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Abstract

Most metacommunity studies have taken a direct mechanistic approach, aiming

to model the effects of local and regional processes on local communities

within a metacommunity. An alternative approach is to focus on emergent pat-

terns at the metacommunity level through applying the elements of metacom-

munity structure (EMS; Oikos, 97, 2002, 237) analysis. The EMS approach has

very rarely been applied in the context of a comparative analysis of metacom-

munity types of main microbial, plant, and animal groups. Furthermore, to our

knowledge, no study has associated metacommunity types with their potential

ecological correlates in the freshwater realm. We assembled data for 45 freshwa-

ter metacommunities, incorporating biologically highly disparate organismal

groups (i.e., bacteria, algae, macrophytes, invertebrates, and fish). We first

examined ecological correlates (e.g., matrix properties, beta diversity, and aver-

age characteristics of a metacommunity, including body size, trophic group,

ecosystem type, life form, and dispersal mode) of the three elements of meta-

community structure (i.e., coherence, turnover, and boundary clumping). Sec-

ond, based on those three elements, we determined which metacommunity

types prevailed in freshwater systems and which ecological correlates best dis-

criminated among the observed metacommunity types. We found that the three

elements of metacommunity structure were not strongly related to the ecologi-

cal correlates, except that turnover was positively related to beta diversity. We

observed six metacommunity types. The most common were Clementsian and

quasi-nested metacommunity types, whereas Random, quasi-Clementsian, Glea-

sonian, and quasi-Gleasonian types were less common. These six metacommu-

nity types were best discriminated by beta diversity and the first axis of

metacommunity ecological traits, ranging from metacommunities of producer

organisms occurring in streams to those of large predatory organisms occurring

in lakes. Our results showed that focusing on the emergent properties of multi-

ple metacommunities provides information additional to that obtained in stud-

ies examining variation in local community structure within a metacommunity.

Introduction

Community ecologists have recently shifted their focus

from studying single local communities to considering a

set of local communities in a region (Leibold et al. 2004;

Logue et al. 2011). The main focus in studying such a

metacommunity is still the structure of local communi-

ties, but the mechanisms are not assumed to be solely

local, like biotic interactions, but that regional factors, like

dispersal among sites, also affect local community struc-

ture (Leibold et al. 2004; Heino et al. 2015a). Hence,

most of current community ecology research tries to dis-

entangle the relative roles of local and regional processes

on local community structure within a single metacom-
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munity (Cottenie 2005; Meynard et al. 2013). An alterna-

tive means is to focus on the patterns emerging at the

level of a metacommunity (Leibold and Mikkelson 2002;

Presley et al. 2010; Newton et al. 2012; Dallas 2014).

Metacommunities show multiple patterns in space and

time, ranging from those assuming underlying species

interactions to those suggesting independent responses of

species to environmental gradients (McIntosh 1995; Mit-

telbach 2012). These ideas were at the heart of ecology

already in the first half on the 20th century, when vegeta-

tion ecologists disputed about the discrete versus continu-

ous nature of variation in community structure along

environmental gradients (for definitions of main con-

cepts, see Table 1). Clements (1936) argued for discrete

community types (i.e., Clementsian gradients), whereas

Gleason (1926) promoted the idea that single species

respond independently to environmental gradients (i.e.,

Gleasonian gradients). This dispute never reached a final

agreement (McIntosh 1995), although some plant and

animal ecologists have thereafter favored more individual-

istic than discrete concepts of community variation (Aus-

tin and Smith 1989; Ricklefs 2008).

Until recently emergent metacommunity patterns have

been difficult to test owing to lack of suitable statistical

methods. One modern approach is to test the fit of empir-

ical data with multiple metacommunity structures simulta-

neously (Leibold and Mikkelson 2002; Presley et al. 2010).

Those patterns can be illustrated by the three elements of

metacommunity structure (i.e., coherence, turnover, and

boundary clumping) and, subsequently, that information

can be used to delineate metacommunity types (Leibold

and Mikkelson 2002). The main metacommunity types are

checkerboard (Diamond 1975), nested (Wright et al.

1998), evenly spaced (Tilman 1982), Gleasonian (Gleason

1926), Clementsian (Clements 1936), and random (Lei-

bold and Mikkelson 2002). These metacommunity types

are broad idealizations of nature, and hence, a number of

subtypes can also be distinguished. Presley et al. (2010)

suggested that the cases of significant positive coherence

followed by nonsignificant turnover along an ordination

axis can be considered as quasi-structures, with nonsignifi-

cant negative turnover referring to quasi-nestedness, and

nonsignificant positive turnover to quasi-evenly spaced,

quasi-Gleasonian, or quasi-Clementsian metacommunity

Table 1. A glossary of the main concepts dealt with in this article. See Leibold and Mikkelson (2002) and Presley et al. (2010) for additional infor-

mation and methods for delineating metacommunity types.

Concept Definition

Boundary clumping A measure that takes into account how the edges of species range boundaries are distributed along a dimension or an

ordination axis (Leibold and Mikkelson 2002)

Checkerboards A checkerboard pattern exists if species pairs have mutually exclusive distributions across a set of sites and such pairs

occur independently of other pairs of species (Diamond 1975)

Clementsian A gradient model where species respond to ecological gradients as groups, resulting in discrete communities (Clements

1936). Clementsian metacommunity type is one of the six main metacommunity types in our study

Coherence A measure of the degree to which a pattern can be collapsed into a single dimension or an ordination axis (Leibold and

Mikkelson 2002)

Evenly spaced There are no discrete communities, but species ranges are arranged more evenly than what could be expected by chance

(Tilman 1982)

Gleasonian Species respond individualistically to underlying ecological gradients (Gleason 1926). Gleasonian metacommunity type is

one of the metacommunity types in our study

Turnover A measure of turnover in species composition along a dimension or an ordination axis. In the EMS framework, it

measures the number of species replacements (Leibold and Mikkelson 2002)

Metacommunity

structure

A combination of inferences from the significance of coherence, turnover, and boundary clumping (Leibold and

Mikkelson 2002). In our study, we consider metacommunity structures synonymous to metacommunity types

Metacommunity type See above. A metacommunity type can be defined as a pattern in a site-by-species matrix that is statistically significant

from random expectations

Nestedness A pattern where sites poor in species contain proper subsets of species from progressively richer communities (Patterson

& Atmar 1986). In our study, nested metacommunity is one metacommunity type

Quasi-structure Quasi-structures are intermediate metacommunity types. Quasi-nested metacommunity is the name for cases of

significant positive coherence and nonsignificant turnover. Quasi-evenly spaced, quasi-Gleasonian, and quasi-

Clementsian are the names for cases with positive coherence and positive turnover, and they can be distinguished

based on boundary clumping (Presley et al. 2010)

Random There are no clear gradients or discernible patterns in species distributions across a set of sites (Leibold and

Mikkelson 2002)
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structures that can be distinguished based on boundary

clumping (Leibold and Mikkelson 2002).

Many, if not most, metacommunity patterns have typi-

cally been studied in isolation. While studies focusing on

a single metacommunity pattern continue to provide

important information about ecological communities,

they may also fall short because they do not yield a com-

parative understanding of metacommunities (Presley et al.

2009; Meynard et al. 2013; Dallas 2014; Dallas and Presley

2014). Therefore, a simultaneous comparison of multiple

patterns is necessary so that we can find “the best fit”

patterns of metacommunity structure in various ecologi-

cal systems (Leibold and Mikkelson 2002; Presley et al.

2010). There is thus an impetus to examine multiple

metacommunity patterns simultaneously and reveal if

observed metacommunity types are molded predictably

by a set of ecological variables or if those metacommunity

types are only products of context dependency (Lawton

1999). Context dependency may be caused by variations

in regional species pools and underlying environmental

conditions even for the same ecosystem type (Heino et al.

2012), it may lead to patterns that are temporally variable

due to varying environmental conditions (Er}os et al.

2014; Fernandes et al. 2014), and it may eventually result

in situations where findings of metacommunity patterns

are not easily transferable beyond the studied system (He-

ino et al. 2012). Such unpredictability results when we

cannot detect any general relationships between metacom-

munity types and their underlying ecological characteris-

tics, such as ecosystem type, trophic position of

organisms or latitude. Hence, if metacommunity-level

phenomena are as weakly predictable as many local com-

munity-level patterns (Lawton 1999), context dependency

may hinder our attempts to generalize findings from one

system to another (Heino et al. 2012).

Freshwaters provide suitable model systems for address-

ing questions related to the organization of metacommu-

nities. First, those systems are embedded in the terrestrial

matrix that is unsuitable for the development of the aqua-

tic stages of freshwater organisms and, hence, delineation

of a local community is relatively easy (Heino 2011;

Boggero et al. 2014). Second, a set of multiple communi-

ties located within a drainage basin provides a good

approximation of metacommunity limits because different

drainage basins often harbor partly different biotas and

unique environmental features to which organisms

respond (Heino 2013; Henriques-Silva et al. 2013). Third,

there is wide variation in several major biological and

ecological traits among different freshwater organismal

groups, ranging from bacteria through algae and macro-

phytes to animals (Heino et al. 2013; Verberk et al.

2013). Therefore, freshwater systems provide excellent

opportunities for finding generalities, or lack of generali-

ties, in factors correlating with emergent properties of

metacommunities. They may also provide potential pre-

dictions about where, when, and in which settings a given

metacommunity type should occur. Those settings could

be revealed using correlates of metacommunity structure

similar to biological traits of species in other contexts.

Because the biological traits of species (Comont et al.

2012; Verberk et al. 2013) or, in our case, the ecological

traits of metacommunities do not develop in isolation

and are thus often correlated, we used composite trait

variables as predictors of the elements of metacommunity

structure and metacommunity types in our study.

We assembled a dataset of 45 freshwater metacommu-

nities, ranging from temperate to Arctic drainage basins,

from streams to lakes, and from bacteria to fish. Our aim

was to (1) search for ecological correlates for the three

elements (i.e., coherence, turnover, and boundary clump-

ing) of metacommunity structure; (2) find out which

metacommunity types prevail in freshwaters; and (3)

examine which ecological and dataset characteristics sepa-

rate observed metacommunity types. We hypothesized

that the ecological characteristics of a metacommunity

would be good predictors of variation in coherence, turn-

over, and boundary clumping because body size, trophic

position, ecosystem type, and other traits may be related

to the predictability of ecological patterns (Cottenie 2005;

Soininen et al. 2007; De Bie et al. 2012). First (H1), we

assumed that the distributions of small organisms are

more stochastic than those of large organisms (Soininen

et al. 2013), and metacommunities of small organisms

should thus be more likely to exhibit randomness than

those of large organisms, although opposite interpreta-

tions have also been suggested (De Bie et al. 2012). Sec-

ond (H2), we hypothesized that metacommunity type

should be related to the ecosystem type. For example,

species in frequently disturbed lotic systems should show

more individualistic responses to environmental gradients

than species in more stable lentic systems. Gleasonian

metacommunity types should thus prevail in lotic (Heino

and Soininen 2005), whereas Clementsian metacommuni-

ty types should be more common in lentic systems

(Henriques-Silva et al. 2013). Third (H3), the trophic

position and life form of organisms should also be related

to metacommunity type, although owing to lack of previ-

ous comparative studies we could not devise explicit

hypotheses about which metacommunity types should be

associated with a given trophic level and growth form.

Fourth (H4), we assumed that increasing drainage basin

area results in larger environmental heterogeneity and

should thus promote high turnover (Heino 2011; Heino

et al. 2015a), leading to Clementsian gradients. Fifth

(H5), we assumed that latitude would be associated with

metacommunity type because it is a proxy for climate
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conditions, which in turn should affect local habitat con-

ditions and species distributions and result in geographi-

cal variation in metacommunity types (Henriques-Silva

et al. 2013).

Methods

Datasets and metacommunity
characteristics

We analyzed a dataset comprising 45 freshwater meta-

communities (Appendix S1). We defined a metacommu-

nity as a set of sites within a drainage basin, and thus,

datasets crossing multiple drainage basins were not

included. A local community was defined as a collection

of organisms in a freshwater ecosystem (i.e., an entire lake

for lentic–pelagic organisms, a stretch of littoral zone for

lentic–benthic organisms, or a stream riffle site of about

100 m2 for lotic organisms). All the metacommunity

datasets are from Finland (59°N to 70°N, 25°E to 32°E).
Although the geographical area where those datasets come

from is relatively small, we believe that comparative

analyses based on high-quality datasets from a small

region would provide more accurate information about

metacommunities than more heterogeneous datasets

assembled from various sources from over the world.

Had we included some data from other continents, for

example, we would also have to control for multiple

large-scale factors (e.g., evolutionary factors) that are

likely to generate differences in metacommunity organiza-

tion. Furthermore, variation in the number of organismal

groups was very high in our study area, and such versatil-

ity would perhaps have been difficult to obtain across

large geographical areas. We had data for bacteria, algae

(i.e., benthic diatoms, phytoplankton), macrophytes (i.e.,

vascular plants, bryophytes), invertebrates (i.e., benthic

invertebrates, zooplankton), and vertebrates (i.e., fish).

We had a strict quality control for selecting each data-

set. Each metacommunity dataset had to come from a

single drainage basin and had to include at least 15 local

communities, and all local communities had to have been

sampled preferably in a relatively short period of time

(i.e., typically within a single season in the same year).

Only exceptions were the fish datasets which were col-

lected using questionnaires, which aimed to reveal native

fish species in the study lakes. The species list from a

given metacommunity was carefully checked to guarantee

that inconsistencies in identification were minimal.

Rather than relying on taxonomic delineations only,

each of the 45 metacommunity datasets was also

described by a number of organismal and ecosystem char-

acteristics (Appendix S2). We first grouped the metacom-

munities by ecosystem type (lotic vs lentic). We also

considered the average body size (continuous variable) of

organisms comprising a metacommunity, broad trophic

group (decomposer vs producer vs omnivore vs preda-

tor), life form (rooted vs benthic vs pelagic), and dis-

persal mode among localities (passive vs active). All those

characteristics are approximations, referring to the ecolo-

gies of most species in a metacommunity. We did not use

other organismal or ecosystem characteristics because

those characteristics were either collinear with the traits

we used or they proved to be less reliable ecologically.

For example, owing to lack of strictly comparable data

for the characteristics of all species in our data, we chose

not to include a more comprehensive set of unreliable

trait variables. This unreliability centers on the issue that

we do not know for sure the trait variation within bacte-

rial metacommunities, for example, and it is unlikely that

any coarse measures for bacteria would be comparable to

much better trait variables for fish. In addition, using

drainage basin characteristics other than basin area would

have been unfeasible because those characteristics are

strongly related to the latitudinal location of a drainage

basin.

Analysis of the elements of metacommunity
structure and metacommunity types

Elements of metacommunity structure (EMS) were

assessed following Leibold and Mikkelson (2002) and

Presley et al. (2010). We followed the “range perspective”

in our analyses (Leibold and Mikkelson 2002). The EMS

analysis is based on three metrics: coherence, turnover,

and boundary clumping. Prior to calculating those met-

rics, site-by-species presence–absence matrices were ordi-

nated using reciprocal averaging (i.e., correspondence

analysis). Hence, the sites having similar species composi-

tion are close to each other and the species that have sim-

ilar occurrence among the sites are close to each other

along an ordination axis (Gauch 1982). Although corre-

spondence analysis may be sensitive to rare species, we

did not exclude them from the analyses for two reasons.

First, most freshwater metacommunities in northern

drainage basins are strongly dominated by rare species

(bacteria: Heino et al. 2015b; diatoms: Soininen and Hei-

no 2005; invertebrates: Heino 2005; bryophytes: Heino

and Virtanen 2006; macrophytes: Alahuhta et al. 2014),

so removing rare species would lead to unnatural results.

Second, our previous analyses have shown that the main

patterns found by the EMS analyses do not typically

change if rare species (i.e., those occurring at a single site)

are removed (Heino et al. 2015b).

Coherence is based on calculating the number of

embedded absences (Abs) in the ordinated matrix and

then comparing the observed value to a null distribution
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of embedded absences (i.e., gap in a species range) from

simulated matrices (Leibold and Mikkelson 2002). A

small number of embedded absences (i.e., Abs is signifi-

cantly lower than expected by chance) suggest positive

coherence, whereas a large number of embedded absences

(i.e., Abs is significantly larger than expected by chance)

suggest negative coherence. Significantly negative coher-

ence thus suggests a checkerboard distribution of species

(i.e., checkerboard metacommunity type), nonsignificant

coherence refers to randomness (i.e., random metacom-

munity type), and significantly positive coherence is

related to nestedness, evenly spaced gradients, Gleasonian

gradients or Clementsian gradients (Leibold and Mikkel-

son 2002). Turnover is evaluated if coherence is positive,

and it is measured as the number of times one species

replaces (Rep) another between two sites in an ordinated

matrix (Presley et al. 2010). Significant negative turnover

(i.e., Rep is significantly lower than expected by chance)

refers to nestedness (i.e., nested metacommunity type),

whereas significantly positive turnover (i.e., Rep is signifi-

cantly larger than expected by chance) indicates evenly

spaced, Gleasonian or Clementsian metacommunity types

(Leibold and Mikkelson 2002). The cases of significant

positive coherence and nonsignificant turnover can be

interpreted as quasi-structures (Presley et al. 2010). The

evenly spaced, Gleasonian and Clementsian metacommu-

nity types can be distinguished based on an index called

boundary clumping (Leibold and Mikkelson 2002).

Boundary clumping is analyzed using Morisita’s disper-

sion index and a chi-square test comparing observed and

expected distributions of range boundary locations. Val-

ues of Morisita’s dispersion index that are not different

from 1 indicate randomly distributed range boundaries

(i.e., Gleasonian metacommunity type), values signifi-

cantly larger than 1 indicate clumped range boundaries

(i.e., Clementsian metacommunity type) and values sig-

nificantly less than 1 indicate hyperdispersed range

boundaries (i.e., evenly spaced metacommunity type).

Correspondingly, quasi-evenly spaced, quasi-Gleasonian,

and quasi-Clementsian metacommunity types can be sep-

arated by boundary clumping (Presley et al. 2010).

The significance of the index values for coherence

(Abs) and turnover (Rep) was tested separately using the

fixed-proportional null model, where row sums are fixed

(i.e., the species richness of each site was maintained),

but column marginal frequencies (i.e., species frequencies

of occurrence) were used as probabilities. Random matri-

ces were produced by the “r1” method for the fixed-pro-

portional null model as implemented in the R package

vegan (Oksanen et al. 2013). We also used the fixed–fixed
null model (i.e., both species richness of each site and

species frequencies are maintained) based on the “quasi-

swap” method in the R package vegan (Oksanen et al.

2013). We used 999 simulations to provide simulated

matrices, with the exception of stream bacteria for which

the very long computation time caused by very high

numbers of species forced us to use 99 simulations. Sta-

tistical significance of Abs or Rep was then assessed by

comparing the observed index value from the original

matrix to the distribution of values derived from the ran-

domizations (Manly 1995). Elements of metacommunity

structure were evaluated for each metacommunity dataset

based on axis 1 of reciprocal averaging because we were

interested in the most important species compositional

gradient. EMS analyses were done using the R package

metacom (Dallas 2013) in the R environment (version

3.0.1, R Development Core Team 2013).

We also used a standardized effect size (SES) or a Z-

score for the indices Abs and Rep for each dataset as (Gu-

revitch et al. 1992; Gotelli and McCabe 2002):

Z-score = (observed index value � mean index value

based on simulations) / standard deviation of simulated

index values.

Z-scores allow comparisons among datasets and can

thus subsequently be used in comparative analyses. Basi-

cally, Z-scores between �1.96 and 1.96 are nonsignificant

at a = 0.05 level and, thus, Z-scores of coherence and

turnover can also be used to distinguish checkerboard,

random, nested, and the remaining main three metacom-

munity types (Appendix S3). We also used the traditional

approach to delineate metacommunity structures based

on statistical significance (P-values) from the randomiza-

tion tests of coherence and turnover (see above).

Comparative analyses

We had nine predictor variables in the comparative analy-

sis aimed to find correlates for explaining variation in the

Z-scores of coherence, Z-scores of turnover or index of

boundary clumping. We first used (1) number of sites;

and (2) matrix fill (i.e., the proportion of “1s” in a pres-

ence–absence matrix) because dataset characteristics may

have strong effects in comparative analyses of metacom-

munities (Heino et al. 2015c). We did not use the num-

ber of species as a predictor variable because it was

significantly correlated with matrix fill (Spearman

r = �0.412, P = 0.005) and because there was huge varia-

tion in and uneven distribution of the number of species

among the metacommunity datasets (i.e., 12 to 6070).

Second, we considered multiple ecological characteristics

of a metacommunity as predictors, including average

body size of organisms, trophic group (decomposer vs

producer vs omnivore vs predator), ecosystem type (lentic

vs lotic), life form (rooted vs benthic vs pelagic), and dis-

persal mode among localities (passive vs active). Many of

the metacommunity traits are correlated. For example,
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pelagic organisms occur chiefly in lakes, and body size is

often related to trophic level and dispersal mode (Rundle

et al. 2007). We hence used Gower distance coefficient on

the five metacommunity-level variables to produce a dis-

tance matrix across the 44 datasets (note that one meta-

community dataset was excluded here because it was an

outlier in the comparison of the EMS analysis; see below)

using function “daisy” in the R package cluster (Maechler

et al. 2014). Gower distance coefficient allows using cate-

gorical variables, and we thus used that coefficient for cal-

culating the distance matrix (Legendre and Legendre

2012). Thereafter, we ran a principal coordinates analysis

(PCoA) on the Gower distance matrix to produce impor-

tant components. We used the scores of each metacom-

munity along (3) PCoA1, (4) PCoA2, (5) PCoA3, and (6)

PCoA4 components to indicate the combined ecological

characteristics of a metacommunity. We also examined

how beta diversity was related to the three elements of

metacommunity structure. Hence, we partitioned total

beta diversity (i.e., multiple site beta diversity based on

Sørensen coefficient) in each metacommunity to beta

diversity related to species compositional differences

among sites (i.e., multiple site beta diversity based on

Simpson coefficient) and nestedness resulting from species

richness differences among sites using the function “beta.-

mul” in the R package betapart (Baselga and Orme 2012).

We considered it important to use beta diversity as a pre-

dictor variable because it combines biological information

about each metacommunity in a simple summary figure,

although we acknowledge that it is inherently related to

the metric “turnover” from the EMS analysis. We subse-

quently used (7) multiple site Simpson coefficient as pre-

dictor in the comparative analysis. Multiple site Simpson

coefficient and multiple site nestedness coefficient were

strongly negatively correlated (r = -0.895), and hence, col-

linearity problems precluded using both of them as pre-

dictors in the analyses. We used (8) total drainage basin

area as proxy for environmental heterogeneity because it

is a more useful variable than altitudinal range in a pre-

dominantly lowland region such as Finland. Finally, we

used (9) latitude of a drainage basin as a predictor

because geographical location and covarying climate vari-

ables may affect metacommunity patterns (Henriques-

Silva et al. 2013).

We used generalized linear model (GLM) with Gaussian

error as the method to analyze variation in the Z-scores of

coherence, the Z-scores of turnover or the index of bound-

ary clumping with all six variables described above as pre-

dictors. The variance inflation factors (VIF) of multiple site

Simpson and multiple site nestedness indices were high

(VIF > 10) in trial analyses, and hence, we used only multi-

ple site Simpson index to avoid the problem of multicollin-

earity. Subsequently, the VIF values for the nine predictor

variables were <4.3, indicating that there was no problem

of collinearity among the predictor variables (Kutner et al.

2004). Had we used the original ecological categorical char-

acteristics of the metacommunities instead of PCoA axes,

we would also have ended up in multicollinearity problems

because of nonindependent ecological characteristics. This

would also have led a severe loss of degrees of freedom in

our comparative analyses.

We also examined how well the nine predictor variables

could distinguish observed metacommunity types using

linear discriminant function analysis (DFA). Our response

variable was categorical “metacommunity type”, and pre-

dictors were the nine continuous variables: number of

sites, matrix fill, PCoA1, PCoA2, PCoA3, PCoA4, multiple

site Simpson index, basin area, and latitude. DFA was

conducted using the function “lda” in the R package

MASS (Venables and Ripley 2002). We also used stepwise

selection of predictor variables to see which predictors

were most important in separating the metacommunity

types using the function “greedy.wilks” in the R package

klaR (Weihs et al. 2005). Finally, we used multivariate

analysis of variance (MANOVA) to test for overall differ-

ences in the ecological characteristics among the meta-

community types.

Results

The Z-scores of coherence from fixed-proportional (“r1”)

or fixed–fixed (“quasiswap”) null models (r = 0.793,

P < 0.001) were strongly correlated, and the same was true

for the Z-scores of turnover (r = 0.907, P < 0001). Hence,

we focused on the results based on the “r1” method

because most previous studies have used it in the context

of the EMS analysis. There was wide variation in the Z-

scores of coherence, the Z-scores of turnover, and the index

of boundary clumping across the 45 metacommunities

(Appendix S4), resulting in six observed metacommunity

types (Fig. 1). We found that Clementsian (n = 12) and

quasi-nested (n = 11) metacommunity types were most

common, followed by random (n = 8), Gleasonian

(n = 5), quasi-Clementsian (n = 5), and quasi-Gleasonian

(n = 4) metacommunity types. Note that the same infer-

ences can be drawn based on the p-values derived from

randomization tests (Appendix S4). One metacommunity

was an outlier with regard to coherence and turnover Z-

values, and it was thus excluded from the subsequent com-

parative analyses of 44 metacommunities (Fig. 1).

There was some variation among the five major organ-

ismal groups in the Z-scores of coherence (Kruskal–Wallis

test, v2 = 9.83, P = 0.043) and the measure of beta diver-

sity related to nestedness (Kruskal–Wallis test, v2 = 14.03,

P = 0.007), but no significant differences were found

among the organismal groups in the other four biological
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measures of metacommunities (Appendix S5). Further-

more, variations in the Z-scores of coherence, the Z-

scores of turnover and the index of boundary clumping

were weakly correlated (all r < 0.530) with the three mea-

sures of beta diversity (Appendix S6).

PCoA based on the Gower distance matrix of the eco-

logical characteristics of metacommunities (i.e., body size,

trophic group, ecosystem type, life form, and dispersal

mode among sites) produced four principal coordinates

with positive eigenvalues. PCoA1 (variance explained:

45.3%) showed variation from metacommunities of lotic–
benthic producer organisms at the negative end of the

axis to metacommunities of lentic–pelagic predator

organisms at the positive end on the axis. PCoA2 (vari-

ance explained: 30.8%) showed variation from metacom-

munities of lentic–pelagic passively dispersing organisms

at the negative end of the axis to metacommunities of

lotic–benthic actively dispersing organisms at the positive

end (Appendix S7). PCoA3 (variance explained: 17.4%)

was mostly related to variation from metacommunities of

benthic organisms to metacommunities of rooted plants.

Along PCoA4 (variance explained: 5.9%), metacommuni-

ties varied from invertebrates at the negative end of the

axis to bacteria at the positive end of the axis.

GLMs showed that no predictor variable was signifi-

cantly associated with variation in the Z-scores of coher-

ence (Table 2). Simpson multiple site index was the only

variable significantly related to the Z-scores of turnover.

No predictor variable was significantly related to bound-

ary clumping. This indicated that the single components

of the EMS analysis are not necessarily strongly related to

correlates describing metacommunity characteristics.

DFA with all nine predictor variables included showed

that Clementsian, quasi-Clementsian, and quasi-nested

metacommunity types were relatively well predicted to

their original source groups, whereas Gleasonian, quasi-

Gleasonian, and random metacommunity types were

poorly predicted to the respective correct groups. The

total classification success, 68.2%, was modest, but MA-

NOVA showed that there was significant variation in the

overall ecological characteristics among the metacommu-

nity types (Wilks’ lambda = 0.188, F = 1.610, P = 0.023).

The DFA with stepwise selection of predictor variables

showed that multiple site Simpson index and PCOA1 sig-

nificantly discriminated between the observed metacom-

munity types, and MANOVA also showed significant
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Figure 1. Metacommunity types of the 45 datasets plotted in the

space of the Z-scores of coherence and turnover. Bubble size denotes

the index of boundary clumping. A black open circle in the lower

right corner indicates a metacommunity that was a clear outlier

because of its very low coherence Z-value and very high turnover Z-

value. It was thus excluded from the comparative analysis. Hence, the

remaining 44 metacommunities were used in the comparative

analysis. The dashed line indicates the coherence Z-score = �1.96.

Table 2. GLM models for coherence Z-scores (a), turnover Z-scores

(b), and boundary clumping index (c).

Estimate SE t P

(a) Coherence

(Intercept) 2.211 9.392 0.235 0.815

No. Sites �0.030 0.032 �0.914 0.367

Matrix fill �5.092 6.483 �0.785 0.438

Simpson multiple �3.272 5.827 �0.562 0.578

PCoA1 1.348 1.305 1.033 0.309

PCoA2 1.504 1.481 1.015 0.317

PCoA3 3.361 1.828 1.839 0.075

PCoA4 �5.710 2.966 �1.925 0.063

Basin area �0.000 0.000 �1.621 0.114

Latitude �0.011 0.121 �0.087 0.931

(b) Turnover

(Intercept) �26.682 8.400 �3.192 0.003

No. Sites �0.009 0.029 �0.296 0.769

Matrix fill 10.007 5.798 1.738 0.091

Simpson multiple 16.663 5.211 3.191 0.003

PCoA1 �1.204 1.167 �1.029 0.309

PCoA2 0.963 1.325 0.727 0.472

PCoA3 �1.241 1.635 �0.759 0.453

PCoA4 0.269 2.653 0.102 0.919

Basin area �0.000 0.000 �0.757 0.454

Latitude 0.202 0.108 1.873 0.069

(c) Boundary clumping

(Intercept) 4.380 7.650 0.573 0.571

No. Sites 0.051 0.026 1.942 0.060

Matrix fill �1.179 5.280 �0.223 0.825

Simpson multiple �2.988 4.746 �0.630 0.533

PCoA1 0.509 1.063 0.479 0.635

PCoA2 �0.990 1.206 �0.821 0.418

PCoA3 �0.378 1.489 �0.254 0.801

PCoA4 1.932 2.416 0.800 0.429

Basin area �0.000 0.000 �0.157 0.878

Latitude 0.006 0.098 �0.066 0.948

Significant effects are shown in bold font.
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differences in these two ecological characteristics among

the metacommunity types (Wilks’ lambda = 0.476,

F = 3.319, P = 0.001). However, this reduced model

yielded a rather poor overall prediction success of 47.7%,

with high correct predictions for Clementsian, Gleasonian,

and quasi-nested metacommunity types, whereas the

other metacommunity types were poorly predicted to cor-

rect groups (Table 3).

Clementsian metacommunities showed highest and

quasi-nested metacommunities lowest beta diversity based

on Simpson multiple site index (Fig. 2). Furthermore,

Gleasonian metacommunities showed lowest scores along

PCoA1, being metacommunities of lotic organisms,

whereas quasi-nested metacommunities showed highest

scores along PCoA1, being metacommunities of lentic

organisms (Appendix S7). Finally, there was no contin-

gency between the metacommunity types and the five

major organismal groups (v2-test with permutation,

v2 = 24.76, P = 0.213), suggesting that taxonomic group

alone is a poor predictor of metacommunity type

(Table 4).

Discussion

Our comparative analyses showed that metacommunity

structures vary widely in freshwater systems. We found

that the three elements of metacommunity structure (i.e.,

coherence, turnover and boundary clumping) were weakly

Table 3. Summary of average values for the metacommunity characteristics. Also, shown are correct classifications (%) from discriminant func-

tion analysis based on the two significant predictors: Simpson multiple site beta diversity and the first metacommunity trait component (PCoA1).

Metacommunity type No. Sites Matrix fill PCoA1 PCoA2 PCoA3 PCoA4 Simpson Basin area Latitude Correct (%)

Clementsian 38 0.232 �0.006 0.021 0.029 0.007 0.872 25920 66.3 81.8

Gleasonian 18 0.214 �0.250 0.001 �0.092 0.021 0.827 26814 66.4 60.0

Quasi-Clementsian 19 0.290 �0.128 0.016 0.193 0.008 0.730 30508 64.2 20.0

Quasi-Gleasonian 20 0.238 �0.178 0.128 �0.013 �0.010 0.818 20145 65.5 0

Quasi-nested 27 0.260 0.231 �0.041 �0.053 0.006 0.747 28224 62.4 72.7

Random 20 0.219 0.015 �0.059 0.013 �0.031 0.798 19069 63.1 0
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Figure 2. The six observed metacommunity

types in relation to Simpson multiple site beta

diversity and the PCoA axis 1.
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related to the predictor variables, which described dataset

characteristics, ecological features of metacommunities,

drainage basin area, and latitude. However, Simpson mul-

tiple site beta diversity was significantly positively related

to turnover, which was obvious because both measure the

same thing, that is, differences in species composition

among sites (Leibold and Mikkelson 2002; Koleff et al.

2003). However, we pondered why the ecological charac-

teristics of a metacommunity, drainage basin area, and

latitude did not affect variation in the three elements of

metacommunity structure. A reason to this lack of rela-

tionship may be that the factors underlying variation in

the three elements of metacommunity structure should per-

haps not be inferred too strongly in isolation, because it

is their combined information which distinguishes differ-

ent metacommunity types (Leibold & Mikkelson 2002;

Presley et al. 2010). Despite this notion, the individual

metrics are also useful, as indicated by the expected

relationship between turnover and multiple site beta

diversity.

We observed six metacommunity types following the

classification proposed by Presley et al. (2010). Clement-

sian and quasi-nested metacommunity types prevailed in

our study systems, whereas quasi-Clementsian, Gleaso-

nian, and quasi-Gleasonian were less frequent. These find-

ings cannot be easily associated with previous findings

from our study area. For example, Heino and Soininen

(2005) used a combination of different ordination meth-

ods, indices of nestedness, and indices of co-occurrence

and found that the stream diatom dataset they analyzed

showed multiple statistically significant structural patterns

(e.g., there were more mutually exclusive pairs of species

than expected by chance). Their interpretations were

hampered by the absence of an objective means to choose

which metacommunity pattern fitted best the empirical

data. Furthermore, previous metacommunity studies in

freshwater systems have frequently found significant nest-

edness (Heino et al. 2010; Soininen and K€ong€as 2012)

and significant negative co-occurrence (McCreadie and

Bedwell 2013; Larsen and Ormerod 2014) for various

organismal groups and ecosystem types. Hence, it was

surprising that none of our metacommunities was associ-

ated with truly nested or checkerboard metacommunity

types. An obvious reason to the differences between many

earlier inferences and our present study is likely to be

related to differences in statistical methodology and the

fact that the EMS approach focuses on a single major gra-

dient in the data, whereas various nestedness and co-

occurrence indices examine patterns in the whole site-by-

species matrix (Leibold and Mikkelson 2002; Presley et al.

2010). However, the EMS approach provides an objective

means to assess the best fit of empirical data with meta-

community types because it compares several alternatives

at the same time (Meynard et al. 2013; Dallas and Presley

2014).

Metacommunity studies utilizing the EMS approach

have rarely been conducted in freshwater systems (Er}os

et al. 2014; Fernandes et al. 2014), and no study has com-

pared bacteria, algae, macrophytes, invertebrates, and fish

in the same comparative study. A previous study showed

that there are geographical gradients in the prevalence of

different metacommunity types of lake fish (Henriques-

Silva et al. 2013). Henriques-Silva et al. (2013) found that

Clementsian fish metacommunities prevailed in southern

drainage basins in their Canadian study area, whereas

nested metacommunities were more common in more

northerly drainage basins. In our present study, variation

in metacommunity types did not show a clear relation-

ship with latitude, a finding which did not support our a

priori hypothesis of geographical variation in metacom-

munity types. Instead, various metacommunity types

occurred along the 1300 km latitudinal gradient in our

study area. Along that latitudinal gradient, almost all cli-

matic, vegetation, and geomorphological features vary

strongly (Heino and Alahuhta 2015). Those environmen-

tal features affect regional species pools, drainage basin

characteristics, and may eventually affect variation in

metacommunity structuring (e.g., Heino et al. 2010).

Alternatively, those features may make the situation

unique for each dataset depending on the organismal

group and underlying ecological conditions in a drainage

basin (Heino et al. 2012; Soininen and K€ong€as 2012).

A different way of reasoning is also possible. For example,

the fact that we included both lotic and lentic systems in

our study may have decreased potential for generaliza-

tions in comparison with studies focused on a single

Table 4. Contingency table of taxonomic groups versus the six observed metacommunity types. N = 44 metacommunities. Q = quasi.

Group Clementsian Gleasonian Q-Clementsian Q-Gleasonian Q-Nested Random Total

Algae 4 4 1 1 2 2 14

Bacteria 1 0 0 0 4 1 6

Invertebrates 3 1 0 2 3 3 12

Macrophytes 2 0 3 1 0 2 8

Vertebrates 1 0 1 0 2 0 4

Total 11 5 5 4 11 8 44
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ecosystem type only (cf. Henriques-Silva et al. 2013). In

fact, in a related study where we analyzed data for bacte-

ria, diatoms, bryophytes, and invertebrates surveyed at

the same 70 stream sites in three drainage basins, we

could observe clearer latitudinal patterns (Heino et al.

2015b). In that study, all organismal groups in the north-

ernmost drainage basin (70°N) were associated with

Clementsian metacommunity type, whereas Gleasonian

and quasi-Gleasonian metacommunity types prevailed in

the two southernmost drainage basins (66°N). However,

even though there were similarities between those four

groups of stream organisms in the geographical variation

of metacommunity types, the underlying local environ-

mental drivers varied among the organismal groups (Hei-

no et al. 2015b).

It is also possible that ecological correlates other than lat-

itude are more clearly associated with the observed meta-

community types. The most important ecological correlate

related to variation in the metacommunity types was the

first metacommunity trait component (i.e., PCoA axis 1),

which portrayed variation from lotic–benthic producer

metacommunities to lentic–pelagic predator metacommu-

nities. This finding partly corroborated our second and

third hypotheses that ecosystem type, life form, and trophic

group of organisms are associated with metacommunity

type. Decoupling the individual effects of those three fea-

tures is difficult because they are intercorrelated. For exam-

ple, pelagic organisms were absent in our stream datasets.

Pelagic organisms are also generally less common in lotic

than lentic systems. In contrast, we found little support for

our first hypothesis about the relationship between ran-

domness and body size (Soininen et al. 2013), although

none of the four vertebrate datasets fitted best with random

metacommunity type (cf. bacteria through algae and mac-

rophytes to vertebrates; Table 4). It is possible, however,

that there is no linear relationship between body size and

metacommunity type, but instead that the metacommuni-

ties of large organisms, such as fish, are less prone to show

randomness than invertebrates, plants or microorganisms

in freshwater systems. Our findings thus suggest some rela-

tionships among metacommunity types and their underly-

ing ecological correlates, although one might expect even

clearer patterns across so large variations in ecosystem

types, life forms, and body sizes in our large set of meta-

communities.

The metacommunity types best predicted to the correct

type were Clementsian, Gleasonian, and quasi-nested

metacommunity types. Clementsian and quasi-nested

metacommunity types represent almost opposite ends

with regard to species turnover among localities (Leibold

& Mikkelson 2002; Presley and Willig 2010), and hence,

it was not surprising that the levels of beta diversity dif-

fered between these metacommunity types. Furthermore,

the ecological correlates of metacommunities also dis-

criminated among these three metacommunity types, and

especially Gleasonian and quasi-nested metacommunities

seemed to differ in this respect. Gleasonian metacommu-

nities were more likely to be represented by lotic organ-

isms, while quasi-nested metacommunities were more

likely to be composed of lentic organisms, including fin-

gernail clam, snail, and fish (Appendix S7). This finding

may be related to the fact that communities in island-like

systems, such as lakes, may show ordered extinction–colo-
nization dynamics that often underlie nested patterns

along ecosystem size and isolation gradients (Wright et al.

1998). In contrast, communities in more continuous sys-

tems, such as streams, may show less ordered variations

reflected by the individualistic responses of species to

multiple environmental gradients (Heino 2013). Although

our results do not provide absolutely clear picture of the

relationships among beta diversity, metacommunity traits,

and metacommunity types, they at least suggest that

potential differences between those metacommunity types

are worth additional studies.

Our results suggest that broad generalizations are possi-

ble to attain in community ecology, although many deter-

ministic and stochastic factors are active simultaneously

and affect local community structure (Lawton 1999) and

metacommunity organization (Leibold et al. 2004). We

presumed that patterns emerging at the level of entire

metacommunities would disregard the local-scale contin-

gencies and lead to patterns that are more easily inter-

pretable. However, our present results also emphasize the

need to admit the potential complexity of inferences in

community ecology. Hence, community ecologists should

also focus on factors responsible for causing context

dependency, such as (1) different responses of different

organismal groups to ecological gradients in the same

drainage basin (Beisner et al. 2006); (2) the responses of

the same organismal group to different ecological gradi-

ents in different drainage basins (Henriques-Silva et al.

2013); and (3) differences in the responses of the same

organismal group to the physiographic templates among

major ecosystem types (e.g., streams versus lakes). Our

perception may also be weakened by the fact that the

metacommunity patterns of the same organismal group

based on sampling the same set of sites may vary in time

(Er}os et al. 2014; Fernandes et al. 2014). We acknowledge

that testing these ideas more directly would have entailed

inclusion of directly comparable information about the

environmental conditions of all sites in each metacommu-

nity (Heino et al. 2015b). However, this would have been

highly challenging for such versatility of organisms, eco-

systems, and drainage basins we compared in this study.

To this end, we emphasize that all metacommunity types

are worth consideration in ecological studies, and that
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multiple explanations are likely as to the structuring of

local communities and metacommunities.
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