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Abstract
Cumulative psychophysical evidence suggests that the shape of closed contours is ana-

lysed by means of their radial frequency components (RFC). However, neurophysiological

evidence for RFC-based representations is still missing. We investigated the representation

of radial frequency in the human visual cortex with functional magnetic resonance imaging.

We parametrically varied the radial frequency, amplitude and local curvature of contour

shapes. The stimuli evoked clear responses across visual areas in the univariate analysis,

but the response magnitude did not depend on radial frequency or local curvature. Search-

light-based, multivariate representational similarity analysis revealed RFC specific

response patterns in areas V2d, V3d, V3AB, and IPS0. Interestingly, RFC-specific repre-

sentations were not found in hV4 or LO, traditionally associated with visual shape analysis.

The modulation amplitude of the shapes did not affect the responses in any visual area.

Local curvature, SF-spectrum and contrast energy related representations were found

across visual areas but without similar specificity for visual area that was found for RFC.

The results suggest that the radial frequency of a closed contour is one of the cortical shape

analysis dimensions, represented in the early and mid-level visual areas.

Author Summary

Current views suggest that neural representations of the visual environment are built from
combinations of basis functions. For low-level visual feature analysis these basis functions
are relatively well understood. It is not yet known, however, how primary visual features
are combined into higher-level representations of visual objects. Psychophysical evidence
suggests that visual shapes are perceived on the basis of the radial frequency components
of the shape contour. We investigated whether human visual cortex contains representa-
tions of radial frequency components. Our results show that the neural mechanisms that
utilize radial frequency are located in the early and intermediate visual areas, and provide
further support for the idea of radial frequency based representations in shape perception.
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This suggests that radial frequency representations might be one link between low-level
visual feature analysis and high-level object shape representations.

Introduction
To psychophysically investigate contour shape processing beyond local Gabor-like analysis
Wilkinson et al. [1] introduced radial frequency patterns (Fig 1A), closed contour shapes
formed by sinusoidally modulating the radius of a base circle (Fig 1C). Any closed shape, such
as the outline of human face, can be constructed with multiple radial frequency components
(RFC) [2]. Wilkinson et al. [1] showed that human observers are extremely sensitive in detect-
ing shape deformation from circularity, with visual acuity exceeding the spatial resolution of
the retina. Psychophysical studies have provided converging evidence that visual system relies
on global shape analysis of these patterns [1, 3–10]. Experiments using psychophysical meth-
ods of adaptation [11, 12], masking [13], and sub-threshold summation [6] suggested that

Fig 1. Stimuli. A)Radial frequency patterns with different radial frequencies (3–6) and amplitudes (A1-4). B) All the different shapes were presented in four
different orientations (polar phases 0, 90, 180 or 270 deg). In total, 65 different stimuli were used, circles and 64 modulated shapes (4 RFCs x 4 amplitudes x
4 orientations). C)RFC patterns are constructed by modulating a base circle with radial sine function.D) The concave and convex curvatures were calculated
at the trough and peak, respectively, of the modulation function. Amplitude refers to the amount of modulation relative to the radius of base circle.

doi:10.1371/journal.pcbi.1004719.g001
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shape analysis of these patterns are RFC specific. This indicates that closed contour shapes are
analysed—similarly to local spatial frequency and orientation—via narrow-band radial fre-
quency channels. The neurophysiological evidence for RFC-based shape representations is,
however, still missing.

In previous functional magnetic resonance imaging (fMRI) studies, shape representations
have been studied with circular gratings and Gabor arrays. Radial and concentric gratings [14]
as well as Gabor flow-fields that contain global shape [15] evoke stronger responses in mid-
level areas V3 and hV4 than in primary visual cortex (V1) or area V2. Lateral occipital complex
(LOC) is also associated with processing of visual objects [16–19] and contours [20]. Human
fMRI results are consistent with single-cell recording studies in macaque monkeys that show
selectivity for complex shapes in areas V2 [21–24] and V4 [23, 25–29] although complex shape
units have been reported also from area V1 [23, 30].

The aim of this work is to test the hypothesis emerging from psychophysical evidence that
intermediate shape analysis contains representations of contour RFC. We measured blood oxy-
genation level dependent (BOLD) responses from the human visual cortex to parametric varia-
tion of radial frequency and modulation amplitude of closed contours (Fig 1A). The measured
BOLD-responses were analysed with multivariate representational similarity analysis (RSA)
[31]. In RSA, correlations between activity patterns evoked by different stimuli are calculated
to construct representational dissimilarity matrices (RDMs). To characterize response profiles
for different visual areas, the measured RDMs were compared to model RDMs based on stimu-
lus radial frequency, modulation amplitude, local curvature, spatial frequency spectrum and
contrast energy. We used a searchlight approach [32] that makes no assumption about loca-
tion, but instead the whole cortex is scanned voxel-by-voxel to find the stimulus-specific infor-
mation. We found RFC specific response patterns and our results suggest that mid-level visual
areas V2d, V3d, V3AB, and IPS0 contain radial frequency based representations of contour
shapes.

Results

Attention task
During the measurements, the participants performed a demanding RSVP task at the fixation
[18] to control for attention and to ensure that the participant did not attend to any specific
shape or part of the contour. The percentage of correct responses varied, both individually
and between runs, from 35 to 80%, but was significantly above the chance level of 25% correct
(t(10) = 6.124,p< .001). The average of correct responses across participants was 50%.

BOLD signal changes
First we investigated the activity evoked by our shape stimuli by calculating average activity
within the searchlight sphere, each with radius of 3 voxels. This analysis is comparable to stan-
dard univariate voxel-wise analysis with smoothing. As expected, the stimuli (all modulated
shapes averaged) evoked clear clusters of activity in all mapped visual areas (Fig 2A). Modu-
lated shapes evoked slightly larger activity than circular shapes in all visual areas (Fig 2B), but
the difference was statistically significant only in areas V3v, VO1, V3d, and V3AB (Table 1A).
The difference in activation is probably due to adaptation (circles were presented more often)
or contrast energy (circles had shortest perimeter). The response magnitude varied signifi-
cantly across areas (Table 1B) and largest responses for both circles and modulated shapes
were found in areas V3d, hV4, VO1, V3AB, LO and TO (Fig 2B). Thus our stimuli well acti-
vated areas known to be important for shape processing. The amount of activation slightly
increased as a function of local curvature, but the increase was not statistically significant
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(Table 1B and Fig 2C). The amount of activation also slightly decreased as a function radial fre-
quency, but the decrease was not statistically significant (Table 1B and Fig 2D). There were no
significant interactions and the activation across visual areas did not depend on the local curva-
ture or the radial frequency of the stimulus (Table 1B). In sum, the stimuli evoked clear
responses across visual areas, but the amount of signal change did not depend on the stimulus
parameters.

Representational similarity analysis of the BOLD signal
Next we investigated if any of the areas represented specific contour shape information. We
tested whether the response profiles in any visual area resembled response profiles predicted
on the basis of different stimulus parameters: radial frequency, concave curvature, convex cur-
vature, and modulation amplitude. Within each searchlight we calculated a representational
dissimilarity matrix (RDM) by cross-correlating the response patterns for the 16 modulated
shapes, and compared the measured RDMs to model RDMs based on shape parameters

Fig 2. Activity across visual areas. A)Within the searchlight, t-value for average activity across different modulated shapes was calculated for each voxel
and for each participant. Median t-values across participants are shown on the flattened Freesurfer average surface. Left and right hemispheres are on the
left and right sides, respectively. B) Signal changes for circles and modulated shapes in different visual areas.C) Signal changes as a function of local
curvature. Value 0.35 depicts circle shape.D) Signal changes as a function of radial frequency in different visual areas.

doi:10.1371/journal.pcbi.1004719.g002

Radial Frequency Analysis in the Visual Cortex

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004719 February 11, 2016 4 / 18



Table 1. Statistical tests.

Difference between Area t-test p Fig

A Signal Changes Modulated Shapes vs. Circles V1 t(10) = 1.497 p = .085 2B

V2v t(10) = 1.411 p = .084 2B

V2d t(10) = 1.741 p = .112 2B

V3v t(10) = 2.073 p = .032* 2B

V3d t(10) = 2.334 p = .021* 2B

hV4 t(10) = 1.367 p = .105 2B

VO1 t(10) = 2.990 p = .007** 2B

V3AB t(10) = 2.334 p = .021* 2B

IPS0 t(10) = 1.259 p = .118 2B

LO t(10) = 1.452 p = .088 2B

TO t(10) = 1.368 p = .105 2B

V1 t(10) = 1.497 p = .085 2B

Effect of ANOVA p Effect size Fig

B Signal Changes Visual Area F(3.4,33.7) = 4.717 p = .006** Z2p = 0.32¤ 2

Local Curvature F(2.5, 25.2) = 0.156 p = .898 Z2p = 0.02 2C

Radial Frequency F(2.5,24.9) = 0.680 p = .547 Z2p = 0.06 2D

Interaction: Area x Curvature F(5.1,50.7) = 1.336 p = .264 Z2p = 0.12 2C

Interaction: Area x Radial Frequency F(5.8,58.2) = 1.101 p = .368 Z2p = 0.10 2D

Effect of Model ANOVA p Effect size Fig

C Correlation Hemishpere RFC F(1,10) = 0.561 p = .471 Z2p = 0.05 5A

Visual area RFC F(3.2, 32.0) = 3.719 p = .019* Z2p = 0.27¤ 5A and 5B

Interaction: Hemisphere x Area RFC F(3.6,36.2) = 0.404 p = .786 Z2p = 0.04 5A

Visual area SF F(3.2,32.0) = 5.799 p = .002** Z2p = 0.37¤ 5B

Visual area Energy F(4.0,39.5) = 3.737 p = .012* Z2p = 0.27¤ 5B

Visual area Amplitude F(3.0,30.5) = 0.383 p = .769 Z2p = 0.04 5B

Visual area Concave F(2.8,28.4) = 0.803 p = .497 Z2p = 0.07 5B

Visual area Convex F(4.0,40.4) = 2.148 p = .092 Z2p = 0.18 5B

RFC model, higher than zero Area t-test p Fig

D Correlation Left Hemisphere V2d t(10) = 2.207 p = .026* 5A

V3d t(10) = 2.436 p = .018* 5A

V3AB t(10) = 2.878 p = .008** 5A

IPS0 t(10) = 2.672 p = .012* 5A

Right Hemisphere V2d t(10) = 1.896 p = .044* 5A

V3d t(10) = 2.001 p = .037* 5A

V3AB t(10) = 2.038 p = .035* 5A

IPS0 t(10) = 1.865 p = .046* 5A

Difference between Model t-test p Fig

E Correlation V2d/V3d vs. V2v/V3v RFC t(10) = 2.205 p = .05* 5C

V3AB/IPS0 vs. hV4/VO1 RFC t(10) = 3.395 p = .007** 5C

V2d/V3d vs. V2v/V3v SF t(10) = -0.270 p = .793 5C

V3AB/IPS0 vs. hV4/VO1 SF t(10) = 2.057 p = .067 5C

V2d/V3d vs. V2v/V3v Convex t(10) = 2.085 p = .064 5C

V3AB/IPS0 vs. hV4/VO1 Convex t(10) = 2.126 p = .059 5C

RFC vs. SF model t(10) = 2.045 p = .034* 5C

Effect of Model ANOVA p Effect size

F Regression, R2 Visual area RFC F(2.2, 22.3) = 3.718 p = .036* Z2p = 0.27¤

(Continued)
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(Fig 3). Visually comparing the measured RDMs (S1 Fig) with the model RDMs (Fig 3) does
not reveal any model superior to other models. Visual inspection suggests, however, that there
are differences across visual areas and non-random structures in the measured RDMs (S1 Fig)
that might be explained by the stimulus parameters.

Next, the similarity between the measured and model RDMs was quantified by calculating
the correlation between the measured RDMs and model RDMs within the spherical search-
lights, and averaged across participants. Fig 4 shows these correlation maps in visual cortex for
each model RDM. In general, the response profile maps (Fig 4) resembled the activity maps
(Fig 2A), that is, the strongest correlations between brain and model RDMs were found across
visual cortices approximately at the same retinotopic locations as the highest activity. However,
LO2, TO1 and TO2, while robustly activated in the univariate analysis, were not captured by
any of the models in the multivariate analysis.

The highest correlations (>three standard deviations above the mean) between the mea-
sured RDM and the RFC-model were found in visual areas V1, V2v, V2d, V3d, V3AB, IPS0,
and some voxels in area LO1 (Fig 4A) suggesting that the activation patterns in these areas

Table 1. (Continued)

Visual area Convex F(2.3,23.2) = 0.899 p = .434 Z2p = 0.08

*p < .05

**p < .01
¤large effect size

doi:10.1371/journal.pcbi.1004719.t001

Fig 3. Model andmeasured RDMs. The RDMs describe the dissimilarity of the response patterns across different shapes. Five models were constructed
based on the classification of the stimuli to four classes (Table 2) and one model was constructed by cross-correlating stimulus SF spectrum. Model RDMs
for Radial Frequency, Amplitude, Convex Curvature, Contrast Energy, Spatial Frequency Spectrum, and Concave Curvature, and one example of the
measured RDM from visual area V3AB. See S1 Fig for examples of measured RDMs in all areas.

doi:10.1371/journal.pcbi.1004719.g003
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carry information about the RFC of the stimulus contour. For the amplitude of the shape mod-
ulation, no clear peaks in correlation were found in any visual area (Fig 4B). For convex curva-
ture, clusters of high correlations were found in areas V1, V2v, V3AB, and in VO1 in right
hemisphere (Fig 4C), and for concave curvature, high correlations were found in few voxels in
V1 (Fig 4D).

Fig 4. Response profile maps.Correlation maps for Radial Frequency (A), Amplitude (B), Convex Curvature (C), Concave Curvature (D), Spatial
Frequency spectrum (E), and Contrast Energy (F). Within the searchlight, correlation with model RDMs was calculated for each voxel. Average correlations,
larger than three standard deviations above the mean, across participants are shown on the flattened Freesurfer average surface. Left and right hemispheres
on the left and right sides, respectively.

doi:10.1371/journal.pcbi.1004719.g004
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We also calculated correlation maps for spatial frequency and contrast energy. As the radial
frequency of the contour and the amplitude of the modulation are increased, the SF-spectrum
of the stimulus shifts slightly to higher frequencies. The amplitude modulates the SF-spectrum
more than the radial frequency. As expected, the pattern of activity in areas V1-V3, V3AB,
IPS0, and V01 strongly correlated with the SF-spectrum of the stimuli (Fig 4D). Similarly the
measured RDMs correlated with contrast energy in areas V1-V3, V3AB, and IPS0 (Fig 4E).
Thus, the low-level visual factors—contrast energy and spatial frequency—predicted the dis-
similarity of the response patterns non-selectively across visual cortex.

Visual area analysis
To further quantify the differences between response profiles across visual areas, we conducted
a ROI analysis based on the probability atlas of visual areas [33]. In the ROI analysis, areas LO1
and LO2 that are a part of LOC [18], as well as areas TO1 and TO2, were combined. Further,
we used the univariate activity maps (Fig 2A) as functional localizer, that is, for each individual
we included only voxels that were clearly activated by the stimuli (t-value> 4.0). Separate
repeated measures ANOVAs were conducted for every model.

The average correlation of the measured pattern and RFC-model did not differ across the
left and right hemispheres (Table 1C and Fig 5A). However, the average correlation with RFC-
model varied significantly across visual areas (Table 1C and Fig 5A). The highest correlations
(significantly above zero, p< .05, t-test) between the measured RDM and RFC model RDM
were in areas V2d, V3d, V3AB and IPS0, in both the left and the right hemispheres (Table 1D
and Fig 5A). That is, in these visual areas the measured response patterns carried information
about the radial frequency of the shape stimuli. The correlations in areas V1 and V2v were not

Fig 5. Visual area analysis. A) Average correlations with Radial Frequency model for different visual areas in the left and right hemispheres. B) Average
correlations with all models. Hemispheres have been averaged. Error bars depict standard error of mean across participants. C) Dorsal-Ventral difference.
Average correlation difference between dorsal (V2d, V3d, V3AB, IPS0) and ventral (V2v, V3v, hV3, VO1) visual areas for model RDMs. *p < .05 (t-test).

doi:10.1371/journal.pcbi.1004719.g005
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significantly above zero. In areas V3v, hV4, VO1, LO1/LO2 and TO1/TO2, the average correla-
tion with RFC-model was close to zero (Fig 5A). No significant interaction between the hemi-
sphere and visual area (Table 1C) was found for RFC model suggesting that radial frequency is
similarly represented in same visual areas in both hemispheres. Thus, the statistical analyses
confirm the selective spread of pattern correlations for radial frequency only for certain visual
areas, as was shown in the Fig 4A.

The effect of hemisphere was not significant for any model indicating robustness of the
result. The correlations varied significantly across visual areas also for SF and contrast energy,
but not for amplitude, concave curvature or convex curvature (Table 1C). The effect of SF and
contrast energy was expected since these are the primary factors that drive the low-level neural
responses. However, the modulation amplitude as such and the direction of local curvature
seem not to be represented specifically in any certain visual area. The interaction between the
hemisphere and visual area was not significant for any model, showing that response patterns
were similar in the same visual areas in both hemispheres.

Since no significant effects of hemisphere were found, the correlations for each model RDM
were averaged across hemispheres, and tested with t-tests (significantly above zero, p< .05) to
statistically confirm the spread of correlations across visual areas (shown in Fig 4). We used
probabilistic atlas to localize the visual areas and this might produce some uncertainty to classi-
fying areas close to each other. Therefore, nearby visual areas were averaged as follows: V1,
V2d/V3d, V3AB/IPS0, V2v/V3v, hV4/VO1, and LO/TO. The average correlation of the mea-
sured RDM with RFC model varied across areas and was significantly above zero in V2d/V3d
and V3AB/IPS0 (Fig 5B). The average correlation with Amplitude model RDMs was constantly
low and not significantly higher than zero in any of these areas. The average correlation to
other models remained high across most of the areas: correlation with SF and energy models
was significantly above zero in all areas, correlation with concave model was significantly
above zero in all areas except LO/TO, and correlation with convex models was significantly
above zero in all areas except hV4/VO1 and LO/TO (Fig 5B).

The clearest area specificity was found for radial frequency. This selectivity was further
quantified by comparing (paired sample t-test) the average correlation in dorsal and ventral
areas. Statistically significant difference between the ventral and dorsal part of areas V2 and
V3, as well as between areas V3AB/IPS0 and hV4/VO1 was found only for RFC, but not for
other models (Table 1E). The average difference across all dorsal (V2d/V3d/V3AB/IPS0) and
ventral (V2v/V3v, hV4/VO1) areas was largest for radial frequency (Fig 5C), and this differ-
ence was significantly higher than for SF (Table 1E).

Searchlight RSA regression analysis
To further test the independent role of different stimulus parameters, a multiple linear regres-
sion analysis within each searchlight was conducted. The regression model contained all six
model RDMs: radial frequency, amplitude, convex and concave curvature, contrast energy, and
SF spectrum. The average R2 was 0.11, and varied between 0.09 and 0.13 depending on the
visual area. Thus, all the models explained 11% of the total variability within the searchlights.
Next we conducted regression analysis with leave-one-out method and calculated the change
of R2 values relative to the full model. Removing the SF model from the regressors decreased
R2 values ca. 40%. For other models, the decrease was 7–16%. Thus most of the explained vari-
ability was due to the SF model. This was expected since highest correlations were found for
the SF model, and the SF model contains the same information of the stimulus variability as
the other models combined. Next we replicated the regression analyses without the SF model.
The average R2 of the full model decreased to 0.06. In the leave-one-out analysis, largest
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decrease of R2 values were found for convex curvature (29%) and radial frequency (23%). How-
ever, only for radial frequency the relative decrease of R2 values varied significantly across areas
(Table 1F) and was more prominent in dorsal (V2d/V3d and V3AB/IPS0) than in ventral
(V2v/V3v and hV4/VO1) areas. Thus, a similar specificity for RFC across visual areas was
found in the regression analysis as in the correlation analysis.

Discussion
Multivariate representational similarity analysis revealed that the RFC of the contour is repre-
sented in human visual areas V2d, V3d, V3AB and IPS0. Surprisingly, the areas hV4 and LO1/
LO2, known to be important in global shape processing [15, 19, 20], while responding to the
stimuli, did not show pattern selectivity for radial frequency. Low-level visual properties—SF
spectrum and contrast energy–did not explain our results, since these parameters did not show
similar specificity across visual areas as the radial frequency. Our results provide evidence for
radial frequency based representations which could be used in contour shape processing, and
in particular, we suggest that RFC representations are a mid-level link between local contour
analysis in V1 and more comprehensive global shape analysis in areas such as hV4 and LOC.
Alternatively, the radial frequency information in the early and intermediate areas may be uti-
lised more directly in the higher level object sensitive areas with no additional middle steps.

Most previous fMRI studies on contour shape perception have compared BOLD-responses
to different shapes, i.e., circular vs. parallel gratings [14] or global circular shapes vs. only local
curvatures [15]. In the former study hV4 and FFA showed selectivity for concentric shapes,
and in the latter study visual areas V3, VP and hV4 showed strongest responses to circularity.
Consistent with these studies, our modulated shapes evoked larger responses than circular
shapes in univariate analysis of mean signal change, i.e. in the overall fMRI response. The
response magnitude did not, however, depend on the local curvature or radial frequency. In
order to investigate the role of different stimulus parameters on shape representations, we
investigated the multivariate similarity structure [31, 34] of the activity patterns evoked by
parametric variation of the contour shapes. The multi-voxel pattern analysis is more sensitive
than direct comparison of average responses within the visual area, because the multidimen-
sional pattern of BOLD-responses across voxels contains more information about the response
than the averaged one-dimensional measure. Further, the searchlight based approach [32]
makes no assumptions where the stimulus specific activation patterns should be found. Our
results provide further evidence that radial frequency is used in the contour shape analysis in
the visual cortex. Furthermore, our results suggest that RFC based representations are located
in visual areas V2d, V3d, V3AB and IPS0. For areas hV4 and LO1/LO2 we did not find evi-
dence for RFC based representations.

Integration of local visual features to contours likely involves visual areas at different pro-
cessing levels [35, 36]. The representations of contour convexity and concavity, as well as the
representations of global shape are likely located in visual areas V3AB, hV4 and LOC [14, 15,
18, 20, 37–40]. In agreement with these studies, largest univariate responses in our study
included areas V3AB, hV4 and LO1/LO2. However, the multivariate patterns were different
between these areas. Our results suggest that the global closed-shape representations in V3AB
are based on the radial frequency of the contour, but we did not find similar RFC based activity
patterns in hV4 or LO1/LO2.

The lack of pattern specificity in hV4 and LOC was not due to our stimuli as such, since
they robustly activated also these areas. One possibility is that shape representations or neurons
encoding shapes in hV4 are so close to each other that voxel-level activity patterns measured
with fMRI cannot discriminate them or the MVPA methods are not sensitive enough. This
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would suggest different structure for V3AB and hV4 neurons/representations since we did find
significant voxel-level pattern correlations in V3AB. In primates, cell density [41] and micro-
vascular density [42] vary across cortical areas which might affect BOLD-responses, and thus
this is a possible explanation for the difference between the areas we found. Future studies
could aim to image the RFC representations in these areas with smaller voxel size or higher
spatial resolution using high-field fMRI. Second possible explanation for the difference
between the visual areas is that fMRI might be particularly sensitive for feedback [43, 44]. Mul-
tivariate pattern reflects data distributed in large part of a functional area, whereas the univari-
ate pattern is sensitive to more local changes. In this scheme the multivariate analysis might
better see the feedback effects which typically have much wider distribution than the classical
receptive field [45] and this would emphasize the early areas as well as give different distribu-
tion in the mid-level areas. Third possibility is that—since the RFC based representations are
mainly limited to closed shapes—areas that represent more complex visual objects, such as
hV4 and LOC, might simply use some other type of shape encoding.

Instead of individual functional localization of visual areas, we used probability atlas of
visual areas measured in a separate study [33]. The average location of early visual areas (e.g.,
V1-V3) is more accurate than subsequent visual areas (e.g., hV4, LO1/LO2). Hence there
might be more locational variability in the activity patterns in hV4 and LO1/LO2 across indi-
viduals and this might explain the absence of RFC specific activity patterns. However, we did
find significant correlation between measured patterns and model RDMs for SF Spectrum and
Contrast Energy also in areas hV4/VO1. In our searchlight analysis the activity patterns are
smoothed with the spherical volume of searchlight, and we calculated an average within the
ROIs. This analysis controls for small deviations in exact locations of activity patterns. Further-
more, all mapped visual areas, including hV4 and LO1/LO2, were activated by our stimuli and
these univariate activation maps were used as functional localizers in the ROI analysis of RDM
correlations. This emphasizes voxels across visual areas that were indeed processing our sti-
muli. Still, some locational uncertainties in our results remain. However, the locational uncer-
tainties are more likely between nearby areas, e.g., between areas V2 and V3, than areas further
away, such as between areas V3AB and hV4.

Another limitation of our study is the relatively low correlations found between measured
and model RDMs. While the correlations were quite low, the results were systematic across
participants, and the effect sizes (of the ANOVAs testing the effect of visual area) were large
(Table 1). Instead of the correlation values as such, the structure of correlations across studied
events was the main interest in our study. These structures reveal information of the represen-
tational geometry that can be compared to predictions based on different models, and we
found clear differences between the models based on RFC of the contour and models based on
the other stimulus parameters. Further, most of the previous RSA studies have investigated
representational similarities across object categories. In contrast, we studied representational
similarities of relatively similar shapes within a category, which could also explain the low cor-
relation values we obtained.

The asymmetry between the dorsal and ventral areas for RFC model could be related to the
ecologically justified and well known difference between the upper and lower visual fields [46].
Anatomically, there is slightly more cortex representing the lower than the upper visual field in
macaque monkey V1 [47], physiologically stronger responses in MEG in humans [48, 49], and
better behavioral performance in humans [46, 50]. In line with these earlier findings, our
results suggest that radial frequency representations are biased towards cortical areas with
lower visual field representations. This finding can be contributed by the relative cortical size
of the lower vs. the upper visual field representations, and differences in the represented eccen-
tricities in dorsal and ventral areas. However, we did not find similar asymmetry for contrast
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energy and spatial frequency. The anisotropy between IPS0/V3AB and hV4/VO1 areas cannot
be explained by retinotopy, because all these areas comprise half-field representations, i.e. both
the upper and lower visual fields [51]. Consistent with our results, lower visual field advantage
was recently demonstrated for perception of RFC shape stimuli whereas no similar asymmetry
was found for orientation or curvature discrimination [52].

The radial frequency and amplitude of the modulation determine the shape of an RFC pat-
tern. However, several other parameters vary as the RF and amplitude of the stimulus is varied.
Increasing the amplitude and the radial frequency increases the contour length and contrast
energy and shifts the SF spectrum to higher SFs. The RDMmodels based on these low-level
visual parameters did correlate with the measured patterns across visual areas but without sim-
ilar specificity as was found for radial frequency. Thus the results found with the RFC-model
are not due to these low level factors but reflect the different activity patterns evoked by the
parametric modulation of RFC. For the amplitude of modulation the average correlation was
constantly near zero, as expected. The amplitude as such is not a critical parameter for visual
shape analysis. Slightly higher correlations were found for convex than concave curvature, but
the correlations did not vary much across visual areas for these parameters. Higher correlations
for convex curvature might indicate more critical role of convex than concave forms and angles
in shape analysis, as previously suggested [4, 13, 28, 40, 53, 54].

In our experiment, all the stimuli were presented in four different orientations. As the orien-
tation of the shape was varied, the shapes activated slightly different retinotopic locations.
However, the RSA analysis was conducted for SPMT-images in which the shapes in different
orientations had been averaged. Thus the role of different retinotopic locations was controlled
already in GLM analysis. We did a separate control analysis with a different GLMmodel
(shapes averaged across different amplitudes instead of orientations) and calculated correlation
maps for the orientation and the retinotopic locations. As expected, the correlation map for the
orientation as such did not reveal any peaks in any visual area. The correlation map for retino-
topy revealed clear activity peaks across visual areas and was highly similar to the correlation
map for the SF spectrum.

Recently, radial frequency patterns and multi-voxel pattern analyses have been used to
study perception of RFC motion trajectories [55, 56]. The motion trajectory of a dot could be
decomposed from areas V2, V3 and MT [55, 56]. In contrast, the shape of the static RFC pat-
terns could not be decoded in these areas, but only in posterior parietal areas and in LOC [56].
In contrast, we found RFC specific response profiles in areas V2-V3, and V3AB. There are sev-
eral differences in our and Gorbet et al. [56] experimental setups and data analysis which likely
explain the different results. Most likely our setup was more sensitive to differences between
RFCs because we had much higher number of stimulus presentations, and we compared
response patterns to all different RFCs simultaneously, instead of comparing only two RFCs at
a time [56]. Nevertheless, both our and Gorbet et al. [55, 56] studies agree in that radial fre-
quency is used in the visual shape analysis in areas V2 and V3, but not in area hV4.

The prevailing theoretical view suggests that neural representation of the visual environ-
ment is built from a sparse set of basis functions whose combinations constitute the population
code for perceptual representations [57, 58]. It is possible that the RFC representations, corre-
sponding to the relatively simple combinations of Gabors, provide a set of mid-level basis func-
tions for shape analysis. Our results provide further support for the idea of radial frequency
based representations in shape perception, and suggest that the neural mechanisms that utilize
radial frequency are located in the intermediate visual areas V2d, V3d, V3AB and IPS0, but
not in areas hV4 or LOC. This result places the radial frequency representations to relatively
early position in visual processing, presumably beyond Gabor analysis, but before object
identification.
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Materials and Methods

Ethics statement
The ethics committee of the Hospital District of Helsinki and Uusimaa had approved the
experiments (Coordinating ethics committee, Dnro 299/13/03/00/2010). The experiments
were conducted according to the declaration of Helsinki and participants gave written
informed consent before the measurements.

Participants
Eleven participants (one female), with normal or corrected-to-normal vision, participated in
the study. First and last author participated as subjects; the rest of the participants were naïve
to the purpose of the study.

Stimuli
The stimuli were radial frequency patterns (Fig 1A), which were constructed by sinusoidally
modulating (Fig 1C) the radius of a base circle [1]. The spatial profile of the contour was 4th

derivative of Gaussian and the peak spatial frequency of the contour was 1.57 c/deg (σ = 0.28
deg). The shapes were composed of four different radial frequencies, amplitudes (Fig 1A) and ori-
entations (Fig 1B). The radial frequencies were 3 (triangle), 4 (quadrilateral), 5 (pentagon) and
6 (hexagon) cycle/perimeter. The minimum and the maximum local curvature of the contour
depend on the radial frequency and the amplitude of the shape (equation 4 in [1]). The amplitude
of the shapes was varied so that the maximum local curvatures at the peak (point of maximum
curvature or convex curvature) and the trough (point of minimum curvature or concave curva-
ture) of the radial modulation (Fig 1D) were roughly equal across different radial frequencies
(Table 2). The amplitude varied between 0.0 and 0.46 in proportion to the radius, the maximum
concave curvature varied between -0.1 and -4.8 deg-1, and the maximum convex curvature varied
between 0.6 and 2.3 deg-1 (Table 2). Each stimulus was presented in four orientations, which cor-
responded to polar phases 0, 90, 180 and 270 deg (Fig 1B). In total there were 65 different stimuli
(circle + 4 radial frequencies x 4 amplitudes x 4 orientations). The rms-contrast (the standard
deviation of the luminance divided by the mean luminance) of the stimuli was 0.17, and same for
all the stimuli. The radius of the base circle was 2.86 deg and the stimulus maximum diameter
varied from 5.7 (circle) to 8.6 deg (radial frequency four with amplitude of 0.35).

fMRI data acquisition
The fMRI data were acquired with a Siemens MAGNETOM Skyra 3 T scanner (Siemens
Healthcare, Erlangen, Germany) equipped with a 30- or 32-channel receive only head coil.
Each measurement session started with a fast structural MR image with a 3D T1-weighted
sequence (in-plane resolution 1.8x1.8 mm, and 1.5 mm slice thickness). Then eight experimen-
tal runs were measured using a gradient-echo echo planar imaging sequence (TR = 1800 ms,
TE = 30 ms, flip angle = 60 deg, 64x64 acquisition matrix, FOV = 20 cm, 23 slices, 3.0 mm slice
thickness, resulting in 3.1 x 3.1 x 3.0 mm voxel size).

The fMRI data were analyzed with SPM8 Matlab toolbox [59] and Freesurfer [60] software
packages. The preprocessing comprised first the correction for the acquisition order of the
functional images and then for the head motion.

Procedure
Circles and 64 different contour shapes were presented in event-related design. In each run all
shapes were presented once, except circular stimulus, which was presented 16 times. In
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addition, 20 rest trials were included. In total, one run consisted of 100 events (20 rests + 16 cir-
cles + 64 modulated shapes). The duration of each stimulus was 300 ms and the duration of
each trial 2.4 seconds. Hence, the length of the run was 240 s (100�2.4s, corresponding to 135
volumes). Each run started with eight volumes, which were discarded from the analysis to
reach stable magnetization. Stimuli were presented with abrupt on/offset. In total, eight runs
were measured resulting in 800 stimulus presentations. The order of stimuli in each run was
optimally randomized [61] and the order of runs was randomized across participants. Each
radial frequency was presented 128 times (4 (amplitudes) x 4 (orientations) x 8 runs).

The shapes were presented at 10 deg eccentricity (at 43-cm viewing distance), one (same)
shape in each quadrant in order to have separable upper/lower and left/right visual field
responses in early visual areas. The participants performed a demanding RSVP attention task
at the fixation [18]. Five different letters (Z,L,N,T, and X; Arial-font) were rapidly presented at
fixation (150 ms/letter). The letter series contained 1–4 ‘X’-letters and the participants’ task
was to count the ‘X’s and report the number of ‘X’s during a 1 s break in every 5.4 seconds. The
letter task was used to control for participants attention. The letter task, instead of shape dis-
crimination task, was also used to avoid ceiling effects in behavioral performance since the con-
tour shapes were supra-threshold, far exceeding the contrast sensitivity and discrimination
thresholds of these patterns.

Data analysis
The general linear model (GLM) analysis included a design matrix where the data were mod-
elled with 17 effects of interest (1 for circle, 16 for different modulated shapes) and 8 nuisance
regressors (1 for RSVP-letters, 1 for responses to attention task, and 6 for head motion

Table 2. Stimulus parameters and classifications in model RDMs.

Stimulus Radial
frequency

RFC-
model

Concave
curvature

Concave
model

Convex
curvature

Convex
model

Amplitude Amplitude
model

Contrast
energy

Energy
model

1 3 1 -0.09 1 0.61 1 0.12 1 0.37 1

2 3 1 -0.85 2 0.77 1 0.24 3 0.61 3

3 3 1 -2.07 3 0.86 2 0.35 4 0.38 1

4 3 1 -4.61 4 0.92 2 0.47 4 0.54 2

5 4 2 -0.22 1 0.74 1 0.09 1 0.66 4

6 4 2 -1.07 2 1.02 2 0.18 2 0.54 2

7 4 2 -2.18 3 1.19 3 0.26 3 0.45 2

8 4 2 -4.10 4 1.33 3 0.35 4 0.57 3

9 5 3 -0.33 1 0.86 1 0.07 1 0.6 3

10 5 3 -1.25 2 1.25 3 0.14 2 0.68 4

11 5 3 -2.50 3 1.54 4 0.21 3 0.61 3

12 5 3 -4.24 4 1.77 4 0.28 4 0.29 1

13 6 4 -0.48 1 1.00 2 0.06 1 0.33 1

14 6 4 -1.55 2 1.52 3 0.12 2 0.71 4

15 6 4 -2.94 3 1.92 4 0.18 2 0.43 2

16 6 4 -4.77 4 2.25 4 0.24 3 0.82 4

Four different radial frequencies (3–6) and four different amplitudes were used. The amplitudes of the shapes were selected so that the local curvature

was roughly equal across different RFCs. Concave curvature refers to the local curvature at the troughs of the modulation function (Fig 1D) and convex

curvature refers to the local curvature at the peaks of the modulation function (Fig 1D). Stimulus parameter based model RDMs (Fig 3) were based on

classification of stimuli to four different classes.

doi:10.1371/journal.pcbi.1004719.t002
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parameters). Data were high-pass filtered at 1/200 Hz. SPMT-images were calculated for the 17
stimulus-related regressors, and corresponding BOLD signal changes for each voxel by divid-
ing the parameter estimates with mean response. In the experiment each shape was presented
in four different orientations. The orientation was omitted from the analysis and each shape
was modelled with one regressor. Separate control analysis confirmed that orientation as such
did not have significant effect on the measured activity patterns.

Next, we applied several searchlight analyses [32]. The radius of the spherical searchlight
was 3 voxels, resulting in an average search volume of 100 voxels (similar results were obtained
with smaller (70 voxels) and larger (270 voxels) searchlight volumes). First searchlight analysis
was conducted to find visual areas that were activated by the contour stimuli. For a univariate
activity map, comprising ca. 30000 voxels, we first centered the searchlight volume at each
voxel, and then calculated within the volume the T-value of average signal change across the
different shapes, i.e., stimulus-related regressors. The circle shape was omitted from the analy-
sis because it was presented more often than other shapes, and it evoked weaker responses than
modulated shapes. The same analysis was repeated for each participant. The result essentially
corresponds to classical activity map but with smoothing by the searchlight volume.

In the subsequent searchlight analyses, we calculated a representational dissimilarity matrix
(RDM; [31]) within each searchlight. The RDM comprised 1—Pearson correlation between the
response patterns for the 16 visual shapes (the circle shape was again omitted from the analy-
sis). The logic of the searchlight analysis is straightforward: If the multi-voxel response pattern,
contained within the spherical searchlight, carries information about a parameter, such as the
stimulus shape, then there should be high correlation between voxel response patterns for simi-
lar shapes and low correlation for dissimilar shapes. To find out what information the visual
areas were representing, the measured RDMs within the searchlights were compared to differ-
ent model RDMs [31, 62]. The comparison was quantified as Spearman correlation between
the measured and model RDMs. Since the RDMs are symmetric over the diagonal, only the
lower triangular parts of the matrices were used in the comparison. The searchlight RSA analy-
sis were conducted using the RSA toolbox [63].

Model RDMs
The RDMmodels for Radial Frequency Components (RCF), Amplitude, Concave and Convex
Curvature were constructed by classifying the stimuli according to the parameter of interest
(Fig 3; Table 2). In the RDM for RFC, for example, the stimuli are classified according to the
radial frequency of the stimulus (RFC 3–6), and nearby radial frequencies are expected to be
represented more similar than more distant radial frequencies. Thus, if the RFC of the shape is
represented in any visual area, then the activity patterns for the same RFCs are expected to be
more similar (higher correlation) than the activity patterns for different RFCs. A similar logic
applies to other features of the stimuli. Separate models for concave and convex local curvature
were used since previous studies have suggested different role of concavities and convexities in
shape perception [53] and in fMRI [40]. To control for low-level visual feature similarity
between the stimuli, two additional RDMmodels were calculated for Contrast Energy and Spa-
tial Frequency (SF) spectrum of the stimuli (Fig 3). For the Contrast Energy model, total con-
trast energy (sum of squared pixel contrast values) for each stimulus was calculated and
classified to create the model RDMs (Table 2). For the SF model, SF spectrum of each stimulus
was calculated and cross-correlated to create model RDM.

In total 7 searchlight maps (activity map + 6 RSA correlation maps) were calculated for
each participant. The individual searchlight maps were projected on the Freesurfer average cor-
tical surface, and averaged across participants. The visual areas were identified from the
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Freesurfer average surface on the basis of probability atlas of visual areas measured in the sepa-
rate study [33]. The statistical significance of the average signal changes and correlations across
participants were tested with repeated measures ANOVAs and t-tests. Greenhouse-Geisser
correction was used in ANOVAs when Mauchly's test of sphericity was significant.

Supporting Information
S1 Fig. Measured RDMs. A)Measured RDMs from different visual areas averaged across par-
ticipants. Visual evaluation of measured matrices does not reveal any clear structure compara-
ble to model RDMs (Fig 3) or clear differences between visual areas. B)Measured RDMs and
RFC model averaged to 4×4 matrices. These averaged RDMs were most similar with the RFC
model RDM in areas V3d (r=.32), IPS0 (r=.42) and LO (r=.42), but the correlations were not
statistically significant (permutation test).
(PDF)
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