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Working memory brain activity and capacity link
MAOA polymorphism to aggressive behavior
during development

T Ziermans', | Dumontheil’, C Roggeman', M Peyrard-Janvid®, H Matsson?, J Kere*®* and T Klingberg'

A developmental increase in working memory capacity is an important part of cognitive development, and low working memory
(WM) capacity is a risk factor for developing psychopathology. Brain activity represents a promising endophenotype for linking
genes to behavior and for improving our understanding of the neurobiology of WM development. We investigated gene-brain-
behavior relationships by focusing on 18 single-nucleotide polymorphisms (SNPs) located in six dopaminergic candidate genes
(COMT, SLC6A3/DAT1, DBH, DRD4, DRD5, MAOA). Visuospatial WM (VSWM) brain activity, measured with functional magnetic
resonance imaging, and VSWM capacity were assessed in a longitudinal study of typically developing children and adolescents.
Behavioral problems were evaluated using the Child Behavior Checklist (CBCL). One SNP (rs6609257), located ~ 6.6 kb
downstream of the monoamine oxidase A gene (MAOA) on human chromosome X, significantly affected brain activity in a
network of frontal, parietal and occipital regions. Increased activity in this network, but not in caudate nucleus or anterior
prefrontal regions, was correlated with VSWM capacity, which in turn predicted externalizing (aggressive/oppositional)
symptoms, with higher WM capacity associated with fewer externalizing symptoms. There were no direct significant correlations
between rs6609257 and behavioral symptoms. These results suggest a mediating role of WM brain activity and capacity in linking
the MAOA gene to aggressive behavior during development.
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However, these cognitive endophenotypes are the
results of interactions between multiple brain regions.
An interesting possibility is that biological measures, such
as brain structure and function,’® which are biologically
more closely linked to gene activity, may be more useful
endophenotypes, with better potential of finding genetic
associations. "

Functional magnetic resonance imaging (fMRI) studies
have consistently shown WNM-related blood-oxygen level
dependent (BOLD) activations in a fronto-parietal network of
brain regions, particularly in visuospatial WM (VSWM)
paradigms.’* This fronto-parietal activity increases with age
from childhood to young adulthood'®™"® and correlates with
accuracy on a trial-by-trial basis.'”2%2" Although some
specific genetic polymorphisms have been associated with
individual differences in capacity during this period,?>23 the

Working memory (WM) refers to the retention and manipula-
tion of information over a brief period of time." A gradual
increase in WM capacity is strongly related to the develop-
ment of general intellectual ability> and academic perfor-
mance.® Impaired WM capacity is a core feature of many
psychiatric disorders, including attention-deficit/hyperactivity
disorder* and schizophrenia.® Furthermore, low WM capacity
in children is a risk factor for psychopathology later in life, such
as psychosis, depression and suicidal ideation.®” WM
capacity is also an important factor for emotional self-
regulation,® and restricted self-regulation has been asso-
ciated with behavioral problems in children, in particular, but
not restricted to, externalizing problems (for example,
aggression, antisocial behavior).? Increasing knowledge of
the underlying neurobiological mechanisms of typical WM

development is an essential step to understand atypical
development and guide initiatives to remediate problem
behavior.™®

Genetic effects on psychiatric phenotypes are often
subtle and hard to verify, possibly due to the inter-
individual heterogeneity of the phenotype. An alternative
approach is to focus on the functional deficits associ-
ated with psychiatric disorders, such as WM impairments.

genetic basis for WM capacity is still largely unknown.
Furthermore, the behavioral consequences of WM-related
brain activity, and its association with psychopathological
symptoms in particular, have not been reported previously.
Therefore, in light of the onsets of certain psychopathologies
during childhood and adolescence, elucidating the nature of
gene—brain—behavior relationships during development
seems critical.
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On a molecular level, dopamine (DA) availability affects
VSWM function, as demonstrated by experiments in both
humans®* and primates.?® It has been suggested that DA
regulation of VSWM is subject to developmental changes
before adulthood, although for humans there is only indirect
evidence from molecular genetic studies.?® Furthermore,
performance-related differences in regional brain activity
may be partially due to differences in DA signaling in those
regions.2”2® Genes involved in regulation of the DA system
are therefore of particular interest, especially candidate genes
linked to psychiatric disorders in which WM functioning is
typically impaired.2°-3°

In the present study, we aimed to investigate VSWM-
related brain activity and VSWM capacity as intermediary
phenotypes between genetic variation of the DA system and
problem behavior. We genotyped single-nucleotide poly-
morphisms (SNPs) in and in near vicinity of six genes
implicated in DA transmission: COMT, SLC6A3/DAT1, DBH,
DRD4, DRD5 and MAOA. Problem behavior was assessed
using the Child Behavioral Checklist (CBCL).%' Higher CBCL
scores have previously been associated with low WM
performance in preadolescents®? and can predict future onset
of psychopathology in children.®® It was hypothesized that
BOLD activity in a fronto-parietal brain network would
increase during development and be positively associated
with VSWM capacity. Furthermore, we expected that poly-
morphisms in genes of the DA system would affect brain
activity in this network and that these genetic effects may be
age dependent.®® Finally, we hypothesized that VSWM
capacity would predict CBCL scores in a large regional cohort
of Swedish children and young adults and, in addition, tested
whether genotypes of the DA system genes affecting VSWM
brain activity could predict VSWM capacity and CBCL scores.

Methods

Participants. A total of 335 participants from nine different
age groups (6, 8, 10, 12, 14, 16, 18, 20 and 25 years) were
randomly selected out of a community sample from
Nynashamn in Sweden (‘Brainchild’ study).?2?® Number of
participants was distributed evenly among the different age
groups (45 on average), except for the two oldest age
groups, including 13 and 8 participants, respectively.
Assessments included a baseline measurement (round 1)
and a second round of testing 2 years later (round 2). A large
majority (88.7%) of the participants and their parents were
born in Sweden, 9.3% had at least one parent born outside
Sweden, although still within Europe, and the remaining 2%
had one or two parents that were born outside of Europe. All
participants were enrolled in mainstream schools. Exclusion
criteria were first language other than Swedish, diagnosis of
neurological or psychiatric disorder (with exception of
attention-deficit/hyperactivity disorder or dyslexia). Informed
consent was obtained from the participants and from the
parents of children aged 18 years or younger. The local
ethics committee of the Karolinska University Hospital,
Stockholm, approved the study. Additional information on
genotyping and participant exclusion can be found in the
Supplementary Information.
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Behavioral sample. Data on VSWM capacity was available
for 329 participants; round 1: n=2329 (49.2% male), 12.2
yearst4.5 (mean agezs.d.), round 2: n=268 (50.4%
male), 13.6 yearst4.0. Data on problem behavior was
available for participants of age 18 years and younger; round
1: n=260 (49.2% male), 11.0 years £ 3.3, round 2: n=233
(50.2% male), 12.7 years £ 3.3. All participants at round 2
had participated in round 1 as well and therefore represented
repeated measures.

fMRI sample. Eighty nine participants were randomly
selected from all age groups of the behavioral sample to
participate in fMRI assessments. In total, 134 measurements
were included; round 1: n=68 (51.5%), 13.8 y £ 5.3, round 2:
n=66 (43.9%), 14.9 y £ 4.7 (including 45 repeated measures
of round 1 participants).

Genetic analysis. Material for DNA extraction was collected
in form of blood or saliva. Genotyping procedures have
been previously published.??2® Details of the 18 SNPs
used for this study are available in Table 1. For every
SNP, two independent scorers confirmed all genotypes,
and regenotyping of 5% of the study samples resulted
in 100% concordance. All markers were found to be in
Hardy—Weinberg equilibrium, taking autosomal or sex-
chromosomal localization of the markers into account.

fMRI

Scan protocol. Subjects were positioned head first and
supine in the MR scanner. Images were collected using
a 1.5T Siemens Avanto scanner (Siemens Medical
Systems, Erlangen, Germany), using an 8-channel radio
frequency head coil. For the structural scan, 19 slices were
acquired using a T1-weighted 3D anatomical sequence
(TR=308ms, TE=7.8ms, image matrix=256 x 256,

Table 1 Dopaminergic genes and genotyped SNPs

Gene Gene name Chromosome SNP

symbol Band®

DRD5  Dopamine receptor D5 4p16.1 rs13140817
rs10939515
rs1967550

SLC6A3 Solute carrier family 6 5p15.3 rs3863145

(DAT1) member 3 (dopamine rs27072

transporter)

DBH Dopamine beta-hydroxylase 9934 rs1611125
rs1541332
rs2797853

DRD4  Dopamine receptor D4 11p15.5 rs7124601
rs11246226
rs936465

COMT  Catechol-O- 22q11.2 rs740601

methyltransferase rs4680

MAOA  Monoamine oxidase A Xp11.3 rs5905702
rs5906957
rs2283724
rs979606
rs6609257

Abbreviation: SNP, single-nucleotide polymorphism.
2Chromosome band according to Entrez Gene and NCBI Map Viewer,
NCBI Build 36.3.



FOV =230mm, flip angle=90°, slice thickness=5.0mm,
voxel size=1.0x0.9 x5.0mm). Whole-brain functional
images were collected using a T2*-weighted EPI sequences,
sensitive to BOLD contrast (TR=3000ms, TE=50ms,
image matrix=64 x 64, FOV=220mm, flip angle=290°,
slice thickness =4.5mm, distance factor=11%, voxel size
3.4 x 3.4 x 4.5mm, 30 axial slices). Each functional MRI run
consisted of 96 images, preceded by two dummy scans that
were excluded from further analysis.

VSWM paradigm. Participants performed two sessions of
the task, each with a total of 16 WM and 16 control trials, in a
pseudo-randomized order. Dots were presented sequentially
in a four-by-four grid for 500ms, with 500ms interval
between dots. The task included 50% load 2 and 50% load
4 trials. After 1500 ms delay, a number cue referring to a
serial position in the previous stimulus sequence was
presented in the grid for 3000ms. Participants indicated
with a yes/no (right index/middle finger) response whether
the number and its position in the grid matched. In the control
condition, the number cue was 8 and the response was
always no, regardless of the position of the question mark.
Control and WM trials were indicated by the color of the dots
(red: WM trial, yellow: control trial). The response screen
remained visible for 3 s, and was followed by a 2 s inter-trial
interval. Total duration was 8s for load 2 and 10s for load 4
trials. The session started with a 6 s blank screen, resulting in a
total duration of 4 min, 54 s for each session. Task, protocol and
scanning parameters were exactly the same at both time points.

Data processing. Pre-processing and statistical analyses
were carried out with SPM5 (www.fil.ion.ucl.ac.uk/spm/
software/spm5) and have previously been published.?%23
Runs were checked separately and therefore subjects could
have one excluded run, and still be included with only one
functional run. Functional images were first corrected for
slice timing. Motion during scanning was then estimated by
six parameters (three translations, three rotations) by
minimizing the differences between the first volume and the
subsequent volumes. These parameters were then used to
realign the functional volumes to the first image of each run
(second-degree B-spline interpolation). The mean image of
the realigned functional images was co-registered to the
anatomical scan, and the estimated co-registration
parameters were then used to co-register all functional
images. Next, the anatomical image was normalized to the
Montreal Neurological Institute template, and the estimated
normalization parameters were used to normalize all
functional images. Finally, functional images were high-
pass (140 s) filtered and smoothed with a Gaussian kernel of
12 mm full-width half maximum prior to statistical analysis.
Activations were modeled for each subject separately using
a general linear model analysis with four predictors. The
predictors were built by convolving the actual onset times of
the experimental events with the standard hemodynamic
response function. The four experimental events consisted of
the correct trials only: working memory trials with load 2 and
load 4, and control trials with load 2 and load 4. The duration of
the events was set to include the time of maintenance and
response, and was therefore equal to 8s in load 2 trials and
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10sinload 4 trials. Time and dispersion derivatives, as well as
the motion parameters and the global mean, were added in
the design. With this model, one contrast image, ‘WM versus
control’, was made for each subject by contrasting both
working memory conditions with both control conditions.
These ‘WM versus control’ contrast images were used in
flexible factorial design second-level analyses, which mod-
eled whether the contrasts were from the same or different
participants by including subject and testing round as factors.
Regions of interest (ROI) based on local maxima were defined
and extracted using MarsBaR.3* First, ROIs were created
based on all activations from the contrast ‘WM versus control’,
thresholded at FDR (false discovery rate) P<0.000001.
These ROls were then split into smaller regions, so that each
ROl was centered around a single local maximum. ROls were
defined so that individual regions did not overlap, and together
covered the majority of the working memory activation.
Resulting ROIs were plotted on a surface-based human atlas
(PALS)3%%¢ using the Caret software®” (www.nitrc.org/pro-
jects/caret/). For each ROI, the average WM—control BOLD of
all voxels within that ROl was calculated for each participant.

Behavioral assessment

VSWM capacity. Participants completed a large neuropsy-
chological battery administered individually. VSWM capacity
was assessed using a visuospatial grid task (dot matrix) from
the AWMA battery®® similar to the VSWM fMRI paradigm
(see refs 22,23 for a detailed description).

Problem behavior. Parental reports were used to assess
behavioral problems in 4-18-year-old children on the
CBCL.%"* Three broadband scales (which assess a wide
variety of behavioral symptoms) were used: total problems
and the two subscales internalizing and externalizing problems.
These last two scales largely correspond to mood/anxiety
and disruptive behavior disorders, respectively.

Statistical analyses. Data were analyzed with linear mixed
models, using the PASW 18.0 statistical package.?>°
This approach allows all data to be included within a single
model, even when some participants have only attended one
testing session. A compound symmetry covariance structure
was used, one parameter corresponding to the variance
within sessions, and the other to the covariance between
sessions. In the fMRI sample, BOLD activity and VSWM
capacity were entered as dependent variables in separate
analyses. In the behavioral sample, VSWM capacity and
problem behavior (CBCL T-scores) were used as dependent
measures in separate analyses. Effects were considered
significant at the level of P<0.05. Bonferroni-corrected
P-values were applied when testing for genetic effects.

Results

fMRI

In-scanner performance. Overall accuracy was high, but
participants showed lower accuracy in the WM than
the control condition (WM: mean 90.0% *11.0; control:
98.3% + 3.5) (t(134)=10.15, P<0.001), as well as slower

w
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reaction time (correct trials only, WM: 1272 ms £ 352; control:
737ms +212) (1(134)=26.11, P<0.001). The difference
between WM and control conditions decreased with age
for both accuracy and reaction time (main effect of age:
F(1,73.9)=14.95, P<0.001, and F(1,90.3) = 35.0, P<0.001).

Main effect WM—control. Based on activity in the main effect
of WM minus control (P<0.05, FDR), a total of 17 individual
ROIls were identified and delineated: 8 frontal, 4 parietal, 3
occipital and 2 in the bilateral caudate nucleus (see Table 2).

Principal component analysis (PCA). ROI data were split per
assessment (round 1 and 2) and transformed into a Z-score.
All bilateral ROls correlated higher with each other (all >0.7)
than with other ROls, and were collapsed to prevent
multicollinearity in the data. In order to further reduce the
number of comparisons, BOLD data for each ROl was
entered into a PCA.

Factors were rotated using the direct oblimin method,
assuming that underlying factors are not completely indepen-
dent. An eigenvalue of 0.7 was used as cut-off for factor
extraction and all communalities had to be 0.7 or higher after
extraction.*' Initial PCA led to exclusion of the left cuneus
ROI, due to a low communality (0.4). After removal of this ROI,
the eight remaining ROls (see Table 2) were used for PCA.
Two-, three- and four-factor solutions were explored. The
three-factor solution (F1, F2, F3; see Figure 1 and Table 2)
accounted for 80.7% of the total variance and was considered
most optimal. Running PCA separately for round 1 and 2
resulted in the same factor structures for both time points.

Table 2 ROls for the main effect of working memory—control

Composite scores were created for each factor, based on the
means of the ROIs with factor loadings >0.5 in the final
pattern matrix (highlighted in bold values in Table 2).

VSWM activity, age, sex and VSWM capacity. The mean
BOLD value for each factor was regressed against three
possible Z-score-transformed age variables: age (agez), the
inverse of age (agez'), or the natural logarithm of age
(In(age)z), using linear mixed models, to assess the best fit
for developmental changes in VSWM-related BOLD activity.
Sex was entered as a main effect and sex x age as an
interaction effect. Agez' provided the best fit for all factors
based on the Akaike’s information criterion.*? There was a
significant increase in BOLD activity for all three factors with
age (F1: F(1, 84.6) =45.68, P<0.001; F2: F(1, 88.5) =5.58,
P=0.020; F3: F(1, 84.9)=12.71, P=0.001), (Figure 2a).
There was an additional main effect of sex for F2
(F(1, 72.4)=4.70, P=0.033) with males showing higher
activity levels than females. No significant sex x age
interaction was observed.

All three BOLD factors were independently tested for an
association with VSWM capacity. Agez' and sex were
included as main effects in the model. Only F1 was
significantly predicted by VSWM capacity (F1: F(1, 111.6) =
8.72, P=0.003) and only when agez' was not included in
the model (Figure 2b). No significant interactions between
BOLD factors, agez' or sex were observed. This showed
that, although activity increased with age in all factors, only
activation within F1 regions was associated with VSWM
capacity during development.

Region Side MNI (x,y,z) F1 F2 F3 Communalities
Superior parietal L —16, —62, 60 0.96 -0.07 0.02 0.87
R 22, —66, 50
Inferior parietal L —36, —40, 42 0.87 0.07 —0.01 0.84
R 42, —38, 48
Lateral occipital L —34, -82,2 0.84 —0.01 0.08 0.75
R 36, —80, —2
Superior frontal L —22, 2, 56 0.65 0.26 0.15 0.76
R 26, 4, 52
Middle frontal gyrus R 40, 32, 28 0.08 0.90 -0.17 0.81
Inferior frontal gyrus L -32,22,0 -0.17 0.77 0.37 0.78
R 32,24,0
Pre-SMA L/R —4, 16, 50 0.10 0.74 0.14 0.73
Inferior frontal sulcus L —42, 6, 32 0.42 0.65 -0.14 0.81
R 48, 8, 30
Caudate L —16, —4, 20 0.23 0.04 0.85 0.92
R 20, -2, 18
Cuneus? L —-10, -84, 2 na na na na
Factor characteristics
Eigenvalue 5.47 1.09 0.70
% of variance 60.8 121 7.8
Correlations 1 0.545 0.249
1 0.359

Abbreviations: F1-F3, Factor 1-3; L, left; na, not applicable; pre-SMA, pre-supplementary motor area; R, right; ROI, region of interest.

@Not included in factor analysis.

Location of ROI peak values as well as factor loadings and communalities for variables used in factor analysis are displayed. Values in bold highlight the grouping

of ROlIs in the three factors F1, F2, F3 identified by principal component analyses.
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WM-Control Factor 1

WM-Control Factor 2
a4 L

Figure 1 Render of delineated regions of interest (ROIs) of the (fMRI) main effect working memory (WM)-control (false discovery rate (FDR), P<0.05) on a
surface-based human atlas (see Methods). Top row: Factor 1 ROls with lateral and medial view of the left and right hemisphere. Bottom row: Factor 2 ROls with lateral
and medial view of the left and right hemisphere.

Factor 1 Factor 2 Factor 3
25 2.5

Q
I
o

Mean BOLD WM-Control

5 10 15 20 25 5 10 15 20 25 5 10 15 20 25
Age (years) Age (years) Age (years)

o
N
o

Mean BOLD WM-Control

0 10 20 30 40 50 60
Working memory capacity (AWMA)

Figure 2 (a): Scatterplot of the mean blood-oxygen level dependent (BOLD) working memory (WM)-control values plotted against age for all three factors. Black lines
connect repeated measures for individuals who participated in both round 1 and 2. Red lines represent the mean predicted BOLD signal as a function of age, as obtained
from the mixed-model analysis using the inverse of age as a fixed effect. (b) Scatterplot of the mean BOLD WM-control values of Factor 1 against Visuospatial WM
(VSWM) capacity. Black lines connect repeated measures. The red line represents the mean-predicted BOLD signal for each age group, as obtained from the mixed-model
analysis using the inverse of age as a factor.

Genotypes and VSWM activity. Linear mixed models these SNPs were followed up by sex-specific post hoc tests.
with agez', sex, genotype and genotype x agez' entered Due to a minor allele frequency < 10% within the fMRI
as covariates were used to test for genetic effects on sample, three SNPs (DRD5: rs10939515; SLC6A3/DATT:
VSWM-BOLD activity. Additive models were used for testing rs27072 and rs3863145) were re-coded to pool the rare
the effect of each genotype (for example, 0=AA, 1=AG, homozygotes with the heterozygotes. To limit the number of
2=GG for the rs4680 located in the COMT gene). Similar tests, only F1 was analyzed, as this was the only BOLD
additive models were used for X-chromosomal SNPs located factor found to be associated with VSWM capacity.

in the MAOA (monoamine oxidase A) gene by grouping men Two of eighteen SNPs, rs979606 and rs6609257 (both
with homozygous females, rendering the heterozygote group located within or near the MAOA gene, see Figure 3), showed
100% female. Any significant main or interaction effects for a main effect of genotype on F1, with only the latter surviving

Translational Psychiatry
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Figure 3 Factor 1 BOLD (blood-oxygen level dependent) working memory
(WM)—control contrast displayed for the MAOA single-nucleotide polymorphism
(SNP) rs6609257. This chart is included for illustrative purposes and represents the
means and s.e.m. (collapsing across longitudinal and cross-sectional data) of F1
mean working memory (WM)-control BOLD signal. Participants tested in both
rounds were therefore included as two data points. The size of each group of
genotypes is: 60 (hemizygotes A and homozygotes AA), 32 (heterozygotes AG)
and 42 (hemizygotes G and homozygotes GG). The heterozygote (AG) group
only represents female participants, as the MAOA gene is located on the
X-chromosome. All hemizygote genotypes are from male participants who have
either a single A or G allele.

Bonferroni correction for multiple comparisons (F(1,
75.7)=11.52, P=0.001). The same SNP (rs6609257,
A>G) was the only one to show an interaction effect for
genotype x agez', but this effect did not survive Bonferroni
correction (P=0.02). Mean-predicted values of F1 as a
function of rs6609257 indicated that the A allele was
associated with higher levels of VSWM-BOLD activity than
the G allele (Figure 4). No main effect of sex was found, and
post hoc testing did not show any effects when interactions
with sex were added to the model (that is, agez' x sex,
genotype x sex,agez' x sex x genotype). When the model
was applied separately for males (n=64) and females
(n=70), the main effect of genotype was significant for
males, F(1, 35.4)=6.62, P=0.014, with A males showing
higher levels of WM activation than G males. For females,
there was a trend (P=0.08) in the same direction (AA and AG
versus GG).

MAOA, VSWM capacity and problem behavior. To test
whether the identified MAOA SNP affecting VSWM-BOLD,
rs6609257, also directly affected VSWM capacity in the
behavioral sample, linear mixed models were used. Age£1,
sex, genotype and genotype x age were entered in the model.
There was a strong main effect of agez ' (F(1, 507.3) = 233.80,
P<0.001), and no additional effect of sex, genotype or
interaction effect of agez' x genotype on VSWM capacity.
Further exploration of main and interaction effects after
splitting the group for sex did not affect the outcome.

We next tested whether rs6609257 predicted problem
behavior. Sex and age were excluded from the model
because CBCL T-scores are corrected for these variables

Translational Psychiatry
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Figure 4 Chromosome X region (top) containing the genotyped single-
nucleotide polymorphisms (SNPs) with corresponding linkage disequilibrium (LD)
values. The variable number of tandem repeats (VNTR) previously shown to
regulate MAOA activity is located approximately 1000 bases upstream of the MAOA
transcription start site. Protein-coding exons are depicted as vertical lines and the 5’
and 3' untranslated regions as filled black boxes. Rs6609257, significantly
associated to visuospatial working memory (VSWM) after Bonferroni correction in
this study, is highlighted in bold. The bottom panel shows the calculated LD between
pairs of SNPs as percentage of the theoretical maximal LD with logarithm of
likelihood odds ratio (D’/LOD) using Haploview 4.2. All SNPs are in high or complete
LD with statistical significance. Values are based on our own ‘Brainchild’ sample set.
Black squares without text depict complete (100%) LD.

based on population norms. There was no main effect of
genotype on total, internalizing or externalizing problems.
Finally, we analyzed whether VSWM capacity was able to
predict problem behavior when entered as a single fixed effect
in the model. VSWM capacity significantly predicted level of
externalizing problems (F(1, 492.3)=4.11, P=0.043), with
low WM associated with more externalizing problems, and at
trend-level for total problems (P=0.08).

The main results of this study are combined and illustrated
by means of a heuristic model in Figure 5.

Discussion

The aim of this study was to investigate the role of VSWM
development, both in terms of behavior and brain activity, as
an intermediate phenotype linking DA-related genes to
problem behavior. VSWM-related brain activity in fronto-
parieto-occipital regions (Factor 1) increased during develop-
ment and was positively associated with VSWM capacity.
Brain activity in this network was modulated by genotype for
one SNP, rs6609257, located ~6.6 kb downstream of the
MAOA gene on Xp11.23 (see Figure 3). On a behavioral level,
we found that lower levels of externalizing problems were
directly related to higher WM capacity.

MAO genes (MAOA and MAOB, separated by 19.8kb on
human chromosome X, in a head-to-head orientation) encode



MAOA
genotype
6 57)

VSWM
brain activity

{fronto-parieto-occipital)

VSWM capacity

Internalizing
problems

Total problem
behavior

Externalizing
problems

Figure 5 Heuristic hierarchical model summarizing the main findings in our
study. Solid black lines represent significant associations, the dashed black line
indicates a trend-level association and blue lines marked with a cross refer to non-
significant associations. Relevant P-values are provided adjacent to each line in the
model with significant effects printed in bold lettertype.

enzymes that are expressed throughout the brain and affect
multiple monoaminergic systems by degrading DA, norepi-
nephrine and serotonin.*® Previous studies have highlighted
potential modulating effects of an MAOA variable number of
tandem repeats (VNTR) in the MAOA promoter region (MAOA
VNTR 30-bp repeat) with high- and low-activity variants.*4=*"
This VNTR and a previously identified haplotype of three
MAQOA polymorphisms (rs12843268, rs3027400 and
rs1137070) have also been linked specifically to VSWM
cognition and brain activity.***° Furthermore, on a behavioral
level, the MAOA VNTR has been associated with traits such
as depression®® and aggression,®' although ambiguously.>2-*
Our study is consistent with the involvement of MAOA
polymorphisms in regulating neurobiological mechanisms
associated with VSWM capacity, which in turn can predict
maladaptive behavior.

The main effect of rs6609257 in this study showed that
carriers of the A allele had higher VSWM brain activity in
fronto-parieto-occipital brain regions. There was no significant
age x genotype interaction, although visual inspection of the
data suggested a stronger age-related increase in brain
activity individuals with an A allele, in particular for males.
Because of its genomic localization, ~ 6.6 kb downstream of
the MAOA gene and ~ 13kb upstream of the neighboring
MAOB gene, one cannot exclude that rs6609257 also has an
effect on MAOB. Informatics analysis in the UCSC Genome
Browser (hg18 assembly) showed that rs6609257 is located in
a genomic region devoid of annotated transcripts. It is
currently unknown whether there are any functional promoters
or enhancers in this region affecting the brain. However, it is of
modest evolutionary conservation and it does not overlap with
predicted RNA secondary structures typical for non-coding
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RNA (EvoFold annotation). Therefore, it is unlikely that the
region contains undiscovered coding elements.

To our knowledge, rs6609257 is a genetic marker that has
not previously been associated with VSWM activity or
capacity. However, it potentially tags the previously men-
tioned functional MAOA VNTR 30-bp repeat. The high-activity
variant of the VNTR has been associated with higher enzyme
expression and lower amine concentration,®® as well as
increased prefrontal brain activity***¢484° and lower levels of
aggression.®® Our results suggest that the A allele of
rs6609257 may act in a similar way for VSWM brain activation.
Because information about VNTR repeats was not available
for our participants, CEU population (Caucasians) data from
the International Hapmap Project (http://hapmap.ncbi.nim.-
nih.gov/) were examined for linkage disequilibrium between a
SNP 3 kb distant from the VNTR (rs4570308) and rs6609257.
The SNP rs6609257 is on the far end of a major linkage
disequilibrium block spanning the MAOA gene region also
including the VNTR and rs4570308 markers. The two SNPs
are in high but not complete linkage disequilibrium (D’ = 0.84).
However, as the allele frequencies in our total study
population and the HapMap CEU population are similar
(HapMap: A allele=60%, G allele =40%; Brainchild: A
allele =59%, G allele=41%), rs6609257 or any other
informative SNP located in MAOA could potentially act as a
surrogate for the tandem repeat.®® Our results require
replication to answer this question and future studies on
MAOA and VSWM could benefit from examining potential
haplotypes including both VNTR and SNP polymorphisms.

Theoretically, X-linked genes have an increased likelihood
of sex-specific functions. However, in vivo research indicates
that MAOA and MAOB protein levels in the human brain are
the same for both sexes.%®®” Likewise, our results indicated a
minimal influence of sex on outcome. However, when data
were split into separate groups for males and females, the
genetic effect on VSWM brain activity was significant only for
males and at trend-level for females. Interestingly, we were
unable to detect an effect of the COMT Val158Met poly-
morphism (rs4680) on ROI brain activity, contrary to earlier
findings using a voxel-based approach in participants 18
years or younger,?? or in adult populations.®® However, the
lack of COMT rs4680 findings here are likely to reflect
differences in methodology, as our previous study?? revealed
small parietal and frontal clusters showing an effect of
genotype, whereas the current study focused on larger ROI
analyses, based on the broad network of brain regions
activated during VSWM.

The fMRI findings from this longitudinal study are in line with
cross-sectional VSWM fMRI findings showing that increased
activation in fronto-parieto-occipital regions is linked to VSWM
performance.'®159%1 The observed non-linear increase in
regional brain activation likely reflects functional matura-
tion,"®"%%2 and could, speculatively, be an indicator of
functional specialization (that is, a relative increase in
domain-specific neural activity) of relevant task-related brain
regions. To address this, future studies could, for example,
compare regional brain activation across multiple cognitive
paradigms in a longitudinal developmental sample. Further-
more, the fronto-parieto-occipital regions highlighted in our
study are part of the dorsal attention network, which is
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essential for goal-directed (top-down) attention.®® Other
regions, including bilateral caudate, inferior frontal gyrus/
sulcus, pre-SMA and middle frontal gyrus showed a moderate
increase of VSWM brain activation with age, but were not
related to VSWM capacity when age was removed as a factor
from the model. It is possible, however, that using a higher
WM load during scanning might have resulted in an associa-
tion of BOLD values and capacity also in these regions.

In our study, genetic effects for rs6609257 were strongest
on the level of brain activation and did not directly affect
VSWM capacity or behavioral problems. This indicates a
higher sensitivity of neuroimaging measures to genotypic
variation, relative to behavioral measures. Polymorphisms
could, however, contribute indirectly to behavioral problems
by altering neuromolecular properties required for optimal
VSWM function. Cognitive endophenotypes, such as VSWM,
may partially mediate such effects, but this requires further
investigation. The present study included a community
sample with low problem behavior variability and did not
reveal direct associations between genotypes of DA system
genes and problem behavior. We believe future work in
populations with (a high-risk for) psychiatric disorders may be
more sensitive to such effects. In sum, the findings from our
study provide evidence that VSWM brain activity measures
could be used as a powerful phenotype for linking MAO genes
to problem behavior in the general population.
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