
Review Article
Experiments in Computing: A Survey

Matti Tedre1 and Nella Moisseinen2

1 Department of Computer and Systems Sciences, Stockholm University, 16440 Kista, Sweden
2 Faculty of Behavioural Sciences, University of Helsinki, 00014 Helsinki, Finland

Correspondence should be addressed to Matti Tedre; matti.tedre@acm.org

Received 13 August 2013; Accepted 15 December 2013; Published 4 February 2014

Academic Editors: Y. Deng and G. Pajares

Copyright © 2014 M. Tedre and N. Moisseinen.This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Experiments play a central role in science.The role of experiments in computing is, however, unclear. Questions about the relevance
of experiments in computing attracted little attention until the 1980s. As the discipline then saw a push towards experimental
computer science, a variety of technically, theoretically, and empirically oriented views on experiments emerged. As a consequence
of those debates, today’s computing fields use experiments and experiment terminology in a variety of ways. This paper analyzes
experimentation debates in computing. It presents five ways in which debaters have conceptualized experiments in computing:
feasibility experiment, trial experiment, field experiment, comparison experiment, and controlled experiment.This paper has three
aims: to clarify experiment terminology in computing; to contribute to disciplinary self-understanding of computing; and, due to
computing’s centrality in other fields, to promote understanding of experiments in modern science in general.

1. Introduction

After the birth of the stored-program paradigm in the mid-
1940s, computing as a discipline started to form up. The
first step in the discipline creation was to separate it from
the fields that gave birth to it, especially from mathematics
and electrical engineering. In the 1960s and the 1970s the
field was divided over a debate concerning the mathematical
nature of computing (e.g., [1–6]). There were a variety of
formal, theory-oriented views of computing as a discipline.
Some theoretically proficient computer scientists emphasized
the mathematical analysis of algorithms for the general
conclusions such analysis could provide [7–12]. Another
group focused on developing a mathematical theory of
program construction [13–18].Themost vehement advocates
of a mathematical theory of computing went as far as to
suggest that programming as an activity is fully reducible to
mathematics [19]. In the theoretical advocates’ visions of the
discipline, the role of empirical work and experimentation
was often ambiguous, as it was rarely, if ever, discussed in
detail.

Another debate that characterized the development of
computing as a discipline was concerned with the field’s

engineering character. Engineering aspects of computing
were, for several decades, effectively kept out of the academic
debate about computing as a discipline; despite the fact that
the first computers were built in universities, they were used
for applied sciences, and the development of early computing
in universities had a strong engineering character [20–23].
The late 1960s, however, saw a new turn in these debates
when software engineering was brought to limelight [24]—
and harshly criticized [25]. For decades, software engineering
remained a target of sustained criticism. Software engineers
were accused of basing their work on a combination of
anecdotal evidence and human authority [26]. What is more,
meta-analyses of literature found that a large portion of
software engineering articles failed to experimentally validate
their results [27–29]. Lacking experimentation was one of the
commonly criticized aspects of software engineering.

A third debate about the essence of computing as a
discipline was concerned with the scientific character of
computing. There were arguments over whether computing
is a science or not, and there were arguments over whatmight
computing be a science of [30]. In one of the influential early
defenses of the scientific nature of computer science it was
argued that computer science is the study of computers and

Hindawi Publishing Corporation
e Scientific World Journal
Volume 2014, Article ID 549398, 11 pages
http://dx.doi.org/10.1155/2014/549398

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/43336625?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 The Scientific World Journal

phenomena surrounding them [31]. Other proposals for the
subject matter of computing included, for instance, infor-
mation, algorithms, classes of computations, programming,
complexity, and procedures [5, 32–37].

Arguments that looked at the subjectmatter of computing
never managed to settle the debate over the scientific char-
acter of computing. But over the course of time, the focus
of the “science” debates shifted from subjects to activities.
It became increasingly common to argue that computing is
indeed science—not by virtue of its subject matter but by
virtue of itsmethod of inquiry.

The methodology question entered computing debates
gradually. Many early arguments for computing as a sci-
ence glossed over methodological questions. Although some
descriptions of the “axiomatic” or “mathematical” sciences
of computation compared computing with natural sciences
(e.g., [16]), they rarely discussed either the relevance of the
scientific method to computing or the role of experiments in
the field. Similarly, one of the first descriptions of computing
as an empirical science, by Newell et al. [31], was vague
about methods and empirical approaches in the science of
computing. The methodology question was finally brought
into limelight by the experimental computer science debate,
when a campaign for “rejuvenating experimental computer
science” started at the turn of the 1980s [38–41].

The view that computing is an inseparable combina-
tion of three very different intellectual traditions—theory,
engineering, and empirical science [42]—complicates many
debates about computing. One such debate is the “experi-
mental computer science” debate. The words “experiment”
and “experimental” are understood very differently between
the traditions, which makes it difficult to grasp the intent
of each argument on experimental computer science. This
paper presents a survey of arguments about experimental
computer science and presents that at least five different uses
of the terms “experiment” and “experimental” can be found
in the computing literature. This paper is a survey of how
terminology is actually used and not of how it should be used.
For instance, in the engineering tradition experimentation
terminology is used much more loosely than in the tradition
of experiment-based science. In short, the paper seeks an
answer to the question, “What do computer scientists mean
when they talk about experiments in computer science?”

2. Experimentation in Computing

Among researchers in computing disciplines there is wide
support for views of computing as an empirical or experimen-
tal science. However, the terms empirical and experimental
are not always used coherently. In sciences in general, it is
relatively common to see the term “empirical” used to refer
to research that relies on observation-based collection of pri-
mary data. The term “empirical research” stands in contrast
with theoretical and analytical research. In many fields of
science the term “experimental” goes deeper than “empirical”
and refers to a specific kind of research, where controlled
experiments are used for testing hypotheses. However, in the
field of computing the term “experimental” has been used in
a much more wider range of meanings.

The role of experimentation in computing became a
hot topic when Feldman and Sutherland [40] published
their report entitled “Rejuvenating Experimental Computer
Science.” That report recommended that universities and the
U.S. government should recognize and support experimental
computer science. Denning [38] joined ranks with the Feld-
man committee and wrote that no scientific discipline can be
productive in the long term if its experimenters merely build
components. Also the ACM Executive Committee, which
included Denning, agreed with the Feldman committee in
that experimental computer science was undervalued at the
time [41].

The “rejuvenating” report marked a shift of focus in
methodology debates from the roles of theory and sub-
ject matter to the amount and methodological quality of
empirical work in computing. The following decades saw
numerous descriptive and normative arguments on the role
of empirical and experimental research in computing. While
somedescribed howcomputer scientists actuallywork, others
prescribed how they should work. Several studies compared
research reports in computing with those in other fields—
usually natural sciences or established branches of engineer-
ing [28, 45]. In those studies, it was a common finding that
research in computing fields experiment significantly less
than researchers in many other disciplines do [28, 45].

Over the course of time, many authority figures in
computing advised computer scientists to experiment more
[46, 47]. Given that much of that encouragement was due to
inspiration from other fields, it is interesting to look at the
computing side of the story. In particular, what do computer
scientists from different backgrounds mean by “experimental
computer science?” This section presents, firstly, the context
of the experimental science debate through four viewpoints:
empirical dimensions of computing, subjects of experimen-
tation, experimental activities, and various terminological
and classification viewpoints. Secondly, this section outlines
critical viewpoints to experiments in computing, as presented
in computing literature.

2.1. Experimentation in Computing Context

2.1.1. Empirical Dimensions of Computing. All the different
accounts of experiments in computing—from controlled
experiments to experimental algorithmics—fall into the
broader category of empirical work. Computing and empir-
ical research have been coupled in the literature in various
ways, of which one particular perspective is discussed below.
Computing and computers are, for one thing, subjects of
research. Second, they are instruments of research.Third, they
may be both at once.

One popular way of discussing computing and experi-
mentation is to see computers and phenomena around them
as a subject of research (e.g., [31]). There is a rich body of
experimental work on computers, programming languages,
interfaces, users, and algorithms, just to name a few. Some
experiments are done in a very controlled manner, while
some authors refer to their exploratory work as “experi-
mental.” Viewing computing, computers, and phenomena
surrounding them as a subject of inquiry opens doors for a



The Scientific World Journal 3

variety of views on experimentation, and this paper looks at
that aspect of experiments in computing.

Another popular way of discussing experimentation in
computing is through seeing computers as research instru-
ments in other fields. The history of computing and com-
puters as instruments for experiments (simulations) in other
fields is a long-established one. In his introduction to the
famous 1946 Moore School lectures, Stibitz [48] argued
that digital computers are an incredible laboratory where
“the ingredients of every experiment are perfectly isolated.”
Stibitz wrote that computers offer unlimited precision and an
unlimited supply of instruments for research. Later on, the
first modern computers were used for applied sciences, such
as ballistics calculations, warfare [49, page 214], meteorology,
astronomy [50, page 189], and quantum physics [25, page
122]. Progress in modern science is so heavily dependent on
computing that different authors have called the increased
dependence “algorithmization” of sciences [51], “the age of
computer simulation” [52], and even an “info-computational”
view of the world [53]. Computing has introduced a plethora
of tools for other sciences—take, for instance, virtual exper-
iments, simulations, heuristic models, and neural networks
[52]. Viewing computing as an instrument of research paints
another image on experimentation, different from viewing
computing as a subject of research.

Various kinds of models also pervade the field of com-
puting. One can easily consider specifications, program texts,
and programming languages to be certain kinds of models
[54, 55].The experiment is a central part of validatingmodels
or testing the fit between the model and the world [56].
However, when computer models are used as tools, one
should askwhich discipline is actually being studied. Colburn
[43] used computational models in genetics as an example. Is
the programmer actually doing genetics or computer science?
In many computational sciences joint work benefits both
computing and the field where it is applied [57]. That is,
computing can at once be a tool and a subject of study. This
paper, however, does not focus on the instrumental aspect
of computing but on research of computing for computing’s
sake.

2.1.2. Subjects and Topics. Another angle at describing the
context of experimentation in computing is to look at its
subjects and topics. As there is already a good number of
arguments about experimental computer science, one can
borrow examples directly from the literature. In his dis-
cussion on experiments in computer science, Denning [39]
brought up research on memory policies in time sharing and
research on queuing networks. Freeman [58] proposed exam-
ples of a robot competition, research of data-intensive super-
computing, and research of future network architectures.
Feldman and Sutherland [40] included advanced applications
of computers. Gustedt et al. [59] highlighted research on,
for instance, grid computing, parallel computing, large-scale
distributed systems, and various other projects in large-scale
computing. Basili and Zelkowitz [60] mentioned software
engineering and high-end computing. Various authors from
Chaitin to Zuse have argued that nature itself calculates [61,

62]. In the end, subject as such is not of importance [63]. Any
subject can be studied scientifically, and many can be studied
experimentally.

2.1.3. Activities. One can also take a look at what kind of
activities the term “experimental computer science” might
cover. In the original “rejuvenating” report [40], experiment-
ing in computer science was characterized as exploration
(page 498), construction and testing (page 499), hypothesis-
testing, demonstration, and modeling (page 500). Denning
listed modeling, simulation, measurement, validation, proto-
typing, testing, performance analysis, and comparisons [64].
Other participants of the debate mentioned, for example,
measuring, testing, making hypotheses, observing, collecting
data, classifying, and sustaining or refuting hypotheses [39,
41]. As a prime example of experimental computer science,
Denning [39] referred to performance analysis—the con-
struction, validation, and empirical evaluation of computer
systems. Belady [65] wrote that his experimental computer
science involved building prototypes, observing, organizing
observations, and formalizing them into models. All the
activities above are central to science, but they are central to
different kinds of science.

At the end of the 1980s the famous report “Computing
as a discipline” by Denning et al. [42] raised modeling as
one of the three cornerstones of computing. In that report,
experiments played a role similar to their role in natural
sciences. Denning et al. described the cycle of work on the
science side of computing through four steps, (1) Form a
hypothesis, (2) construct a model and make a prediction, (3)
design an experiment and collect data, and (4) analyze results.
Freeman [58] dropped the hypothesis part and advocated a
view of experimentation in computing based on a cycle of
observation, measurement, and analysis of results. Gelernter
[66, page 44] emphasized the generalizability of results,
he explicitly noted the deductive and inductive phases of
research, and he argued that computing is indeed a science
insofar as its combination of theoretical foundations and
experiments allows the making and proving of general
statements.

One unique formulation of an experiment-like proce-
dure in computing—one with automated and repeatable
experiments—can be found in the cycle of test-driven devel-
opment (Figure 1; see, e.g., [67]). In test-driven development,
each cycle in software construction starts with writing a test
for an added software feature. The procedure continues with
running all the tests and seeing the previously added test
fail, writing code that implements the wanted feature, and
running the tests again to see if the newly written code really
implements the desired functionality. In other words, the
programmer starts from a certain functionality requirement,
designs an automated experiment that is aimed at testing that
functionality, and implements code that passes all the new
and previous tests.

In the field of software engineering there is a rich history
of discussions on experimental methods—including highly
influential accounts like that of Basili, Selby, and Hutchens
[68]—although terminology in those discussions is often



4 The Scientific World Journal

Construct a test
for a desired feature

Implement the desired 
feature

Pass

Fail
Pass

Fail

Run the test 

Run the test 

Figure 1: Cycle of work in test-driven development.

used differently fromwhat the stalwart proponents of experi-
mental computer science advocated. Zelkowitz and Wallace
[28, 29] categorized “experimental approaches” in software
engineering into three categories: observational methods,
which collect data throughout the project; historicalmethods,
which collect data from already completed projects; and
controlled methods, which attempt to increase the statistical
validity of results by providing multiple instances of observa-
tions. Of observational methods, they listed project monitor-
ing, case study, assertion, and field study [28]. Of historical
methods, they listed literature search, legacy data, lessons
learned, and static analysis.Of controlledmethods, they listed
replicated experiment, synthetic environment experiments,
dynamic analysis, and simulation. It is important to note
that Zelkowitz and Wallace [28, 29] did not call their lists
“empirical” but “experimental” models and approaches. They
argued that their categories cover the previously presented
taxonomies, such as the nine variants of quantitative and
qualitative experiments described by Kitchenham [69] as
well as the six types identified by Basili [70]. Again, the
descriptions of experimentation in software engineering are
all central to science but to different kinds of science.

On the broader level, Morrison and Snodgrass [71] wrote
that debugging is one aspect of the scientific method that
computer scientists do well. Different fromDijkstra [13], who
opposed debugging as “putting the cart before the horse,”Mor-
rison and Snodgrass described debugging as “one of the purest
forms of empirical investigation.” There are indeed various
attempts to describe debugging as a “science of debugging”
[44, 72, 73]. One of the pioneering works in the philosophy
of experiment, by Hacking [74], named “debugging” as a
central element in modern experimentation—although its
meaning in the context that Hacking discussed is different
from its meaning in computing. Also other modern views
of the scientific method include debugging, under different
names, in the cycle of scientific research (e.g., [75]). The
literature on the philosophy of engineering takes that aspect
of research further through, for instance, parameter variation:
the repeated measurement of a device’s performance, while
systematically adjusting the device’s parameters of its condi-
tions of operation [76, page 139].

Table 1: Analogy between the scientific method, Colburn’s [43]
“solution engineering,” and Bartley’s [44] view of debugging.

The Scientific method Solution
engineering Debugging

Formulate a
hypothesis for
explaining a
phenomenon

Formulate an
algorithm for
solving a problem

Make a guess as to
what causes an
identified bug

Test the hypothesis by
conducting an
experiment

Test the algorithm
by writing and
running a program

Test the guess by,
for instance,
tracing the
program states

Confirm or disconfirm
the hypothesis by
evaluating the results
of the experiment

Accept or reject the
algorithm by
evaluating the
results of running
the program

Accept or reject the
guess by evaluating
the program states

Colburn [43] sketched another formulation of experi-
ment-based work in computer science in the form of “solu-
tion engineering.” In various branches of computer science
the usual scenario includes rigorous requirements, and the
task of the computer scientist is to engineer an algorithmic
solution. Table 1 presents Bartley’s [44] description of debug-
ging, in parallel with Colburn’s [43] “solution engineering”
and a simplified three-step view of the scientific method.

In Colburn’s analogy in Table 1, what is being tested in the
scientific method is not the experiment but the hypothesis.
The experiment is a tool for testing the hypothesis. Similarly,
in Colburn’s analogy, what is being tested in problem solving
in computer science is not the program but the algorithm.
The program is written in order to test the algorithm. In this
analogy, writing a program is analogous to constructing a
test situation. Khalil and Levy [35] made a similar analogy
as they wrote, “programming is to computer science what the
laboratory is to the physical sciences.”

Although solution engineering presents another view of
experimentation in computing disciplines, it has been argued
that an experiment in science can never test an isolated
hypothesis but the whole theoretical group: assumptions,
auxiliary hypotheses, and indeed the whole test situation
[77, 78]. Similarly, running a program cannot accept or reject
an algorithm alone, but it can only accept or reject the whole
test system—including, for example, the operating system,
hardware, quality of data, and contingent environmental
inference. It can never be ruled out that the algorithm and
the corresponding program were fine but something else in
the test system caused wrong results—and it can not be ruled
out that the programwas incorrect but, due to a problemwith
the test system, it contingently yielded right results.

2.1.4. Terminology and Classifications. There have also been
analyses of experimentation terminology in computing. Fei-
telson [79] distinguished between three uses of the term
“experimental computer science.” He argued that the most
prominent use of the term is to use it as a counterpart
to theoretical computer science. The second use of the



The Scientific World Journal 5

term, according to Feitelson [79], is as a part of a feedback
loop for the development of models, systems, and various
other elements of computer science. Feitelson’s third notion
referred to the adoption of scientific experimental methods
for the evaluation of computer systems. Gustedt, Jeannot, and
Quinson presented four examples from large-scale systems:
in situ experiments, emulation, benchmarking, and simula-
tion [59].

Amigoni et al. [80] analyzed experimental activities
in mobile robotics and classified them according to their
purposes, the data sets they employ, and their measured
quantities, be they intrinsic or extrinsic. Regarding purposes,
they found demonstrations, gathering insight into a system’s
behavior, assessing limits of applicability, and comparing
systems. Regarding data sets, they found publicly available
instances, aswell as uses of different environments. Regarding
measured quantities, they found a number of measures,
ranging from analytical (in fact nonmeasured, such as time
complexity) to empirical (such as accuracy and robustness).

To summarize, the context in which experimental
approaches in computing are discussed is extremely broad.
Right or wrong, experimentation terminology is by nomeans
used in the same way it is used in, for instance, physics [81–
83], biology [84], or chemistry.There are various views on the
role of computing regarding experiments, there is a diversity
of opinions on methods applicable, there are various exam-
ples of appropriate subjects and topics, and there are many
existing analyses of experimentation in computing. However,
although there are many advocates of experimentation in
computing, various critical viewpoints can also be found in
the literature.

2.2. Critique of Experimentation. Although the general atmo-
sphere in disciplinary debates of computing has become
positive towards experimental computer science, the identity
of the field is still in a state of flux, and there is a notable
history of critical views towards experiments and experimen-
tation language in computing. Some critics argued that the
role or the nature of experiments differs between computing
and natural sciences [85, 86]. Others disputed the centrality
of experiments in computing [87]. Yet others claimed that
in computing experiments are not done right or are not
articulated right [28, 29].

Themathematical reductionists, for one, had reservations
about experimentation in computing. In his famous argu-
ment for programming as a mathematical activity, Hoare
[19] complained that, because computers and programs are
not constructed with mathematical rigor, the only way of
finding out what they do is by experiment. He wrote that such
experiments in computing certainly are not mathematics,
and that because their findings often can not be generalized,
“unfortunately, they are not even science” [19]. Hoare’s answer
at the time was to rigorously prove that a system will work as
planned. Fletcher [87] criticized some authors’ preoccupation
with experimentation and noted that without the theoretical
idea of Turing equivalence of all computers there would be no
academic discipline of computing but just eclectic knowledge
about particular machines. Many others who advocated

variants of “mathematical” or “axiomatic” approaches to
computing never made their stance towards experiments
clear (e.g., [16]).

The second source of objections was concerned with
the differences between experiment in natural sciences and
in computing. Emphasizing the view that computing is a
constructive discipline, Hartmanis [85] argued that experi-
mentation in computer science is different from the natural
sciences, as it focuses “more on the how than the what.” He
wrote that whereas advancements in natural sciences are
documented by dramatic experiments, in computer science—
which Hartmanis [88] called the “engineering of mathemat-
ics”—advancements are documented by dramatic demon-
strations. The role of experiments in computing, according
to Hartmanis and Lin [86], is to uncover practical issues with
theoretical work instead of proving those theories wrong—
quite a different view compared to an idealized view of the
role of experiments in science (as described in, for instance,
the old falsificationist, hypothetico-deductive, and deductive-
nomological models of science [89–91].)

Hartmanis [92] claimed that there are three differences
between natural sciences and computing: in computing the-
ories do not compete with each other as explanations of the
fundamental nature of information; in computing anomalies
in experimental results do not lead to revision of theories,
and in computing there is no history of critical experiments
that decide between the validity of competing theories.
Hartmanis’ [86, 92] views faced immediate criticism. Loui
[93] responded that, instead of calling computing a new
species among sciences, it would be more appropriate to call
computer science a new species of engineering. Stewart [94]
responded bywriting that computer scientists should strive to
make computer science similar to the natural sciences. Dijk-
stra [95] responded that it is ridiculous to support computer
science and engineering as a “laboratory discipline (i.e., with
both theoretical and experimental components)” if thematerial
taught in computing has a half-life of five years. Finally, even
if one accepted the controversial claim that computing has no
history of critical experiments that decide between theories,
there surely is a history of critical demonstrations that have
decided between competing techniques and guided technical
development efforts.

The third common type of objection was concerned with
the artificial nature of data and subject matter of computing.
McKee [96] noted that in natural sciences research is based on
observations (data), which scientists can explain, predict, and
replicate. In the field of computing, McKee continued that
there is no data beyond the computer and programs, which
behave exactly as they were designed to behave. In a similar
manner, also Brooks [57] argued that computer science is not
a science but a synthetic, engineering discipline. The role of
experimentation in a synthetic discipline is different from its
role in natural sciences (see [86, 97]).

The fourth common objectionwas concernedwith termi-
nology. The careless use of experimental terminology—not
experiments per se—has been criticized by various authors
(e.g., [60, 79]). A meta-analysis by Zelkowitz and Wallace
[28, 29] revealed that terms “experiment” and “effective”
were often used loosely or ambiguously. The authors wrote,



6 The Scientific World Journal

“Researchers write papers that explain some new technology;
then they perform “experiments” to show how effective the
technology is.” Zelkowitz and Wallace’s central concern was
the same as Denning’s [38]. It is not science to develop
something and say that it seemed to work well.

One could add a fifth objection related to the normative
claims that advocates of experimentation sometimes made.
Many of those authors who urged computer scientists to
experiment more failed to justify why computer scientists
should aspire to work like scientists or engineers in other
fields do. One might justly ask, “If the subject matter of
computer science is different from the other sciences, onwhat
grounds should its methods be the same?” Computing is a
unique field that introduces an array of novel techniques,
so perhaps some room should be left for uniqueness in
methodological sense, too.

In addition to the objections, Gustedt et al. [59] proposed
various assumptions thatmay explain the lack of experiment-
ing in computing: insufficient funding for experimenting,
“missing disposability of dedicated experimental environ-
ments,” lack of appreciation of work-intensive experimental
results, and lack of methods and tools. Similarly, Tichy [27]
suggested eight (mis)beliefs that he believed to explain why
experiments are not more popular: “Traditional scientific
method is not applicable,” “The current level of experi-
mentation is good enough,” “Experiments cost too much,”
“Demonstrations will suffice,” “There’s too much noise in
the way,” “Experimentation will slow progress,” “Technology
changes too fast,” and “You’ll never get it published.” Also
Denning [38] objected against three hypothetical misconcep-
tions about experimental computer science: “It is not novel
to repeat an experiment,” “mathematics is the antithesis of
experiment,” and “tinkering is experimental science.”

3. Five Views on Experimental
Computer Science

Discussions about experimental computer science, as pre-
sented in the section above, are complicated by the various
uses of the terms “to experiment” (the verb), “an experiment”
(the noun), “experimentation” (the noun), “experimental”
(the adjective), and themyriad derivatives of thosewords.The
confusion was visible already in the “rejuvenating” report,
and, while a lot of effort has been spent on clarifying the
concepts (e.g., [28, 39, 45, 98]), there is still no agree-
ment on experimentation terminology.This chapter presents
five different uses of the term “experiment,” each relatively
common in the computing literature. It should be noted
that this chapter passes no judgment on “correct” uses of
experimentation terminology; it only describes how it has
been used in the literature.

3.1. Feasibility Experiment. The first and loosest use of the
term “experiment” can be found in many texts that report
and describe new techniques and tools. Typically, in those
texts, it is not known if task 𝑡 can be automated efficiently,
reliably, feasibly, cost-efficiently, or by meeting some other
simple criterion. A demonstration of experimental (novel,

untested, and newly implemented) technology shows that it
can indeed be done. Including the terms “demonstration” and
“experimental” in the same sentence may sound like a forced
marriage of two incompatible concepts, but in the computing
literature “experiment” is indeed sometimes used nearly
synonymously with “demonstration,” “proof of concept,” or
“feasibility proof ” as the following examples demonstrate.

Hartmanis and Lin [86, pages 213-214] wrote that in com-
puter science and engineering theories develop over years of
practice, with “experiments largely establishing the feasibility of
new systems.” Plaice [99] wrote, in ACM Computing Surveys,
that the development of large software systems exemplifies
experimentation in computer science—“and experimentation
is the correct word, because we often have no idea what these
tools will offer until they are actually used.” He continued to
describe that what constitutes an experiment is that a scientist
“carefully defines what must be done and then carefully sets
out to do it.” Feitelson [79] identified the “demonstration
of feasibility” view as one of the three common views to
experimental computer science. Feitelson also noted that the
“demonstration of feasibility” experiments in applied com-
puter science are largely divorced from theoretical computer
science [79].

The ACM FCRC Workshop on Experimental Com-
puter Science (http://people.csail.mit.edu/rudolph/expcs.pdf
(retrieved January 30, 2013)) involved “experimental engi-
neering” that produces new “techniques, insights, and under-
standing that come from building and using computer systems.”
Hartmanis [85], though, wanted to make the difference
between experiments and demonstrations explicit, calling
for computing researchers to acknowledge the central role
of demonstrations in the discipline. In their description of
experimental computer science Basili and Zelkowitz [60],
too, criticized the “demonstration” view of experimentation
in computing: “experimentation generally means the ability
to build a tool or system—more an existence proof than
experiment.”

3.2. Trial Experiment. The second use of the term “exper-
iment” in computing goes further than demonstrations of
feasibility. The trial experiment evaluates various aspects of
the system using some predefined set of variables. Typically,
in those studies, it is not known how well a new system
𝑠 meets its specifications or how well it performs. A trial
(or test, or experiment) is designed to evaluate (or test, or
experiment with) the qualities of the system 𝑠. Those tests are
often laboratory based but can also be conducted in the actual
context of use with various limitations.

Of Gustedt et al.’s [59] four-way categorization of exper-
iments (in situ experiments, emulation, benchmarking, and
simulation), the ones that permit the most abstraction—
emulation, simulation, and benchmarking—fall into the trial
experiment category. Emulation runs a real application in
a model environment, simulation runs a model (limited
functionality) application in a model environment, and
benchmarking evaluates a model application in a real envi-
ronment [59]. Similar “toy-versus-real” distinctions aremade
in descriptions of experimentation in software engineering
[100].



The Scientific World Journal 7

McCracken et al. [41] wrote that experimental research
is about “not only the construction of new kinds of computers
and software systems, but also themeasurement and testing” of
those systems. Furthermore, trial experiments are not a priv-
ilege of the applied side of computing. Glass [47] proposed
that formal theory needs to be validated by experiments, and
Fletcher [87] wrote that theoretical computer scientists may
“resort to trial runs because the problem is mathematically
intractable.” Many types of validation of computational mod-
els of phenomena fall under trial experiments.

3.3. Field Experiment. A third common use of the term
“experiment” is similar to trial experiments in that it is also
concerned with evaluating a system’s performance against
some set of measures. However, the field experiment takes the
system out of the laboratory. Typically, in those studies, it is
not known how well a system fulfills its intended purpose
and requirements in its sociotechnical context of use. The
system is tested in a live environment andmeasured for things
such as performance, usability attributes, or robustness. The
term “field experiment” is used in, for instance, information
systems [101], while Gustedt et al. [59] used the term “in
situ experiments”: real applications executed at the real scale
using real hardware.

The experimental computer science debates involve var-
ious examples of field experiments. A robot car race is an
oft-used example of a field experiment, or “experimentation
under real-world conditions” [58]. In the DARPA Grand
Challenge, driverless vehicles compete with each other in
finding their way through various types of environments.
A common downside to the field experiment is diminished
reproducibility that is brought about by the large number of
variables and limited control in live environments. Yet, as they
are often quasi-experiments or limited-control experiments,
field experiments offer more control than case studies or
surveys do [101].

3.4. Comparison Experiment. A fourth common use of the
term “experiment” refers to comparison between solutions.
Many branches of computing research are concerned with
looking for the “best” solution for a specific problem [87] or
developing a new way of doing things “better” in one way or
another. Typically, in reports of those studies, it is not known
if (or rather, “not shown that”) system 𝐴 outperforms system
𝐵 with data set 𝑑 and parameters 𝑝. An experiment is set up
to measure and compare 𝐴(𝑑, 𝑝) and 𝐵(𝑑, 𝑝), and the report
shows that the new system beats its predecessors in terms of a
set of criteria𝐶. Johnson [10] called that type of experimental
analysis “horse race papers.” Fletcher [87] argued that many
brands of experimental computer science are most applicable
to that type of research (Fletcher referred to [45, 47]).

However, although comparison experiments seem
“objective” in many ways, they are, in fact, susceptible to bias
in a number of ways [79, 102]. It has been noted that often
such experiments do not follow the standard precautions
against experimenter bias, such as the blinding principle
[87]. The researcher should not be able to choose 𝐵, 𝑑, 𝐶,
or 𝑝 favorably for his or her own system 𝐴. Zelkowitz and

Wallace [28, 29] argued that “All too often the experiment
is a weak example favoring the proposed technology over
alternatives.” There again, many fields of computing have
introduced standard tests, input data, and expected outputs,
against which competing solutions can be compared (e.g.,
[103]).

3.5. Controlled Experiment. A fifth common use of the term
“experiment” refers to the controlled experiment. The con-
trolled experiment is the gold standard of scientific research
in many fields of science—especially when researchers aim
at eliminating confounding causes—and it typically enables
generalization and prediction. There are numerous uses for
the controlled experiment setup; for instance, it is often used
for situations where it is not known if two or more variables
are associated, or if 𝑥 causes 𝑦.

In many arguments for experimental computer science,
by “experiment” the author explicitly or implicitly means
“controlled experiment” but not always for the same reasons.
Peisert [104] advocated controlled experiments for research
on computer security, and their vision was that it promotes
increased generalizability and better justified claims about
products. Morrison and Snodgrass [71] wanted to see more
generalizable results in software development. Schorr [105]
argued that software and systems, with their increased user
interaction, have grown too large for other kinds of methods
but controlled experiments. Curtis [106] and Pfleeger [107]
emphasized the role of controlled experiments in software
engineering due to their potential for probabilistic knowledge
about causality and increased confidence about what exactly
in technical interventions caused the change. Feitelson [108]
promoted evaluations under controlled conditions for all
applied computer science.

4. Discussion

Experiments played a central part in the development of
modern science, and over the centuries experiments also
evolved. In modern science experiments play many roles;
often in relation to theory but also independent of theory
[74]. In scientific practice, the relationship between theory
and experiments has always been fluid, and the many faces of
experiment benefit scientific investigation in different ways
at different stages of research [82]. Different fields employ
experiment in different ways, and the fit between experiment,
apparatus, and theory varies between disciplines [75].

The spectrum of experiments is fully visible in computing
fields. The breakthroughs in computing happened at a junc-
tion of various fields, such as mathematical logic, electrical
engineering, and materials science. Since the birth of the
stored-program paradigm, computing has adopted methods
from an even broader variety of fields. As the disciplines that
gave birth to computing each have reserved a very different
role for experiments, it is unsurprising that the computing
literature uses experimentation terminology in a variety of
ways. Sometimes the term refers to empirical research in gen-
eral, sometimes to evaluation strategies, sometimes to proofs
of concept, and sometimes to controlled experiments. The



8 The Scientific World Journal

philosophy of experiment reveals some diversity of experi-
mental terminology in fields other than computing, too.

The role of experiments in computing disciplines has
been highly debated since the “rejuvenating experimental
computer science” report in 1979. A large number of view-
points to experimental computer science have advocated a
variety of views to experiments, each with their own aims,
methods, and assumptions. Experiment terminology also
played a key rhetorical role in debates about the future
directions of computing as a discipline. As experiments are
historically central to sciences, in visions of computing as
a discipline it is less risky to adopt and redefine the term
“experiment” than to ignore it. The ambiguity of method-
ology terminology in computing parallels the situation in
the philosophy of science, where experiments remained an
unopened black box until the 1980s [109].

The disciplinary understanding of computing requires a
naturalistic view into experiments in the field. There surely is
a place for the many normative arguments on experiments in
computing that have been structured around idealized views
of science and the experiment. But there are also good reasons
to challenge the idealized and received views of experiments.
How scientists experiment has changed greatly since the days
of Galileo and Bacon, as has the role of experiments in the
philosophy of science.The form and function of experiments
have never been rigid. The experiment has never been a
mere judge between right and wrong theories. Experiment
is a multidimensional phenomenon, and it is important that
those dimensions are appropriately analyzed and discussed in
computing, too. Also, insofar as experimentation language in
computing needs clarification, it is of great help to understand
the different ways in which experiments have been conceived
in computing.

Methodological surveys and meta-analyses of computing
research have already revealed a great diversity of views
concerning empirical methods in computing, as well as what
is called “experiments” in computing. Many of those views
are similar to the epistemological strategies of researchers
identified in the philosophy of experiment [81, 82]. Also
representing and intervening—the two new characteristics
of experimentation in modern science [110]—are at the very
heart of modern computing, but their manifestations in
computing deserve deeper analysis, especially with the age of
simulation and virtual experiments.

Perhaps the use of experimentation terminology in com-
puting should be made stricter and brought in line with
some strict definitions of experimental science. Or perhaps
our terminology needs to reflect what is really going on in
computing and other disciplines. Either way, it is a matter of
disciplinary self-understanding to take computing seriously,
in its own right, and to study the discipline of computing
from a nonidealized, naturalistic viewpoint.This short survey
presents five faces of experiments in computing—feasibility
experiment, trial, field experiment, comparison, and con-
trolled experiment. There is a lot more to experiments in
computing than what meets the eye, and we believe that their
study can benefit both computing as a discipline and our
general understanding of experiments in science.

Conflict of Interests

The authors declare that there are no conflict of interests
regarding the publication of this paper.

Acknowledgments

This text is based on an invited talk at European Computer
Science Summit 2012, Workshop on the Role and Relevance
of Experimentation in Informatics, coordinated by Viola
Schiaffonati and chaired by Fabio A. Schreiber, Francesco
Bruschi, Jan Van Leeuwen, and Letizia Tanca. The authors
would like to thank the workshop organizers and partici-
pants, as well as the anonymous peer reviewers, for their ideas
and input. This research received funding from the Academy
of Finland grant no. 132572.

References

[1] E. W. Dijkstra, “Programming as a discipline of mathematical
nature,”AmericanMathematicalMonthly, vol. 81, no. 6, pp. 608–
612, 1974.

[2] G. E. Forsythe, “What to do till the computer scientist comes,”
American Mathematical Monthly, vol. 75, pp. 454–461, 1968.

[3] P. C. Hammer, “Computer science and mathematics,” in Pro-
ceedings of the 1st IFIP World Conference on Computer Educa-
tion, B. Scheepmaker and K. L. Zinn, Eds., pp. I/65–I/67, Inter-
national Federation for Information Processing, Amsterdam,
The Netherlands, 1970.

[4] R.W. Hamming, “Numerical analysis vs. mathematics,” Science,
vol. 148, no. 3669, pp. 473–475, 1965.

[5] D. E. Knuth, “Computer science and its relation to mathemat-
ics,” The American Mathematical Monthly, vol. 81, pp. 323–343,
1974.

[6] A. Ralston andM. Shaw, “Curriculum ’78—is computer science
really that unmathematical?” Communications of the ACM, vol.
23, no. 2, pp. 67–70, 1980.

[7] S. A. Cook, “The complexity of theorem-proving procedures,”
in Proceedings of the 3rd Annual ACM Symposium on Theory of
Computing (STOC ’71), pp. 151–158, ACM, New York, NY, USA,
1971.

[8] L. Fortnow and S. Homer, “A short history of computational
complexity,” Bulletin of the European Association for Theoretical
Computer Science, vol. 80, 2003.

[9] J. Hartmanis andR. E. Stearns, “On the computational complex-
ity of algorithms,” Transactions of the American Mathematical
Society, vol. 117, pp. 285–306, 1965.

[10] D. S. Johnson, “A theoretician’s guide to the experimental
analysis of algorithms,” in Data Structures, Near Neighbor
Searches, and Methodology: Fifth and Sixth DIMACS Imple-
mentation Challenges, M. H. Goldwasser, D. S. Johnson, and
C. C. McGeoch, Eds., vol. 59 of DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, pp. 215–250,
American Mathematical Society, Providence, RI, USA, 2002.

[11] D. E. Knuth, The Art of Computer Programming, vol. 1 of Fun-
damental Algorithms, Addison-Wesley, Reading, Mass, USA, 1st
edition, 1997.

[12] R. M. Karp, “Reducibility among combinatorial problems,” in
Complexity of Computer Computations, R. E. Miller and J. W.
Thatcher, Eds., pp. 85–104, Plenum Press, New York, NY, USA,
1972.



The Scientific World Journal 9

[13] E. W. Dijkstra, “On the reliability of programs,” 1971, http://
www.cs.utexas.edu/users/EWD/ewd03xx/EWD303.PDF.

[14] R. W. Floyd, “Assigning meanings to programs,” in Proceedings
of Symposia inAppliedMathematics, vol. 19, pp. 19–32,American
Mathematical Society, Providence, RI, USA, 1967.

[15] D. MacKenzie, Mechanizing Proof: Computing, Risk, and Trust,
MIT Press, Cambridge, Mass, USA, 2001.

[16] J. McCarthy, “Towards a mathematical science of computation,”
in Proceedings of IFIP Congress 62: Information Processing, pp.
21–28, Munich, Germany, 1962.

[17] P. Naur, “Proof of algorithms by general snapshots,” BIT, vol. 6,
no. 4, pp. 310–316, 1966.

[18] N. Wirth, “Program development by stepwise refinement,”
Communications of the ACM, vol. 14, no. 4, pp. 221–227, 1971.

[19] C. A. R. Hoare, “Themathematics of programming,” in Founda-
tions of Software Technology and Theoretical Computer Science,
S. N. Maheshwari, Ed., vol. 206 of Lecture Notes in Computer
Science, pp. 1–18, Springer, Heidelberg, Germany, 1985.

[20] W. Aspray, “Was early entry a competitive advantage? US
Universities that entered computing in the 1940s,” IEEE Annals
of the History of Computing, vol. 22, no. 3, pp. 42–87, 2000.

[21] N. L. Ensmenger, The Computer Boys Take Over: Computers,
Programmers, and the Politics of Technical Expertise, MIT Press,
Cambridge, Mass, USA, 2010.

[22] H. H. Goldstine, The Computer from Pascal to Von Neumann,
Princeton University Press, Princeton, NJ, USA, 1993.

[23] M. R. Williams, A History of Computing Technology, IEEE
Computer Society Press, Los Alamitos, Calif, USA, 2nd edition,
1997.

[24] P. Naur and B. Randell, Eds., Software Engineering: Report on
A Conference Sponsored by the Nato Science Committee, NATO
Scientific Affairs Division, Brussels, Belgium, 1969.

[25] M. S. Mahoney, Histories of Computing, Harvard University
Press, Cambridge, Mass, USA, 2011.

[26] C. M. Holloway, “Software engineering and epistemology,”
SIGSOFT Software Engineering Notes, vol. 20, no. 2, pp. 20–21,
1995.

[27] W. F. Tichy, “Should computer scientists experiment more?”
Computer, vol. 31, no. 5, pp. 32–40, 1998.

[28] M. V. Zelkowitz and D. Wallace, “Experimental validation in
software engineering,” Information and Software Technology,
vol. 39, no. 11, pp. 735–743, 1997.

[29] M. V. Zelkowitz and D. R. Wallace, “Experimental models for
validating technology,” Computer, vol. 31, no. 5, pp. 23–31, 1998.

[30] W. J. Rapaport, “Philosophy of computer science: an introduc-
tory course,” Teaching Philosophy, vol. 28, no. 4, pp. 319–341,
2005.

[31] A. Newell, A. J. Perlis, and H. A. Simon, “Computer science,”
Science, vol. 157, no. 3795, pp. 1373–1374, 1967.

[32] E. W. Dijkstra, “The humble programmer,” Communications of
the ACM, vol. 15, no. 10, pp. 859–866, 1972.

[33] G. E. Forsythe, “A university’s educational program in computer
science,” Communications of the ACM, vol. 10, no. 1, pp. 3–11,
1967.

[34] R.W. Hamming, “Oneman’s view of computer science,” Journal
of the ACM, vol. 16, no. 1, pp. 3–12, 1969.

[35] H. Khalil and L. S. Levy, “The academic image of computer
science,” ACM SIGC SE Bulletin, vol. 10, no. 2, pp. 31–33, 1978.

[36] M. L. Minsky, “Computer science and the representation of
knowledge,” in The Computer Age: A Twenty-Year View, M.

L. Der-touzos and J. Moses, Eds., pp. 392–421, MIT Press,
Cambridge, Mass., USA, 1979.

[37] S. C. Shapiro, “Computer science: the study of procedures,” 2001,
http://www.cse.buffalo.edu/∼shapiro/Papers/whatiscs.pdf.

[38] P. J. Denning, “ACM president’s letter: what is experimental
computer science?” Communications of the ACM, vol. 23, no.
10, pp. 543–544, 1980.

[39] P. J. Denning, “Performance analysis: wxperimental computer
science as its best,” Communications of the ACM, vol. 24, no. 11,
pp. 725–727, 1981.

[40] J. A. Feldman and W. R. Sutherland, “Rejuvenating experi-
mental computer science: a report to the National Science
Foundation and others,” Communications of the ACM, vol. 22,
no. 9, pp. 497–502, 1979.

[41] D. D. McCracken, P. J. Denning, and D. H. Brandin, “An ACM
executive committee position on the crisis in experimental
computer science,” Communications of the ACM, vol. 22, no. 9,
pp. 503–504, 1979.

[42] P. J. Denning, D. E. Comer, D. Gries et al., “Computing as a
discipline,” Communications of the ACM, vol. 32, no. 1, pp. 9–
23, 1989.

[43] T. R. Colburn, Philosophy and Computer Science, M.E. Sharpe,
Armonk, NY, USA, 2000.

[44] C. Bartley, “Debugging and the scientific method,” 2005,
http://c2.com/cgi/wiki?DebuggingAndTheScientificMethod.

[45] W. F. Tichy, P. Lukowicz, L. Prechelt, and E. A. Heinz, “Exper-
imental evaluation in computer science: a quantitative study,”
The Journal of Systems and Software, vol. 28, no. 1, pp. 9–18, 1995.

[46] P. J. Denning, “Is computer science science?” Communications
of the ACM, vol. 48, no. 4, pp. 27–31, 2005.

[47] R. L. Glass, “A structure-based critique of contemporary com-
puting research,” The Journal of Systems and Software, vol. 28,
no. 1, pp. 3–7, 1995.

[48] G. Stibitz, “Introduction to the course on electronic digital
computers,” in The Moore School Lectures, M. Campbell-Kelly
and M. R. Williams, Eds., pp. 6–18, MIT Press, Cambridge,
Mass, USA, 1946.

[49] H. H. Goldstine, The Computer from Pascal to Von Neumann,
Princeton University Press, Princeton, NJ, USA, 1972.

[50] W. Aspray, “The institute for advanced study computer: a
case study in the application of concepts from the history of
technology,” in The First Computers: History and Architectures,
R. Rojas and U. Hashagen, Eds., pp. 179–194, MIT Press,
Cambridge, Mass, USA, 2000.

[51] T. A. Easton, “Beyond the algorithmization of the sciences,”
Communications of the ACM, vol. 49, no. 5, pp. 31–33, 2006.

[52] E. B. Winsberg, Science in the Age of Computer Simulation, The
University of Chicago Press, Chicago, Ill, USA, 2010.

[53] G. Dodig-Crnkovic, “Alan Turing’s legacy: info-computational
philosophy of nature,” in Computing Nature, Studies in Applied
Philosophy, Epistemology and Rational Ethics, G. Dodig-
Crnkovic and R. Giovagnoli, Eds., vol. 7, pp. 115–123, Springer,
Heidelberg, Germany, 2013.

[54] J. H. Fetzer, “The role of models in computer science,” Monist,
vol. 82, no. 1, pp. 20–36, 1999.

[55] J. H. Moor, “Three myths of computer science,” British Journal
for the Philosophy of Science, vol. 29, no. 3, pp. 213–222, 1978.

[56] N. Oreskes, K. Shrader-Frechette, and K. Belitz, “Verification,
validation, and confirmation of numerical models in the earth
sciences,” Science, vol. 263, no. 5147, pp. 641–646, 1994.



10 The Scientific World Journal

[57] F. P. Brooks Jr., “The computer scientist as toolsmith II,”
Communications of the ACM, vol. 39, no. 3, pp. 61–68, 1996.

[58] P. A. Freeman, “Back to experimentation,” Communications of
the ACM, vol. 51, no. 1, pp. 21–22, 2008.

[59] J. Gustedt, E. Jeannot, andM.Quinson, “Experimentalmethod-
ologies for large-scale systems: a survey,” Parallel Processing
Letters, vol. 19, no. 3, pp. 399–418, 2009.

[60] V. R. Basili and M. V. Zelkowitz, “Empirical studies to build a
science of computer science,” Communications of the ACM, vol.
50, no. 11, pp. 33–37, 2007.

[61] G. Chaitin, “Epistemology as information theory: from Leibniz
to Ω,” in Computation, Information, Cognition: The Nexus and
the Liminal, S. A. J. Stuart and G. Dodig-Crnkovic, Eds., pp. 2–
17, Cambridge Scholars, Newcastle, UK, 2006.

[62] K. Zuse, Calculating Space. Technical Translation AZT-70-164-
GEMIT, Massachusetts Institute of Technology, Cambridge,
Mass, USA, 1970.

[63] M. Bunge, Philosophy of Science: From Problem toTheory, vol. 1,
Transaction Publishers, New Brunswick, NJ, USA, 1998.

[64] P. J. Denning, “Computer science,” in Encyclopedia of Computer
Science, A. Ralston, E. D. Reilly, and D. Hemmendinger, Eds.,
pp. 405–419, JohnWiley and Sons, Chichester, UK, 4th edition,
2003.

[65] L. A. Belady, “The disapperance of the “pure” software industry,”
ACM Computing Surveys, vol. 27, no. 1, pp. 17–18, 1995.

[66] D. Gelernter, The Aesthetics of Computing, Phoenix, London,
UK, 1999.

[67] H. Erdogmus, M. Morisio, and M. Torchiano, “On the effec-
tiveness of the test-first approach to programming,” IEEE
Transactions on Software Engineering, vol. 31, no. 3, pp. 226–237,
2005.

[68] V. R. Basili, R. W. Selby, and D. H. Hutchens, “Experimentation
in software engineering,” IEEE Transactions on Software Engi-
neering, vol. 12, no. 7, pp. 733–743, 1986.

[69] B. A. Kitchenham, “Evaluating software engineering methods
and tool part 1: the evaluation context and evaluationmethods,”
SIGSOFT Software Engineering Notes, vol. 21, no. 1, pp. 11–14,
1996.

[70] V. R. Basili, “Role of experimentation in software engineering:
past, current, and future,” inProceedings of the 18th International
Conference on Software Engineering, pp. 442–449, March 1996.

[71] C. T. Morrison and R. T. Snodgrass, “Viewpoint computer
science can usemore science,”Communications of the ACM, vol.
54, no. 6, pp. 36–38, 2011.

[72] M. Telles andY.Hsieh,TheScience of Debugging, Coriolis Group
Books, Arizona, Ariz, USA, 2001.

[73] A. Roychoudhury, “Debugging as a science, that too, when your
program is changing,” Electronic Notes in Theoretical Computer
Science, vol. 266, pp. 3–15, 2010.

[74] I. Hacking, “Experimentation and scientific realism,” Philosoph-
ical Topics, vol. 13, no. 1, pp. 71–87, 1983.

[75] A. Pickering,TheMangle of Practice: Time, Agency, and Science,
The University of Chicago Press, Chicago, Ill, USA, 1995.

[76] W. G. Vincenti, What Engineers Know and How They Know
It: Analytical Studies from Aeronautical History, The Johns
Hopkins University Press, London, UK, 1990.

[77] Duhem and P. :, La Théorie Physique: Son Objet et sa Structure,
Chevalier & Rivière, Paris, France, 1906.

[78] W. V. O. Quine,Word and Object, MIT Press, Cambridge, Mass,
USA, 1960.

[79] D. G. Feitelson, “Experimental computer science: the need
for a cultural change,” Unpublished Manuscript, 2006,
http://www.cs.huji.ac.il/∼feit/papers/exp05.pdf.

[80] F. Amigoni, M. Reggiani, and V. Schiaffonati, “An insightful
comparison between experiments in mobile robotics and in
science,” Autonomous Robots, vol. 27, no. 4, pp. 313–325, 2009.

[81] A. D. Franklin, The Neglect of Experiment, Cambridge Univer-
sity Press, Cambridge, Mass, USA, 1986.

[82] A. D. Franklin, Experiment, Right orWrong, CambridgeUniver-
sity Press, Cambridge, UK, 1990.

[83] A. D. Franklin, “Experiment in physics,” in The Stanford
Encyclopedia of Philosophy, E. N. Zalta, Ed., StanfordUniversity,
winter edition, 2012.

[84] M. Weber, “Experiment in biology,” in The Stanford Encyclope-
dia of Philosophy, E. N. Zalta, Ed., Spring Stanford University,
2012 edition, 2012.

[85] J.Hartmanis, “Turing award lecture on computational complex-
ity and the nature of computer science,” Communications of the
ACM, vol. 37, no. 10, pp. 37–43, 1994.

[86] J. Hartmanis and H. Lin, “What is computer science and
engineering?” in Hartmanis,Computing the Future: A Broader
Agenda for Computer Science and Engineering, J. Hartmanis and
H. Lin, Eds., pp. 163–216, National Academy Press,Washington,
DC, USA, 1992.

[87] P. Fletcher, “Readers’ corner: the role of experiments in com-
puter science,”The Journal of Systems and Software, vol. 30, no.
1-2, pp. 161–163, 1995.

[88] J. Hartmanis, “Nature of computer science and its paradigms,”
Communications of the ACM, vol. 24, no. 6, pp. 353–354, 1981.

[89] C. G. Hempel,Aspects of Scientific Explanation andOther Essays
in the Philosophy of Science,The Free Press, NewYork, NY, USA,
1965.

[90] K. R. Popper, The Logic of Scientific Discovery, Routledge,
London, UK, 1959.

[91] W. Whewell, History of the Inductive Sciences, from the Earliest
to the Present Time, vol. 1, JohnW. Parker and Son,West Strand,
NY, USA, 3rd edition, 1857.

[92] J. Hartmanis, “Some observations about the nature of computer
science,” in Foundations of Software Technology and Theoretical
Computer Science, R. K. Shyamasundar, Ed., vol. 761 of Lecture
Notes in Computer Science, pp. 1–12, Heidelberg, Germany, 1993.

[93] M. C. Loui, “Computer science is a new engineering discipline,”
ACM Computing Surveys, vol. 27, no. 1, pp. 31–32, 1995.

[94] N. F. Stewart, “Science and computer science,”ACMComputing
Surveys, vol. 27, no. 1, pp. 39–41, 1995.

[95] E. W. Dijkstra, Computing the future?, Circulated privately,
1992.

[96] G.McKee, “Computer science or simply ‘computics’?”TheOpen
Channel, vol. 28, no. 12, p. 136, 1995.

[97] H. A. Simon, The Sciences of the Artificial, MIT Press, Cam-
bridge, Mass, USA, 1st edition, 1969.

[98] P. J. Denning, “ACM president’s letter: on folk theorems, and
folkmyths,”Communications of the ACM, vol. 23, no. 9, pp. 493–
494, 1980.

[99] J. Plaice, “Computer science is an experimental science,” ACM
Computing Surveys, vol. 27, no. 1, p. 33, 1995.

[100] N. Fenton, S. L. Pfleeger, andR. L.Glass, “Science and substance:
a challenge to software engineers,” IEEE Software, vol. 11, no. 4,
pp. 86–95, 1994.



The Scientific World Journal 11

[101] P. Palvia, E. Mao, A. F. Salam, and K. S. Soliman, “Management
information systems research: what’s there in a methodology?”
Communications of the Association for Information Systems, vol.
11, no. 16, pp. 1–32, 2003.

[102] J. Carreira and J. G. Silva, “Computer science and the Pygmalion
effect,” Computer, vol. 31, no. 2, pp. 116–117, 1998.

[103] E. M. Voorhees, “TREC: Continuing information retrieval’s
tradition of experimentation,”Communications of the ACM, vol.
50, no. 11, pp. 51–54, 2007.

[104] S. Peisert, “I am a scientist, not a philosopher!,” IEEE Security
and Privacy, vol. 5, no. 4, pp. 48–51, 2007.

[105] H. Schorr, “Experimental computer science,” Annals of the New
York Academy of Sciences, vol. 426, no. 1, pp. 31–46, 1984.

[106] B. Curtis, “Measurement and experimentation in software
engineering,” Proceedings of the IEEE, vol. 68, no. 9, pp. 1144–
1157, 1980.

[107] S. L. Pfleeger, “Albert Einstein and empirical software engineer-
ing,” IEEE Computer, vol. 32, no. 10, pp. 32–37, 1999.

[108] D. G. Feitelson, “Experimental computer science,”Communica-
tions of the ACM, vol. 50, no. 11, pp. 24–26, 2007.

[109] T. Arabatzis, “Experiment,” in The Routledge Companion to
Philosophy of Science, S. Psillos and M. Curd, Eds., Routledge,
Abingdon, UK, 2008.

[110] I. Hacking, Representing and Intervening: Introductory Topics in
the Philosophy of Natural Science, Cambridge University Press,
New York, NY, USA, 1983.



Submit your manuscripts at
http://www.hindawi.com

Computer Games 
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed 
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied 
Computational 
Intelligence and Soft 
Computing

 Advances in 

Artificial 
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Journal of

Computer Networks 
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in 

Multimedia

 International Journal of 

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational 
Intelligence and 
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014


