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Abstract

Despite the central role of estrogen exposure in breast and endometrial cancer development and numerous studies of
genes in the estrogen metabolic pathway, polymorphisms within the pathway have not been consistently associated with
these cancers. We posit that this is due to the complexity of multiple weak genetic effects within the metabolic pathway
that can only be effectively detected through multi-variant analysis. We conducted a comprehensive association analysis of
the estrogen metabolic pathway by interrogating 239 tagSNPs within 35 genes of the pathway in three tumor samples. The
discovery sample consisted of 1,596 breast cancer cases, 719 endometrial cancer cases, and 1,730 controls from Sweden;
and the validation sample included 2,245 breast cancer cases and 1,287 controls from Finland. We performed admixture
maximum likelihood (AML)–based global tests to evaluate the cumulative effect from multiple SNPs within the whole
metabolic pathway and three sub-pathways for androgen synthesis, androgen-to-estrogen conversion, and estrogen
removal. In the discovery sample, although no single polymorphism was significant after correction for multiple testing, the
pathway-based AML global test suggested association with both breast (pglobal = 0.034) and endometrial (pglobal = 0.052)
cancers. Further testing revealed the association to be focused on polymorphisms within the androgen-to-estrogen
conversion sub-pathway, for both breast (pglobal = 0.008) and endometrial cancer (pglobal = 0.014). The sub-pathway
association was validated in the Finnish sample of breast cancer (pglobal = 0.015). Further tumor subtype analysis
demonstrated that the association of the androgen-to-estrogen conversion sub-pathway was confined to postmenopausal
women with sporadic estrogen receptor positive tumors (pglobal = 0.0003). Gene-based AML analysis suggested CYP19A1
and UGT2B4 to be the major players within the sub-pathway. Our study indicates that the composite genetic determinants
related to the androgen–estrogen conversion are important for the induction of two hormone-associated cancers,
particularly for the hormone-driven breast tumour subtypes.
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Introduction

Estrogen exposure is critical for the development of both breast

and endometrial cancers and represents the most well-established

risk factors for both diseases. Estrogen is a metabolic product

whose circulating level is determined by de novo synthesis,

conversion from other steroid hormones, and mechanisms of

estrogen elimination. These metabolic processes are regulated by a

network of enzymes encoded by different genes, suggesting that

genetic variation within these metabolic genes may impact on

breast and endometrial cancer risk. Genetic variation within the

estrogen metabolic pathway has been intensively investigated,

mostly by analyzing single variant effects in a limited number of

candidate genes, SNPs and study subjects. The inadequacies of

study design and analytical methodology have caused these studies

to be underpowered for detecting moderate genetic effects which,
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not surprisingly, has led to inconsistent results [1–8]. We surmised

that strategies for assessing the synergistic effect of multiple genetic

variants within the estrogen metabolic pathway may provide a

more realistic determination of genetic effect than a single gene,

single SNP approach.

Herein, we present a comprehensive analysis of genetic

variation in the estrogen metabolism pathway and its association

with breast and endometrial cancer risk using a pathway-based

approach.

Results

Single SNP Association Analysis
We performed single SNP association analysis in 1596 breast

cancer cases, 719 endometrial cancer cases and 1730 population

controls from Sweden. Of the 239 tagSNPs analyzed, 17 SNPs

(7.1%) had p-values less than 0.05 for breast cancer, and 18 SNPs

(7.5%) had p-values less than 0.05 for endometrial cancer (Table

S4 and Table S5). For breast cancer, the smallest p-value was

0.00034 at rs7167936 within CYP19A1, and for endometrial

cancer, the smallest p-value was 0.00017 at rs12595627 in

CYP19A1. The single-SNP associations were all moderate. Only

rs12595627 (for endometrial cancer) survived the conservative

Bonferroni correction for multiple testing at a= 0.05. Overall,

however, the single-SNP p values appeared to deviate from their

null distribution of no association (formally tested below). The

single-SNP associations were suggestive, but instead of any single

variant having a strong effect, there appeared to be multiple weak

associations within the metabolic pathway.

Multi-SNP Pathway Analysis
To evaluate the cumulative effect from multiple variants we

employed the AML method [9] that assesses the experiment-wide

significance of association by analyzing multiple SNPs through a

single global test. The whole metabolic pathway can be sub-divided

into three a priori defined sub-pathways, each performing specific

metabolic function (Figure 1). Sub-pathway 1 is involved in the

synthesis of androgen, sub-pathway 2 is involved in the conversion of

androgens to estrogens, and sub-pathway 3 is responsible for

removing estrogens. To investigate whether there is multi-SNP

association for the whole pathway and whether any of the three sub-

pathways is particularly important in influencing disease risk, we

performed the progressive pathway-based global test on the whole

metabolic pathway as well as the three sub-pathways using the AML

method. The global test yielded marginally significant association for

the whole metabolic pathway in both breast (pglobal = 0.034) and

endometrial (pglobal = 0.052) cancers (Table 1). Dividing the

metabolic pathway into three functional sub-pathways for the global

test revealed strong association between the androgen-to-estrogen

conversion sub-pathway and both breast (pglobal = 0.008) and

endometrial (pglobal = 0.014) cancer (Table 1). The association

evidence survived correction for performing 4 pathway-based tests

in each cancer (pglobal corrected = 0.032 for breast and 0.056 for

endometrial). In contrast, the other two sub-pathways showed no

association with either form of cancer. For approximately half of the

Swedish subjects in the breast cancer study (797 cases and 764

controls) we have genome wide association study (GWAS) data

available. We used this to assess the possible influence of population

stratification on our results. For the GWAS dataset, the genomic

inflation factor, lgc, was1.015. Assuming an equal level of population

stratification (in terms of the fixation index FST) in the current study

and the GWAS sub-study, we estimated the genomic inflation factor,

lgc, to be 1.030 in the current study, using the relationship between

FST, sample size and lgc described in [10]. Using the lgc value of

1.030 for genomic control-based correction of population stratifica-

tion, the corrected global AML p-values for breast cancer are 0.052

for the entire pathway and 0.011 for the androgen-estrogen

conversion sub-pathway, leaving our results largely unchanged.

Even if lgc was as large as 1.05 in the current study, the global test

p-value for the androgen-estrogen conversion sub-pathway would

still be as low as 0.014. To further ensure that the observed

associations could not be due to the employment of 319 paraffin-

embedded tissue samples in the analysis, we re-ran analyses

excluding 319 paraffin-embedded tissue samples, and (at the same

time) excluding 33 SNPs with call rates of less than 95%. Results

were very similar. For example, for breast cancer, p-values were

0.028 and 0.009 for the entire pathway and for the androgen-

estrogen conversion sub-pathway, respectively. To validate the

association in the androgen-to-estrogen conversion sub-pathway, we

genotyped the 120 SNPs of this sub-pathway in an additional 2245

breast cancer cases and 1287 controls from Finland and performed

the same AML analysis by using the 118 successfully genotyped

SNPs. The validation analysis in the Finnish sample revealed similar

evidence of association between the androgen-to-estrogen conver-

sion sub-pathway and breast cancer (pglobal = 0.015) (Table 1). The

non-centrality parameter from the AML analysis of the androgen-to-

estrogen conversion sub-pathway, which represents the size of the

common effect of the associated SNPs, was estimated as 2.90 for the

Swedish sample and 2.94 for the Finnish sample. The similar values

indicate a consistent size of the genetic effect in the two samples. A

joint analysis of the Swedish and Finnish samples further yielded a

global p-value of 0.001 (Table 1). The SNPs with the lowest p-values

in the Finnish sample are listed in Table S6.

Analysis of the Androgen-to-Estrogen Conversion
Sub-Pathway in Breast Cancer Patient Subgroups

Hormone-related risk factors may play a differential role in

breast cancer subtypes. In particular, estrogens appear to drive the

development of ER positive tumors. This prompted us to

investigate the association in the androgen-to-estrogen conversion

sub-pathway in hormone-related breast tumor subtypes. As

Author Summary

Estrogen exposure is the most important risk factor for
breast and endometrial cancers. Genetic variation of the
genes involved in estrogen metabolism has, however, not
been consistently associated with these two cancers. We
posited that the genetic risk associated with the estrogen
metabolic genes is likely to be carried by multiple variants
and is therefore most effectively detected by multi-variant
analysis. We carried out a comprehensive association
analysis of the estrogen metabolic pathway by interrogat-
ing SNPs within 35 genes of the pathway in three tumor
samples from Sweden and Finland. Through pathway-
based multi-variant association analysis, we showed that
the genetic variation within the estrogen metabolic
pathway is associated with risk for breast and endometrial
cancers and that the genetic variation within the genes
involved in androgen-to-estrogen conversion is particular-
ly important for the development of ER–positive and
sporadic breast tumors in postmenopausal women. Our
study has demonstrated that the influence of genetic
variation on hormone exposure has an impact on breast
cancer development, especially on the development of
hormone-driven breast tumor subtypes. Our study has also
highlighted that future genetic studies of the estrogen
metabolic genes should focus on the androgen-to-
estrogen conversion process.

Pathway Analysis of Estrogen Metabolic Genes

PLoS Genetics | www.plosgenetics.org 2 July 2010 | Volume 6 | Issue 7 | e1001012



surrogate markers for hormone driven tumour subtypes we

constructed variables as combinations of menopausal status,

family history and estrogen receptor (ER) status and divided all

the patients into subgroups. We then compared subgroups of

patients, defined on values of these variables, with controls, to

evaluate the role of the androgen-to-estrogen conversion sub-

pathway in different patient subgroups. First, we compared patient

subgroups against all the controls in the combined Swedish and

Finnish samples. The subgroup results showed that in the

combined samples, significant association was observed in

postmenopausal patients (pglobal = 0.009 and 0.018 respectively),

postmenopausal patients without family history (pglobal = 0.001 and

0.04 respectively), and postmenopausal patients with estrogen

receptor positive (ER+) tumors (pglobal = 0.0006 and 0.05 respec-

tively) (Table 2). No significant association was observed in either

premenopausal patients or postmenopausal patients with family

history or estrogen receptor negative (ER2) tumors.

Then, to rule out the possibility that the above subgroup results

were caused by the mismatch between the patient subgroups and the

controls in terms of the variables which defined patient subgroups,

Figure 1. Subdivision of the estrogen metabolic pathway. This diagram shows how the 35 metabolic genes analysed in this study are involved
in different steps of the estrogen metabolism. It further shows how the genes are divided into the three groups involved in androgen synthesis,
estrogen synthesis and estrogen removal for sub-pathway-based association analysis.
doi:10.1371/journal.pgen.1001012.g001

Table 1. P values of the global tests of genetic association between the SNPs in the estrogen metabolic pathways and breast/
endometrial cancer risk.

Swedish Finnish Swedish and Finnish

Breast Cancer Endometrial Cancer Breast Cancer Breast Cancer

Whole Pathway (239 SNPs) 0.034 0.052 –

Androgen Synthesis (11 SNPs) 0.397 0.381 –

Androgen-Estrogen Conversion (120 SNPs)* 0.008 0.014 0.015 0.001

Estrogen Removal (144 SNPs)* 0.172 0.385 –

P-values were based on 2500 permutations.
*:36 SNPs are overlapped.
doi:10.1371/journal.pgen.1001012.t001

Pathway Analysis of Estrogen Metabolic Genes
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we performed the second subgroup analysis where the controls were

also divided into subgroups according to family history and

menopausal status (Table 3). The second subgroup analysis was

only performed in the Swedish sample, because the Finnish controls

lack information on family history and menopausal status. This

yielded similar evidence for the association of the sub-pathway with

the hormone-driven subtypes of breast cancer as in Table 2.

Analysis of Reproductive Risk Factors’ Impact on the
Association of the Androgen-to-Estrogen Conversion
Sub-Pathway with Breast Cancer

We further investigated the impact of reproductive risk factors on

the genetic association of the androgen-to-estrogen conversion sub-

pathway with breast cancer. Because the risk factor information is

not available for the Finnish controls, the analysis of the reproductive

risk factors was performed in the Swedish samples where information

on such factors is available. We performed the AML analysis of the

androgen-to-estrogen conversion sub-pathway with adjustment for

the reproductive risk factors (parity, age at the first birth, age at

menarche and age of menopause) and HRT use. We investigated

this primarily to assess whether any of the reproductive risk factors

could be in the causal pathway. Since p-values remained almost

unchanged in all analyses (Table 4), it appears that none of the

reproductive risk factors are likely to be in the causal pathway.

Gene-Based Analysis of the Androgen-to-Estrogen
Conversion Sub-Pathway in Breast and Endometrial
Cancers

Attempting to refine the association within the androgen-to-

estrogen conversion sub-pathway, we performed a gene-based

AML analysis in the combined Swedish/Finnish breast cancer

sample and the Swedish endometrial cancer sample. Among the

15 genes tested (Table 5), strong association was observed for

CYP19A1 with both breast (pglobal = 0.003) and endometrial

(pglobal = 0.006) cancer and UGT2B4 (pglobal = 0.002) with breast

cancer only. The associations in breast cancer survived correction

for multiple testing of 15 genes (pglobal corrected = 0.045 for CYP19A1

and 0.03 for UGT2B4). We also observed suggestive association for

UGT2B11 in breast and endometrial cancer as well as for

HSD11B1, SULT2A1 and SULT2B1 in breast cancer. Consistent

with the pathway-based associations, the gene-based associations

are generally more significant in sporadic postmenopausal patient

samples than in the whole breast cancer sample (except SULT2B1).

Furthermore, the importance of CYP19A1 and UGT2B4 in breast

cancer risk is supported by the fact that excluding either gene from

the global test of the sub-pathway reduced the global significance

of association for the sub-pathway, from 0.0015 to 0.011 for

CYP19A1, and to 0.010 for UGT2B4. However, the fact that the

association for the sub-pathway remained significant, after

excluding either gene, suggests that, although CYP19A1 and

UGT2B4 are the major players, genetic variation within other

genes also contributes to the association within the sub-pathway.

Discussion

Our pathway-based multi-SNP association analysis revealed a

significant association between genetic variants in the androgen-

to-estrogen conversion sub-pathway and the risk of two hormone

dependent cancers. The association was particularly strong for

ER+, sporadic breast cancer. Single SNP analysis did not reveal a

similar association. We used the AML-based multi-SNP analysis,

Table 2. Patient subgroup analysis of the androgen-to-estrogen conversion sub-pathway.

All Cases Menopausal Status Family History ER Status

Pre Post (PM) PM Familial PM Sporadic (PMS) PMS ER+ PMS ER2

Swedish Sample # controls 1518

# cases 1555 – 1545 244 1260 661 183

Pglobal 0.008 – 0.009 0.23 0.001 0.0006 0.65

Finnish Sample # controls 1287

# cases 2245 498 1176 313 853 704 137

Pglobal 0.015 0.10 0.018 0.43 0.040 0.050 0.36

Joint AML Analysis # controls 2805

# cases 3800 498 2721 557 2113 1365 320

Pglobal 0.001 0.10 0.002 0.33 0.0005 0.0003 0.57

All the Pglobal values are based on 5,000 permutations and reflect comparisons of various patient subgroups with all the controls.
doi:10.1371/journal.pgen.1001012.t002

Table 3. Subgroup analysis of the androgen-to-estrogen conversion sub-pathway in the Swedish samples.

All Cases Menopausal Status Family History ER Status

Pre Post (PM) PM Familial PM Sporadic(PMS) PMS ER+ PMS ER2

# controls 1518 1505 128 1253 1253 1253

# cases 1555 – 1545 244 1260 661 183

Pglobal 0.008 – 0.009 0.896 0.002 0.001 0.618

P-values for tests using PMS ER+ and PMS ER2 patient sub-groups are based on comparisons with 1253 PMS controls.
doi:10.1371/journal.pgen.1001012.t003

Pathway Analysis of Estrogen Metabolic Genes
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which has been shown to be more powerful than single SNP tests

to yield significant and consistent association, when genetic risk is

carried by multiple risk alleles each with moderate effect [11].

Pathway-based approaches are just beginning to be applied in

association analysis [12]. Recently, an association study of 9

candidate gene groups (involving 120 candidate genes) was

performed in breast cancer by using the AML approach, and

interestingly, only the group of 8 genes involved in the steroid

hormone signalling were significantly associated [13]. Our study

has moved one step further and highlights the fact that the power

of the pathway-based association analysis can be increased when

analysis is guided by well-defined biological information. We

believe that pathway approaches have potential to move genome-

wide association studies beyond their initial success of identifying

some ‘low-hanging fruits’ to revealing many weak genetic risk

alleles that have been missed by single SNP analysis.

Unless one enzyme is the rate limiting step for the entire

metabolic pathway, it is not likely that small functional

perturbations of individual variants would have a major impact

on the overall effect of the metabolic pathway. To test the

hypothesis that several genetic variants, each conferring weak to

moderate effects, contribute to genetic risk, we adopted a

systematic pathway-based approach for association analysis by

testing the joint effect of multiple genetic variants in a progressive

fashion from the whole metabolic pathway to biochemical sub-

pathways and further down to individual genes. Such a progressive

approach allows us to not only establish consistent association in

three cancer samples from two different populations but also to

refine the association of the androgen-to-estrogen conversion

component of the metabolic pathway. Our study may therefore

have advanced our understanding of the role of estrongen

metabolism in breast and endometrial cancers by 1) accounting

for the ambiguity surrounding the genetic association results and

2) indicating the androgen-to-estrogen conversion to be the

important component of the metabolic pathway in modulating

the risk and therefore to be a worthy focus for future studies.

After menopause, ovarian estrogen production dramatically

declines and conversion of adrenal androgens to estrogens in

peripheral tissues becomes the major source of circulating

estrogens. The final step of this conversion is catalyzed by

aromatase, encoded by CYP19A1 [11]. Thus, there is biological

plausibility in the association between CYP19A1 polymorphisms

and postmenopausal breast cancer. Moreover, pharmacological

inhibition of aromatase prevents recurrences in postmenopausal

women with estrogen-receptor-positive breast cancer and new

contralateral primaries [14], which has challenged the previous

routine of a 5-year course of tamoxifen alone [15]. Our study has

advanced our understanding of CYP19A1 by suggesting that the

modulation of aromatase activity by either germ-line variation or

pharmacological agents can influence the development of ER+
tumour in postmenopausal women. Furthermore, the convergence

of genetic and pharmacological effects of CYP19A1 also raises

therapeutic possibilities. For example, other genes implicated by

our genetic study, such as UGT2B4, might also be pharmacolog-

ical targets for treating breast cancer.

Hormone exposure is a common risk factor for breast and

endometrial cancer. Our employment of the three samples of two

different hormone-related cancers from two different populations

allowed us to apply a very stringent criterion for declaring an

Table 4. Pglobal values for the androgen-to-estrogen sub-pathway for all cases and for PMS ER+ cases in the Swedish sample set,
adjusted for reproductive and hormone risk factors.

Adjusted Reproductive Variables All cases PMS ER+

Sample Size (case/control) Pglobal Sample Size (case/control) Pglobal

Unadjusted 1555/1518 0.008 661/1518 0.0006

HRT use* 1541/1493 0.005 651/1493 0.0008

Parity* 1555/1518 0.0088 661/1518 0.0014

Age at first birth* 1323/1370 0.0176 563/1370 0.0016

Age at menarche* 1411/1390 0.0036 595/1390 0.0004

Age at menopause* 1545/1505 0.0102 658/1505 0.0016

*: HRT use, the AML Pglobal values were adjusted by a categorical variable, HRT/nonHRT. Similarly, Parity, adjusted by none/one or more children; Age at first time
birth, adjusted by ,25yrs, 25–30yrs, 30–35yrs and . = 35yrs; Age at menarche, adjusted by . = 14yrs, 12–13yrs and , = 12yrs; Age at menopause, adjusted by ,45yrs,
45–50yrs, 50–55yrs and . = 55yrs. All AML Pglobal values are based on 5,000 permutations. PMS: postmenopausal and sporadic.
doi:10.1371/journal.pgen.1001012.t004

Table 5. Gene-based AML Pglobal values for the 15 genes
within the androgen-to-estrogen conversion sub-pathway.

Genes # SNPs Breast Cancer ** Endometrial

All Cases PMS PMS ER+ Cancer

AKR1C4 11 0.121 0.098 0.113 0.729

CYP11B1 2 0.595 0.692 0.619 0.663

CYP11B2 4 0.390 0.496 0.665 0.863

CYP19A1 15 0.006 0.003 0.013 0.006

HSD11B1 9 0.181 0.125 0.026 0.701

HSD11B2 6 0.130 0.244 0.096 0.778

HSD3B1 7 0.549 0.551 0.108 0.065

SRD5A1 5 0.870 0.852 0.851 0.325

SRD5A2 7 0.267 0.151 0.190 0.265

STS 9 0.393 0.582 0.997 0.806

SULT2A1 8 0.332 0.040 0.080 0.535

SULT2B1 12 0.028 0.190 0.193 0.784

UGT1A1-9 12 0.378 0.413 0.205 0.888

UGT2B11 7 0.179 0.078 0.027 0.047

UGT2B4 7 0.002 0.003 0.003 0.31

*:PMS, Postmenopausal Sporadic Cases; PMS ER+, Postmenopausal Sporadic
Cases with ER+ tumors; the AML Pglobal values for breast cancer were based on
both the Swedish and Finnish samples and calculated using Fisher’s method. All
AML Pglobal values are based on 5,000 permutations.
doi:10.1371/journal.pgen.1001012.t005
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association. Furthermore, results of our breast cancer patient

subgroup analysis indicate that the genetic determinants within the

androgen-to-estrogen conversion sub-pathway may play a more

prominent role in postmenopausal women with sporadic ER+
tumors, further suggesting that the modulation of hormone

exposure by genetic variation may have a differential impact on

breast tumor subtypes. Endogenous sex hormone level appears to

be associated with breast cancer risk in postmenopausal women

[16], and particularly with the risk of ER+/PR+ breast tumors

[17]. The effect of hormone-related factors on breast cancer risk

apparently differs by ER status [18] and menopause status [19,20].

It could also differ by the status of family history of the disease, as

suggested by a recent study showing that most cases of hereditary

breast cancer are probably not related to cumulative hormone

exposure [21]. Our findings may have therefore advanced the

development of a general model for breast cancer risk: hormonal

factors, both genetic and reproductive, can play a key role in the

genesis of post-menopausal and ‘‘sporadic’’ breast cancer, whereas

genes involved in DNA repair, checkpoints, and genetic stability

(such as BRCA1, BRCA2, p53, ATM, CHK2) appear to be more

involved in predominantly breast cancers associated with family

history of disease.

It is worth noting that the contribution of genetic polymor-

phisms to risk is a function of both their prevalence and

penetrance and thus the relative importance of individual SNPs

may vary from population to population. More studies in different

populations are needed to fully understand the role of the

androgen-to-estrogen conversion sub-pathway in breast cancer.

We also want to highlight that our results are of genetic association

in nature, and further studies are needed to confirm the findings

and to identify functional variants causally linked to cancer risk.

Materials and Methods

Study Subjects
Swedish subjects were from a population-based case control

study of breast and endometrial cancer as described [22,23].

Briefly, the study included all incident primary invasive breast and

endometrial cancers among Swedish-born postmenopausal wom-

en between 50 and 74 years of age at diagnosis, diagnosed with

breast cancer between October 1993 and March 1995 and

endometrial cancer between January 1994 and December 1995.

All cases were identified through six regional cancer registries in

Sweden, and all controls were randomly selected from the Swedish

Registry of Total Population and frequency matched to the

expected age distribution of the cases.

Finnish breast cancer cases consist of two series of unselected

breast cancer patients and additional familial cases ascertained at

the Helsinki University Central Hospital. The first series of 884

patients was collected in 1997–1998 and 2000 and covers 79% of all

consecutive, newly diagnosed cases during the collection periods

[24,25]. The second series, containing 986 consecutive newly

diagnosed patients, was collected in 2001–2004 and covers 87% of

all such patients treated at the hospital during the collection period

[26]. An additional 538 familial breast cancer cases were collected at

the same hospital as described [27–30]. 1287 anonymous, healthy

female population controls were collected from the same geograph-

ical regions in Southern Finland as the cases and have been used in

several studies previously [31–33].

Risk factor information and tumour characteristics were

available for all the Swedish samples and the Finnish cases, but

were missing for the Finnish controls. The Finnish samples (mean

age = 56 for the cases and 41 for the controls) were younger than

the Swedish samples (mean age = 63 for both the cases and

controls). All the risk factor and tumour characteristics information

of the subjects are summarized in Table S1 and Table S2.

Written informed consent was obtained from all participating

subjects, and the study was approved by the Institutional Review

Boards in Sweden, Finland and at the National University of

Singapore.

DNA Isolation
DNA was extracted from 4 ml of whole blood using the

QIAamp DNA Blood Maxi Kit (Qiagen)and non-malignant cells

in paraffin-embedded tissue using a standard phenol/chloroform/

isoamyl alcohol protocol [34].

Gene and SNP Selection
We selected 35 genes involved in estradiol or estrone

metabolism and expressed in the breast (based on published

literatures). We selected 1007 single nucleotide polymorphisms

(SNPs) in these genes and their 30kb flanking sequences from the

dbSNP (build 124) and Celera databases, aiming for a marker

density of at least one SNP per 5kb (Table S3). These SNPs were

genotyped in 92 Swedish control samples to assess linkage

disequilibrium pattern and coverage. Haplotypes were recon-

structed using the PLEM algorithm [35] implemented in the

tagSNPs program [36]. A subset of SNPs, tagSNPs, were selected

based on the R2 coefficient, which quantifies how well the tagSNP

haplotypes predict the genotype or haplotypes an individual

carries. We chose tagSNPs so that common SNP genotypes and

haplotypes (frequency $0.03) were predicted with R2$0.8 [37].

To evaluate our tagSNPs’ performance in capturing unobserved

SNPs within the genes, we performed a SNP-dropping analysis

[38,39]. In brief, each of the genotyped SNPs was dropped in turn

and tagSNPs were selected from the remaining SNPs so that their

haplotypes predicted the remaining SNPs with an R2 value of 0.85.

We then estimated how well the tagSNP haplotypes of the

remaining SNPs predicted the dropped SNP, an evaluation that

can provide an unbiased and accurate estimate of tagSNP

performance [38,39]. Overall, we selected and genotyped 302

tagSNPs from the 35 genes in all the Swedish cases and controls.

Genotyping
Genotyping was performed using the Sequenom system (San

Diego, California). All genotyping results were generated with

positive and negative controls and checked by laboratory staff

unaware of case-control status. Of the 302 tagSNPs, 42 SNPs failed

in the development stage of Sequenom genotyping assays. SNPs with

a call rate ,85% (8 SNPs), minor allele frequency ,1% (9 SNPs) or

out of Hardy-Weinberg Equilibrium (p,0.05/252, 4 SNPs) were

excluded from further analysis. Overall, 239 tagSNPs from the 35

genes were successfully genotyped (Table S3). The genotype

concordance was .99%, suggesting high genotyping accuracy.

Statistical Analysis
The Cochran-Armitage trend test was performed for each of the

239 SNPs. One approach for assessing the departure of the

distribution of the (Cochran-Armitage) test statistics from the

(global) null distribution (no SNPs associated) has been described

by Tyrer et. al. [9]. The approach is based upon fitting a mixture

model to the distribution of the test statistics, with two

components, one representing SNPs which are independent of

the case-control status, the other representing SNPs associated

with case-control status. The Cochran-Armitage test statistics for

the associated SNPs are assumed to all have the same (chi-squared)

non-centrality parameter value. The distributed software for the
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‘‘admixture maximum likelihood’’ (AML) test of Tyrer et. al. [9]

calculates empirical p-values based on a ‘‘pseudo-likelihood ratio’’

test, comparing the ratio of values of the optimized likelihoods

under the null and alternative hypotheses for the observed data,

with the corresponding values obtained from a large number of

data sets with case-control status permuted randomly. It also

provides an estimate of the non-centrality parameter which is a

measure of the common effect size of the associated SNPs within

the pathway. We performed the AML-based global test of

association for the full metabolic pathway as well as for 3 sub-

pathways (see results section). In addition, we performed gene-

specific analyses, using the AML-based global test on SNPs within

genes, within the androgen-estrogen conversion sub-pathway. We

also carried out AML tests adjusted for a non-genetic risk factor

using software provided by the authors of Tyrer et al. [9].
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