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Abstract

Background: Environmental noise is ubiquitous in population growth processes, with a well acknowledged
potential to affect populations regardless of their sizes. It therefore deserves consideration in population dynamics
modelling. The usual approach to incorporating noise into population dynamical models is to make some model
parameter(s) (typically the growth rate, the carrying capacity, or both) stochastic and responsive to environment
fluctuations. It is however still unclear whether including noise in one or/and another parameter makes a
difference to the model performance. Here we investigated this issue with a focus on model fit and predictive
accuracy. To do this, we developed three population dynamical models of the Ricker type with the noise included
in the growth rate (Model 1), in the carrying capacity (Model 2), and in both (Model 3). We generated several
population time series under each model, and used a Bayesian approach to fit the three models to the simulated
data. We then compared the model performances in fitting to the data and in forecasting future observations.

Results: When the mean intrinsic growth rate, r, in the data was low, the three models had roughly comparable
performances, irrespective of the true model and the level of noise. As r increased, Models 1 performed best on
data generated from it, and Model 3 tended to perform best on data generated from either Models 2 or Model 3.
Model 2 was uniformly outcompeted by the other two models, regardless of the true model and the level of
noise. The correlation between the deviance information criterion (DIC) and the mean square error (MSE) used
respectively as measure of fit and predictive accuracy was broadly positive.

Conclusion: Our results suggested that the way environmental noise is incorporated into a population dynamical
model may profoundly affect its performance. Overall, we found that including noise in one or/and another
parameter does not matter as long as the mean intrinsic growth rate, r, is low. As r increased, however, the three
models performed differently. Models 1 and 3 broadly outperformed Model 2, the first having the advantage of
being simple and more computationally tractable. A comforting result emerging from our analysis is the broad
positive correlation between MSEs and DICs, suggesting that the latter may also be informative about the
predictive performance of a model.

Background
Population fluctuations typically result from the inter-
play between demographic stochasticity caused by
chance variation in survival and reproduction events
among individuals in a finite population, density-depen-
dent feedbacks, and environmental noise or environ-
mental forcing induced by temporal fluctuations in the
environment experienced by individual organisms [1,2].
Whilst demographic stochasticity tends to average out
with the population size and remains important only in

small populations, environmental stochasticity affects
populations regardless of their sizes [1,3-5]. It therefore
deserves consideration in both descriptive and predictive
settings. In the current phase of global climatic changes,
evaluating the ecological consequences of environmental
forcing has become a critical issue in ecology. However,
there is still considerable uncertainty as to the most
appropriate way of incorporating environmental noise
into population dynamical models. The usual approach
is to make model parameter(s), typically the growth rate
[6,7] or the carrying capacity [8-10], stochastic and
responsive to environmental perturbations. It has also
been suggested [11] that, from a biological point of
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view, assuming variability in both parameters would be
most realistic. However, not only does such an approach
make it difficult to disentangle density-dependent feed-
backs and stochastic noise in the data, it also introduces
further computational issues.
Both theoretical and empirical studies have suggested

that the way environmental noise is incorporated into
population models may affect their behaviour. For
example, Brännström & Sumpter [2] used the Ricker
model [12] to show, through a simulation study, that
including environmental noise in the growth rate or in
the carrying capacity results in different population
dynamical effects. Rockwood [[13], p. 56] simulated
population time series under the Ricker model assuming
stochasticity in the growth rate, in the carrying capacity,
and in both. He found that populations with stochastic
growth rate became stable around the carrying capacity.
Populations with stochastic carrying capacity went
through a series of crashes, and populations in which
both the growth rate and the carrying capacity were
allowed to vary also went through crashes and tended to
go extinct more often, due presumably to larger total
variance. However, Rockwood only considered a dyna-
mical regime where the deterministic dynamics were
stable. The model performance may be different for
example, when the dynamics are cyclic or chaotic. The
magnitude of environmental noise may also have far-
reaching implications for the model behaviour.
Here we conduct a simulation study to investigate

whether including noise in one or/and another para-
meter makes a difference to the model explanatory and
predictive performances. We proceed by developing
three population dynamics models of the Ricker type
with the noise included in the growth rate (Model 1), in
the carrying capacity (Model 2), and in both (Model 3).
We simulate several population time series under each
model with different magnitudes of noise ranging from
low to high, and use a Bayesian approach [14] to fit the
three models to the simulated data using Markov chain
Monte Carlo (MCMC) methods [15]. We then utilize
the deviance information criterion (DIC) [16] and the
mean square error (MSE) to evaluate the performances
of the three models in regard to their fit to the data and
their forecast accuracy, respectively.

Results
Figs. 1, 2 and 3 show error-bars (mean ± SD) for differ-
ences in DICs and MSEs between a model and the true
(i.e., the data generating) model for low, moderate, and
high noise in the data, respectively.
When the mean intrinsic growth rate in the data, r,

was low, the three models had approximately compar-
able performances irrespective of the true model and
the level of noise (Figs. 1, 2 and 3). As r increased,

however, Models 1 and 3 outperformed Model 2, even
when Model 2 was the true model, regardless of the
level of noise.
Fig. 4 shows correlations between DICs and MSEs

across the three models for data generated under differ-
ent models, different dynamical regimes, and different
magnitudes of noise in the data ranging from low to
high.
The correlations were broadly positive under low and

moderate noise (Figs. 4A-F). For high noise, however,
the correlation tended to fade out under Model 2 and
Model 3 (Figs. 4G &4I) as r exceeded 2, except in the
case where the underlying process included noise in the
carrying capacity only (Fig 4H).

Discussion
Evaluating the ecological consequences of environmental
forcing is a critical contemporary issue in ecology. How-
ever, the difficulties involved in effectively modelling
ecological processes in random environments are widely
recognized [17-19]. While environmental noise is typi-
cally incorporated into population dynamical models by
making one or more model parameters stochastic and
responsive to environmental disturbances, it is still
unclear whether including noise in one or another para-
meter makes a difference to the model performance. In
this paper we used the stochastic Ricker model to inves-
tigate this issue with a focus on model fit and predictive
accuracy.
Although including noise in both parameters may be

biologically more pragmatic [11], such an approach
makes it difficult to differentiate between density-depen-
dent compensation and stochastic noise in the data, and
increases the computational burden. Considering the
cases of stochastic growth rate and stochastic carrying
capacity separately helps reduce the computational bur-
den and allows to tease apart density-dependent feed-
backs and environmental forcing [11], thereby allowing
for their effects to be more accurately assessed.
The types of underlying dynamics may also impinge

on the performance of the fitted models. It is obvious
that if we only simulated data assuming low r values, we
would have reached the conclusion that, as to the model
fit and predictive performance, it does not matter
whether the noise is included in anyone parameter or in
both. However, this turned out to be the case for this
particular setting only. It is worth emphasizing that
whilst the Ricker model accommodates density-depen-
dence through the use of a parameter, K, representing
the carrying capacity, the strength of density-dependent
effects is regulated by the intrinsic growth rate, r, with
lower values of r corresponding to weak density com-
pensation [20,21]. Gabriel & Burger [22] pointed out
that if the population growth rate r exceeds an optimal

Mutshinda and O’Hara BMC Ecology 2010, 10:7
http://www.biomedcentral.com/1472-6785/10/7

Page 2 of 8



value, then population sizes can overshoot the carrying
capacity, thereby increasing the population extinction
risk.
Our results suggest that, with regard to model fit and

predictive performance, it does not matter whether
noise is included in the growth rate, in the carrying
capacity or in both, provided that the mean intrinsic
growth rate, r, is low. As r gets larger, however, the
model with stochastic carrying capacity (Model 2) tends
to perform worse. The model including stochasticity in
the growth rate only (Model 1) may be preferable since
it is parsimonious and more computationally tractable
and yet, has comparable performance to Model 3 in
which both parameters are made stochastic. On a loga-
rithmic scale, Model 1 boils down to a nonlinear first-
order autoregressive model for which many standard
estimation tools are available [23,24]. Model 3 may be
interesting if fluctuations in the carrying capacity can be
constrained e.g., by imposing a suitable (informative)

prior distribution on it. In line with [13], we found that
even small noises in the carrying capacity tend to be
magnified through density compensation when r is high,
so that Model 2 can undergo large fluctuations. We also
found that high noise decreases the model predictive
accuracy as exemplified by the wider prediction intervals
in Fig. 3, and tends to break the correlation between the
DIC and MSE used here as measures of model fit and
predictive accuracy, respectively (Fig. 4G &4I). One way
of reducing noise and improve the model predictive
accuracy is to incorporate suitable environmental covari-
ates into the model.
From a statistical model fitting perspective, our results

are comforting in two respects. First, they are consistent
across simulations, i.e. when one model fits a simulated
scenario better, it does so consistently, meaning that our
conclusions can be generalized to similar data, some-
thing which may not always be so [19]. Second, the cor-
relation between the measures of model fit (the DIC)

Figure 1 Error-bars (mean ± 1SD) of differences in DIC between a model and the true (i.e., the data generating) model for low level
of environmental noise in the data. Error-bars (mean ± 1SD) of differences in DIC (1A, 1C & 1E) and in MSE (1B, 1D & 1F) between a model
and the true (i.e., the data generating) model for low level of noise in the data. The filled circle represents Model 1, the filled square Model 2,
and the filled triangle Model 3. The dashed horizontal line corresponds to an agreement between the true and the contending model.
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and predictive accuracy (the MSE) was generally high
(Fig. 4). Again, there is no guarantee that this will hap-
pen [25]. This suggests that we can have some confi-
dence when comparing models using the DIC that this
will be informative about their predictive abilities, the
exception being when the dynamics are chaotic or
highly noisy. This is because chaotic dynamics are inher-
ently unpredictable. On the other hand, excessive noise
can push a system from stability into chaos [26,27]. It is
worth emphasizing that chaos is a characteristic not of
an empirical system, but of a model we might have for
it [26]. However, it has been suggested [28,29] that
chaotic dynamics are atypical in nature. Although mod-
els may allow various dynamical regimes, the environ-
ment often constrains the dynamics that effectively
occur.
We used simulated data in this work so that we would

know what the true model was. For real data this is
obviously not the case. But it does not matter since

each model was fitted to data generated under different
scenarios, the true model being used merely for compar-
ison. Moreover, our analyses have shown that there is
no guarantee that a model would perform best on data
generated from it. In practice, model formulation should
be guided by the knowledge of the system, the model
purpose, and the nature of the data at hand. Model vali-
dation, e.g. through posterior predictive checking [14],
should be a necessary step before a model can be used
for further analyses.

Conclusions
The development of flexible stochastic population dyna-
mical models that can adjust to different data sets is an
issue of practical relevance to ecology and conservation
biology. However, the challenges involved in modelling
ecological processes in random environments are widely
documented [17-19]. In particular, it is unclear whether
including noise in one or another parameter makes a

Figure 2 Error-bars (mean ± 1SD) of differences in DIC between a model and the true (i.e., the data generating) model for moderate
level of environmental noise in the data. Error-bars (mean ± 1SD) of differences in DIC (2A, 2C & 2E) and in MSE (2B, 2D & 2F) between a
model and the true (i.e., the data generating) model for moderate level of noise in the data. Models are identified by the same symbols are as
in Fig 1. The dashed horizontal line corresponds to an agreement between the true and the contending model.
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difference to the performance of population dynamical
models. In this paper we used the stochastic Ricker
model to investigate this issue with a focus on the
model performance in fitting to the data and in predict-
ing new observations.
Our results suggested that the way noise is incorpo-

rated into a population dynamics model may greatly
influence its performance. Overall, we found that includ-
ing noise in one or/and another parameter does not
affect the model performance as long as the mean
intrinsic growth rate, r, is low. As r increased, however,
different settings of environmental noise resulted in dif-
ferent model performances, meaning that in such a case,
it becomes important to select the best model. The
model including noise in the growth rate only is to
favour since it performs as well as the model with sto-
chasticity in both the growth rate and the carrying capa-
city, but has the advantage of being simple and more
computationally tractable.

Our findings are clearly of relevance to conservation
biology. Since the modus operandi of the processes
underlying population fluctuations is unknown in prac-
tice, it is crucial to find flexible models that can easily
adjust to different data sets. In this paper we provided
useful guidelines for doing this. Our results highlight
the necessity for cautious model selection when
attempting to predict population dynamics e.g., in con-
nection with conservational and management actions.
A comforting result emerging from our analysis is the

broad positive correlation between the MSE and the
DIC, suggesting that the latter may be informative for
model selection in terms of predictive accuracy, unless
the dynamics are chaotic or highly noisy.

Methods
Bayesian inference and model selection
Bayesian inference [14] is an approach to statistics in
which all forms of uncertainty are expressed in terms of

Figure 3 Error-bars (mean ± 1SD) of differences in DIC between a model and the true (i.e., the data generating) model for high level
of environmental noise in the data. Error-bars (mean ± 1SD) of differences in DIC (3A, 3C & 3E) and in MSE (3B, 3D &3F) between a model
and the true (i.e., the data generating) model for high level of noise in the data. Models are identified by the same symbols are as in Fig 1. The
dashed horizontal line corresponds to an agreement between the true and the contending model.
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probability. A Bayesian analysis starts with the formulation
of a probability model p(y|θ) describing the distribution of
the data, y, conditionally of the (often vector-valued)
unknown parameter θ. A prior distribution, p(θ), is then
required to represent the state of knowledge about plausi-
ble values of θ, before seeing the data. After observing
some data, the likelihood function, p(y|θ), is used to
update the prior distribution into a posterior distribution,
p(θ|y), according to Bayes’ formula:

p y
p y p

p y
p y p( | )

( | ) ( )
( )

( | ) ( ).     

The posterior distribution is the tool for Bayesian
inference about all unknown quantities including model
parameters (estimation), and as yet unobserved data
(prediction).
The posterior predictive distribution, p y y( )| , for a

future observation, y , given the data, y, is defined as
p y y p y p y d( ) ( ) ( | )| |      . It is obvious that p y y( )|

integrates the likelihood, p y( | )  , of the future observa-
tion over the uncertainty about the model parameters
encoded in the posterior distribution p(θ|y).
Choosing amongst alternative models or scientific

hypotheses is a fundamental problem faced by research-
ers in any scientific discipline. Model selection can be
viewed as a wide-scale testing problem where models
rather than parameters are of interest [30]. The most
prominent Bayesian model selection techniques include
Bayes factors [31-33], decision theoretic criteria [16] and
cross-validation [34]. We do not use Bayes factors here
because they can be difficult to compute in practice,
and are numerically unstable when proper, but diffuse
priors are used [35].
From a decision theoretic perspective, the model

selection problem can be cast in terms of minimizing a
loss function appropriate to the decision problem at
hand. A general loss function based the likelihood func-
tion is the deviance defined as D(y, θ) = -2log(L(y|θ)),
where L(y|θ) denotes the likelihood function and log(.)

Figure 4 Correlations between deviance information criteria and mean square errors for different parameter settings. Correlations
between deviance information criteria (DICs) and mean square errors (MSEs) for different models under different parameter settings and
different magnitudes of environmental noise; models are identified by the same symbols are as in Fig 1.
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denotes the natural logarithm. D(y, θ) is minimized as
the corresponding utility function, the (log) likelihood, is
maximized. Consequently, model selection can proceed
by minimizing the deviance, D L y( ) log( ( | ))  2 ,
where ̂ is the maximum likelihood estimate (MLE)
of θ.
However, the likelihood of a dataset increases with

the number of fitted parameters so that more complex
models will often be selected. To overcome this
bias towards higher dimensional models, penalized
likelihood measures have been proposed. In the
classical setting, the most popular penalized likelihood
criteria are the Akaike information criterion (AIC)
AIC L y k  2 2log( ( | )) [36], and the Bayesian infor-
mation criterion (BIC) or Schwarz criterion
BIC L y k n  2 log( ( | )) log( ) [37], where k is the
number of free parameters, and n is the sample size. In
the Bayesian framework, the deviance information cri-
terion (DIC) introduced by [16] with an approximate
decision theoretic justification is widely used, and has
been utilized in this study.
The DIC is defined as DIC  D PD , where

D D y E[ ( | )] i.e., the posterior mean of the deviance:

D p y p y d  2 [log ( | )] ( | )  


, and P D DD   ˆ ,

where D̂ is the deviance evaluated at the posterior

mean of the model parameters: ˆ ( [ | ])D D y E  . D is

interpreted as a measure of fit, whereas the so-called
effective number of parameters, PD, acts as a penalty for
model complexity. The analogy between the AIC and
the DIC is apparent when the latter is written in the

form DIC  D PD2 .

The DIC is easily calculated from MCMC samples.
One simply computes D as the average of D(θ|y) over
the posterior samples of θ, and D̂ as the value of the
deviance at the average of the posterior samples of θ.
The DIC follows directly from these approximations.
The hallmark of all good models or scientific theories

is good prediction. When models are designed for pre-
diction, model selection should be based on forecast
accuracy. An important approach for selecting models
with best predictive accuracy is cross-validation [34],
where part of the data are used to calibrate the model
whereas other subsets of the data are used to evaluate
the model’s predictive accuracy through an appropriate
discrepancy measure. We can illustrate this for a time
series data y yt t

N  1
by fitting the model to the first

n data points and then predicting for the next s = N - n
points in the series. For models that are built on a first-
order Markov structure, meaning that p(yt|y1,...,yt-1, θ) =
p(yt|yt-1, θ), as is the case for us here, one single-step
prediction is enough. Different statistics can be used to

evaluate the discrepancy between the data and the
model predictions. Here we utilize the mean squared
error (MSE) i.e., the average of the squared differences
between the model predictions and the actual values, as
measure of predictive accuracy.

Simulation study
Let yt denote the population size/density at time t (t =
1,...,T). We assume that the population dynamics evolve
according to a Ricker kernel [12], the deterministic form
of which is given by yt = yt-1 exp{r(1-yt-1/K)}, where, r is
the intrinsic growth rate, and K is the carrying capacity
of the environment. The model can be written as yt =
lt-1 (yt-1), where lt-1 = exp{r(1 - yt-1/K)} is the (multipli-
cative) population growth rate from time t - 1 to time t.
The dynamic behavior of the deterministic Ricker

model is well-known: the model is stable for 0 <r < 2,
and as r increases within this range, the model moves
from smooth approach to equilibrium through an oscilla-
tory approach. When r > 2, the system undergoes sus-
tained doubling cycles to finally reach chaos at r ≅ 3 [38].
Our interest here is on the behaviour of the stochastic

Ricker model as environmental noise is included in the
growth rate or/and in the carrying capacity. We develop
three models differing by which parameters are used to
accommodate environmental noise. Model 1: yt = exp{r

(1 - yt-1/K) + εt},  t rN~ ,( )0 2 includes noise as log-

normal multiplicative disturbances to the growth rate.

That is, y e y r y Kt t t
t  


1 11exp{ ( / )} , which can be

written as yt = yt-1 exp{(r + εt) - r yt-1/K}. Model 2: yt =
exp{r(1 - yt-1/Kt)}, includes noise in the carrying capa-

city, where Kt = exp(k + ht) and  t kN~ ( , )0 2 . In

Model 3: yt = exp{r(1 - yt-1/Kt) + εt}, both parameters
are made stochastic.
We generated several population time series under

each model, with values of r set to 0.5, 1.9 and 3, and
without loss of generality, the expected value of the
mean carrying capacity, K, was set to Euler’s number e
(i.e., k = log(K) = 1). We generated time series of length
100 with the parameters sr and sk tuned to achieve the
desired magnitude of noise ranging from low (sr =
0.0625, sk = 0.125), to moderate (sr = 0.125, sk = 0.25),
to high (sr = 0.25, sk = 0.5).
In the model fitting process, the models were set up

with a normal likelihood y Nt t y~ ( , )  2 truncated to
positive values, where μt is defined as μt = yt-1 exp{r(1 -
yt-1/K) + εt} under Model 1, μt = yt-1 exp{r(1 - yt-1/Kt)}
under Model 2, μt = yt-1 exp{r(1 - yt-1/Kt) + εt} under
Model 3, and  y

2 is intended to capture the unex-
plained variation.
The models were fitted to the data with a Bayesian

approach using the following priors: r N r~ ( , )0 2 i.e.,
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only positive values of r were allowed; Kt ~ InvGa(1, 1);
 y

2 ~ InvGa(1, 1);  r
2 ~ InvGa(1, 1), where InvGa(u, v)

denotes the inverse gamma distribution with parameters u
and v. We used MCMC methods through the Bayesian
freeware OpenBUGS [39] to numerically simulate samples
from the joint posterior of the model parameters.
In all cases, 4000 burn-in iterations of 3 Markov

chains starting from dispersed initial values in the para-
meter space were followed by a further 16000 iterations
thinned to each 20th observation (i.e., we saved the
values at every 20th iteration to reduce autocorrelation
between the samples). The convergence of the MCMC
was assessed visually though examining the mixing of
the three chains and the behaviour of sample autocorre-
lation plots.
Simulations were run for 1000 replications and for

each replication, we monitored the posterior mean of
the DIC and the MSE averaged over the observational
time. These yielded full distributions of these measures
which were then used for assessing the model perfor-
mance in fitting to the data and in forecasting future
data.
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