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Abstract

All genomes require a system for avoidance or handling of collisions between the machineries of DNA replication and
transcription. We have investigated the roles in this process of the mTERF (mitochondrial transcription termination factor)
family members mTTF and mTerf5 in Drosophila melanogaster. The two mTTF binding sites in Drosophila mtDNA, which also
bind mTerf5, were found to coincide with major sites of replication pausing. RNAi-mediated knockdown of either factor
resulted in mtDNA depletion and developmental arrest. mTTF knockdown decreased site-specific replication pausing, but
led to an increase in replication stalling and fork regression in broad zones around each mTTF binding site. Lagging-strand
DNA synthesis was impaired, with extended RNA/DNA hybrid segments seen in replication intermediates. This was
accompanied by the accumulation of recombination intermediates and nicked/broken mtDNA species. Conversely, mTerf5
knockdown led to enhanced replication pausing at mTTF binding sites, a decrease in fragile replication intermediates
containing single-stranded segments, and the disappearance of species containing segments of RNA/DNA hybrid. These
findings indicate an essential and previously undescribed role for proteins of the mTERF family in the integration of
transcription and DNA replication, preventing unregulated collisions and facilitating productive interactions between the
two machineries that are inferred to be essential for completion of lagging-strand DNA synthesis.
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Introduction

The mitochondrial genome and its expression are essential to

maintain oxidative phosphorylation (OXPHOS), a central meta-

bolic process in higher eukaryotes. OXPHOS failure during

development leads to developmental arrest in a diverse range of

metazoans, including both insects [1,2] and vertebrates. In the

mouse, for instance, ablation of genes required for mitochondrial

DNA (mtDNA) maintenance results in lethality at embryonic day

8–9 [3–5]. OXPHOS dysfunction also underlies many patholog-

ical states in humans [6]. Elucidation of the mechanisms of faithful

mitochondrial genome maintenance and expression is therefore of

both developmental and medical relevance [6].

In metazoans, mtDNA replication has been most extensively

studied in mammals, where several competing models have been

proposed. The strand-displacement model [7], originally based on

imaging and end-mapping studies (see also [8–10]), contrasts with

the evidence from two-dimensional neutral agarose gel electro-

phoresis (2DNAGE) analyses [11–16], supporting various types of

strand-coupled replication. In the strand-displacement model,

leading-strand synthesis initiates in the major non-coding region

(NCR), at a site designated as the origin of heavy-strand synthesis

(OH) [12,13]. It then proceeds two-thirds of the way around the

circle until reaching the site designated as the origin of light-strand

synthesis (OL). Synthesis of the two strands on this model is

asynchronous, but continuous on both strands, i.e. without a need

for Okazaki fragments.

2DNAGE was developed almost three decades ago, to separate

and characterize branched from linear DNA [17]. It has been

widely used to analyze replication intermediates, starting in 1987

with the yeast 2 m plasmid [18], and subsequently in hundreds of

other publications. The method is considered definitive for

inferring replication mode and origins, termination sites, fork

barriers and molecular recombination (for review see [19–23]).

2DNAGE has indicated the existence of two classes of strand-

coupled replication intermediate in mammalian mtDNA, which

have been suggested to reflect alternate modes of replication that

may operate in parallel. In the unidirectional RITOLS mode

(RNA Incorporation Throughout the Lagging Strand), a provi-

sional lagging-strand, consisting of RNA segments derived from
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processed transcripts, is established as the replication fork proceeds

[14]. This RNA is then replaced by DNA in a subsequent

maturation step, in which lagging-strand DNA synthesis is initiated

at one or more preferred sites, including OL. RITOLS shares

many features with the strand-displacement model, the only major

difference being that the latter postulates that the parental strand

displaced during heavy-strand replication remains single-stranded

until the light-strand initiates. The second type of replication

intermediate detected by 2DNAGE is composed fully of dsDNA,

whose structure implies bidirectional initiation of replication across

a wider origin zone, stretching beyond the NCR. However,

termination at OH means that this mode of replication is also

effectively unidirectional [11,16].

Mitochondrial DNA replication in Drosophila melanogaster, based

both on early TEM [24,25] and more recent 2DNAGE analyses

[26], also involves two replication modes. The majority of

replication intermediates are composed entirely of dsDNA, with

no evidence of extensive RNA incorporation. Their structure

implies unidirectional strand-coupled DNA synthesis, commenc-

ing in the NCR, with an initiation site as inferred previously by

end-mapping [27]. A minority of replicating molecules retain a

region of single-strandedness encompassing the rRNA gene locus

just downstream of the origin, indicative of delayed lagging-strand

completion in this limited part of the genome. Also of note was the

inference of specific replication pause regions through which the

replication fork travels more slowly, based on the pronounced

accumulation of replication intermediates containing fork struc-

tures therein. The two major pause regions of the mitochondrial

genome [26] correspond approximately with zones of convergence

of oppositely transcribed blocs of genes (Fig. 1A).

The coding region of metazoan mtDNAs shows a highly

compact organization, with little or no non-coding sequences

between genes. Typically, genes are encoded on both strands, a

type of organization that unavoidably risks encounters between the

transcription and replication machineries, which compete for the

same template. As in other genetic systems, these processes should

be subject to regulation, in order to minimize and resolve potential

conflicts, including both co-directional and anti-directional colli-

sions between the two molecular machineries. Defects in this

collision regulation have been shown to cause abortive DNA

synthesis, mutagenesis and genomic instability in a wide range of

organisms [28–33]. In E. coli, for example, transcription termina-

tion is essential for the maintenance of genome integrity [34], by

minimizing the generation of double-strand breaks arising from

replication-fork collapse. A recent report has documented the

importance of a machinery to regulate replication pausing caused

by collisions with transcription complexes [35].

The mitochondrial transcription termination factor (mTERF)

family comprises a set of mitochondrial DNA-binding proteins

with diverse, documented roles in mitochondrial gene expression

[36,37]. The key structural feature of these proteins is the presence

of multiple TERF motifs (I–IX), which have been shown, at least

in the case of human MTERF1 and MTERF3, to form left-

handed helical repeats that create a superhelical DNA-binding

domain [38,39]. mTERF family members have been implicated in

the regulation of transcriptional initiation [4,40,41] as well as

attenuation [40,42,43], and have also been shown to participate in

mitoribosome assembly and translation [44–47]. In the mouse,

Mterf3 and Mterf4 are essential genes [4,45], while Mterf 2 is not

[41]. Human MTERF1 terminates transcription bidirectionally in

vitro at its major binding site downstream of the rRNA genes [48–

50], but manipulation of its activity in cultured cells or knockout

mice has rather modest effects on transcript levels [43,51], whose

physiological significance, if any, is unknown.

Four proteins of this family have been identified in Drosophila, of

which the best characterized is mTTF (CG18124). mTTF binds

two sequence elements in Drosophila mtDNA [42], each located at

the junctions of convergently transcribed blocs of genes (see

Fig. 1A). Its binding facilitates transcriptional termination bidirec-

tionally in vitro and is required for transcriptional attenuation in vivo

[52,53]. The amount and activity of mTTF therefore influences

the steady-state levels of mitochondrial RNAs whose coding

sequences lie between the mTTF binding sites and the putative

promoters [52]. Knockdown of an insect-specific paralog of

mTTF, mTerf5 (CG7175), was found to have opposite effects on

transcript levels to knockdown of mTTF, despite the fact that

mTerf5 binds to the same sites in mtDNA in an mTTF-dependent

manner [54].

As DNA binding proteins with an established role in the

regulation of transcription, mTERF family members are strong

candidates for mediating conflicts between the replisome and

transcription complexes. Moreover, MTERF proteins may have

multiple roles in mtDNA metabolism, considering that alterations

in the levels of MTERF1 or its homologs MTERF2 (MTERFD3)

and MTERF3 (MTERFD1) were reported to modulate the levels

of paused replication intermediates in cultured human cells

[55,56]. The sea urchin mTERF protein mtDBP has been

demonstrated in vitro to have contrahelicase activity [57]. This

feature, commonly seen in replication termination proteins, is

shared also by the mammalian nuclear rDNA transcription

terminator TTF-1, which has been suggested to regulate entry

of the replication machinery into an actively transcribed region

[58]. The possible correspondence of the mTTF binding sites in D.

melanogaster mtDNA with the regions of replication pausing

identified in our earlier study suggests that mTERF family

proteins could be considered as candidates for a similar role.

To test the possible involvement of mTTF and mTerf 5 in

mtDNA replication, we investigated their effects on mtDNA

metabolism after manipulation of their expression by RNAi, both

in cultured cells and in vivo. Here we show that both factors are

required for normal mtDNA topology and maintenance. Lack of

either (or both) resulted in developmental arrest at L3 larval stage.

mTTF knockdown led to the accumulation of nicks, dsDNA

Author Summary

All genomes require a system for preventing collisions
between the machineries of DNA replication and tran-
scription. We have investigated the roles in this process of
two proteins of the mTERF (mitochondrial transcription
termination factor) family in Drosophila. These factors,
mTTF and mTerf5, share common binding sites in the
mitochondrial genome, which we found to coincide with
sites of replication pausing. Knockdown of either factor by
RNA interference resulted in mtDNA depletion and
developmental arrest. mTTF knockdown decreased site-
specific replication pausing, but led to an increase in
random stalling and regression of replication forks, with
impaired synthesis of the lagging strand. This we attribute
to random collisions with the transcriptional machinery.
Conversely, mTerf5 knockdown led to enhanced replica-
tion pausing at mTTF binding sites. These findings indicate
an essential and previously undescribed role for proteins
of the mTERF family in the integration of transcription and
DNA replication, preventing unregulated collisions and
facilitating productive interactions between the two
machineries that are inferred to be essential for comple-
tion of lagging-strand DNA synthesis.

mTERFs Have Opposing Roles in mtDNA Synthesis
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breaks and recombination junctions. 2DNAGE demonstrated

stalled and reversed replication forks over broad zones surround-

ing the mTTF binding sites, and an accumulation of aberrant

replication intermediates with extended segments of RNA/DNA

hybrid, indicating a failure to complete lagging-strand DNA

synthesis. Knockdown of mTerf 5 had an opposite effect on

mtDNA replication intermediates, bringing about an increase in

replication pause strength when compared to wild-type, a decrease

in fragile replication intermediates containing single-stranded

segments, and the disappearance of species with even the short

segments of RNA/DNA hybrid that we were able to detect in

wild-type cells.

Because of their opposing but essential roles in mtDNA

expression and synthesis, we propose that the balance of these

two mTERF family members facilitates the orderly and productive

passage of oppositely moving replication and transcription

complexes, preventing collisions that would otherwise result in

abortive replication and loss of genome integrity.

Results

Replication pauses at mTTF binding sites
Replication pauses are revealed as discrete spots on arcs of

replication intermediates resolved by 2DNAGE [17,59]. The two

major replication pause regions of D. melanogaster mtDNA were

previously localized to approximately 1/3 and 2/3 of genome

length from the replication origin, located in the NCR [26]. In

order to map these pause sites more precisely, we conducted

2DNAGE on overlapping short restriction fragments, in a size

range considered optimal for resolution on the standard two-

dimensional gel system, i.e. 3–5 kb [60]. These analyses revealed

the pause sites as the expected discrete spots (Figs. 1, S1, red

arrows), lying on standard Y-arcs which are characteristic of

non-origin fragments through which a replication fork passes

unidirectionally (see [19–23,60] for full explanations of the signals

seen on 2DNAGE). Within the ,50 bp resolution of the method,

and based on multiple digests (Fig. S1), each pause maps precisely

to one of the two binding sites for mTTF in the genome, namely at

the ND1/tRNASer(UCN) gene boundary (here designated bs1) and

the tRNAPhe/tRNAGlu gene boundary (bs2; see Fig. S1C for

explanation of mapping). The HindIII fragment beyond bs2,

encompassing the remainder of the coding region, did not reveal

any discrete pause signals. However, an enhanced signal relative to

that seen in the adjacent ClaI fragments was evident at the start of

the Y arc in this fragment (blue arrow), suggestive of a more diffuse

replication slow-zone at the origin-proximal end of this fragment,

consistent with previous data [26]. Treatment with the single

strand-specific nuclease S1 had no effect on the migration of

replication intermediates in any of the fragments tested, consistent

with the previous inference that DNA replication in these regions

is fully strand coupled [26].

mTTF knockdown in S2 cells causes mtDNA depletion
and altered topology

The coincidence of replication pauses with the previously

mapped binding sites for mTTF suggests a role for this protein in

mtDNA maintenance. To investigate this we used dsRNA-based

RNA interference to knock down mTTF in S2 cells. A ,70%

decrease in mTTF mRNA levels (Fig. S1A) resulted in altered

mitochondrial transcript levels consistent with the previous report

by Roberti et al. [52]. Depending on their location within the

transcription map, transcripts were either upregulated (e.g.

cytochrome b mRNA), downregulated (e.g. 16S rRNA and

COX2 mRNA), or little altered (e.g. ND5 mRNA) (Fig. 2A).

Furthermore, in untreated cells, transcript levels of a given strand

Figure 1. Replication pauses at mTTF binding sites. A. Schematic map of D. melanogaster mtDNA with positions of probes, mTTF binding sites
(bs1, bs2), gene clusters (bold), tRNA genes (open circles), non-coding region (NCR, grey) origin and direction of replication (open arrow) and
restriction endonuclease sites for Hind III, Cla I, Nde I and Bsp 1407I. Positions of genes for which expression was analyzed are shown in blue. B.
2DNAGE of ClaI- or HindIII-digested mtDNA. Red arrows indicate discrete spots on standard Y-arcs, representing major pause sites (replication fork
barriers), analogous with those documented previously in other systems [59,88,89]: (see also relevant reviews cited in text, explaining the species
seen by 2DNAGE). Blue arrows denote broader replication slow-zone in the HindIII fragment detected by probe 3. For more accurate mapping of
pause sites by multiple digests, see Fig. S1.
doi:10.1371/journal.pgen.1003800.g001

mTERFs Have Opposing Roles in mtDNA Synthesis
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Figure 2. Effects of mTTF knockdown in S2 cells. A. Mitochondrial transcript levels after 3 d of treatment with dsRNA against mTTF or GFP, as
shown, based on Q-RT-PCR. Means 6 SD, normalized to values for the cells treated with the inert control dsRNA against GFP. B. mtDNA copy number
changes measured by qPCR, following treatment with dsRNA against GFP, mTTF and mock-transfected cells from three independent replicates
(means 6 SD, normalized to value for cells prior to plating). C. Images of PicoGreen-stained cells after 3 d of dsRNA against GFP, mTTF, tamas and
CG5924 (D. melanogaster homologue of mitochondrial helicase Twinkle). D. Agarose gel-blot of uncut mtDNA, hybridized with probe 3, showing
three major forms (oc – open circles, linear – genome-length linears, sc – supercoiled circles). Note the relative disappearance of sc forms, increase in
linear forms and subgenomic fragments, in cells treated with dsRNA against mTTF (M), compared with cells treated with inert control dsRNA against
GFP (G). Note also that this experiment is not quantitative, since it uses DNA extracted from isolated mitochondria, for which a nuclear DNA loading
control is meaningless. E, F. 2DNAGE of mtDNA cut by restriction enzymes with single digestion sites in the genome. E. Bsp 1407I: note the
disappearance of the faint but characteristic, partially single-stranded eyebrow arc (blue arrows: for detailed explanation, see [26]) and the increase in
recombination intermediates or X-forms (red arrows, [17]), after 3 d of mTTF dsRNA treatment. Drawing (right) shows and interprets the major arcs
seen on the gel, based on published 2DNAGE analyses (see references cited in text). uc – uncut circles, ey – eyebrow arc, X – recombination arc, dY –
double Y arc, 1N – unit length fragment (genome-length linear). F. Nde I digest, followed by treatment with S1 nuclease, or not, as indicated. Note the
accumulation of replication intermediates broken at the origin/rRNA locus (compare with Fig. 6 of [26]: see Fig. S3). Drawing (right) shows the
conversion of replication intermediates from X-like termination structures (t) to Y structures (Y) by strand breakage within the region depicted by the
dashed line.
doi:10.1371/journal.pgen.1003800.g002

mTERFs Have Opposing Roles in mtDNA Synthesis
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were observed to decrease markedly as the mTTF binding sites are

successively traversed within the transcription unit (Fig. S1B),

consistent with the proposed role of mTTF as a transcriptional

attenuator (although this may also be influenced by differential

RNA stability).

Next we analyzed mtDNA levels in cells knocked down for

mTTF, using three different methods: qRT-PCR (Fig. 2B),

PicoGreen staining of mtDNA nucleoids (Fig. 2C) and

Southern blotting of both digested (Fig. S1C, D) and

undigested mtDNA (Fig. 2D). qRT-PCR indicated that

mtDNA levels fell to approximately 20% of control levels

following 4–5 days of mTTF knockdown (Fig. 2B), whereas

mtDNA levels were unchanged in untreated cells or cells

treated with an inert dsRNA against GFP. The intensity of

PicoGreen staining after 5 d of mTTF knockdown (Fig. 2C)

was also greatly diminished compared with control cells treated

with the dsRNA against GFP and similar to the effect of

dsRNA treatment targeted against genes with well-established

roles in mtDNA synthesis, such as tamas (encoding the catalytic

subunit of DNA polymerase gamma) or CG5924 (the Drosophila

homologue of the mammalian mitochondrial helicase Twin-

kle). The relative amount of intact mtDNA detected by

Southern blot was also diminished by mTTF knockdown

(Fig. 2D), with a progressive disappearance of the supercoiled

form relative to genome-length linear molecules (Fig. 2D). The

total amount of mtDNA detectable by Southern hybridization

after digestion with a restriction enzyme was also diminished

(Fig. S2C, S2D). Analysis of full-length mtDNA by 2DNAGE

revealed a relative increase both of recombination structures

and broken replication replication intermediates (Fig. 2E: see

[26] for a full explanation of the arcs revelaed by 2DNAGE of

Drosophila mtDNA digested with restriction enzymes curring

once in the genome). Recombination structures linking two

whole copies of the genome following such linearization are

most easily revealed in the Bsp1407I digest, where the

characteristic X-arc that they form (see [19–23,60]) is well

resolved from termination and dY structures. Their accumu-

lation was most prominent after 3 d of knockdown of mTTF

(Fig. 2E, red arrows). Broken replication intermediates, arising

from scission of one branch at or near the origin, migrate on or

close to a standard Y-arc, instead of a bubble, double-Y or

eyebrow arc (see Figs. 2E, 2F, S3). They are normally found

only at a low-level in control cells, but are generated in

material from control cells by treatment with S1 nuclease,

which cuts the region that remains single-stranded in some

replicating molecules, extending from the replication origin

across the rRNA gene locus (see Fig. 6 of [26], panels from

which are reproduced here in Fig. S3 for comparison). After

mTTF knockdown, these broken intermediates were much

more abundant, and further treatment with S1 nuclease had no

effect (Fig. 2F, red arrows). The characterstic eyebrow arc seen

in the Bsp1407I digest, resulting from non-digestion in the

partially single-stranded region, was already absent, consistent

with systematic strand-breakage in this region following mTTF

knockdown (Fig. 2E, blue arrows).

Roberti et al. [52] earlier found no significant effect on

mtDNA levels from 3 days of mTTF knockdown, but using a

different dsRNA. To clarify this inconsistency and exclude

possible off-target effects, we repeated the experiment using

either the same dsRNA as Roberti et al. [52] or our own custom-

designed dsRNA. mtDNA levels were decreased by ,80% at day

5 in both cases, although the dsRNA used by Roberti et al. [52]

produced its effects more slowly, with only a 15% drop in

mtDNA levels at day 3 (Fig. S2E).

mTTF knockdown in developing flies causes mtDNA
depletion, broken replication intermediates and larval
arrest

To investigate the effects of mTTF knockdown on mtDNA

maintenance in the whole organism, we expressed a (hairpin)

dsRNA transgene targeted on mTTF, using the ubiquitous and

constitutive daughterless-GAL4 (da-GAL4) driver. We confirmed

that the parental RNAi line (itself homozygous viable) produced

normal numbers of progeny with a wild-type phenotype when

mated to flies not expressing da-GAL4. We also confirmed that

RNA interference in vivo produced ,90% knockdown of mTTF at

the mRNA level at larval stage (Fig. S4A), which was seen also at

the protein level (Fig. S4B). mTTF knockdown larvae gained

weight more slowly than wild-type larvae of the same genetic

background (Fig. 3A). More than 90% of individuals failed to

develop beyond the L3 larval stage although larval weight

exceeded the critical range for developmental progression

(Fig. 3A, [61]]. None of the few aberrant pupae progressed to

the late pupal stages. The persistent larval stage lasted approxi-

mately 30 days, during which the larvae became progressively

inactive and then died.

Mitochondrial RNA levels were altered in a similar manner as

in mTTF knockdown cells, e.g. COX2 mRNA was decreased,

whereas cytochrome b mRNA was elevated (Fig. 3B). Mitochon-

drial DNA copy number failed to increase as typically occurs

during wild-type development, remaining at 40% of the wild-type

level 3 days after hatching (Fig. 3A). During the persistent larval

stage, mtDNA copy number steadily declined to approximately

25% of the maximum level observed in wild type L3 larvae, 25

days after hatching.

A similar accumulation of broken replication intermediates was

observed in mTTF knockdown larvae as in S2 cells, e.g. as

revealed by NdeI digestion (Fig. 3D, red arrows; compare with

Figs. 2F, S3). The control strain (w1118 ; da-GAL4/+) displayed an

identical pattern of replication intermediates to that described

previously for the Oregon-R wild-type strain (Fig. 4 of [26]], ruling

out any confounding effect of genetic background.

mTTF knockdown causes replication stalling in a broad
zone, with failure to complete lagging-strand synthesis

The observed drop in mtDNA copy number and topological

changes following mTTF knockdown prompted us to characterize

mtDNA replication intermediates in more detail, in cells and

larvae knocked down for mTTF. In each of the two ClaI

fragments that contained the mTTF binding sites, the discrete

spots corresponding to replication pauses were observed to fade

out and spread over a wider region of the Y-arc, during 4 days of

mTTF dsRNA treatment of S2 cells (Fig. 4A, red arrows). After 4

days of treatment, the proportion of this novel material migrating

along the Y-arc, relative to the unit-length fragment, was

significantly increased compared to day zero for both bs1 and

bs2. Concomitantly we observed a transient increase in cruciform

DNA species, particularly a subclass of Holliday junction-like

molecules (Fig. 4A, blue arrows). This is consistent with the

increase in recombinational forms linking two full copies of the

genome seen after 2–3 days of RNAi following digestion with

restriction enzymes that cut once in the genome (Fig. 2E, red

arrrows). Spreading of the pauses (Fig. S5, red arrows), with

accumulation of recombination junctions (Fig. S5, blue arrows)

was seen in mTTF knockdown larvae, although to a lesser extent

than in mTTF knockdown cells.

Stalled replication forks have a tendency to regress along the

template and, under some conditions, can adopt a ‘‘chickenfoot’’

mTERFs Have Opposing Roles in mtDNA Synthesis
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structure around a Holliday-like junction [62,63]; (see Figs. 4B and

S6). If such fork reversal is relatively limited, the species formed

would still migrate close to a classical Y-arc. However, they should

become sensitive to nucleases targeting Holliday junctions [64]. To

test this, we treated mtDNA with the bacterial cruciform-cutting

enzyme RusA. This removed substantially more material from the

region of the Y-arc in cells knocked down for mTTF compared to

control cells (Fig. 4B, red arrows; see also Fig. S7 for side-by-side

comparisons of gels at equivalent exposures). This supports the

idea that mTTF knockdown resulted in the accumulation of

Figure 3. Effects of mTTF knockdown in flies. A. Changes in mtDNA copy number, measured by qPCR and normalized to value from control
larvae at day 3, and in wet weight, of larvae from strains knocked down for mTTF (red bars, w1118 ; UAS-mTTF-RNAi/+ ; da-GAL4/+) and controls (blue
bars, w1118 ; +/+ ; da-GAL4/+) from three independent replicates. Means 6 SD. Critical weight is the threshold for progression to metamorphosis. B.
Expression of COX2 and cyt b genes in larvae from mTTF knockdown (red bars) and control strains (blue bars), measured by Q-RT-PCR from three
independent biological replicates. Means 6 SD. C, D. 2DNAGE of NdeI-digested mtDNA with or without S1 treatment, in (C) control and (D) mTTF
knockdown larvae, as indicated. Note the appearance of broken replication intermediates (red arrows) in mTTF knockdown larvae which are only
visible in material from control larvae after S1 treatment (compare with Fig. 4 of [26]; see also Figure 2F).
doi:10.1371/journal.pgen.1003800.g003

mTERFs Have Opposing Roles in mtDNA Synthesis
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regressed replication forks containing Holliday-like junctions,

which may be considered a signature of replication stalling. Note

the decrease of the recombination structures (blue arrows in

Fig. 4B) migrating on the X-arc, following RusA treatment, thus

confirming the functionality of the enzyme in this experiment.

Our findings are consistent with the idea that bound mTTF

provides a natural barrier to fork progression, avoiding unregu-

lated replication stalling that might arise, for example, from

collisions of the replication and transcription machineries. Since

mTTF is already known to promote transcriptional termination,

we reconsidered the issue of the role of RNA in Drosophila mtDNA

replication. Previous 2DNAGE analyses indicated that mtDNA

replication intermediates in D. melanogaster were fully double-

stranded [16], except for the rRNA locus, which exhibited single-

strandedness in a minority of molecules. Restriction sites across the

remainder of the genome were completely digestible, indicating

that extensive regions of RNA/DNA hybirid, such as seen in

RITOLS replication intermediates in vertebrates [12,13,65], were

Figure 4. Aberrant replication-fork stalling resulting from mTTF RNAi. A. 2DNAGE of ClaI-digested mtDNA, time-course during mTTF dsRNA
treatment, showing effects on replication intermediates in fragments containing the mTTF binding sites, i.e. substitution of defined pauses (red
arrows) with wider regions of stalling across both mTTF binding sites. B. 2DNAGE analysis of replication intermediates of fragment containing mTTF
bs2 before and after RusA treatment. Note that RusA promotes increased removal of signal from the Y-arc (red arrows) in material from cells
subjected to mTTF dsRNA treatment, as well as the disappearance of X-forms in both cases (blue arrows). Drawing illustrates how regressed
replication forks become sensitive to cruciform-cutting enzymes. See also Figs. S6 for fuller explanation of RusA action and S7 for side-by-side
comparisons, documenting increased sensitivity to RusA after mTTF knockdown.
doi:10.1371/journal.pgen.1003800.g004

mTERFs Have Opposing Roles in mtDNA Synthesis
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absent, although the presence of limited patches of RNA/DNA

hybrid could not be excluded. We investigated the issue further by

treating mtDNA, after restriction digestion, with RNase H, which

digests regions of RNA hybridized to DNA, thus modifying the

migration pattern of RITOLS-type replication intermediates. This

analysis revealed a prominent, novel arc, migrating just below the

Y-arc (Fig. 5, red arrows), whose trajectory is consistent with the

presence of one or more short segments of ssDNA, arising from the

enzymatic removal of RNA from some replicating molecules.

Other species detectable by 2DNAGE were essentially unaffected

by RNase H treatment, indicating that the novel arc arose from

material previously not resolved on this gel system, which is

consistent with the clear increase in signal seen after RNase H

treatment (Fig. S8).

The nature and trajectory of the novel arc released by RNase H

treatment differed markedly after knockdown of mTTF. The

forms migrating just below the standard Y-arc (Fig. 5, red arrows),

were replaced by a much shallower sub-Y arc, extending beyond

the limit of the fragment analysed (Fig. 5, blue arrows). Its

trajectory is consistent with much more extensive ssDNA regions

(i.e. much longer segments of RNA/DNA hybrid prior to RNase

H treatment) than in the replication intermediates that formed the

sub-Y arc generated by RNase H treatment in untreated cells.

mTerf5 is also required for mtDNA maintenance
To test whether the mTTF partner protein mTerf5 antagonizes

the effects of mTTF on replication as well as on transcription, we

investigated the effect of mTerf5 knockdown on mtDNA copy

number in S2 cells (Fig. 6A). We observed a substantial depletion

of mtDNA to a similar extent (,70%), and with similar kinetics, as

mTTF knockdown, although there was no cross-reaction between

the two dsRNAs used (Fig. S9). Simultaneous knockdown of both

factors in S2 cells produced a small initial increase in mtDNA copy

number, followed by a gradual decline to the same low level as

produced by knockdown of either factor alone, after 5 days of

treatment. In the developing fly, mTerf5 knockdown using each of

three independently isolated RNAi lines driven by da-GAL4,

produced the same phenotype as mTTF knockdown, i.e. a

persistent larval stage with failure of pupariation. The congruent

phenotype effectively excludes off-target effects as an explanation.

Simultaneous knockdown of both factors in the developing fly also

yielded this phenotype.

Despite the fact that mTerf5 knockdown produced similar

effects on mtDNA copy number and development as mTTF

knockdown, 2DNAGE analysis of mtDNA from mTerf5 knock-

down cells revealed different effects on the pattern of replication

intermediates. We observed enhanced replication pausing at both

mTTF binding sites (Fig. 6C: for comparison based on gels of

equivalent exposure, see Fig. S10). The broken intermediates that

accumulated when mTTF was knocked down were absent

(compare Fig. 6B with Fig. 2F, shown alongside in Fig. S3B),

and treatment with S1 nuclease failed to release such intermediates

in comparable amounts as in control cells (Fig. 6B, Fig. S3B).

Treatment with RNase H had no discernible effect (compare

Fig. 6C with the corresponding digests of Fig. 5). mTerf5

knockdown thus had opposite effects on replication intermediates

as mTTF knockdown, appearing to enhance replication pausing at

specific sites and shifting the balance of mtDNA replication

intermedaites towards those composed fully of dsDNA, as opposed

to those with patches of RNA/DNA hybrid or single-strandedness.

Discussion

mTTF and mTerf5 were previously shown, using RNAi, to

have reciprocal effects on transcription. Here we investigated their

roles in mtDNA maintenance, using a similar strategy. Both

factors were essential for mtDNA copy number maintenance, but

had opposing effects on mtDNA replication. These findings allow

us to propose a model whereby these factors co-operate to

facilitate the productive interaction between oppositely moving

replication and transcription complexes on the same template,

thus contributing to the maintenance of genomic fidelity.

Contrary to a previous report [52], our data demonstrate that

mTTF is required in vivo to maintain mtDNA levels. The different

findings are attributable to the kinetics of action of the dsRNAs

used in the two studies. The effects on transcription were broadly

similar [36]: the minor differences are most likely due to early

changes in mtDNA levels compounding those on RNA. The

Figure 5. mTTF knockdown lengthens RNA/DNA hybrid tracts in replication intermediates. 2DNAGE analysis of RNase H-treated
replication intermediates from untreated and mTTF knockdown cells (after 3 d of treatment). Note the appearance in material from control cells of an
arc migrating close to the standard Y arc (red arrows, bold line in interpretative diagram, right), corresponding with structures containing limited
segments of single-strandedness, as shown, arising from RNA removal from short regions of RNA/DNA hybrid. The novel Y-like arc generated in mTTF
knockdown cells (blue arrows) follows a much shallower trajectory, indicative of more single-strandedness, ascribed to the presence of more
extensive RNA/DNA hybrid segments prior to RNase H digestion. Drawing shows the structure and provenance of the novel arcs (from material
previously unable to enter the gel).
doi:10.1371/journal.pgen.1003800.g005
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apparent drop in steady-state transcript levels as the mTTF sites

are successively traversed reflects the organization of the

mitochondrial genome, but makes no obvious sense for the

equimolar supply of polypeptides belonging to any given

OXPHOS complex. The transcription termination activity of

mTTF might therefore serve primarily a different role, such as in

DNA replication, with effects on mitochondrial transcripts being

accommodated (post-) translationally.

The developmental arrest at larval L3 stage caused by

deficiency of mTTF or mTerf5 is a phenotype shared by

knockdown of many genes for mitochondrial functions, including

those encoding mitochondrial transcription factor 2 (mtTFB2),

single-strand binding protein (mtSSB) and CCDC56, required for

the assembly of cytochrome c oxidase [66–68]. Whether it is a

direct result of OXPHOS deficiency or of deranged developmen-

tal signaling remains to be determined.

Although we previously found no evidence for RNA-containing

mtDNA replication intermediates in Drosophila [26], finer scale

analysis indicated the presence of short patches of RNA scattered

around the mitochondrial genome, based on the prominent sub-Y

arcs seen on 2DNAGE after treatment with RNase H. Standard

Y-arcs, which were already present before RNase H treatment,

also remained after the treatment. There was a clear and

reproducible increase in total signal in the resolving portion of

2D gels following treatment with RNase H. Logically, this material

must have been released by the specific action of the nuclease,

from high molecular-weight complexes or tangles previously

unable to enter the gel, This is supported by similar observations

on human heart mtDNA [69], much of which remained trapped

in the well upon 2DNAGE, unless treated with suitable nucleases

and/or topoisomerases to disrupt tangles visualized also by

electron microscopy. We infer that mtDNA replication interme-

diates in Drosophila must consist of two classes, as in vertebrates.

One class appears to be composed entirely of dsDNA, and is

represented by the standard Y-arcs seen both before and after

RNase H treatment. The second class, akin to the RITOLS

intermediates seen in vertebrates [12,13], contains tracts of RNA/

DNA hybrid, except that here such tracts must be very short, so

that RNase H generates a novel sub-Y arc which migrates close to

the trajectory of the standard Y-arc. Short segments of RNA

hybridized to replicating DNA may be covalently joined to longer

transcripts, forming the complex tangles unable to enter gels unless

released by RNase H treatment. The Y-like structure of the

products, and the fact that they were created, not destroyed by

RNase H, indicates that they are not simple intermediates of

transcription, DNA repair or recombination.

These observations raise the issue of whether transcription and

DNA replication can occur simultaneously on the same template

and, if so, whether this association is obligatory. The existence of a

population of mtDNA molecules only able to enter agarose gels

after treatment with a ribonuclease strongly suggests that these are

molecules engaged in active transcription. After RNA removal,

they migrate along 2DNAGE arcs expected for an iterative set of

replication intermediates, strongly supporting the idea that

replication and transcription can take place on the same template.

Those replication intermediates that can be resolved on 2D gels

without ribonuclease treatment may represent a distinct subset of

replicating molecules, in which transcription is prevented.

Resolving these issues will require the development of novel

methods for metabolic labeling and analysis of replication and

transcription intermediates.

Knockdown of mTTF or mTerf5 produced specific and

reciprocal effects on mtDNA synthesis. Lack of mTTF caused

random stalling and fork regression, whilst decreasing those

molecules specifically paused at the binding site itself. RusA

treatment confirmed the presence of Holliday-like junctions, a

signature of fork reversal associated with stalling due to replication

Figure 6. Effects of mTerf5 knockdown in S2 cells. A. mtDNA copy
number changes, measured by qPCR, following treatment with dsRNAs
against mTerf5 alone, or against both mTTF and mTerf5. Means 6 SD from
three independent experiments, normalized against values prior to plating
(day 0). B. 2DNAGE of NdeI-digested mtDNA after 3 d of treatment with
dsRNA against mTerf5: compare with Figure 2F and Fig. 6 of [26] (see Fig. S3B
for side-by-side comparisons). Blue arrow denotes broken replication
intermediates, now barely visible even after treatment with S1 nuclease. C.
2DNAGE of ClaI-digested mtDNA with or without subsequent digestion with
RNaseH, after 3 d of treatment with mTerf5 dsRNA: compare with Figure 4A.
Red arrows denote enhanced major pauses corresponding with bs1 and bs2:
see Fig. S10 for side-by-side comparisons documenting the increase in signal.
doi:10.1371/journal.pgen.1003800.g006
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impediments [63], and proposed as a necessary intermediate in

replication repair [70]. The logical explanation for replication

stalling in the present case is random collisions with the

transcriptional machinery, as observed in other systems

[29,30,71], such as the rDNA locus in yeast. The formation of

Holliday-like chicken-foot structures at stalls of this type has not

been reported previously, but our observation of an increase in X-

form species containing recombination junctions after 2–3 days of

mTTF knockdown suggests that stalling creates substrates for a

recombinational repair and/or restart machinery. The observed

mtDNA depletion and shift in topology indicates that such

processes are unable to support the completion of replication

sufficiently to maintain mtDNA copy number. The concomitant

accumulation of broken replication intermediates, akin to those

that can be created in material from unmanipulated cells by S1

nuclease treatment, indicates that the ssDNA region in the rRNA

locus was systematically broken, suggesting that it was more

pervasive or persistent than in control cells. Finally, a novel class of

putative replication intermediates was observed to accumulate,

inferred to contain more extensive RNA segments, based on the

generation of shallower sub-Y arcs by RNase H. These replaced

the forms with only short RNA segments, that were seen in control

cells. Conversely, mTerf5 knockdown produced opposite effects,

namely enhanced pausing at the mTTF binding sites, a decrease in

replication intermediates broken at the rRNA locus and disap-

pearance of the RNA-containing species. Thus, whereas mTTF is

required for physiological pausing, mTerf5 allows paused replica-

tion to resume. Additional enzymatic treatments, as well as the use

of in gel-digestion [72], heat denaturation prior to second

dimension electrophoresis [73,74], and electron microscopy, will

be needed to reveal the detailed structural differences between

replicating molecules paused naturally by mTTF/mTerf5, and

those arising from unregulated or persistent stalling in their

absence.

Some of the effects of mTTF knockdown on mtDNA replication

could be indirect, e.g. resulting from altered transcript levels.

However, a failure of replication due to primer insufficiency would

lead to the progressive disappearance of shorter replication

bubbles, rather than the accumulation of broken termination

intermediates. Evidence of a role for preformed transcripts in

RITOLS replication of mammalian mtDNA, via the bootlace

mechanism [13,14], suggests the possibility that mTTF deficiency

might impair DNA replication by distorting the relative abun-

dances of different processed transcripts that must be incorporated

during fork progression. However, this would not explain the

accumulation of random collision products. Thus, we favor a more

direct role for mTTF in DNA replication.

The effects of mTTF and mTerf5 knockdown imply that RNA

incorporation, replication-fork pausing and lagging-strand synthe-

sis are related phenomena. RNA incorporated via the bootlace

mechanism is one possible source of primers for the synthesis of

lagging-strand DNA, although other mechanisms of lagging-strand

initiation are consistent with RITOLS [9]. Our data suggest that

proteins belonging to the mTERF family are crucial factors in

execution and/or regulation of such a process, at least in

Drosophila, as illustrated in Fig. 7. The proposed model postulates

that the balance of mTTF and mTerf5 nurses the productive

interaction of replication and transcription machineries moving in

opposite directions, and that replication pausing is vital for

ensuring the incorporation of RNA transcripts into replication

intermediates at the replication fork (Fig. 7). Capture of a new

bootlace, resulting from the arrival of a transcription complex that

undergoes termination, is also proposed to be essential for the

priming of lagging-strand DNA synthesis, not only at the

immediate site of mTTF/mTerf5 binding, but also further

downstream, as the replication fork progresses.

The prevention and/or regulation of collisions between the

transcription and replication machineries is indispensable for all

genetic systems [30,75], to avoid knotting of the daughter

molecules [76], the generation of recombinogenic ends [77] and

other types of genomic instability [29]. Proteins that perform this

function are well documented in other systems, for example in the

rDNA of both fungi [78,79] and mammalian cells [80], although

these proteins (Fob1 in S. cerevisiae, Reb1 in S. pombe and TTF1 in

mammals) are unrelated to the mTERF family and to each other.

Thus, there is both a precedent and a rationale for mTTF and

mTerf5 to integrate transcription and DNA replication.

However, the many cases of mitochondrial proteins having

multiple functions, e.g. Ilv5, Aco1 and RNase P [81–83], means

that it cannot be excluded that mTTF and mTerf5 regulate

transcriptional and replication independently. The two proteins

may also be considered as an example of an antagonistic pair that

together control a specific process, a type of regulation widespread

in biological systems. An intriguing parallel is provided by the

related helicases Rrm3 and Pif1, which exert opposing effects on

DNA synthesis at the replication fork barrier of Saccharomyces

cerevisiae rDNA [84]. Unlike mTTF and mTerf5, Rrm3 and Pif1

do not bind DNA sequence-specifically, but can recognize and

process unusual DNA structures in G+C-rich regions [85].

Although mTTF and mTerf5 are not themselves helicases, they

may recruit an antagonistic helicase pair that act in a similar

manner to Rrm3 and Pif1, or may confer alternate properties on a

single helicase.

Materials and Methods

Flies, cell-lines and culture
S2 cells [86] were cultured in Schneider’s Medium (Sigma-

Aldrich) at 25uC. Cells were passaged every 3–4 d at a density of

0.56106 cells/ml. Standard Drosophila strains, plus the mTTF

RNAi line 101656 and mTerf5 RNAi lines 2899, 2900 and

107227 from the Vienna Drosophila RNAi Center (VDRC), were

cultured as described previously [87].

dsRNA constructs and transfection
Gene-specific dsRNAs were synthesized from templates created

from S2 cell cDNA by a nested PCR strategy, which introduced

the T7 promoter sequence on both sides of each final amplicon

(see Table S1 for primer sequences). S2 cells were transfected with

4 mg of each dsRNA added to 0.5 ml of culture medium, and

grown for the times indicated in figures and legends. Where

transfections were to be continued for .3 d, cells were passaged

every 3 d and fresh dsRNA was added. For visualization of

nucleoids, dsRNA against Tfam was added for the final 2 d, as

described in SI, Nucleoids were detected by fluorescence

microscopy, after staining with Quant-iTTM PicoGreen (Invitro-

gen).

DNA and RNA extraction
Nucleic acids for mtDNA copy-number analysis, 2DNAGE and

Q-RT-PCR were isolated from S2 cells, adult flies, larvae or

purified mitochondria thereof using variants of standard methods.

In general, 2DNAGE used total nucleic acids isolated from sucrose

density gradient-purified mitochondria (see SI).

Q-PCR
Q-RT-PCR to measure RNA levels was performed essentially

as described earlier [52], using cDNA prepared by random
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Figure 7. A tentative model for mTTF function. A. Normally, replication pauses at mTTF binding sites, where orderly passage of transcription
and replication is mediated. mTTF binding sites may additionally be the places where an RNA bootlace is supplied [14], via termination of a nascent
transcript produced by an arriving transcription complex. Note that, under this model, as the fork advances further, RNA/DNA hybrid is laid down
behind the fork, whilst the replicative helicase unwinds the parental duplex ahead of the fork. The lagging-strand RNA can then be processed to
generate primers for lagging-strand DNA synthesis, as the fork proceeds. Letters mark corresponding positions on RNA and DNA strands. B. In case of
mTTF depletion by RNAi, uncontrolled collisions between the replication and transcription machineries take place outside of the mTTF binding site,
leading to fork reversal and a failure of normal lagging-strand synthesis. C. Depletion of mTerf5 by RNAi is proposed to enhance the binding or inhibit
the dissociation of mTTF, resulting in stronger pausing, a block to onward fork progression, and early completion of the lagging strand in the rRNA
gene region.
doi:10.1371/journal.pgen.1003800.g007
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priming or, where indicated, by gene- and strand-specific primers

as detailed in Table S1. Assays always included three or more

independent biological replicate samples, with normalization to

the transcript of nuclear gene RpL32. Relative quantitation of

mtDNA content was performed similarly, using total DNA as

template, plus primers for mitochondrial 16S rDNA (Table S1),

also with normalization to RpL32.

1D and 2D neutral agarose gel electrophoresis and
Southern blot-hybridization

Standard one-dimensional electrophoresis used 0.6% agarose

gels in TBE buffer. 2DNAGE and blot-hybridization were

conducted essentially as described earlier [13], using slightly

different conditions for resolving large and small DNA fragments

(see SI). For details of restriction digests and treatment with DNA

modifying enzymes see SI. Radioactive probes for specific

fragments of Drosophila mtDNA were generated by PCR, with

[a-32P]-dCTP (Perkin-Elmer, 3000 Ci/mmol) in the reaction mix

(see Table S1 for primers).

For further details, see Text S1.

Supporting Information

Figure S1 Location of replication pause sites coincides with

mTTF binding sites. A. Map of Drosophila mitochondrial genome

showing relevant restriction endonuclease sites and positions of

probes, using similar nomenclature as Fig. 1. B. 2DNAGE

autoradiographs for fragments from the regions of mTTF binding

sites bs1 and bs2, probed as indicated. Major pauses indicated by

red arrows. C. The location of replication pauses in the various

fragments tested, based on mobility in the first electrophoretic

dimension (inversely proportional to the logarithm of total strand-

length), and on unidirectional replication, as determined previ-

ously [16], directionality as shown. Numbers refer to nucleotide

positions in the mitochondrial genome. The mid-point of each

fragment corresponds with the apex of the Y-arc, indicated by

dashed lines. Multiple digests, as shown, enable unambiguous

mapping of the major replication pauses to the mTTF binding

sites.

(PDF)

Figure S2 A. Q-RT-PCR analysis of mTTF transcript levels in

S2 cells after 3 days of dsRNA treatment against mTTF. B. Q-RT-

PCR analysis of S2 cell mitochondrial transcripts transcribed in

the opposite direction to that of replication fork passage, in

untreated cells. C. Analysis of mtDNA copy number by Southern

hybridization, following 5 d of dsRNA treatment against mTTF or

an inert dsRNA targeted against GFP, as shown. Biological

replicate samples were digested with XhoI, run on a 0.35% agarose

gel, and probed successively for mtDNA and nuclear rDNA using

PCR-derived probes for nt 9363–9888 (ND4/ND4L region) of

mtDNA (NCBI Accession U37541) and nt 1953–2446 of

Drosophila rDNA (NCBI Accession M21017), labeled by

random-primed synthesis in presence of a-32P-dCTP and

hybridized under the standard conditions [26]. D. Indicated

bands corresponding to nuclear rDNA and mtDNA fragments

were quantitated by phosphorimaging, with background subtrac-

tion, and plotted as means + SD, normalized to the values for the

control cells (i.e. those treated with dsRNA against GFP). E. Q-

PCR analysis of mtDNA copy number after treatment with

dsRNAs used in this study and the one used by Roberti et al [52].

(PDF)

Figure S3 Comparison of 2DNAGE patterns produced by NdeI

digestion in control and mTTF knockdown cells. A. Top panels

reproduced from Fig. 2F of this paper (cells knocked down for

mTTF). Bottom panels reproduced from Fig. 6 of [26] (control

cells), alongside cartoon diagrams of the gels. Red arrows indicate

the broken replication intermediates produced by S1 nuclease

digestion of material from control cells, but already present in

material from mTTF knockdown cells. b – bubble arc (initiation

arc), p1, p2 – major replication pauses 1 (at mTTF binding site

bs1) and 2 (at mTTF binding site bs2), dY – double-Y arc, Y – y-

arc, t – termination intermediates. For explanation of these arcs,

see standard references on 2DNAGE [19–23,60]. B. The same

gels from part A, shown alongside the corresponding gels for

mTerf5 knockdown cells, reproduced from Fig. 6B. To make the

gels more easily comparable, the gel images from panel are slightly

cropped for alignment, whilst those from Fig. 6B have been slightly

stretched in the vertical dimension to compensate for slightly

altered running conditions.

(PDF)

Figure S4 Verification of mtTTF knockdown in vivo, at the RNA

and protein levels. A. Q-RT-PCR of mTTF mRNA in control

(w1118 ; +/+ ; da-GAL4/+) and mTTF knockdown (w1118 ; UAS-

mTTF-RNAi/+ ; da-GAL4/+) larvae. B. Western blot analysis of

mTTF knockdown at the protein level in vivo. Protein extracts

(25 mg) from males and females of different control strains and

mTTF knockdown larvae (KD). Red arrow denotes the polypep-

tide corresponding with mTTF.

(PDF)

Figure S5 2DNAGE analysis of larval mtDNA from mTTF

RNAi and control strains. Note the spreading of the signal along

the Y-arc (red arrows) in larvae knocked down for mTTF,

compared with the more specific pause in control larvae, plus the

increase in X-structures (blue arrows).

(PDF)

Figure S6 RusA distinguishes the products of random collisions

of the replication and transcription machineries from those of

protein-mediated replication pausing. A. Unregulated collisions of

the replication (blue) and transcription (green) machineries result

in fork reversal, creating chicken-foot structures containing a

Holliday (4-way) junction, that require a restart pathway to resume

DNA replication. Protein-mediated replication pausing does not

lead to fork reversal, and the paused Y-intermediate does not

contain a Holliday junction. The Holliday junction formed upon

fork reversal is susceptible to digestion by RusA. B. RusA cuts

symmetrically in either of two modes (blue or orange arrows),

degrading the chicken-foot species into 1n and sub-1n linear

fragments, consistent with Fig. 4B for the case of cells knocked

down for mTTF. Note that genuine Y-form intermediates are

unaffected by RusA, and persist.

(PDF)

Figure S7 Comparison of RusA effect on replication interme-

diates in control and mTTF knockdown cells (3 days after start of

dsRNA treatment). Equal amounts of material from single

mtDNA preparations were cut with ClaI and then treated with

0, 25 and 100 nM concentrations of RusA (see Materials and

Methods). Samples were hybridized together on the same

membrane: differences in Y-arc intensity are therefore caused

only by RusA. Equal loading and comparability of exposures are

confirmed by the similar signal intensities of uncut linear partials

(orange arrows). Two exposures of material from mTTF

knockdown cells are shown for better visualization of 1n spot

and Y-arc signal. The lower panels represent a similar exposure as

for control material.

(PDF)
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Figure S8 Additional material is resolved by 2DNAGE

following RNase H treatment, as indicated. A. HindIII digest

hybridized to probe 3 (two different exposures). B. ClaI digest

hybridized to probe 6. Panels from Fig. 5 were run on the same gel

and probed on the same membrane. Alongside each 2D gel panel

is shown the ethidium bromide stained first-dimension gel prior to

casting of the second dimension gel, confirming equal loading.

Following RNaseH treatment, novel arcs appear against an

essentially unaltered background of other species resolved on the

gels.

(PDF)

Figure S9 Absence of RNAi cross-reaction between mTerf5 and

mTTF. Q-RT-PCR analysis of mTerf5 and mTTF transcript in

cells after 1–5 days of RNAi treatment against mTerf5.

Knockdown of mTerf5 mRNA is effective within 24 h, whereas

there is no knockdown of mTTF mRNA (if anything a possible

slight increase, but certainly no classical off-target effect).

(PDF)

Figure S10 Comparable exposures of gels (ClaI fragments and

probes as indicated) from control cells and mTerf5 knockdown

cells, illustrating the increase in signal from the specific pause sites

(red arrows), after mTerf5 knockdown. In particular, the relative

strengths of the pause signals can be judged with reference to other

features of the gels that are essentially invariant, such as the linear

‘partial’ species lying on the diagonal (orange arrows). These

‘partials’ are not the result of insufficient activity of the restriction

enzyme, which is always present in excess, but are a constant

feature of these gels and are seen in all digests. Note that the

signals from these partials are actually slightly stronger in the

control panels than in the corresponding gels from mTerf5

knockdown cells, in which the pauses are clearly stronger. The

invariant part of the standard Y-arc may also be used for

reference, for example the initial segment of the Y-arc, which is

well separated from the pause region in the bs1-containing

fragment (green arrow), or the apex of the Y-arc in the bs2-

containing fragment (blue arrow).

(PDF)

Table S1 Oligonuclelotides.

(PDF)

Text S1 Supplemental materials and methods and reference.

(DOC)
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MTERF3 regulates mitochondrial ribosome biogenesis in invertebrates and

mammals. PLoS Genet 9: e1003178.

48. Christianson TW Clayton DA (1986) In vitro transcription of human

mitochondrial DNA: accurate termination requires a region of DNA sequence
that can function bidirectionally. Proc Natl Acad Sci U S A 83: 6277–6281.

49. Kruse B, Narasimhan N, Attardi G (1989) Termination of transcription in

human mitochondria: identification and purification of a DNA binding protein
factor that promotes termination. Cell 58: 391–397.

50. Shang J Clayton DA (1994) Human mitochondrial transcription termination

exhibits RNA polymerase independence and biased bipolarity in vitro. J Biol
Chem 269: 29112–29120.

51. Terzioglu M, Ruzzenente B, Harmel J, Mourier A, Jemt E, et al. (2013)

MTERF1 binds mtDNA to prevent transcriptional interference at the light-
strand promoter but is dispensable for rRNA gene transcription regulation. Cell

Metab 17: 618–626.

52. Roberti M, Bruni F, Polosa PL, Gadaleta MN, Cantatore P (2006) The
Drosophila termination factor DmTTF regulates in vivo mitochondrial transcrip-

tion. Nucleic Acids Res 34: 2109–2116.

53. Roberti M, Fernandez-Silva P, Polosa PL, Fernandez-Vizarra E, Bruni F, et al.
(2005) In vitro transcription termination activity of the Drosophila mitochon-

drial DNA-binding protein DmTTF. Biochem Biophys Res Commun 331:
357–362.

54. Bruni F, et al. (2012) D-MTERF5 is a novel factor modulating transcription in

Drosophila mitochondria. Mitochondrion 12: 492–499.

55. Hyvarinen AK, Pohjoismaki JL, Reyes A, Wanrooij S, Yasukawa T, et al. (2007)
The mitochondrial transcription termination factor mTERF modulates

replication pausing in human mitochondrial DNA. Nucleic Acids Res 35:
6458–6474.

56. Hyvarinen AK, Pohjoismaki JL, Holt IJ, Jacobs HT (2011) Overexpression of

MTERFD1 or MTERFD3 impairs the completion of mitochondrial DNA
replication. Mol Biol Rep 38: 1321–1328.

57. Polosa PL, Deceglie S, Roberti M, Gadaleta MN, Cantatore P (2005)

Contrahelicase activity of the mitochondrial transcription termination factor
mtDBP. Nucleic Acids Res 33: 3812–3820.

58. Putter V Grummt F (2002) Transcription termination factor TTF-I exhibits

contrahelicase activity during DNA replication. EMBO Rep 3: 147–152.

59. Brewer BJ Fangman WL (1988) A replication fork barrier at the 39 end of yeast

ribosomal RNA genes. Cell 55: 637–643.

60. Reyes A, Yasukawa T, Cluett TJ, Holt IJ (2009) Analysis of mitochondrial

DNA by two-dimensional agarose gel electrophoresis. Methods Mol Biol 554:

15–35

61. De Moed GH, Kruitwagen CLJJ, De Jong G, Scharloo W (1999). Critical weight

for the induction of pupariation in Drosophila melanogaster: genetic and

environmental variation. J Evolutionary Biol 12: 852–858.

62. Michel B, Flores MJ, Viguera E, Grompone G, Seigneur M, Bidnenko V (2001)

Rescue of arrested replication forks by homologous recombination. Proc Natl

Acad Sci USA 98: 8181–8188.

63. Viguera E, Hernández P, Krimer DB, Lurz R, Schvartzman JB (2000)

Visualisation of plasmid replication intermediates containing reversed forks.

Nucl Acids Res 28: 498–450

64. McGlynn P, Lloyd RG, Marians KJ (2001) Formation of Holliday junctions by

regression of nascent DNA in intermediates containing stalled replication forks:

RecG stimulates regression even when the DNA is negatively supercoiled. Proc

Natl Acad Sci USA 98: 8235–8240.

65. Reyes A, Yang MY, Bowmaker M, Holt IJ (2005) Bidirectional replication

initiates at sites throughout the mitochondrial genome of birds. J Biol Chem 280:

3242–3250.

66. Maier D, Farr CL, Poeck B, Alahari A, Vogel M, et al. (2001) Mitochondrial

single-stranded DNA-binding protein is required for mitochondrial DNA

replication and development in Drosophila melanogaster. Mol Biol Cell 12: 821–

830.

67. Adan C, Matsushima Y, Hernandez-Sierra R, Marco-Ferreres R, Fernandez-

Moreno MA, et al. (2008) Mitochondrial transcription factor B2 is essential for

metabolic function in Drosophila melanogaster development. J Biol Chem 283:

12333–12342.

68. Peralta S, Clemente P, Sanchez-Martinez A, Calleja M, Hernandez-Sierra R, et

al. (2012) Coiled coil domain-containing protein 56 (CCDC56) is a novel

mitochondrial protein essential for cytochrome c oxidase function. J Biol Chem

287: 24174–24185.
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