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We introduce the fractional-order derivatives into an HIV infection model with nonlinear incidence and show that the established
model in this paper possesses nonnegative solution, as desired in any population dynamics. We also deal with the stability of the
infection-free equilibrium, the immune-absence equilibrium, and the immune-presence equilibrium. Numerical simulations are
carried out to illustrate the results.

1. Introduction

1.1. The History of Fractional Calculus. Fractional calculus
which is a branch of mathematical analysis extends deriva-
tives and integrals to an arbitrary order (real, even, or
complex order). The study on fractional calculus started at
the end of seventeenth century and the first reference was
proposed by Leibniz and L’Hospital in 1695, in which half-
order derivative was mentioned.The emergence of fractional
calculus aroused interest of some famous mathematicians
such as Lacroix, Lagrange, Fourier, and Laplace. J. L. Lagrange
developed the law of exponents for differential operators
in 1772, which promoted indirectly the development of
fractional calculus. P. S. Laplace defined a fractional deriva-
tive by means of integral in 1812 and S. F. Lacroix and J.
B. J. Fourier in succession mentioned the arbitrary order
derivative, respectively, in 1819 and in 1822. However, the
basic theory of fractional calculus was established with the
studies of Liouville, Grunwald, Letnikov, and Riemann until
the end of the nineteenth century.

At the initial stage, the development of fractional calculus
had been restricted to the pure mathematics research. Until
the nineteen nineties, the theory of fractional calculus was
applied to nature and social sciences. In the field of anoma-
lous diffusion, the researchers applied fractional calculus to
describe the diffusion processes which do not conform to

the brown motion and proposed the fractional anomalous
diffusionmodel. According to the theoretical analysis and the
experimental data or results, they found that the fractional
model is more reasonable to describe these processes [1].
Afterwards, many mathematicians and applied researchers
also have tried to demonstrate applications of fractional
differentials in the areas of non-Newtonian fluids [2], signal
processing [3–5], viscoelasticity [6, 7], fluid-dynamic traffic
model [8], colored noise [9], bioengineering [10], solid
mechanics [11], continuumand statisticalmechanics [12], and
economics [13] and brought new research view for those
fields.

1.2. Mathematical Modeling. In biology, it has been deduced
that the membranes of cells of biological organism have
fractional-order electrical conductance [14]; hence some
mathematical models which describe cells behavior are clas-
sified into groups of non-integer-order models. In the field
of rheology, fractional-order derivatives embody essential
features of cell rheological behavior and have enjoyed greatest
success [15]. Some researchers also found that fractional ordi-
nary differential equations are naturally related to systems
with memory which exists in most biological systems. And
fractional-order equations are also closely related to fractals,
which are abundant in biological systems.
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Mathematical models have been proven valuable in
understanding the dynamics of viral infection. Although a
large number of works on modeling the dynamics of viral
infection have been done [16–20], it has been restricted to
integer-order (delay) differential equations. In recent years,
it has turned out that many phenomena in virus infection
can be described very successfully by the models using
fractional-order differential equations [21, 22]. Motivated by
these references, in this paper, we will consider a fractional-
order HIV model.

Among a large number of virus infection models
described with integer-order or delay differential equations,
a typical model is given as the following simple three-
dimensional system:

𝑥


(𝑡) = 𝜆 − 𝑑𝑥(𝑡) − 𝛽𝑥(𝑡)V(𝑡),

𝑦


(𝑡) = 𝛽𝑥(𝑡)V(𝑡) − 𝑝𝑦(𝑡),

V(𝑡) = 𝑘𝑦(𝑡) − 𝑢V(𝑡).

(1)

Here 𝑥(𝑡) represents the concentration of uninfected cells at
time 𝑡; 𝑦(𝑡) represents the concentration of infected cells that
produce virus at time 𝑡; V(𝑡) represents the concentration of
viruses at time 𝑡. 𝑑 (𝑑 > 0) and 𝛽 (𝛽 > 0) are the death rate of
uninfected cells and the rate constant characterizing infection
of the cells, respectively.𝑝 (𝑝 > 0) is the death rate of infected
cells due to either the virus or the immune system. Free virus
is produced from infected cells at the rate 𝑘𝑦(𝑡) and removed
at rate 𝑢V(𝑡).

The infection rate in model (1) is usually assumed to
be bilinear with respect to virus V(t) and uninfected target
cells 𝑥(𝑡). However, there are some evidences which show
that a bilinear infection might not be an effective assumption
when the number of target cells is large enough [23–25].
AndHuang et al. [17] incorporated Holling type II functional
response infection rate 𝑔(𝑥(𝑡), V(𝑡)) into basic virus dynamics
(1), which was expressed as

𝑔(𝑥(𝑡), V(𝑡)) =

𝛽𝑥(𝑡)V(𝑡)
1 + 𝑞𝑥(𝑡)

, (2)

where 𝑞 (𝑞 ≥ 0) is a constant. Hence, system (1) can be
modified into the following system:

𝑥


(𝑡) = 𝜆 − 𝑑𝑥(𝑡) −

𝛽𝑥(𝑡)V(𝑡)
1 + 𝑞𝑥(𝑡)

,

𝑦


(𝑡) =

𝛽𝑥(𝑡)V(𝑡)
1 + 𝑞𝑥(𝑡)

− 𝑝𝑦(𝑡),

V(𝑡) = 𝑘𝑦(𝑡) − 𝑢V(𝑡).

(3)

The immune response following viral infection is uni-
versal and necessary to eliminate or control the disease.
Antibodies, cytokines, natural killer cells, B cells, and T cells
are all essential components of a normal immune response
to viral infection. Since cytotoxic T lymphocytes (CTLs) play
a critical role in antiviral defense by attacking the virus-
infected cells, Huang et al. [17] considered the immune
response to model (3) with 𝑧


(𝑡) = 𝑐𝑦(𝑡)𝑧(𝑡) − 𝑏𝑧(𝑡).

System (3) with 𝑧

(𝑡) = 𝑐𝑦(𝑡)𝑧(𝑡) − 𝑏𝑧(𝑡) can be further

simplified if we take into consideration the fact that an
average life span of viral particles is usually significantly
shorter than one of the infected cells. It can be assumed,
therefore, that, compared with a “slow” variation of the
infected cells level, the virus load V(𝑡) relatively quickly
reaches a quasiequilibrium level. The equality V̇(𝑡) = 0 holds
in the quasiequilibrium state and hence V(𝑡) = 𝑘𝑦(𝑡)/𝑢.
This assumption is referred to as “separation of time scales”
and is in common use in the virus dynamics [18]. We have
to stress that this assumption does not imply that the virus
concentration V(𝑡) remains constant; on the contrary, it is
assumed to be proportional to the varying concentration
of infected cells 𝑦(𝑡). Accordingly, system (3) with 𝑧


(𝑡) =

𝑐𝑦(𝑡)𝑧(𝑡)−𝑏𝑧(𝑡) can now be reformulated as a system of three
differential equations:

𝑥


(𝑡) = 𝜆 − 𝑑𝑥 (𝑡) −

𝛽𝑥 (𝑡) 𝑦 (𝑡)

1 + 𝑞𝑥 (𝑡)

,

𝑦


(𝑡) =

𝛽𝑥 (𝑡) 𝑦 (𝑡)

1 + 𝑞𝑥 (𝑡)

− 𝑎𝑦 (𝑡) − 𝑝𝑦 (𝑡) 𝑧 (𝑡) ,

𝑧


(𝑡) = 𝑐𝑦(𝑡)𝑧(𝑡) − 𝑏𝑧(𝑡).

(4)

Further we introduce the fractional order into model (4)
and a new system can be described by the following set of
FODEs of order 𝛼 > 0:

𝑥
𝛼

(𝑡) = 𝜆 − 𝑑𝑥 −

𝛽𝑥𝑦

1 + 𝑞𝑥

,

𝑦
𝛼

(𝑡) =

𝛽𝑥𝑦

1 + 𝑞𝑥

− 𝑎𝑦 − 𝑝𝑦𝑧,

𝑧
𝛼

(𝑡) = 𝑐𝑦𝑧 − 𝑏𝑧,

(5)

𝑥 (0) = 𝑥
0
, 𝑦 (0) = 𝑦

0
, 𝑧 (0) = 𝑧

0
, (6)

where the immune response is assumed to get stronger at
a rate 𝑐𝑦𝑧, which is proportional to the number of infected
cells and their current concentration; the immune response
decays exponentially at a rate 𝑏𝑧, which is proportional to
their current concentration; the parameter 𝑞 expresses the
efficacy of nonlytic component.

The paper is organized as follows. In the next section,
we give two definitions and two lemmas about fractional
calculus. In Section 3, we show the nonnegativeness of the
solutions of system (5) with initial condition (6). In Section 4,
we give a detailed stability analysis for three equilibria. Finally
numerical simulations are presented to illustrate the obtained
results in Section 5.

2. Fractional Calculus

Definition 1 (see [26]). The Riemann-Liouville (R-L) frac-
tional integral operator of order 𝛼 > 0 of a function𝑓 : 𝑅

+
→

𝑅 is defined as

𝐼
𝛼
𝑓 (𝑥) =

1

Γ (𝛼)

∫

𝑥

0

(𝑥 − 𝑡)
𝛼−1

𝑓 (𝑡) 𝑑𝑡. (7)
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Here Γ(⋅) is the Euler gamma function which is defined as

Γ (𝑛) = ∫

∞

0

𝑡
𝑛−1

𝑒
−𝑡
𝑑𝑡. (8)

This function is generalization of a factorial in the following
form:

Γ (𝑛) = (𝑛 − 1)!. (9)

Definition 2 (see [26]). The Caputo (C) fractional derivative
of order 𝛼 > 0, 𝑛 − 1 < 𝛼 < 𝑛, 𝑛 ∈ 𝑁, is defined as

𝐷
𝛼
𝑓 (𝑡) = 𝐼

𝑛−𝛼
𝐷
𝑛
𝑓 (𝑡) =

1

Γ (𝑛 − 𝛼)

∫

𝑡

0

𝑓
(𝑛)

(𝑠)

(𝑡 − 𝑠)
𝛼+1−𝑛

𝑑𝑠,

(10)

where the function𝑓(𝑡) has absolutely continuous derivatives
up to order (𝑛 − 1). In particular, when 0 < 𝛼 < 1, one has

𝐷
𝛼
𝑓 (𝑡) =

1

Γ (1 − 𝛼)

∫

𝑡

0

𝑓

(𝑠)

(𝑡 − 𝑠)
𝛼
𝑑𝑠. (11)

In this paper we use Caputo fractional derivative defini-
tion. The main advantage of Caputo’s definition is that the
initial conditions for fractional differential equations with
Caputo derivatives take the same form as that for integer-
order differential equations.

Lemma 3 (see [26]). Consider the following commensurate
fractional-order system:

𝐷
𝛼
𝑥 = 𝑓 (𝑥) ,

𝑥 (0) = 𝑥
0
,

(12)

with 0 < 𝛼 ≤ 1 and 𝑥 ∈ 𝑅
𝑛. The equilibrium points of system

(12) are calculated by solving the following equation: 𝑓(𝑥) = 0.
These points are locally asymptotically stable if all eigenvalues
𝑟
𝑖
of Jacobian matrix 𝐽 = 𝜕𝑓/𝜕𝑥 evaluated at the equilibrium

points satisfy





arg(𝑟
𝑖
)




>

𝜃𝜋

2

. (13)

Definition 4 (see [27]). The discriminant 𝐷(𝑓) of a polyno-
mial

𝑓(𝑥) = 𝑥
𝑛
+ 𝑐
1
𝑥
𝑛−1

+ 𝑐
2
𝑥
𝑛−2

+ ⋅ ⋅ ⋅ + 𝑐
𝑛

(14)

is defined by 𝐷(𝑓) = (−1)
𝑛(𝑛−1)/2

𝑅(𝑓, 𝑓

), where 𝑓

 is the
derivative of𝑓. If𝑔(𝑥) = 𝑥

𝑙
+𝑑
1
𝑥
𝑙−1

+𝑑
2
𝑥
𝑙−2

+⋅ ⋅ ⋅+𝑑
𝑛
,𝑅(𝑓, 𝑔) is

the determinant of the corresponding Sylvester (𝑛+𝑙)⊗(𝑛+𝑙)

matrix. The Sylvester matrix is formed by filling the matrix
beginning with the upper left corner with the coefficients of
𝑓(𝑥) and then shifting down one row and one column to the
right and filling in the coefficients starting there until they hit
the right side.The process is then repeated for the coefficients
of 𝑔(𝑥).

Lemma 5 (see [27]). For the polynomial equation,

𝑃 (𝜆) = 𝜆
𝑛
+ ℎ
1
𝜆
𝑛−1

+ ℎ
2
𝜆
𝑛−2

+ ⋅ ⋅ ⋅ + ℎ
𝑛
= 0, (15)

the conditions which make all the roots of (15) satisfy (13) are
displayed as follows:

(i) for 𝑛 = 1, the condition is ℎ
1
> 0;

(ii) for 𝑛 = 2, the conditions are either Routh-Hurwitz
conditions or

ℎ
1
< 0, 4ℎ

2
> (ℎ
1
)
2

,
















tan−1(
√4ℎ
2
− (ℎ
1
)
2

ℎ
1

)
















>

𝛼𝜋

2

;

(16)

(iii) for 𝑛 = 3,

(a) if the discriminant of 𝑃(𝜆), 𝐷(𝑃) is positive, then
Routh-Hurwitz conditions are the necessary and
sufficient conditions; that is, ℎ

1
> 0, ℎ

3
> 0, and

ℎ
1
ℎ
2
> ℎ
3
if 𝐷(𝑃) > 0;

(b) if𝐷(𝑃) < 0, ℎ
1
≥ 0, ℎ

2
≥ 0, and ℎ

3
> 0, then (13)

for (15) holds when 𝛼 < 2/3;
(c) if𝐷(𝑃) < 0, ℎ

1
< 0, and ℎ

2
< 0, then (13) for (15)

holds when 𝛼 > 2/3;
(d) if 𝐷(𝑃) < 0, ℎ

1
> 0, ℎ

2
> 0, and ℎ

1
ℎ
2
= ℎ
3
, then

(13) for (15) holds for all 𝛼 ∈ [0, 1).

3. Nonnegative Solutions

Let 𝑅3
+

= {𝑊 ∈ 𝑅
3

: 𝑊 ≥ 0} and 𝑊(𝑡) = (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡))
𝑇.

For the proof of the theorem about nonnegative solutions, we
would need the following lemma.

Lemma 6 (see [28] generalized mean value theorem). Let
𝑓(𝑥) ∈ 𝐶[𝑎, 𝑏] and 𝐷

𝛼
𝑓(𝑥) ∈ 𝐶[𝑎, 𝑏] for 0 < 𝛼 ≤ 1. Then

one has

𝑓(𝑥) = 𝑓(𝑎) +

1

Γ(𝛼)

𝐷
𝛼
𝑓(𝜉)(𝑥 − 𝑎)

𝛼
, (17)

with 0 ≤ 𝜉 ≤ 𝑥, ∀𝑥 ∈ (𝑎, 𝑏], where Γ(𝑥) = ∫

+∞

0
𝑡
𝑥−1

𝑒
−𝑡
𝑑𝑡.

Remark 7. Suppose that 𝑓(𝑥) ∈ 𝐶[𝑎, 𝑏] and 𝐷
𝛼
𝑓(𝑥) ∈

𝐶[𝑎, 𝑏], for 0 < 𝛼 ≤ 1. It is clear from Lemma 6 that if
𝐷
𝛼
𝑓(𝑥) ≥ 0, ∀𝑥 ∈ (𝑎, 𝑏), then 𝑓(𝑥) is nondecreasing for

each 𝑥 ∈ [𝑎, 𝑏]. If 𝐷
𝛼
𝑓(𝑥) ≤ 0, ∀𝑥 ∈ (𝑎, 𝑏), then 𝑓(𝑥) is

nonincreasing for each 𝑥 ∈ [𝑎, 𝑏].

We now prove the main theorem.

Theorem 8. There is a unique solution for the initial value
problem (5) with (6) and the solution remains in 𝑅

3

+
.

Proof. From Theorem 3.1 and Remark 3.2 of [29], we obtain
the solution on (0,∞) solving the initial value problem (5)
with (6) which is not only existent but also unique. Next, we
will show the nonnegative orthant 𝑅3

+
is a positively invariant

region. What is needed for this is to show that, on each
hyperplane bounding the nonnegative orthant, the vector
field points into 𝑅

3

+
. From (5), we find

𝑥
𝛼
(𝑡)




𝑥=0

= 𝜆 ≥ 0, 𝑦
𝛼
(𝑡)




𝑦=0

= 0, 𝑧
𝛼
(𝑡)




𝑧=0

= 0.

(18)

By Remark 7, the solution will remain in 𝑅
3

+
.
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4. Equilibrium States and Their Stability

In this section, we investigate the stability of the fractional-
ordermodel of HIV infection of CD4 + T cells, that is, system
(5) with (6). Consider the initial value problem (5) with (6)
with 𝛼 satisfying 0 < 𝛼 ≤ 1.

In order to obtain the equilibria of system (5), we set
𝑥
𝛼
(𝑡) = 0, 𝑦𝛼(𝑡) = 0, and 𝑧

𝛼
(𝑡) = 0 and we have

𝜆 − 𝑑𝑥 −

𝛽𝑥𝑦

1 + 𝑞𝑥

= 0,

𝛽𝑥𝑦

1 + 𝑞𝑥

− 𝑎𝑦 − 𝑝𝑦𝑧 = 0,

𝑐𝑦𝑧 − 𝑏𝑧 = 0.

(19)

System (5) has three types of relevant nonnegative equilib-
rium states. System (5) always has an infection-free equilib-
rium 𝐸

0
= (𝑥
0
, 0, 0), where

𝑥
0
=

𝜆

𝑑

, (20)

which means that the infected cells are cleared. The basic
reproductive number of the viruses for system (5) is given by

𝑅
0
=

𝜆𝛽

𝑎 (𝑑 + 𝑞𝜆)

. (21)

This number describes the average number of newly gener-
ated infected cells from one infected cell at the beginning
of the infection process. When 𝑅

0
> 1, in addition to the

infection-free equilibrium 𝐸
0
, there is an immune-absence

equilibrium 𝐸
1
= (𝑥
1
, 𝑦
1
, 𝑧
1
), where

𝑥
1
=

𝑎

𝛽 − 𝑎𝑞

, 𝑦
1
=

𝑑 + 𝑞𝜆

𝛽 − 𝑎𝑞

(𝑅
0
− 1) , 𝑧

1
= 0.

(22)
Note that 𝑅

0
> 1 implies 𝛽 > 𝑎𝑞. When the HIV infection

is in the immune-absence equilibrium 𝐸
1
, the infected cells

and virus exist but the immune response is not activated yet.
Further, we denote

𝑅
1
= 𝑅
0
−

𝑏(𝛽 − 𝑎𝑞)

𝑐(𝑑 + 𝑞𝜆)

. (23)

Note that 𝑅
1

= ((𝛽 − 𝑎𝑞)/𝑐(𝑑 + 𝑞𝜆))(𝑐𝑦
1
− 𝑏) + 1, which

implies that 𝑅
1

> 1 is equivalent to 𝑐𝑦
1
/𝑏 > 1. The

latter 𝑐𝑦
1
/𝑏 is seen as the immune reproductive number,

which expresses the average number of activated CTLs
generated from one CTL during its life time 1/𝑏 through
the stimulation of the infected cells 𝑦

1
. It is reasonable that

immune response is activated in the case where 𝑅
1

> 1.
When𝑅

1
> 1, in addition to the infection-free equilibrium𝐸

0

and the immune-absence equilibrium 𝐸
1
, there is an interior

immune-presence equilibrium 𝐸
∗

= (𝑥
∗
, 𝑦
∗
, 𝑧
∗
), where

𝑥
∗

=

− (𝑏𝛽 + 𝑐𝑑 − 𝑐𝑞𝜆) + √(𝑏𝛽 + 𝑐𝑑 − 𝑐𝑞𝜆)
2

+ 4𝑐
2
𝑑𝑞𝜆

2𝑐𝑑𝑞

,

𝑦
∗

=

𝑏

𝑐

, 𝑧
∗

=

𝑐

𝑏𝑝

(𝜆 − 𝑑𝑥
∗
) −

𝑎

𝑝

.

(24)

𝐸
∗ expresses the state where CTLs immune response is

present.
Next, we establish the local asymptotic stability of model

(5) by the characteristic equation.

Theorem 9. Consider system (5).

(1) The infection-free equilibrium 𝐸
0
is locally asymptoti-

cally stable if 𝑅
0
< 1.

(2) If 𝑅
0
> 1, the equilibrium 𝐸

0
is unstable, and if 𝑅

0
= 1,

it is a critical case.

Proof. The characteristic equation for the infection-free equi-
librium 𝐸

0
is given as follows:

det(

−𝑑 − 𝑟 −

𝛽𝑥
0

1 + 𝑞𝑥
0

0

0

𝛽𝑥
0

1 + 𝑞𝑥
0

− 𝑎 − 𝑟 0

0 0 −𝑏 − 𝑟

) = 0. (25)

It is reduced to

(𝑟 + 𝑑)(𝑟 + 𝑏)(𝑟 + 𝑎 −

𝛽𝑥
0

1 + 𝑞𝑥
0

) = 0. (26)

It is clear that (26) has the characteristic roots 𝑟
1
= −𝑑 < 0

which means | arg 𝑟
1
| = 𝜋 > 𝛼(𝜋/2), 𝑟

2
= −𝑏 < 0 which

means | arg 𝑟
2
| = 𝜋 > 𝛼(𝜋/2), and 𝑟

3
= (𝛽𝑥

0
/(1 + 𝑞𝑥

0
)) − 𝑎 =

𝑎(𝑅
0
− 1). Since the imaginary part of characteristic root 𝑟

3
is

zero, 𝑅
0
< 1 which means | arg 𝑟

3
| = 𝜋 > 𝛼(𝜋/2) is necessary

and sufficient to ensure the local asymptotic stability of 𝐸
0
. If

𝑅
0
> 1, | arg 𝑟

3
| = 0 < 𝛼(𝜋/2); hence 𝐸

0
is unstable. If 𝑅

0
= 1,

𝑟
3
= 0, which is a critical case.

Theorem 10. Consider system (5).

(1) The immune-free equilibrium 𝐸
1
is locally asymptoti-

cally stable if 𝑅
1
< 1.

(2) If 𝑅
1
> 1, the immune-free equilibrium 𝐸

1
is unstable;

if 𝑅
1
= 1, it is a critical state.

Proof. The characteristic equation for the immune-free equi-
librium 𝐸

1
is given as follows:

det(

−𝑑 −

𝛽𝑦
1

(1 + 𝑞𝑥
1
)
2
− 𝑟 −

𝛽𝑥
1

1 + 𝑞𝑥
1

0

𝛽𝑦
1

(1 + 𝑞𝑥
1
)
2

𝛽𝑥
1

1 + 𝑞𝑥
1

− 𝑎 − 𝑟 −𝑝𝑦
1

0 0 𝑐𝑦
1
− 𝑏 − 𝑟

)

= 0.

(27)

Using 𝛽𝑥
1
/(1 + 𝑞𝑥

1
) = 𝑎, it is reduced to

(𝑟 + 𝑏 − 𝑐𝑦
1
)[𝑟
2
+ (𝑑 +

𝛽𝑦
1

(1 + 𝑞𝑥
1
)
2
)𝑟 +

𝑎𝛽𝑦
1

(1 + 𝑞𝑥
1
)
2
] = 0.

(28)
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The root of (28) 𝑟
1

= 𝑐𝑦
1
− 𝑏 is negative and | arg 𝑟

1
| = 𝜋 >

𝛼(𝜋/2)when𝑅
1
< 1, positive and | arg 𝑟

1
| = 0 < 𝛼(𝜋/2)when

𝑅
1
> 1, and zero when 𝑅

1
= 1, which is a critical case.

Now, we consider the equation

𝑟
2
+ (𝑑 +

𝛽𝑦
1

(1 + 𝑞𝑥
1
)
2
)𝑟 +

𝑎𝛽𝑦
1

(1 + 𝑞𝑥
1
)
2

= 0. (29)

Denote

𝐵 =

𝛽𝑦
1

(1 + 𝑞𝑥
1
)
2
,

𝐶 =

𝑎𝛽𝑦
1

(1 + 𝑞𝑥
1
)
2
.

(30)

Since 𝐵 > 0 and 𝐶 > 0, (29) has two negative real roots and
we denote them by 𝑟

2
and 𝑟
3
. It is easy to see | arg 𝑟

2
| = 𝜋 >

𝛼(𝜋/2) and | arg 𝑟
3
| = 𝜋 > 𝛼(𝜋/2). Hence, when 𝑅

1
< 1, the

immune-free equilibrium 𝐸
1
is locally asymptotically stable,

when 𝑅
1
> 1, 𝐸

1
is unstable, and when 𝑅

1
= 1, it is a critical

case.

To discuss the local stability of the immune-present
equilibrium state 𝐸

∗, we consider the linearized system of (5)
at 𝐸∗. The Jacobian matrix at 𝐸∗ is given by

𝐽 (𝐸
∗
) = (

−𝑑 −

𝛽𝑦
∗

(1 + 𝑞𝑥
∗
)
2

−

𝛽𝑥
∗

1 + 𝑞𝑥
∗

0

𝛽𝑦
∗

(1 + 𝑞𝑥
∗
)
2

0 −𝑝𝑦
∗

0 𝑐𝑧
∗

0

). (31)

The characteristic equation of the linearized system is

𝑃 (𝑟) = 𝑟
3
+ 𝑎
1
𝑟
2
+ 𝑎
2
𝑟 + 𝑎
3
= 0, (32)

where

𝑎
1
= 𝑑 +

𝛽𝑦
∗

(1 + 𝑞𝑥
∗
)
2

> 0,

𝑎
2
= 𝑐𝑝𝑦

∗
𝑧
∗
+

𝛽
2
𝑥
∗
𝑦
∗

(1 + 𝑞𝑥
∗
)
3

> 0,

𝑎
3
= 𝑐𝑝𝑦

∗
𝑧
∗
(𝑑 +

𝛽𝑦
∗

(1 + 𝑞𝑥
∗
)
2
) > 0,

𝑎
1
𝑎
2
− 𝑎
3
=

𝛽
2
𝑥
∗
𝑦
∗

(1 + 𝑞𝑥
∗
)
3
(𝑑 +

𝛽𝑦
∗

(1 + 𝑞𝑥
∗
)
2
) > 0.

(33)

Based on Definition 4, we obtain the discriminant of (32)

𝐷(𝑃) = −





















1 𝑎
1

𝑎
2

𝑎
3

0

0 1 𝑎
1

𝑎
2

𝑎
3

3 2𝑎
1

𝑎
2

0 0

0 3 2𝑎
1

𝑎
2

0

0 0 3 2𝑎
1

𝑎
2





















= 18𝑎
1
𝑎
2
𝑎
3
+ (𝑎
1
𝑎
2
)
2

− 4𝑎
3

1
𝑎
3
− 4𝑎
3

2
− 27𝑎

2

3
.

(34)

Using the result (iii) of Lemmas 5 and 3, we have the following
theorem.

Theorem 11. Consider system (5). Under the condition of 𝑅
1
>

1,
(1) if the discriminant of 𝑃(𝑟), 𝐷(𝑃) is positive, namely,

𝐷(𝑃) > 0, then the immune-present equilibrium 𝐸
∗

is locally asymptotically stable for 0 < 𝛼 ≤ 1;
(2) if 𝐷(𝑃) < 0, then the immune-present equilibrium 𝐸

∗

is locally asymptotically stable for 0 < 𝛼 < 2/3.

5. Numerical Method

Atanackovic and Stankovic introduced a numerical method
to solve the single linear FDE in 2004 [1]. A few years later,
they developed again a method to solve the nonlinear FDE
[30]. It was shown that the fractional derivative of a function
𝑓(𝑡) with order 𝛼 satisfying 0 < 𝛼 < 1 may be expressed as
𝐷
𝛼
𝑓(𝑡)

=

1

Γ(2 − 𝛼)

× {

𝑓
(1)

(𝑡)

𝑡
𝛼−1

[1 +

∞

∑

𝑚=1

Γ(𝑚 − 1 + 𝛼)

Γ(𝛼 − 1)𝑚!

]

− [

𝛼 − 1

𝑡
𝛼

𝑓(𝑡) +

∞

∑

𝑚=2

Γ (𝑚 − 1 + 𝛼)

Γ (𝛼 − 1) (𝑚 − 1)!

×(

𝑓 (𝑡)

𝑡
𝛼

+

𝑉
𝑚

(𝑓) (𝑡)

𝑡
𝑚−1+𝛼

)]},

(35)
where

𝑉
𝑚
(𝑓)(𝑡) = −(𝑚 − 1)∫

𝑡

0

𝜏
𝑚−2

𝑓(𝜏)𝑑𝜏, 𝑚 = 2, 3, . . . ,

(36)
with the following properties:

𝑑

𝑑𝑡

𝑉
𝑚

(𝑓) = − (𝑚 − 1) 𝑡
𝑚−2

𝑓 (𝑡) , 𝑚 = 2, 3, . . . . (37)

We approximate𝐷
𝛼
𝑓(𝑡) by using𝑀 terms in sums appearing

in (35) as follows:
𝐷
𝛼
𝑓(𝑡)

≃

1

Γ(2 − 𝛼)

× {

𝑓
(1)

(𝑡)

𝑡
𝛼−1

[1 +

𝑀

∑

𝑚=1

Γ(𝑚 − 1 + 𝛼)

Γ(𝛼 − 1)𝑚!

]

− [

𝛼 − 1

𝑡
𝛼

𝑓(𝑡) +

𝑀

∑

𝑚=2

Γ(𝑚 − 1 + 𝛼)

Γ(𝛼 − 1)(𝑚 − 1)!

×(

𝑓(𝑡)

𝑡
𝛼

+

𝑉
𝑚
(𝑓)(𝑡)

𝑡
𝑚−1+𝛼

)]}.

(38)
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We can rewrite (38) as follows:

𝐷
𝛼
𝑓(𝑡) ≃ Ω(𝜃, 𝑡,𝑀)𝑓

(1)

(𝑡) + Φ(𝜃, 𝑡,𝑀)𝑓(𝑡)

+

𝑀

∑

𝑚=2

𝐴 (𝜃, 𝑡, 𝑚)

𝑉
𝑚

(𝑓) (𝑡)

𝑡
𝑚−1+𝛼

,

(39)

where

Ω (𝛼, 𝑡,𝑀) =

1 + ∑
𝑀

𝑚=1
(Γ (𝑚 − 1 + 𝛼) /Γ (𝛼 − 1)𝑚!)

Γ (2 − 𝛼) 𝑡
𝛼−1

,

𝑅 (𝑎, 𝑡) =

1 − 𝛼

𝑡
𝛼
Γ(2 − 𝛼)

,

𝐴 (𝛼, 𝑡, 𝑚) = −

Γ (𝑚 − 1 + 𝛼)

Γ (2 − 𝛼) Γ (𝛼 − 1) (𝑚 − 1)!

,

Φ (𝛼, 𝑡,𝑀) = 𝑅 (𝑎, 𝑡) +

𝑀

∑

𝑚=2

𝐴 (𝛼, 𝑡, 𝑚)

𝑡
𝛼

.

(40)

We set

Θ
1
(𝑡) = 𝑥 (𝑡) , Θ

𝑚
(𝑡) = 𝑉

𝑚
(𝑥) (𝑡) ,

Θ
𝑀+1

(𝑡) = 𝑦 (𝑡) , Θ
𝑀+𝑚

(𝑡) = 𝑉
𝑚

(𝑦) (𝑡) ,

Θ
2𝑀+1

(𝑡) = 𝑧 (𝑡) , Θ
2𝑀+𝑚

(𝑡) = 𝑉
𝑚

(𝑧) (𝑡) ,

(41)

for 𝑚 = 2, 3, . . .. We can rewrite system (19) as the following
form:

Ω(𝛼, 𝑡,𝑀)Θ


1
(𝑡) + Φ(𝛼, 𝑡,𝑀)Θ

1
(𝑡) +

𝑀

∑

𝑚=2

𝐴(𝛼, 𝑡, 𝑚)

Θ
𝑚
(𝑡)

𝑡
𝑚−1+𝛼

= 𝜆 − 𝑑Θ
1
(𝑡) −

𝛽Θ
1
(𝑡) Θ
𝑀+1

(𝑡)

1 + 𝑞Θ
1
(𝑡)

,

Ω(𝛼, 𝑡,𝑀)Θ


𝑀+1
(𝑡) + Φ(𝛼, 𝑡,𝑀)Θ

𝑀+1
(𝑡)

+

𝑀

∑

𝑚=2

𝐴(𝛼, 𝑡, 𝑚)

Θ
𝑀+𝑚

(𝑡)

𝑡
𝑚−1+𝛼

=

𝛽Θ
1
(𝑡)Θ
𝑀+1

(𝑡)

1 + 𝑞Θ
1
(𝑡)

− 𝑎Θ
𝑀+1

(𝑡) − 𝑝Θ
𝑀+1

(𝑡) Θ
2𝑀+1

(𝑡) ,

Ω(𝛼, 𝑡,𝑀)Θ


2𝑀+1
(𝑡) + Φ(𝛼, 𝑡,𝑀)Θ

2𝑀+1
(𝑡)

+

𝑀

∑

𝑚=2

𝐴(𝛼, 𝑡, 𝑚)

Θ
2𝑀+𝑚

(𝑡)

𝑡
𝑚−1+𝛼

= 𝑐Θ
𝑀+1

(𝑡) Θ
2𝑀+1

(𝑡) − 𝑏Θ
2𝑀+1

(𝑡) ,

(42)

where

Θ
𝑚
(𝑡) = −(𝑚 − 1) ∫

𝑡

0

𝜏
𝑚−2

Θ
1
(𝜏)𝑑𝜏,

Θ
𝑀+𝑚

(𝑡) = −(𝑚 − 1) ∫

𝑡

0

𝜏
𝑚−2

Θ
𝑀+1

(𝜏)𝑑𝜏,

Θ
2𝑀+𝑚

(𝑡) = −(𝑚 − 1) ∫

𝑡

0

𝜏
𝑚−2

Θ
2𝑀+1

(𝜏)𝑑𝜏,

𝑚 = 2, 3, . . . ,𝑀.

(43)

Now we can rewrite (39) and (42) as the following form:

Θ


1
(𝑡) =

1

Ω(𝛼, 𝑡,𝑀)

(𝜆 − (𝑑 + Φ(𝛼, 𝑡,𝑀))Θ
1
(𝑡)

−

𝛽Θ
1
(𝑡)Θ
𝑀+1

(𝑡)

1 + 𝑞Θ
1
(𝑡)

−

𝑀

∑

𝑚=2

𝐴 (𝛼, 𝑡, 𝑚)

Θ
𝑚

(𝑡)

𝑡
𝑚−1+𝛼

),

Θ


𝑚
(𝑡) = − (𝑚 − 1) 𝑡

𝑚−2
Θ
1
(𝑡) , 𝑚 = 2, 3, . . . ,𝑀,

Θ


𝑀+1
(𝑡) =

1

Ω(𝛼, 𝑡,𝑀)

(

𝛽Θ
1
(𝑡)Θ
𝑀+1

(𝑡)

1 + 𝑞Θ
1
(𝑡)

− (𝑎 + Φ(𝛼, 𝑡,𝑀))Θ
𝑀+1

(𝑡)

− 𝑝Θ
𝑀+1

(𝑡)Θ
2𝑀+1

(𝑡)

−

𝑀

∑

𝑚=2

𝐴 (𝛼, 𝑡, 𝑚)

Θ
𝑀+𝑚

(𝑡)

𝑡
𝑚−1+𝛼

),

Θ


𝑀+𝑚
(𝑡) = − (𝑚 − 1) 𝑡

𝑚−2
Θ
𝑀+1

(𝑡) , 𝑚 = 2, 3, . . . ,𝑀,

Θ


2𝑀+1
(𝑡) =

1

Ω(𝛼, 𝑡,𝑀)

(𝑐Θ
𝑀+1

(𝑡)Θ
2𝑀+1

(𝑡)

− (𝑏 + Φ(𝛼, 𝑡,𝑀))Θ
2𝑀+1

(𝑡)

−

𝑀

∑

𝑚=2

𝐴 (𝛼, 𝑡, 𝑚)

Θ
2𝑀+𝑚

(𝑡)

𝑡
𝑚−1+𝛼

),

Θ


2𝑀+𝑚
(𝑡) = − (𝑚 − 1) 𝑡

𝑚−2
Θ
2𝑀+1

(𝑡) , 𝑚 = 2, 3, . . . ,𝑀,

(44)
with the following initial conditions:

Θ
1
(𝛿) = 𝑥

0
, Θ
𝑚

(𝛿) = 0, 𝑚 = 2, 3, . . . ,𝑀,

Θ
𝑀+1

(𝛿) = 𝑦
0
, Θ
𝑀+𝑚

(𝛿) = 0, 𝑚 = 2, 3, . . . ,𝑀,

Θ
2𝑀+1

(𝛿) = 𝑧
0
, Θ
2𝑀+𝑚

(𝛿) = 0, 𝑚 = 2, 3, . . . ,𝑀.

(45)
Now we consider the numerical solution of system of ordi-
nary differential equations (44) with the initial conditions
(45) by using the well-known Runge-Kutta method of fourth
order.
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(c) Time evolution of the state variables

Figure 1: The diagrams show the time evolution of the trajectory of system (5) for healthy cells 𝑥(𝑡), infected cells 𝑦(𝑡), and the CTL 𝑧(𝑡),
respectively, with respect to 𝛼 = 0.85, 𝛼 = 0.95, and 𝛼 = 1, in condition of 𝐷(𝑃) > 0. The red lines correspond to 𝑥(𝑡) in (a), 𝑦(𝑡) in (b), and
𝑧(𝑡) in (c) for 𝛼 = 0.85; the green lines correspond to 𝑥(𝑡) in (a), 𝑦(𝑡) in (b), and 𝑧(𝑡) in (c) for 𝛼 = 0.95 and the blue lines for 𝛼 = 1.
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Figure 2: The diagrams show the time evolution of the trajectory of system (5) for healthy cells 𝑥(𝑡), infected cells 𝑦(𝑡), and the CTL 𝑧(𝑡),
respectively, with respect to 𝛼 = 0.56 and 𝛼 = 0.65, in condition of 𝐷(𝑃) < 0. The red lines correspond to 𝑥(𝑡) in (a), 𝑦(𝑡) in (b), and 𝑧(𝑡) in
(c) for 𝛼 = 0.56; the green lines correspond to 𝑥(𝑡) in (a), 𝑦(𝑡) in (b), and 𝑧(𝑡) in (c) for 𝛼 = 0.65.

6. Numerical Simulation and Discussion

Firstly, by using GEM (generalized Euler method) [21], we
simulate system (5) with the parameter values as shown in
Table 1.

By direct calculation, we have 𝑅
0

= 31.4916, 𝑅
1

=

30.2250, and 𝐷(𝑃) = 0.00076142 > 0 and the simulations

display that the immune-present equilibrium𝐸
∗ is asymptot-

ically stable for 𝛼 = 0.85, 𝛼 = 0.95, and 𝛼 = 1 (see Figure 1).
FromFigure 1, we can clearly see that, comparedwith the case
of order 𝛼 = 0.85, the trajectory of model with order 𝛼 = 0.95

is closer to the trajectory of the model with the integer-order
1. That is, the farther from 𝛼 to 1, the bigger of the trajectory
difference of them.
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Figure 3: The three-dimensional diagrams show the approximate solutions of 𝑥(𝑡), 𝑦(𝑡), and 𝑧(𝑡) for 𝛼 = 0.6, 𝛼 = 0.7, 𝛼 = 0.8, and 𝛼 = 0.9

in condition of 𝐷(𝑃) < 0.

Table 1

Parameter Value Parameter Value
𝜆 23.3 𝑐 0.0031
𝛽 0.5 𝑑 0.09
𝑎 0.02 𝑝 10
𝑏 0.15 𝑞 0.79

We choose the parameter values as shown in Table 2.
Based on the parameter values in Table 2, we have 𝑅

0
=

3.5714, 𝑅
1

= 3.4769, and 𝐷(𝑃) = −0.00069 < 0. With the
same simulatedmethod, it is shown that the immune-present
equilibrium 𝐸

∗ is asymptotically stable for 𝛼 = 0.56 and 𝛼 =

0.65 (see Figure 2).

Next, we use the method that is shown in the previous
section to simulate system (5) by transforming system (5)
to one order ordinary differential equation. Here we set the
parameters values as shown in Table 3 with 𝑀 = 10, Δ𝑡 =

0.005. We have 𝑅
0

= 9.0445, 𝑅
1

= 8.7438, and 𝐷(𝑃) =

−10.0374 < 0. The approximate solutions 𝑥(𝑡), 𝑦(𝑡), and 𝑧(𝑡)

for 𝛼 = 0.6, 𝛼 = 0.7, 𝛼 = 0.8, and 𝛼 = 0.9 are displayed in
Figure 3. It shows that the immune-present equilibrium 𝐸

∗ is
asymptotically stable for 𝛼 = 0.6 < 2/3 and there exists the
limit circle for 𝛼 > 2/3.

We also simulate the situation of system (5) by themethod
in the previous section when 𝛼 = 1with the parameter values
of Table 3 in Figure 4. Both Figures 1 and 4 show that the
immune-present equilibrium 𝐸

∗ is asymptotically stable for
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Figure 4: The diagrams show the approximate solutions of 𝑥(𝑡), 𝑦(𝑡), and 𝑧(𝑡) for 𝛼 = 1 in condition of 𝑅
1
> 1 and 𝐷(𝑃) < 0. The panel (a)

corresponds to healthy cells, (b) to infected cells, and (c) to antigen-specific CTL. The panel (d) shows the three-dimensional trajectory of
system (5) with time evolution.

Table 2

Parameter Value Parameter Value
𝜆 10 𝑐 0.051
𝛽 0.01 𝑑 0.18
𝑎 0.1 𝑝 0.6
𝑏 0.15 𝑞 0.01

𝛼 = 1 and that is nothing to do with 𝐷(𝑃) > 0 or 𝐷(𝑃) < 0.
Hence the results of fractional-order system when 𝛼 = 1 are
consistent with the result of integer-order HIV model (4).

Table 3

Parameter Value Parameter Value
𝜆 29.46 𝑐 0.09
𝛽 0.286 𝑑 0.9862
𝑎 0.0384 𝑝 0.85
𝑏 2.568 𝑞 0.79

7. Conclusion

Fractional differential equations have garnered a lot of
attention and appreciation due to their ability to provide
an exact description of different nonlinear phenomena.
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The advantage of fractional-order systems is that they allow
greater degrees of freedom in themodel.Nowadays,more and
more investigators begin to study the qualitative properties
and numerical solutions of fractional-order virus infection
models. In this paper, we introduced a fractional-order HIV
infection model with nonlinear incidence and dealt with the
mathematical behaviors of the model.

We showed that system (5) possesses nonnegative solu-
tions and studied the stability behavior of the infection-
free equilibrium, the immune-absence equilibrium, and the
immune-presence equilibrium. We found that the stability
of the infection-free equilibrium and the immune-absence
equilibrium of system (5) is the same as that of system (4).
When the basic reproduction number of viruses (𝑅

0
) is less

than one, the infection-free equilibrium is stable; however,
when 𝑅

0
is more than one, the infection-free equilibrium is

unstable and when the immune reproduction number (𝑅
1
)

is less than one, the immune-absence equilibrium is stable;
however, when 𝑅

1
is more than one, the immune-absence

equilibrium is unstable. However, the results for the immune-
presence equilibrium of system (5) are different to those of
system (4). In system (4), the immune-presence equilibrium
is stable when𝑅

1
is more than one, while, in system (5), when

𝑅
1
is more than one, the immune-presence equilibrium is not

always stable. In the condition of 𝑅
1
> 1, when𝐷(𝑃) > 0, the

immune-presence equilibrium is stable for 0 < 𝛼 ≤ 1, while
when 𝐷(𝑃) < 0, the immune-presence equilibrium is stable
only for 0 < 𝛼 < 2/3. But using the simulation, we found
when 𝐷(𝑃) < 0, the immune-presence equilibrium is stable
for 𝛼 = 1. From the simulation, we also found the farther
from 𝛼 to 1, the bigger of their trajectory difference. These
results show that the integer-order model can be viewed as
a special case from the more general fractional-order model.
Although a large part of results is illustrated by both theory
analysis andnumerical simulation, the result for the immune-
presence equilibrium when 𝐷(𝑃) < 0 and 𝛼 = 1 can be just
verified by the simulation in this paper.

In this paper, we introduce the fractional calculus into
the HIV infection model with nonlinear incidence and, from
the theory analysis and numerical simulations, it is illustrated
that the integer-orderHIV infectionmodel can be viewed as a
special case of fractional-ordermodel.Wehope that thiswork
can create interest and further do research effort in this field,
since the fractionalmodelingmight providemore insight into
understanding the dynamical behaviors of such systems.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This work was partially supported by the Hainan Natural Sci-
ence Foundation (112006) andNatural Science Foundation of
Hainan Provincial Department of Education (Hjkj2013-47).
Gang Huang was supported by the Fundamental Research
Funds for the Central Universities (no. CUG130415) and
the National Natural Science Foundation of China (no.
11201435).

References

[1] T. M. Atanackovic and B. Stankovic, “An expansion formula for
fractional derivatives and its application,” Fractional Calculus &
Applied Analysis, vol. 7, no. 3, pp. 365–378, 2004.

[2] G. Bognár, “Similarity solution of boundary layer flows for non-
Newtonian fluids,” International Journal of Nonlinear Sciences
andNumerical Simulation, vol. 10, no. 11-12, pp. 1555–1566, 2009.

[3] M. Benmalek and A. Charef, “Digital fractional order operators
for R-wave detection in electrocardiogram signal,” IET Signal
Processing, vol. 3, no. 5, pp. 381–391, 2009.

[4] Y. Ferdi, “Some applications of fractional order calculus to
design digital filters for biomedical signal processing,” Journal
of Mechanics in Medicine and Biology, vol. 12, no. 2, Article ID
12400088, 2012.

[5] Y. Ferdi, A. Taleb-Ahmed, and M. R. Lakehal, “Efficient gen-
eration of 1/𝑓𝛽 noise using signal modeling techniques,” IEEE
Transactions on Circuits and Systems. I. Regular Papers, vol. 55,
no. 6, pp. 1704–1710, 2008.

[6] R. L. Bagley and R. A. Calico, “Fractional order state equations
for the control of viscoelastically damped structures,” Journal
of Guidance, Control, and Dynamics, vol. 14, no. 2, pp. 304–311,
1991.

[7] G. L. Jia and Y. X. Ming, “Study on the viscoelasticity of
cancellous bone based on higher-order fractional models,” in
Proceedings of the 2nd International Conference on Bioinfor-
matics and Biomedical Engineering (ICBBE ’08), pp. 1733–1736,
2006.

[8] J. H. He, “Some applications of nonlinear fractional differential
equations and their approximations,” Bulletin of Science Tech-
nology & Society, vol. 15, pp. 86–90, 1999.

[9] B. Mandelbrot, “Some noises with 1/𝑓 spectrum, a bridge
between direct current and white noise,” IEEE Transactions on
Information Theory, vol. 13, no. 2, pp. 289–298, 1967.

[10] R. L. Magin, “Fractional calculus in bioengineering,” Critical
Reviews in Biomedical Engineering, vol. 32, pp. 1–377, 2004.

[11] Y. A. Rossikhin and M. V. Shitikova, “Applications of fractional
calculus to dynamic problems of linear and nonlinear heredi-
tary mechanics of solids,” Applied Mechanics Reviews, vol. 50,
no. 1, pp. 15–67, 1997.

[12] F. Mainardi, “Fractional calculus: some basic problems in
continuum and statistical mechanics,” in Fractals and Frac-
tional Calculus in Continuum Mechanics, vol. 378, pp. 291–348,
Springer, Berlin, Germany, 1997.

[13] R. T. Baillie, “Longmemory processes and fractional integration
in econometrics,” Journal of Econometrics, vol. 73, no. 1, pp. 5–
59, 1996.

[14] K. S. Cole, “Electric conductance of biological systems,” in
Proceedings of the Cold Spring Harbor Symposia on Quantitative
Biology, pp. 107–116, Cold Spring Harbor, NY, USA, 1993.
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