need at
least three paths to solve P(G), since the three edges v1,
X1, Y1 exiting from node 0 cannot be covered by the
same path, and each of them is mentioned in some con-
straint. By definition, G is 3 colorable if and only if V
can be partitioned into three sets VA, VB , VC such that
no edge of G is contained in any of them. We use these
three sets to build up the three solution paths for Pro-
blem MPC-PSC as follows: for all X ∈ {A, B, C}, in the
first stage (until node n) path PX picks up all edges
labeled with a node in VX and no edge labeled with a
node in V\VX ; next, in the second stage (from node n
until node n + m), PX picks up those edges

[
vik

]
such

that vik belongs to PX . This is possible, since no edge
ek = vik vjk is contained in the same color class, and con-
sequently the two of edges of P (G) labeled vik and vjk
do not belong to the same path among {PA, PB, PC}.
Thus,

[
vik

]
and

[
vjk

]
do not have to be both covered by

the same solution path. Therefore, the three paths PA,
PB, PC satisfy all paired subpath constraints, and are a
solution to Problem MPC-PSC.
(⇐) Suppose the DAG P(G) drawn in Figure 5 admits

a solution to Problem MPC-PSC with 3 paths PA, PB ,
PC. Then, we partition V into three color classes A, B, C
by setting vi∈ × if and only if the edge of P(G) labeled
by vi (in the first stage from node 0 to node n) belongs
to PX , for all X ∈ {A, B, C}. To see that {A, B, C} is
indeed a partition of V , observe that in each block k of
the first stage of P(G), no two paths in {PA, PB , PC} can
share an edge, since all three edges vk , Xk, Yk appear in
some constraint. Therefore, each edge vk appears in

Figure 5 A reduction from chromatic number 3 to the MPC-PSC Problem.
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exactly one of {PA, PB , PC }. The proof that the parti-
tion {A, B, C} is also a proper coloring of G encounters
no difficulty, as the rationale behind the reduction was
illustrated in the forward implication.
Corollary 1 For no ε > 0 there exists a(
4
3

− ∈
)
-approximation algorithm for Problem MPC-

PSC unless P=NP. Moreover, the problem is not FPT
when parameterized on OPT (the minimum number of
paths in a solution).
The FPT algorithm
In the previous section, we obtained the NP-completeness
for the decision problem OPT = 3; this rules out a
Dynamic Programming approach for Problem MPC-PSC.
In this section, we show that if OPT = 2, then the problem
can be solved in polynomial time. This also leads to an
FPT algorithm on the total number of constraints.
For any constraint of the input DAG G that is made up

of a pair (P1, P2) of subpaths of G, we may assume that
there exists a directed path of G completely containing
both P1 and P2, otherwise, the input instance is infeasible.
Given any two constraints X and Y (X and Y can be nodes,
edges, or pairs of subpaths), we say that X and Y are com-
patible if there is a directed path of G completely contain-
ing both X and Y . We exploit the following structural
property:
Lemma 2 Let C be a set of constraints on a DAG G.

There exists a directed path P in G which satisfies all con-
straints in C if and only if any two constraints in C are
compatible.
Proof The forward implication is clear from the defini-

tion. For the backward implication, recall that the width
of a DAG denotes the maximum size of an anti-chain of
it. We claim that the union of the constraints in C is a
DAG of width 1. Indeed, if it were of width 2 it would
contain two nodes v1 and v2 which are pairwise not
reachable by a directed path, thus forming an anti-chain
of size 2. Since we assumed that for all pairs (P1, P2) of
subpaths constraints of G, there exists a directed path
of G completely containing both P1 and P2, this implies
that v1 and v2 belong to two different constraints X and Y
in C. Thus, X and Y are not compatible, a contradiction.
Theorem 5 Given an instance for Problem MPC-PSC,

we can decide in polynomial time if OPT = 2, and if so,
find the two solution paths. Moreover, Problem MPC-
PSC is fixed-parameter tractable (FPT) in the total num-
ber C of input constraints.
Proof We build an incompatibility graph from the

input constraints: every constraint is represented by a
node, and we add an edge between two constraints iff
they are incompatible. Then, OPT = 2 iff this incompat-
ibility graph is bipartite, and the two classes of the
bipartition give the two solution paths; this can be done

in time O(C2). If OPT > 2, then we try all possible ways
of partitioning the set of all input constraints (the num-
ber of these possibilities is a function only on C), and
check that each class of the partition consists of pairwise
compatible constraints.
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