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ABSTRACT

Rapid accumulation of large and standardized
microarray data collections is opening up novel
opportunities for holistic characterization of
genome function. The limited scalability of current
preprocessing techniques has, however, formed a
bottleneck for full utilization of these data re-
sources. Although short oligonucleotide arrays con-
stitute a major source of genome-wide profiling
data, scalable probe-level techniques have been
available only for few platforms based on pre-
calculated probe effects from restricted reference
training sets. To overcome these key limitations,
we introduce a fully scalable online-learning algo-
rithm for probe-level analysis and pre-processing
of large microarray atlases involving tens of thou-
sands of arrays. In contrast to the alternatives,
our algorithm scales up linearly with respect to
sample size and is applicable to all short oligo-
nucleotide platforms. The model can use the most
comprehensive data collections available to date to
pinpoint individual probes affected by noise and
biases, providing tools to guide array design and
quality control. This is the only available algorithm
that can learn probe-level parameters based on
sequential hyperparameter updates at small con-
secutive batches of data, thus circumventing the
extensive memory requirements of the standard
approaches and opening up novel opportunities to
take full advantage of contemporary microarray
collections.

INTRODUCTION

Accumulation of research data in in-house and public
repositories, such as the ArrayExpress (1) and Gene
Expression Omnibus (2), has created data collections
that include tens of thousands of microarray experiments
from standardized measurement platforms (1). By
combining data from hundreds of studies and thousands
of commensurable microarray experiments, it is possible
to overcome some of the inherent biases that are
associated with meta-analyses involving multiple measure-
ment platforms (3,4) to obtain a more holistic picture of
genome function or carry out comprehensive investiga-
tions on targeted model systems and diseases that can
benefit from large sample sizes provided by the new data
collections (5,6). A major portion of the data in contem-
porary microarray collections originates from short oligo-
nucleotide microarrays (7) whose applications range from
gene expression profiling (1) to alternative splicing and
phylogenetic profiling of microbial communities (8–10).
With >30 000 studies and a million assays in public
repositories (6), being able to combine and analyse very
large sets of arrays together is a key challenge with a
variety of applications (5,11–13).
Reliable pre-processing of the data is central for inves-

tigations. Multi-array preprocessing techniques that
combine information across multiple arrays to quantify
probe effects have led to improved preprocessing perform-
ance (14), but the applicability of the standard multi-
array techniques, such as Robust Multiarray Averaging
(RMA) (15), GC-RMA (16), Model-based expression
indices (MBEI) (17) and Probe Logarithmic Intensity
Error (PLIER) (18), has been limited to a few thousand
arrays at most owing to the considerable memory
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requirements associated with processing up to a million
probe-level features per a single array. This has formed
a bottleneck for large-scale analysis of contemporary
microarray data collections. Scalable preprocessing
approaches have been recently developed to tackle these
shortcomings. The scalable reference-RMA (refRMA)
(19) and frozen RMA (fRMA) (20) algorithms rely on
pre-calculated probe effect terms that are estimated from
restricted reference training sets and then extrapolated to
preprocess further microarray data. The applicability of
these methods has, however, been limited to few specific
microarray platforms with pre-calculated probe effect
terms: the scalable fRMA algorithm is currently available
only for altogether six Affymetrix platforms from human
and mouse (21,22), whereas the ArrayExpress database
lists >200 short oligonucleotide platforms from
Affymetrix, Agilent, Nimblegen and other providers.
Dozens of these platforms cover already thousands of
samples in public databases, and the data collections are
constantly accumulating (6). Hence, there is a need for
platform-independent pre-processing techniques that can
extract and use probe-level information across large
microarray data collections in a fully scalable manner.
To overcome the key limitations of the current

approaches, we introduce a fully scalable algorithm for
multi-array preprocessing based on Bayesian online-
learning, in which the model parameters can be sequen-
tially updated with new observations based on a rigorous
probabilistic model. The new algorithm extends the
Robust Probabilistic Averaging (RPA) framework
introduced in (23) by providing a model for probe
affinities and by incorporating prior terms to provide the
basis for scalable online-learning through sequential
hyperparameter updates. The resulting algorithm allows
rigorous pre-processing of very large microarray atlases
on an ordinary desktop computer in small consecutive
batches with minimal memory requirements and in
linear time with respect to sample size. In contrast to the
currently available alternatives, the proposed model
provides the means to integrate probe-level information
across tens or hundreds of thousands of arrays and a
general-purpose preprocessing method for data sets of
any size. In addition, the analysis of probe performance
can now be based on the most comprehensive collections
of microarray data to guide microarray design and quality
control. To our knowledge, this is the only probe-level
pre-processing approach, which is both fully scalable
and applicable to all short oligonucleotide platforms,
providing new tools to take full advantage of the contem-
porary, rapidly expanding microarray data collections.

MATERIALS AND METHODS

Probe-level procedures that combine information across
multiple arrays have been found to improve pre-processing
performance (14), but their applicability to large sample
collections has been limited owing to hugememory require-
ments associated with increasing sample sizes. The avail-
able solutions have been based on learning and
extrapolation of probe-level effects from smaller reference
training sets (19,20). In this section, we outline an

alternative online-learning procedure that can extract and
use probe-level information across very large microarray
collections in a fully scalable manner withminimal memory
requirements and in linear time with respect to sample size
based on Bayesian hyperparameter updates.

Scalable preprocessing with online-learning: an overview

In the following, let us outline the proposed online-learning
procedure and provide details of parameter estimation.
Assuming that appropriate microarray quality controls
have been applied before the analysis (18), the standard
steps of background correction, normalization and probe
summarization are applied to consecutive batches of the
data in three sweeps over the data collection:

Step 1: Background correction and quantile basis estima-
tion. In the first step, each individual array is back-
ground-corrected. In the present work, we use the
standard RMA background correction (15). The back-
ground corrected data are stored temporarily on hard
disk to speed up pre-processing. The basis for quantile
normalization is then obtained by averaging sorted
probe-level signals from background-corrected data
(14). For scalable estimation of the base distribution,
we average over the estimates from individual batches
to obtain the final quantile base distribution as in
parallel implementations of RMA (24). The final base
distribution is identical with the one, which would be
obtained by jointly normalizing all arrays in a single
batch. Optionally, other standard approaches for back-
ground correction and normalization could be used in
combination with our model (25).

Step 2: Hyperparameter estimation. The key novelty of
our approach is in introducing the scalable approach
for estimating the probe-level hyperparameters. This
is achieved based on Bayesian online-learning where
consecutive batches of data are used to update the
hyperparameters of the model. Before hyperparameter
estimation, each batch is background-corrected,
quantile-normalized and log2-transformed. At the first
batch, the model can be initialized by giving equal
priors for the probes if no probe-specific prior informa-
tion is available. The probe-level hyperparameters are
then updated at each new batch and provided as priors
for the next batch. The final probe-level parameters are
obtained after processing the complete data collection.
Ideally, the fully scalable parameter estimation through
consecutive hyperparameter updates will yield identical
results with a single-batch approach.

Step 3: Probe summarization. The final probe-level
parameters from the second step are used to summar-
ize the probes in each batch, yielding the final prepro-
cessed data matrix.

The probe-level model

Let us first summarize the probe-level model for a fixed
probeset with J probes across T+1 arrays. The model
assumes background-corrected, normalized and log-
transformed probe-level data. The algorithm is based on
a Gaussian model for probe effects, where the signal sij of
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probe j 2 f1, . . . , Jg in sample i 2 f1, . . . ,T+1g is modelled
as a sum of the underlying target signal ai and Gaussian
mean and variance parameters �j, �

2
j that are directly

interpretable as constant affinity �j and stochastic noise
eij � Nð0,�2j Þ, respectively:

sij ¼ ai+�j+eij � Nðai+�j, �
2
j Þ: ð1Þ

In this model, the residual variance �2j of a probe with
respect to the estimated target signal is used to quantify the
reliability, or accuracy of the probe: the lower the variance,
the more reliable the probe (23). In the following, let us
outline the estimation procedure for the model parameters
a ¼ ½a1, . . . , aT+1�, l ¼ ½�1, . . . ,�J�, s2 ¼ ½�21 , . . . ,�2J �. We
start by estimating the variance parameters s2 of this
model by following (23) and additionally incorporate
Bayesian prior terms in the model to obtain a fully
scalable algorithm. Affinity estimation (l) relies on the
final probe-specific variance estimates. The final probeset-
level summaries are obtained after estimating the probe-
specific affinity and variance parameters.

Incorporating prior information of the probes

Estimation of the probe-specific variance parameters is
based on probe-level differential expression signal
stj � srj between each sample t ¼ ½1, . . . ,T� and a
randomly selected reference sample r. Then, given
Equation (1), the unidentifiable affinity parameters �j

cancel out, yielding stj � srj ¼ ðat � arÞ+ðetj � erjÞ.
Following (23), let us denote , dt ¼ at � ar and apply the
vector notation m ¼ ½m1, . . . ,mT�, d ¼ ½d1, . . . , dT�. Then,
the full posterior density for the model parameters d,s2 is
obtained with the Bayes’ rule as

Pðd,s2jmÞ � Pðmjd,s2ÞPðd,s2Þ: ð2Þ

The reference effects erj are marginalized out in the
model, and the choice of the reference sample does not
affect the final variance estimates s2 (23). Assuming
independent observations mj, given the model parameters,
and marginalizing over the erj, the likelihood term in
Equation (2) is (23):

Pðmjd,s2Þ ¼
Y
tj

Z
Nðmtjjdt � erj,�2j ÞNðerjj0,�2j Þderj

�
Y
j

ð2��2j Þ
�T

2exp

�
�

P
t ðmtj � dtÞ

2
�

P
t
ðmtj�dtÞ

� �2
T+1

2�2j

�
:

ð3Þ

With non-informative priors for Pðd,s2Þ, the posterior
of Equation (2) would reduce to maximum-likelihood-
estimation of Equation (3) as in (23). In this article, we
take full advantage of the prior term to construct the
scalable Bayesian online-learning version. Application of
the prior forms the basis for sequential updates of the
posterior in Equation (2). Assuming independent prior
terms, a non-informative prior PðdÞ � 1, and inverse
Gamma conjugate priors for s2 with hyperparameters �j
and �j (26), the prior takes the form

Pðd,s2Þ ¼ PðdÞPðs2Þ �
Y
j

��1ð�2j ;�j,�jÞ: ð4Þ

The posterior in Equation (2) is now fully
specified given the likelihood [Equation (3)], the prior
[Equation (4)], and the probe-specific hyperparameters
a ¼ ½�1, . . . ,�J�, b ¼ ½�1, . . . ,�J�.
Our primary interest is in estimating the probe-specific

variances s2, whereas d is a nuisance parameter that could
be marginalized out from the model to obtain more robust
estimates of s2. As no analytical solution is available, and
sampling-based marginalization approaches would slow
down computation, we obtain a single point estimate for
the joint posterior in Equation (2) as a fast approximation
by iteratively optimizing d and s2. A mode for d, given s2,
is searched for by standard quasi-Newton optimization
(27). Then, given d, the variance follows inverse
Gamma distribution with hyperparameters �̂j ¼ �j+

T
2

and �̂j ¼ �j+
1
2

P
t ðmtj � dtÞ

2
�

P
t
ðmtj�dtÞ

� �2
T+1

 !
. This

specifies the prior

Pð�2j jm, dÞ � ��1ð�2j j�̂j, �̂jÞ: ð5Þ

The point estimate for �2j is given by the mode at
�2j ¼ �̂j=ð�̂j+1Þ. The parameters d and s2 are iteratively
updated until convergence (< 0:01 change in parameter
values in our experiments). The inverse Gamma
hyperparameters corresponding to the final s2 can be
retrieved as �̂j ¼ �j+

T
2 and �̂j ¼ �

2
j ð�̂j+1Þ.

Online-learning of variance hyperparameters

The aforementioned formulation allows incorporation
of prior information of the probes in the analysis and
sequential updates where the updated hyperparametersba,bb from the previous batch provide priors for the next
batch through Equation (2) and the prior in Equation (4).
In the absence of prior information, we shall give equal
weight for all probes j at the first batch by setting �j ¼ 1;
�j ¼ 1 for all j. The final probe-level hyperparameters
are obtained by updating ba,bb with new observations at
each batch until scanning through the complete data
collection.

Affinity estimation

The remaining task after learning the probe-specific vari-
ances s2 is to estimate the probeset-level signal a and
probe affinities l in Equation (1). Unidentifiability
of probe affinities is a well-recognized issue in microarray
preprocessing (15), and further assumptions are necessary
to formulate an identifiable model. A standard approach,
used in the widely used RMA algorithm (15) is to assume
that the probes capture the underlying signal correctly on
average and the probe affinities sum to zero: �j�j ¼ 0. We
propose a more flexible probabilistic approach where this
hard constraint is replaced by soft priors that keep the
expected probe affinities at zero but allow higher devi-
ations for the more noisy probes that have a higher
residual variance �2j . To implement this, we apply a
Gaussian prior �j � Nð0,�2j Þ for the affinities. This
allows greater affinity values for the more noisy probes,
which yields a better fit between the probeset-level signal
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estimate a and the less noisy probes with smaller �2j and
corresponds to the assumption that probes with increased
or decreased affinities are likely to have the highest
residual variance. This is supported by previous observa-
tions that probes with higher signal levels tend to have
also a higher variance (28); on the other hand, it has
been suggested that intensities in low affinity probes may
be saturated by background noise (29). Our model accom-
modates both of these observations. Alternatively, the
affinity priors could be determined based on known
probe-specific factors, such as GC-content, which is a
key element in probe affinity estimation in the GC-
RMA algorithm (16). As probe performance is affected
by a number of factors, however, we prefer the data-
driven approach, which can accommodate noise from
various, potentially unknown sources. This model yields
a preliminary estimate for the probeset-level summaries.
Based on Equation (1), we have ai ¼ sij � �j � eij �
Nðsij, 2�

2
j Þ. A maximum-likelihood estimate for ai is

obtained as a weighted sum of sij over the probes j,
weighted by the inverse variances: ai ¼

1
�j

1

2�2
j

�j
1
2�2

j

ðsijÞ.

The corresponding maximum-likelihood estimate for �j

at sample i is then given by �ðiÞj ¼ sij � ai. Averaging
of the affinity estimates across multiple samples yields
the maximum-likelihood estimate for the affinities
l ¼ ½�1, . . . ,�J�.

Probe summarization

The final affinity and variance estimates can be used
to summarize the probes according to Equation (1). The
probeset-level signal ai is now readily obtained by
Equation (1) as the weighted sum of sij � �j over
the probes j, weighted by the inverse variances:
ai ¼

1
�j

1

�2
j

�j
1
�2j
ðsij � �jÞ.

Alternative approaches for scalable pre-processing

Alternative approaches for scalable preprocessing can be
classified in (i) traditional single-array preprocessing
methods and (ii) frozen multi-array techniques. In
single-array algorithms, pre-processing is performed sep-
arately for each array. Such approaches are fully scalable
but cannot combine probe-level information across
multiple arrays, limiting their accuracy compared with
multi-array procedures (14). We include the MAS5 algo-
rithm (18) as the reference as one of the most well-known
single-array pre-processing techniques. The frozen multi-
array techniques include the refRMA (19) and fRMA (20)
algorithms. To our knowledge, fRMA (20), which incorp-
orates ideas from refRMA (19), is the only available
algorithm for scalable multi-array preprocessing of
large-scale microarray collections. The fRMA is based
on a standardized database of pre-calculated probe
effects, which are applied to pre-process new arrays. The
estimation procedure for probe effects is not scalable,
however, and fRMA is currently readily applicable to
only three Affymetrix platforms for which the pre-
calculated probe-effect terms are available. In addition
to the standard ‘single-array’ fRMA model, we consider
a second variant, which includes an additional model for

batch effects (fRMA-batch). This incorporates additional
experiment-specific information to the analysis, which
cannot be used by the other methods. Although this can
improve pre-processing performance, batch information is
not necessarily available for heterogeneous microarray
collections, and its incorporation will set additional re-
quirements on the application of the fRMA-batch proced-
ure. Finally, we include in the comparisons the widely
used RMA algorithm (15). In contrast to the other
approaches considered in this work, RMA is not fully
scalable, but the RMA pre-processed version of the
human gene expression atlas data set (5) is readily avail-
able, and as one of the most widely used standard pre-
processing algorithms, it is a relevant reference model.

Data

We investigate the model performance by comparisons to
alternative pre-processing methods based on standard
benchmarking procedures with AffyComp spike-in data
sets (25) and a large-scale human gene expression atlas (5).

AffyComp spike-in experiments

The AffyComp website [http://affycomp.biostat.jhsph.
edu; (25)] provides standard benchmarking tests for
microarray pre-processing based on spike-in experiments
on the Affymetrix HG-U95av2 and HG-U133A_tag plat-
forms. The tests quantify the relative sensitivity and
accuracy of a pre-processing algorithm based on known
target transcript concentrations. We focus here on the
scalable MAS5, fRMA and RPA algorithms, as most
other methods at the AffyComp website have been
designed for moderately sized data sets and have therefore
a different scope than the scalable approaches. However,
fRMA is not applicable to the spike-in data sets, as pre-
calculated probe-effect vectors are not available for the
AffyComp platforms. Therefore, we have included the
widely used RMA algorithm, which is widely used and
has a closely related probe-level model. All arrays were
pre-processed in a single batch with RPA. The score com-
ponents in Figure 1 correspond to the following bench-
marking statistics: (i) median SD across replicates;
(ii) inter-quartile range of the log-fold-changes from
genes that should not change; (iii) 99.9% percentile of
the log-fold-changes if from the genes that should not
change; (iv) R2 obtained from regressing expression
values on nominal concentrations in the spike-in data;
(v) slope obtained from regressing expression values on
nominal concentrations in the spike-in data; (vi) slope
from regression of observed log concentration versus
nominal log concentration for genes with low intensities;
(vii) same for genes with medium intensities; (viii) same
for genes with high intensities; (ix) slope obtained from
regressing observed log-fold-changes against nominal
log-fold-changes; (x) slope obtained from regressing
observed log-fold-changes against nominal log-fold-
changes for genes with nominal concentrations �2;
(xi) area under the receiver operating characteristic
(ROC) curve (AUC; up to 100 false positives) for genes
with low intensity standardized so that the optimum
is 1; (xii) AUC for genes with medium intensities;
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(xiii) AUC for genes with high intensities; (xiv) a weighted
average of the ROC curves 11–13 with weights related to
amount of data in each class. For full details, see (25).

Human gene expression atlas

We have selected for comparisons a reasonably large,
well-annotated and quality assessed microarray data set
including 5372 human samples from a versatile collection
of 369 cell and tissue types, disease states and cell lines from
206 public experiments and 162 laboratories, measured
with the Affymetrix HG-U133A microarray (5). The bio-
logical groups are of varying sizes and include 150 classes
with only one sample (singleton classes); the annotations
describing the group of each sample in the data set can
be retrieved from the ArrayExpress archive (accession
number: E-MTAB-62) (http://www.ebi.ac.uk/gxa/experi
mentDesign/E-MTAB-62). This data set is ideal for bench-
marking of scalable preprocessing methods, as the alterna-
tive fRMA pre-processing model depends on the
availability of pre-calculated probe effect terms, which
are available for this platform. Moreover, sufficient
sample metadata is available to include batch effects in
the fRMA model. In addition, despite the heterogeneous
origin of the data set, which made it unfeasible to obtain
‘batches’ in strictly the same manner as defined in (20), we
could approximate them with the following approach. For
each array within each experiment in the data set, we
retrieved the creation date of the CEL file from its
HEADER section, under the DatHeader TAG, and
assigned to the same batch those arrays from the same ex-
periment (and laboratory) that were scanned on the same
day. Thus, it was possible to assess the two available
versions of fRMA, the ‘single-array’ and ‘batch-of-
arrays’. Moreover, the sample size allows comparisons
with the standard and widely used RMA algorithm (15).
In addition to the standard Affymetrix probe sets, we
have included in the comparisons alternative probe
sets based on updated Ensembl gene mappings avail-
able through the hgu133ahsensgcdf (14.1.0) annotation

package (30). The reference probe effects for fRMA and
the alternative mapping of probes to genes were built with
frmaTools (21).

RESULTS

We assess the performance of the new algorithm by
investigating the scalability and parameter convergence
of the model and by comparisons to alternative
approaches based on standard AffyComp benchmarking
experiments based on spike-in data sets as well as sample
classification and correlation of technical gene replicates
across a large-scale human gene expression atlas. For
details of the data and experiments, see ‘Materials and
Methods’ section.

Scalability and parameter convergence

Ideally, the online-learning procedure is expected to yield
identical results with the single-batch algorithm. We con-
firmed this by comparing the results obtained with the
single-batch and online-learning versions of RPA at a
moderately sized data set of 300 randomly selected
samples. The probeset-level signal estimates correlated to
a high degree (Pearson correlation r > 0:995; P< 10�6)
between the single-batch and online-learning versions.
The results were also robust to varying batch sizes of 20,
50, 100 and 300 samples; the probeset-level summaries
obtained with these batch sizes were highly correlated
(r > 0:998; P< 10�6). In further experiments, we use a
batch size of 50 samples. The high correspondence
between the single-batch and online-learning models and
between the different batch sizes confirms the technical
validity of the implementation. Parameter convergence
in general depends on the versatility of the data collection
and the overall probe-specific noise, which can vary
between probesets. More versatile data collections that
cover a number of different biological conditions are in
general more informative of probe performance than
smaller data sets (6,20). For certain probesets, the probe
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Figure 1. The benchmarking statistics for the AffyCompIII spike-in data for RPA, RMA and MAS5 for the HG-U95Av2 and HG-U133A_tag
platforms. RPA and MAS5 represent fully scalable algorithms, and the standard RMA algorithm has been included as a benchmark, as its fully
scalable extension, fRMA, is not available for the spike-in platforms. For clarity of presentation, we have transformed the scores 1–3 with 1� x so
that the score value of 1 corresponds here to ideal performance at all 14 scores. For a full description of the 14 benchmarking components, see
‘Materials and Methods’ section.
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parameters start to convergence only after 2000–3000
samples, indicating that the sample sizes of �1000 arrays
typically applied with fRMA (20,21) may in some cases be
too low to ensure convergence (Supplementary Figure S1).
Although our model is applicable to data collections of
any size, it provides favourable performance compared
with the alternatives including the standard RMA algo-
rithm, already on the moderately sized data sets as
demonstrated by the AffyComp spike-in experiments
with 42 (HG-U133A_tag) and 59 and (HG-U95Av2)
samples.
The scalability of Online-RPA was investigated by pre-

processing up to 20 000 HG-U133A CEL files from
ArrayExpress. The model scales up linearly with respect
to sample size (Supplementary Figure S2), with 8 h for
20 000 CEL files on a Z400 desktop with four 3.06GHz
processor cores.

Spike-in experiments

The Figure 1 summarizes the 14 AffyComp benchmarking
tests for MAS5, RMA and RPA. Comparisons to further
pre-processing algorithms are available on the AffyComp
website (http://affycomp.biostat.jhsph.edu/AFFY3/comp
_form.html). RPA outperformed RMA in 13 and 11
tests (of 14) on the HG-U95Av2 and HG-U133A_tag
data sets, respectively (Figure 1), in particular with
respect to bias (tests 5–10; Supplementary Figure S3)
and the true positive/false positive detection rate,
quantified by AUC/ROC analysis (tests 11–14); the differ-
ences between RPA and the other methods were particu-
larly salient with low concentration targets (Figure 2).
In the other tests, RPA and RMA had comparable per-
formance. Interestingly, MAS5 had the smallest bias (tests
5–10), although RPA and RMA in general outperformed

this method in the other tests, and in certain tests, such
as ROC/AUC analysis (tests 11–14), MAS5 failed to dis-
tinguish the spike-in transcripts from noise. At the
AffyComp benchmarking tests, RPA was in general out-
performed by certain methods, including the Factor
Analysis for Robust Microarray Summarization
(FARMS) (31) and GCRMA (16). These methods have
a more limited scalability than RPA, however, and hence a
different scope. In summary, RPA had a similar or
improved pre-processing performance in spike-in data
sets compared with the standard RMA and Microarray
Suite 5.0 (MAS5) algorithms, and a wider scope than the
only scalable probe-level alternative, fRMA, which is not
available for the spike-in platforms (21).

Classification performance

We investigated the sample classification performance in
the human gene expression atlas of 5372 samples from 369
cell and tissue types, disease states and cell lines (5);
(Figure 3). A random forest classifier (32) was trained to
distinguish between these classes based on 1000 randomly
selected probe sets and 500 trees at 10 cross-validation
folds, where the data were split into training (90%) and
test (10%) sets. The singleton classes (150 samples) were
excluded. The comparisons were performed with both the
standard Affymetrix probe sets and alternative probesets
based on the Ensembl Gene identifiers. RPA outper-
formed RMA and MAS5 (P< 0.05; paired Wilcoxon
test). Differences between RPA and fRMA were not sig-
nificant, and the fRMA with batch effects (fRMA-batch)
outperformed the other methods (P< 0.05). However,
fRMA and fRMA-batch have a considerably more
limited scope than Online-RPA. For further details on

Figure 2. Average ROC curves for low-abundance targets with nominal concentrations at most 4 picoMolar and nominal fold changes at most 2 in
the AffyCompIII spike-in data for MAS5 (solid line), RMA (dashed line) and RPA (dotted line) on the HG-U95Av2 (left) and HG-U133A_tag
(right) platforms. The figure has been adapted from AffyCompIII comparison Figure 5C. For details, see (25).
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the data, class and batch definitions, see ‘Materials and
Methods’ section.

Correlation between technical gene replicates

The standard Affymetrix arrays contain multiple
probesets for certain transcripts. As the final benchmark-
ing test, we compared the probeset-level summaries for
such technical gene replicates on the Lukk et al. (5)
human gene expression atlas as in (23,33). Pearson correl-
ation was calculated for each Affymetrix probeset pair
sharing the same EnsemblID (Bioconductor package
hgu133a.db). The average correlations over all pairs were
as follows: MAS5 0.46, RMA 0.53, fRMA 0.51,
fRMA.batch 0.55 and RPA 0.54. The differences
between the methods were significant (paired Wilcoxon
test P< 0.01). In this comparison, RPA outperformed
MAS5, RMA and fRMA (Supplementary Figure S4).

Frozen parameter estimates

A frozen RPA (fRPA) model with fixed probe effects can
be constructed analogously to refRMA (19) and fRMA
(20). In this model, probe effects are estimated with an
appropriate reference training set and then applied to
pre-process new arrays. The advantage of frozen
methods is that the pre-processing will consistently yield
the same results, regardless of the other arrays in the pro-
cessed set, and the data collection can be incrementally
accumulated without the need to jointly pre-process the
whole collection whenever new samples are added (19,20).
Our fully scalable algorithm now makes it possible to
estimate probe effects from a considerably larger reference
training set than in fRMA. To assess the frozen version in
the context of a smaller study, we derived RPA probe

parameters from the Lukk et al. (5) data set, which has
5372 samples on Affymetrix HG-U133A platform, and
applied these parameters (Supplementary data set 1) to
pre-process the Symatlas data (34) (accession number:
E-AFMX-5), which has 158 samples from 79 human
tissues and cell types, each with two biological replicates.
A best match for each sample was identified between the
two sets of biological replicates based on Spearman cor-
relation, and match between samples from the same tissue
was considered a correct match. A jackknife analysis,
where 20% of the probesets were randomly selected for
the analysis at each iteration, yielded the following
average classification performance across 1000 iterations:
MAS5 (71.1%), RMA (90.69%), RPA (91.02%), fRMA
(91.47%), fRPA (91.9%). The differences were significant
(paired one-sided Wilcoxon test, P< 10�6).

DISCUSSION

The lack of scalable preprocessing techniques has formed
a bottleneck for large-scale meta-analyses of contempor-
ary microarray collections. High memory requirements
of the standard pre-processing techniques for short oligo-
nucleotide arrays have limited their applicability to mod-
erately sized data sets with at most a few thousand
samples. The frozen RMA (20) can be used to preprocess
larger collections, but its applicability is currently limited
to only a few Affymetrix platforms (HG-U133Plus2.0,
HG-U133A, MG-430 2.0, MG-430A 2.0, HuGene-
1.0-st-v1, and HuEx-1.0-st-v2) (21,22), as it requires pre-
calculated calibration sets that are not available for most
platforms. The ArrayExpress database contains dozens of
additional short oligonucleotide platforms that each cover
hundreds of studies and thousands of samples, including
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Figure 3. Classification performance in Lukk et al. (5) data set for the comparison algorithms. The 5372 samples were classified into 369 cell and
tissue types, and after excluding the singleton classes, the classification performance was quantified by random forest classifier based on 10-fold cross-
validation. Online-RPA outperforms RMA and MAS5 (P< 0.05). Differences between RPA-online and fRMA are not significant, and fRMA-batch
outperforms the other methods (P< 0.05).
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Arabidopsis (ATH1-121501), Human (HG-U95A; HG-
U95Av2), Mouse (MG-U74Av2), Rat (RG-U34A;
RAE230A, Rat2302), Drosophila (Drosophila-2), Yeast
(Yeast-2; YG-S98), Barley (Barley-1), Porcine (Porcine),
Rice (Rice), Zebrafish (Zebrafish) and so forth. In total,
>200 distinct short oligonucleotide platforms from
Affymetrix, Nimblegen and Agilent for gene expression,
exon analysis and phylogenetic profiling are available, and
these data collections are rapidly accumulating as journals
routinely require the deposition of raw data in public
repositories, and microarrays currently remain the major
source of new data submissions (6). Hence, fRMA and
other frozen methods have a considerably more limited
scope than our model that can be used to preprocess
data collections of any size from all these platforms.
Although certain methods, such as FARMS (31) and
GCRMA (16) with more detailed probe-level models out-
performed RPA in spike-in experiments, their scalability
and hence the scope are more limited.
We have introduced the first fully scalable online-

learning algorithm that overcomes the key scalability limi-
tations of the current pre-processing techniques and can
extract and use individual probe effects across very large
microarray collections by learning probe-level parameters
based on sequential hyperparameter updates at small con-
secutive data batches. This provides novel tools to take
advantage of the full information content in contempor-
ary microarray data collections. With nearly a million
arrays in the ArrayExpress database, being able to
combine and analyse very large sets of arrays together is
a key challenge with a variety of applications ranging from
gene expression profiling (1,5,11–13) to alternative splicing
and phylogenetic profiling of microbial communities
(8–10). The model extends the framework introduced in
(23) by adding a model for affinity estimation and
incorporating prior terms to achieve a scalable algorithm
that is applicable to contemporary microarray collections
that can involve tens of thousands of samples.
The new online-learning algorithm can be used as a

standard pre-processing technique for short oligonucleo-
tide collections of any size: in moderately sized data sets, it
outperforms the standard RMA model, and, in particular,
for many existing large-scale collections that cover a
thousand or more arrays and hence approach the scalabil-
ity limits of standard techniques, this remains the only
available probe-level model. We have also demonstrated
that frozen calibration sets can be derived with our
method across considerably larger data collections than
in the alternative fRMA model, which may lead to poten-
tially improved pre-processing performance also on those
platforms where alternative frozen methods are available.
Although our previous work (23) demonstrates that the
proposed probe-level model can improve comparability
also across platforms, our model is primarily intended
for meta-analysis within a single platform as different
platforms introduce different biases that are more
challenging to model (3,4). The RPA Bioconductor
package provides standard routines for preprocessing
Affymetrix CEL files, which present a major source of
microarray data in public repositories. In addition,
general-purpose analysis routines are available, making

the model applicable to the over 200 short oligonucleotide
platforms listed in ArrayExpress. Although application on
other than standard Affymetrix CEL files will require
some more effort as background correction and normal-
ization have to be carried out in separate steps with
dedicated tools, we have already used the standard RPA
in this way to pre-process custom Agilent HITChip micro-
arrays for which no other probe-level pre-processing
algorithms are currently available (35). We are looking
forward to add routines for further platforms in future
versions of the package.

In contrast to the alternatives Online-RPA is applicable
to all short oligonucleotide platforms, as its application
does not depend on pre-calculated probe effect terms.
The model scales up linearly with respect to sample size,
with 8 h running time for 20 000 CEL files in our experi-
ments. The running time could be further accelerated by
optimizing the implementation, using more efficient pro-
cessors and parallelizing with multiple cores (24). As
described in ‘Materials and Methods’ section, the affinity
estimates are calculated as a post-processing step, follow-
ing weighted averaging of the probes based on the
estimated probe-specific variances. Interestingly, we
noticed that incorporating the affinity estimates in the
final probeset-level summaries did not significantly
improve the performance compared with weighted
averaging of the probes based on the probe-specific
variance estimates provided by the model. This highlights
the importance of modelling probe-specific stochastic
noise parameters and indicates that the application of
fixed affinity terms in probe summarization could be
omitted to speed up computation without compromising
pre-processing performance. Both options are available
with a comparable performance; the latter option has
been used for the experiments in this article. The probe-
specific affinity and variance estimates could also be used
to investigate the relative contributions of different probe-
level noise sources both within and between platforms
to guide probe design and analysis.

The widely used RMA algorithm can be seen as a special
case of our single-batch model, assuming that all probes
within a probeset have identical variances and the affinities
sum to zero. The recent scalable extension, fRMA (20), has
a more detailed model for probe effects. Although RPA
was comparable with the standard fRMA algorithm, the
fRMA-batch, which uses additional sample metadata, out-
performed RPA. Themodelling of batch effects in fRMA is
only possible, however, when sufficient sample metadata is
available, which is not always the case with large and het-
erogeneous microarray collections. Moreover, batch
effects could be modelled as a separate step as suggested
previously (36,37). However, comparison of the various
modelling techniques for batch effects is out of the scope
of the present work. In analogy to fRMA, our model also
allows the utilization of estimated model parameters as
priors to pre-process further data sets. This can provide
the advantages of single-chip methods and fRMA of not
having to recompute the whole pre-processing procedure
when new arrays are included in the data collection. If
probe parameters from previous studies are used as
priors to preprocess new samples in our model, this will
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correspond to analysing the new samples together with the
previous ones in a single batch and the parameters will
converge more rapidly. Providing frozen parameter esti-
mates can not only speed up computations but also allow
reproducible analysis of single arrays for diagnostic and
other purposes, as suggested in (20), as the probe
summaries obtained with frozen probe parameters do not
depend on the other arrays in the preprocessed data set.
Our fully scalable model allows the estimation of probe
effects from larger data collections than in fRMA. The
favourable performance of fRPA in our experiments
based on a reference training set of 5372 samples suggests
that estimating probe effects from a larger data collection
may lead to improved pre-processing performance. A more
comprehensive validation with multiple platforms and
benchmarking measures is needed, however, to compare
the general performance and relative merits of fRPA and
fRMA. A full development and validation of fRPA cali-
bration sets for the most popular platforms is a promising
direction for further work.

Probe performance is affected by RNA degradation,
non-specific hybridization, GC- and SNP-content, anno-
tation errors and other, potentially unknown factors.
Although modelling of the probe effects have been
shown to yield improved probeset-level estimates of the
target signal (15,17), the various sources of probe-level
noise and their relative contributions remain poorly
understood. With the fully scalable extension, the
analysis of probe performance can now be based on
the most comprehensive data collections. As such,
Online-RPA can assist in nailing down individual probes
affected by various sources of noise and biases,
giving tools to guide microarray pre-processing
and probe design in future studies and industry standards
[19].

CONCLUSION

The introduced online-learning algorithm is the first fully
scalable general-purpose method for probe-level pre-pro-
cessing and analysis of short oligonucleotide collections. It
can be applied to data sets of any size, ranging from mod-
erately sized standard data sets to very large gene expres-
sion atlases involving tens or hundreds of thousands of
samples. In contrast to the alternatives, the model is
readily applicable to all short oligonucleotide microarray
platforms, and it compares favourably to the currently
available alternatives. This provides new tools to scale
up investigations to take full advantage of the information
content in the rapidly expanding data collections.
The implementation is freely available through
R/Bioconductor at http://bioconductor.org/packages/
devel/bioc/html/RPA.html.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Figures 1–4 and Supplementary Data Set 1.
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