
GPU Accelerated Gaussian Process Image Retrieval

Lasse Tyrväinen

Masters Thesis
UNIVERSITY OF HELSINKI
Department of Computer Science

Helsinki, April 18, 2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/43336278?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Faculty of Science Department of Computer Science

Lasse Tyrväinen

GPU Accelerated Gaussian Process Image Retrieval

Computer Science

Masters Thesis April 18, 2016 0

image search, reinforcement learning, CBIR, gaussian processes, multi-armed bandit, UCB, GPU

Learning a model over possible actions and using the learned model to maximize the obtained
reward is an integral part of many applications. Trying to simultaneously learn the model
by exploring state space and maximize the obtained reward using the learned model is an
exploitation-exploitation tradeoff. Gaussian process upper confidence bound (GB-UCB)
algorithm is an effective method for balancing between exploitation and exploration when
exploring spatially dependent data in n-dimensional space.

The balance between exploration and exploitation is required to limit the amount of
user feedback required to achieve good prediction result in our context-based image retrieval
system. The system starts with high amount of exploration and – as the confidence in the
model increases – it starts exploiting the gathered information to direct the search towards
better results.

While the implementation of the GP-UCB is quite straightforward, it has time complexity
of O(n3) which limits its use in near real-time applications. In this thesis I present our
reinforcement learning image retrieval system based on GP-UCB, with the focus on speed
requirements for interactive applications. I also show simple methods to speed up the algorithm
running time by doing some of the Gaussian process calculations on the GPU.

Tiedekunta — Fakultet — Faculty Laitos — Institution — Department

Tekijä — Författare — Author

Työn nimi — Arbetets titel — Title

Oppiaine — Läroämne — Subject

Työn laji — Arbetets art — Level Aika — Datum — Month and year Sivumäärä — Sidoantal — Number of pages

Tiivistelmä — Referat — Abstract

Avainsanat — Nyckelord — Keywords

Säilytyspaikka — Förvaringsställe — Where deposited

Muita tietoja — Övriga uppgifter — Additional information

HELSINGIN YLIOPISTO — HELSINGFORS UNIVERSITET — UNIVERSITY OF HELSINKI

Contents
1 Introduction 1

2 Image Retrieval 3
2.1 Content-Based Image Retrieval 3
2.2 Low-level Feature Extraction Methods 5
2.3 Semantic methods . 6

3 Reinforcement Learning 9
3.1 Exploration vs. Exploitation 10

3.1.1 Upper Confidence Bound Algorithms (UCBs) 11

4 Gaussian Process Regression 13
4.1 Bayesian methods . 13
4.2 Predicting with GP regression 15

5 Gaussian Process UCB Algorithm 17
5.1 Experimental Design Algorithm 17
5.2 GP-UCB Algorithm . 19
5.3 Regret Bounds . 19

6 GPU Acceleration 21
6.1 Nvidia Titan Architecture . 23
6.2 Energy efficiency . 25
6.3 CUDA Thread Organization 26
6.4 CUDA Memory Organization 29

7 GP-UCB Implementation 31
7.1 Time requirements . 32
7.2 CUDA kernel implementations 33

8 Results 35
8.1 Computation time . 36
8.2 Accuracy . 39

8.2.1 GPU Kernel accuracy 39
8.2.2 Gaussian Process Accuracy 43

9 Conclusions 45

References 46

ii

1 Introduction

The growing popularity of devices capable of photography has led to a boom
in the number of images taken around the world. Combined with widespread
access to Internet it has led to a situation where getting a specific image or
an image semantically and aesthetically near enough to the required content
is often simply a matter of finding one from the huge pool of online images.

Many are familiar with some more popular web image search engines,
such as Google Image Search, Bing Images and Flickr Search. All these
system combine context- and content based image search and function well
in a limited way, but fail when the user is looking for concepts they can not
easily translate into a text search or keywords.

Content based image retrieval is an active and complex research field,
and as such there are number of different systems which are state of the art
in their respective use cases. Short summary of different approaches and
some of these systems are introduced in Section 2.1.

Our image search implementation (IMSE) [1, 2] is a content based re-
inforcement learning image retrieval system. It starts by showing user a
random selection of images, for which the user then gives feedback based
on how relevant those images are to the user. After the user feedback is
processed the system shows user a new set of images based on the previous
selections. The results are thus iteratively refined in order to learn the
features present in the images valued by the user.

The novel approach in our system is using Gaussian process upper confi-
dence bound algorithm for selecting relevant images based on user feedback,
as well as utilizing graphics processing unit (GPU) to accelerate computation
in order to increase the allowable size of the image dataset while keeping the
running time reasonable for real time use.

The main topic of this thesis is the GPU acceleration of GP-UCB al-
gorithm, so the algorithm and its implementation, speed and numerical
accuracy with different versions will be covered in detail. The remaining
parts, such as the user interface, feedback gathering and empirical quality of
the results, will only be described briefly.

Section 2 covers the main aspects of image retrieval problems. There is
also an overview of different methods used in current content-based image
retrieval systems.

1

Section 3 starts by describing the multi-armed bandit problem and then
explains basic principles of the UCB algorithm used to address the exploration-
exploitation balancing. Gaussian processes (GPs) and the Gaussian process
upper confidence bound algorithm will be presented in section 4. GPU
architecture and the GPU accelerated implementation of GP-UCB algorithm
will be shown in section 6. Finally the results for speed and numerical
accuracy will be in section 8.

2

2 Image Retrieval

Image retrieval is the task of searching and retrieving images from large
collections and databases. There are two major types of image retrieval
engines, context- and content-based. Most current popular web-based image
search engines – such as Google image search, Bing image search and Flickr
search – are mix of the two, but with emphasis on the context-based features,
i.e. they return images based context features such as keywords, captions,
location information and other context in which the image appears. Their
content based search capabilities are mainly based on mapping image content
into features that fit into the existing text based search system.

There are some major problems with the context-based approach and
pre-generated content features:

1. There may not be any context available for an image and the se-
mantically important features of the image may be hard to identify
computationally.

2. Same image can mean semantically different things to different users,
or even to the same user at different times. The inverse is also true;
people can visualize very different things based on the same description.

3. Textual descriptions and other context features may not capture all
relevant features of an image, especially since it is not known in advance
what is relevant to the user.

4. Translating the text features to different languages may change the
semantic meaning.

2.1 Content-Based Image Retrieval

Content-based image retrieval (CBIR) methods organize images based on
their the visual contents, with methods ranging from simple pixel-level
similarity comparison to extraction of the image semantic content. Because
of the wide variety of methods, the CBIR research also combines results from
different fields, such as computer vision, human-computer interaction, data
mining, information retrieval and psychology [3].

There are a number of difficulties in content-based image retrieval, largest
of which are the the sensory gap and the semantic gap as defined by Smeulders

3

et al. [4]:

• “The sensory gap is the gap between the object in the world and the
information in a (computational) description derived from a recording
of that scene.”

• “The semantic gap is the lack of coincidence between the information
that one can extract from the visual data and the interpretation that
the same data have for a user in a given situation.”

Much of the research in the field focuses on bridging these two gaps.
Bridging the sensory gap requires methods for handling distortion, clutter,
occlusions and other issues which can make it hard to interpret the actual
contents of the image. Addressing the semantic gap requires further in-
terpretation of the image in order to assign meaning to its content. It is
also necessary to take into account different user requirements and their
interpretations of the image contents.

Smeulders et al. introduced a classification of image search domains
into narrow and broad. Images in a narrow domain have limited variability,
such as police photographs or single categories of medical imaging. Images
in broad domain have high variability and the semantic meanings of the
contents of the image are less predictable [4]. IMSE system focuses on image
retrieval in the broad domain, so this overview will focus more on general
methods than advances in CBIR in narrow domains.

There is a wide range of different methods used in CBIR, some of which
focus on feature extraction and others on user interaction. Giving the user
the possibility to interact with the system by giving additional input during
the search also requires ways to process that input and incorporate it into
the relevance criterion [5] , and there are various strategies that have been
effectively employed to do so. The next sections contain a short overview of
some methods for both feature extraction and query processing.

CBIR System Structure The basic structure of a CBIR system consists
of an image database, feature extraction algorithms and a possible feature
database, and the image matching and selection algorithm. An outline of the
general structure is shown in Figure 2.1. The system takes input from the
user, for example a query image or – as in IMSE system – user evaluations of

4

some existing images in the image database. Output is a selection of relevant
images from the image database.

Figure 1: General structure of a content based image retrieval system.

2.2 Low-level Feature Extraction Methods

Feature extraction methods can be roughly divided into low level methods
and semantic methods, but there is a fair bit of overlap between the two.
Low level features generally do little to bridge the semantic gap, and include
features such as color, texture, shape and edge information. Most current
CBIR systems combine different low-level and semantic methods.

Listed below are a few common methods for low level feature extraction
by category, roughly based on survey by Rajal and Valli [6].

Color methods analyze the color distribution in the image. Common
methods include color histogram and its variants, such as invariant color

5

histogram [7, 8] and local region color histogram [9]. They represent the
distribution and intensity of colors in the whole or parts of the image.

Color features also include color moments, which characterize the image
color distribution based on different moment functions such as mean, standard
deviation and skewness. Other relatively common color based features are
dominant color [10] and color correlograms [11]. There is a fairly recent
survey of color based methods in CBIR by Van de Sande et al. [12].

Texture based methods analyze the spatial arrangement of color inten-
sities in the image, focusing on the structure of large similar areas. Texture
methods include gray level co-occurrence matrix [13], gabor transform and
2-D wavelet transforms [14]. One common application for texture based
methods is land cover and surface classification in aerial and satellite images
[15, 16].

Shape and edge based methods are closely tied to the texture based
methods. Both analyze the spatial arrangement of color intensities, but shape
and edge based methods focus on locating the areas where major changes
occur. These methods include Gabor filter, histogram of edge directions,
region moments, SIFT amongst numerous others.

2.3 Semantic methods

Semantic methods aim to reduce the semantic gap between the low level
features and high level semantics. They include feature extraction techniques,
preprocessing and organization steps and methods to incorporate user feed-
back into the query loop. Semantic feature extraction can be done using
various supervised and unsupervised machine learning techniques. This is
only a brief overview of some of the more popular methods, as there are
numerous different methods that have been used.

Unsupervised learning is generally used in CBIR systems either as a
preprocessing step to speed up the image retrieval or as a feature extraction
method. One example of unsupervised feature extraction is the use of deep
auto-encoders [17], while k-means [18] and NCut clustering [19] have been
used to cluster related images for easier search. Neural networks have also
been successfully used in unsupervised setting – dimensionality reduction
with autoencoder is a good example [20].

Supervised learning uses categorized training data, which contains
either raw images or low-level image features as inputs and their labels or

6

some other semantically relevant features as outputs. The algorithm then
attempts to learn a generalized mapping from the given input space to output
space, which would allow it to give semantic meaning to images not in the
training data.

The obvious drawback of supervised learning methods is the requirement
for training data. The quality of the results depend on how well the training
data has been classified and how well those classes cover relevant features
of the dataset. Finding good training data is generally easier in narrow
domains where the applications are quite specific, such as medical imaging.
In broader domains, for example personal image collection or Internet image
search, reliable training data may be harder to obtain.

Some supervised learning methods that have been used in CBIR systems
include:

• Support vector machines have been used in combination with low-level
features, such as exact Legendre moments [21] and semantic methods
such as the relevance feedback [22].

• Neural networks, which are currently a focus of a lot of research in
the field of computer vision. Convolutional neural networks have
been especially popular in CBIR applications and have yielded some
promising results [23, 24, 25, 26]. Neural networks can also be used in
relevance feedback processing step and in an unsupervised fashion.

Relevance feedback is a common approach for refining the results after
initial images have been shown. This adds the subjective human perception
of image similarity into the CBIR system, and allows the user to steer the
search towards a goal not known in advance. However, it is severely limited
by human fatigue, as a person doing the search might not be willing to invest
much time and effort to get high quality results.

There are a number of points to consider when making a user feedback
utilizing system [27]:

1. System responsiveness has to be high enough for real time use.

2. Users may have varying goals, such as a specific image ("target search"),
mood or color scheme ("category search").

3. Feedback consistency may vary as users are not always good at selecting
the most relevant images.

7

4. How the user provides feedback and whether unselected images are
considered to have negative feedback or are ignored.

5. Balancing exploration and exploitation i.e. should the user be provided
with the best matching images or the ones that will give the most
information for future search.

Our system has been tested both with color histogram low-level features
and semantic features extracted using Overfeat [28], a deep convolutional
neural network for image classification, object localization and detection.
However, feature extraction and the perceptual quality of the results are not
within the scope of this thesis.

In order to address the relevance feedback problems listed above, we use
several different methods:

• GPU acceleration to increase the responsiveness of the system, address-
ing the item (1) above, presented in Section 6.

• Gaussian process regression algorithm to predict the best images to
show to the user. This, along with semantic features generated using
Overfeat, improves the quality of the results shown to the user (items
2 and 3). This is introduced in Section 4.

• A variant of the Upper Confidence Bound algorithm to balance explo-
ration and exploitation. Combined with the Gaussian process regression
it allows us to achieve provably good convergence bounds (item 5).
This is introduced in Section 3.

8

3 Reinforcement Learning

The field of reinforcement learning research aims at designing algorithms by
which autonomous agents learn to behave in an appropriate fashion in the
given environment. As opposed to supervised learning, where the correct
behavior is given, reinforcement learning works in an environment where
direct examples of correct behavior are not available [29]. Actions are instead
scored by some other performance criterion.

Consider an example of a person attempting to park a car. The infor-
mation gathered by the driver does not directly tell which way to move the
wheel or which pedal to push. Instead the information allows the driver to
evaluate the goodness of different actions related to the goal. Inexperienced
driver may do this evaluation poorly and will probably require more attempts
to get a good result, while an experienced driver can more reliably tell what
to do in a given situation and can often park a car with the first attempt.

The experienced driver has – at least partially – learned the correct
actions in different situations by trial and error. Choosing wrong actions
will lead to worse situation or even an accident, while the correct actions
eventually lead to the car being parked. These can be considered to be
negative and positive feedback in reinforcement learning scenario.

The driver of the previous car example roughly corresponds to a rein-
forcement learning agent trying to learn an optimal policy. Reinforcement
learning models the problem as a Markov decision process, which is a discrete
time stochastic control process satisfying the Markov property. The Markov
decision process is represented by a tuple (S,A, P,R, γ), where

• S is a finite set of states,

• A is a finite set of actions,

• P is a the matrix of state transition probabilities P(s, s′) = P[s′|s, a],

• R is a reward function R(s, a) = E[r|s, a] and

• γ is a discount factor.

A process satisfying the Markov property is one where the future states only
depend on the current state, i.e.

P[st+1|st] = P[st+1|s1, . . . , st],

9

where st ∈ S is the state of the process at time t.

3.1 Exploration vs. Exploitation

The main problem in our image search system is the exploration-exploitation
dilemma, where an agent simultaneously attempts to explore the environ-
ment to acquire new knowledge and exploit existing knowledge to optimize
decisions. A simple instance of this problem is known as the N-armed
bandit problem, where each ’arm‘ represents a possible action with an
unknown probability distribution of rewards [30].

In such scenario the agent can at each time step either choose to exploit
current knowledge by playing the best known arm or choose to explore by
playing an arm for which the uncertainty of the reward distribution is the
largest. In order to achieve optimal result these actions need to be correctly
balanced.

This model has been used to solve problems such as allocation of resources
to different projects, optimizing web site designs and for adaptive routing.
In each case the payoff from different actions is not well known in advance
thus requiring exploration of the different options in addition to exploitation
of the best known option.

Problem definition

An N -armed bandit problem is a Markov decision process with one state and
N possible actions. As there is only one state, the rewards are associated
only with different actions R(st, ai,t) = R(ai,t), where i = 1, . . . , N is the
index of the action. In the simplest case reward distributions of different
arms are assumed to be independent of each other.

The sequence of action decisions is the decision set Dt = x1, . . . , xT for
some fixed amount of turns T , where xt = ai,t is the observed action with
index i at turn t. Ti is used as a shorthand to denote the number of times
action i has been chosen at turn T .

The goal is to maximize the cumulative reward
∑T
t=1R(xt), which is

equivalent to minimizing the cumulative regret RT . This is defined by

RT =
T∑
t=1

(∆t)

10

where ∆t = R(x∗)−R(xt) and x∗ = argmaxx∈D R(x), i.e. ∆t is the difference
between the made and an optimum decision.

The best possible asymptotically bounded regret for some reward distri-
butions, such as Gaussian, Poisson and Bernoulli can be calculated using
the asymptotical expected bound on the number of non-optimal choices, as
shown by Lai and Robbins [31]:

E[Tj] ≤
lnT

KL(pj ||p∗)
, asT →∞,

where Tj is number of times the action with index j has been chosen and
KL(pj ||p∗) is the Kullback-Leibler divergence between the reward density of
choice j and the optimal choice.

3.1.1 Upper Confidence Bound Algorithms (UCBs)

The upper confidence bound algorithm and its variants are widely used to
address the exploration-exploitation trade-off, as they are easy to implement
and have good performance both in theory and in practice. The basic
algorithm has since seen numerous modifications for different use cases.

The two most important aspects of the upper confidence bound algorithms
is that (1) they have good bounds for expected regret after T decisions rather
than asymptotical bounds as the number of decisions approaches infinity
and (2) they are simple and practical to implement.

The basic UCB algorithm was introduced by Auer et al. [32]. The first
algorithm in their work, UCB1, is shown in Algorithm 1.

Algorithm 1: UCB1 [32]
Initialization: Play each machine (i.e. possible action) once;
while Not done do

T = number of plays (decisions) this far;
Ti = number of times machine i has been chosen;
r̄i = average reward obtained from machine i;
j = argmaxi (r̄i +

√
2 lnT
Ti

);
play machine j;

end

Auer et al.[32] show that the expected regret after T choices have been

11

made using this algorithm with N possible different actions is at most

E[RT] =

8
∑

i:µi<µ∗

(lnT
∆i

)+
(

1 + π2

3

) N∑
j=i

∆j

 ,
where µi is the expected reward for choice at index i = 1, . . . , N and ∆i =
µ∗ − µi is the difference between actual and optimal decision.

This bound follows from the fact that using policy UCB1, the expected
number of times a non-optimal action j is chosen after T choices is bounded
by

E[Tj] ≤
8

∆2
j

lnT + 1 + π2

3 .

This bound is worse than the bound by Lai and Robbins, as the leading
constant in their asymptotical bound is 1/KL(pj ||p∗) ≤ 1/(2∆2

j). To get
better constants for the regret bound, Auer et al. also provide algorithm
UCB2. It allows bringing the leading constant arbitrarily close to 1/2∆2

j ,
but has an initialization step where each machine is played once.

Both these algorithms apply to the case where the reward distributions of
different actions are independent, which not the case in our application. In
our case each image is represented by a vector of features, and images close
to each other in the feature space are assumed to be similar in some fashion.
This information is significant as we cannot ask the use to go through the
whole collection of images just as an initialization step.

The Gaussian process UCB algorithm has a lot in common with the
basic UCB algorithms, but instead of the policies described above it uses the
Gaussian process regression to obtain information on the expected rewards
and uncertainties of different choices. The arms are not considered to be
independent; the user’s feedback gives information on all similar arms, i.e.
the arms that are near the selected one in the input space. The next section
will describe the basics of the GP regression algorithm.

12

4 Gaussian Process Regression

Gaussian process regression is a supervised learning method, where the goal
is to learn a function f capable of predicting the correct output value for
all possible input values [33]. This function has to be induced from a finite
number of observations of the – possibly noisy – output of the underlying
process. In other words, solving a regression problem with real-valued
variables means we try to learn a mapping h : X → Y from some input space
of n-dimensional real vectors X = Rn to an output space of real variables
Y = R.

GP is a Bayesian method, so instead of attempting to identify a ‘best-
fit’ model of the observations it computes a posterior distribution over the
models.

4.1 Bayesian methods

Many traditional regression methods focus on identifying a single best fit
model for the observations and use that best fit model to make future
predictions. This springs naturally from the assumption in ”traditional“
frequentist methods that the observations are a sample of an infinitely
repeatable fixed process, i.e. the underlying parameters are fixed. In Bayesian
inference statistical conclusions about parameters θ of the hidden process
are made by calculating the conditional probabilities of the parameters given
the observations. In addition to the best fit this also gives information on
how certain that estimate is and probabilities for other possible parameters.

Bayesian methods require a prior distribution for the θ, which can be
either uninformative or contain assumptions about the underlying process.
The Bayes rule is then used for computing a posterior probability distribution

p(θ|D) = p(θ,D)
p(D) = p(D|θ)p(θ)

p(D) , (1)

where θ is the parameter prior and D is the set of observations. Thus the
posterior probability distribution incorporates both our prior assumptions
and the evidence gained from the observations. It allows us to evaluate the
uncertainty in the parameters θ after observing the evidence D.

13

Predictions with Bayes rule

The quantity p(D|θ) on the right hind side of equation 1 can be interpreted
as the likelihood function of the parameter vector θ; it shows how probable
the observations are for different parameters.

If the variables are continuous, the probability of the observations can
be calculated with p(D) =

∫
p(θ)p(D|θ)dθ, and with fixed D the factor p(D)

can be ignored altogether to get

p(θ|D) ∝ p(D|θ)p(θ), (2)

which is equal to the verbal description of the Bayes’ theorem

posterior ∝ likelihood× prior.

In the above formula posterior is the posterior distribution of different
parameters given the observations, likelihood is the likelihood function over
the different parameters θ given the observations, and prior is the prior
assumptions about the parameters.

The fundamental difference between the frequentist paradigm and Bayesian
approach can be expressed by their different use of the likelihood function
p(D|θ). Bayesians consider the observations D to be fixed and calculate
the probability of different parameter variables. In Bayesian reasoning the
uncertainty in the parameters is expressed through a probability distribution
over θ. It is also incorporated in the prior assumptions of the underlying
probabilities of the parameters.

The frequentists assume that D is just a representative sample of an
infinite repeatable process. The parameters of the process are assumed to
be fixed, and the frequentist methods focus on determining the parameters
using some form of estimator. One such is maximum likelihood, in which θ is
set to the value that maximises the likelihood function p(D|θ).

Given these differences, the Bayesian method fits our problem definition
better. It allows us to easily incorporate new observations into the predictions
and provides easily understandable measures for best fit and uncertainty
of parameters. This is especially true for predicting with Gaussian Process
regression, as shown in the next section.

14

4.2 Predicting with GP regression

Intuitively two input vectors residing near each other in the input space should
have highly correlated output values. This can be formalized using Gaussian
process, which is a Bayesian method for learning a mapping f : X → y from
an d-dimensional real-valued input vectors x ∈ X to real-valued outputs
y ∈ y.

A Gaussian process is completely specified by its mean function and
covariance function [33]. The mean function gives the estimated best fit
model for parameters, while the covariance function allows estimating the
uncertainty about the mean function in different locations of the parameter
space.

Defining mean function m(x) and the covariance function (kernel) k(x, x′)
of the real process f(x) as

m(x) = E[f(x)], (3)

k(x,x′) = E[f(x)−m(x))(f(x′)−m(x′))], (4)

the Gaussian process can be written as

f(x) ∼ GP(m(x), k(x,x′)).

If we have prior knowledge that the GP has zero mean and a known
kernel function, the posterior can be computed using Bayesian inference
conditioned on the observations.

If there are n observed data points and n∗ unobserved data points,
K(X,X∗) denotes the n × n∗ covariance matrix k(xi,xj), where xi ∈ X

and xj ∈ X∗. Given observed data points X, unobserved data points X∗
and function values f corresponding to the observed function values at the
observed data points, the predictions for unobserved function values f∗ can be
calculated by computing the posterior predictive distribution. The predictive
Gaussian distribution N conditioned on the noise free observations is

f∗|X∗, X, f ∼ N (K(X∗, X)K(X,X)−1f,

K(X∗, X∗)−K(X∗, X)K(X,X)−1K(X,X∗)).
(5)

The case with noisy observations is very similar. Assuming we only have
access to noisy observations y = f(x) + ε, where ε is additive independent

15

identically distributed Gaussian noise with variance σ2
n, the prior becomes

cov(yp, yq) = k(xp, xq) + σ2
nI and the equation 5 becomes

f∗|y, X∗, X ∼ N (̄f∗, cov(f∗)) (6)

f̄∗ = E[f∗|y, X∗, X] = K(X∗, X)[K(X,X) + σ2
nI]−1y, (7)

cov(f∗) = K(X∗, X∗)−K(X∗, X)[K(X,X) + σ2
nI]−1K(X,X∗). (8)

In our use case the noisy observation assumption allows us to quantify
the uncertainty in the feedback given by the user. This addresses the item
three in the relevance feedback observations in Section 2.3, the fact that user
feedbacks on image relevance are not always consistent.

Gaussian process regression combined with Upper Confidence Bound
algorithm gives an excellent tool to address the exploration-exploitation
dilemma, as it provides estimates for both best fit values and their uncertainty.
This makes the implementation of Gaussian process Upper Confidence Bound
algorithm very straightforward.

16

5 Gaussian Process UCB Algorithm

Using GP optimization in the multi-armed bandit setting is fairly straight-
forward and intuitively easy to understand. The values in Gaussian process
posterior mean are an estimate of the correct values of the unexplored actions
given the observed actions. GP posterior variance gives a confidence interval
for the mean estimates. As such, using the results of Gaussian process regres-
sion in the UCB algorithm only requires a method of balancing exploration
and exploitation, which is done by choosing proper weights for mean and
variance.

The problem definition is similar to the case of independent arms. We
attempt to sequentially optimize a reward function f : X → R, where X is
the input space. This is done by choosing a point xt ∈ X and evaluating
the result yt = f(xt + εt) at that point. The goal is to maximize the sum of
rewards, which is equal to minimizing the cumulative regret.

Assuming the unknown function is f and its maximum point is x∗ =
argmaxx∈X f(x), the instantaneous regret at time t is rt = f(x∗) − f(xt).
As was the case with independent arms, cumulative regret RT =

∑T
t=1 rt at

time T is the sum of instantaneous regrets at each time t = 1, . . . , T .
Optimal or a no-regret algorithm would be able to choose x∗ at each time

t. While this is not possible except in the trivial case where x∗ is known
in advance, it is possible to have asymptotically no-regret algorithm where
limT→∞RT /T = 0 given some assumptions about f . However, the result is
of limited practical use due to strictness of the required assumptions [34].

In order to enforce smoothness of f it is modeled as a sample from a
Gaussian process: “a collection of dependent random variables, one for each
x ∈ D, every finite subset of which is multivariate Gaussian distributed in an
overall consistent way” [34] [33]. We also assume that GPs not conditioned
on the data have mean µ ≡ 0, while the GP conditioned on data is specified
by it’s mean and covariance functions, as mentioned in section 4. A bounded
variance is also assumed, i.e. k(x,x) ≤ 1,x ∈ D.

5.1 Experimental Design Algorithm

Experimental design algorithm is a pure exploration algorithm and as such
does not suit our purposes directly. However, it will be briefly described here
as it provides a useful result for analysis of the GP-UCB algorithm.

17

If the purpose was to simply maximize the knowledge of the function f
as rapidly as possible, we could use Bayesian Experimental Design (ED) [35]
algorithm. The aim would then be to maximize the information gain from
the noisy observations yA = fA + εA, where A ⊂ D is set of sampling points
in input space D, fA = [f(x)]x∈A and εA ∼ N(0, σ2I).

This approach is wasteful as it aims to decrease the uncertainty globally
instead of limiting it to the areas with the best potential rewards. In fact
it does not even depend on the actual observations yt, only utilizing their
locations in the input space. However, maximum information gain after T
rounds is an essential part of the regret bounds for the GP-UCB algorithm.

The information gain from these sampling points is quantified by the
reduction of the uncertainty about f after observing yA:

I(yA; f) = H(yA)−H(yA|f).

For Gaussian distribution the entropy is H(N(µ,Σ)) = 1
2 log |2πeΣ|,

which means that in this setting

I(yA; f) =I(yA;fA)

=1
2 log |I + σ−2k(x,x′)|,

where x,x′ ∈ A [34].
Finding information gain maximizer in this setting is an NP-hard problem,

but it can be approximated effectively using a greedy strategy. Let F (A) =
I(yA; f). Information gain F (A) is submodular, as shown by Krause and
Guestrin [36], so by selecting

xt = argmax
x∈D

σt−1(x), (9)

which is equivalent to xt = argmaxx∈D F (At−1 ∪ {x}), leading to a near
optimal solution:

F (AT) ≥ (1− 1/e) max
|A|≤T

F (A),

which is a constant factor approximation of the optimal solution [37]. This
result is part of the GP-UCB analysis in the following section.

18

5.2 GP-UCB Algorithm

In order to utilize the information of function values at the sampled points yA
instead just the set of locations A in the input space, we also have to take into
account the mean values of the Gaussian process regression. Always selecting
the information gain maximizer would be an exploration only strategy shown
in Equation 9, while selecting points xt = argmaxx∈D µt−1(x) would be pure
exploitation and would likely get stuck in a local optima.

These two approaches can be balanced by choosing

xt = argmax
x∈D

µt−1(x) + β(1/2)tσt−1(x),

where βt are appropriately chosen constant balancing factors for exploration-
exploitation tradeoff. This objective greedily selects both points where reward
is expected to be high and the uncertainty of the reward is large. This is
the Gaussian process upper confidence bound rule (GP-UCB) [38, 34]. The
pseudocode for GP-UCB algorithm is shown in Algorithm 2.

Algorithm 2: GP-UCB [32]
Input: Input space D, GP prior µ0 = 0, σ0, βt
while Not done do

n = number of plays this far;
xn = argmaxx∈D µn−1(x) +

√
βtσt−1(x);

Sample yt = f(xt) + εt;
Update µt, σt using Gaussian process regression

end

5.3 Regret Bounds

The regret bounds for the setting f ∼ GP (0, k(x,x′)) for finite D were also
established by Srinivas et al. [34]. Maximum information gain after T rounds
is defined as:

γT := max
A⊂D:|A|=T

I(yA;fA)

For the GP prior Srinivas et al. obtain a regret bound O∗(
√
TγT log |D|)

with high probability, where O∗ is a variant of O without the log factors.

19

More precisely, given δ ∈ (0, 1) and βt = 2 log(|D|t2π2/6δ)),

Pr
{
RT ≤

√
C1TβTγT , ∀T ≥ 1

}
≥ 1− δ,

where C1 = 8/ log(1 + σ−2).
As the previous bound depends on the information gain, bounding the

γT for appropriate kernels is required for these bounds. For a squared
exponential kernel k(x,x′) = exp(−(2l2)−1||x − x′||2), where l is a length
scale parameter, the bound on information gain is γT = O((log T)d+1). This
gives a high probability regret bound O∗(

√
T (log T)

d+1
2) [34].

20

6 GPU Acceleration

A graphics processing unit (GPU) is specialized computation unit made for
accelerating the rendering of graphics. It performs parallel calculations on
data to create images in frame buffer for an output to display. In order to
understand some of the design choices and limitations of the GPU hardware,
it is important to know a bit of their history.

One starting point for the evolution of GPUs was 1990’s VGA controllers,
which started to include some functions necessary for 3D graphics calculations.
Fueled by the customer demand, software makers quickly started utilizing
this new programming power to create better 3D graphics, especially in
games. This cycle led to manufacturers creating more powerful graphic
controllers and led to the first graphics processing unit by Nvidia in 1999.

As the new GPUs kept getting more powerful and some of their fixed
function logic was replaced by programmable processors they attracted
developers of non-graphical applications. While expressing algorithms as
graphics computations was tedious, initial results were good enough to spark
more interest in utilizing GPUs for general purpose computation [39]. The
manufacturers soon realized the potential new market and started making
more flexible hardware to accommodate the needs of general purpose use.
Those changes along with the development of toolkits for non-graphical GPU
programming eventually led to general purpose processing capable GPUs
(GPGPUs). Two leading GPGPU programming platform implementations in
use today are Nvidia’s CUDA (Compute Unified Device Architecture) and
OpenCL maintained by Khronos Group.

While both of the leading platforms are quite well supported and have
similar performance, we chose CUDA for our implementation as we have
access to Nvidia GPUs.

The processing paradigm of the GPU does not exactly fit the traditional
models of computation such as single instruction, multiple data (SIMD) and
multiple intructions, multiple data (MIMD) in Flynn’s taxonomy [40]. As
a slightly simplified example the Nvidia GeForce GTX Titan used in our
experiments has 14 streaming multiprocessors, which can perform different
instructions to different parts of the data, so at that level the hardware is
MIMD. On the other hand each multiprocessor contains 192 32-bit CUDA
cores which compute same instructions for different data, so their architecture

21

is closer to SIMD.
Nvidia refers to the CUDA parallel programming model as SIMT – Single

Instruction Multiple Thread. It is closely related to SIMD, but differs on
how it handles branching. If a computation branches in a SIMD system,
it will serially process all different branches. Only threads following the
selected path are able to continue in parallel while other threads are blocked
until the selected branch is complete. In the SIMT model the threads are
scheduled together in warps. Only the threads in a warp share a program
counter, so execution path divergence only causes thread blocking inside a
warp; different warps execute independently.

The difference in the model of computation often makes direct compar-
isons between GPUs and CPUs rather misleading, as they are best suited for
very different tasks. The computation on GPU is also largely asynchronous
with the CPU, so it’s possible to run a serial task or a chunk of the parallel
task on CPU while the GPU computes the most of the parallel parts of the
code. Thus, except for the overhead from data chunking, memory allocations
and transfers, and kernel launches, the GPU processing capability can often
be added to the existing CPU processing speed instead of directly competing
with it.

Even with the advances in general purpose GPU implementations on both
hardware and software side, the differences in CPU and GPU programming
have to be kept in mind in order to get reasonable performance from the
GPU. Current CPU architectures are essentially iterative refinements of the
earliest microprocessors from the 1970s, such as Intel 4004 and especially
the first x86 architecture processor Intel 8086. On the other hand the GPU
general programming capabilities have been added to hardware that was
not originally made for general purpose programming. Thus a programmer
using GPUs for computation has to be more aware of the limitations of the
hardware in order to write reasonably efficient code for the platform.

Some of the requirements for the tasks that can be efficiently processed
on a GPU are:

• Parallelizability: This is fairly obvious, but the task has to be highly
parallelizable in order to utilize the GPU. A GPU can have hundreds
or thousands floating point units, so in order to fully utilize it you need
to perform that many calculations simultaneously. The computations
also need to be mostly independent of each other, as synchronization

22

and moving data between threads can be expensive.

Slightly less obviously the memory accesses also need to be highly
parallel and independent. Since threads inside a grid are not guaranteed
to execute in a specific order, there are no guarantees on the order
of reads and writes to memory locations if used by multiple threads.
Enforcing atomicity can be computationally expensive, although a
bit less so on recent GPU generations with driver and hardware level
support for some atomic operations.

• Low degree of branching: A highly branching code can rarely get
good GPU performance. Logic statements use clock cycles, and a
branch inside a warp will cause part of the multiprocessor cores to go
idle until all branches are done. It can also complicate memory accesses.
This reflects the difference in design principles; a CPU is designed to
handle flow control and has far more of the physical processor area
designated to cache and control units than a GPU.

• Coalesced memory accesses: This is related to the parallel memory
accesses. When accessing the global GPU memory, a highest memory
bandwidth can be achieved when threads in the warp access consecutive,
cache line aligned memory locations. This can be hard or impossible
to achieve on tasks that require random or widely divergent memory
accesses.

For example if every thread in a warp access an adjacent, cache line
aligned 4-byte memory location, that access can be coalesced into a sin-
gle 128-byte L1 cache transaction. Same 128-byte L1 cache transaction
is performed even if the warp only requires one 4-byte memory access,
which would lead to only 1/32 of the optimal memory bandwidth being
used.

6.1 Nvidia Titan Architecture

Nvidia GeForce GTX Titan is one of the most powerful consumer GPUs on the
market at the time of writing. It supports CUDA compute capability 3.5, and
contains fourteen GK110 Kepler SMX architecture streaming multiprocessors,
for which the overall processing unit composition is shown in figure 6.1. Each
GK110 SMX contains 192 single-precision CUDA cores, 64 double-precision

23

Figure 2: Kepler SMX architecture [41]

units, 32 special function units and 32 load/store units. The base clock rate
for multiprocessors is 837MHz. Memory block rate is 3004MHz and the
memory bus width is 384 bits.

These give a theoretical 32-bit compute capability of 4.5 TFLOPS and a
theoretical maximum memory bandwidth of 288 GB/s. Compared to 225
GFLOPS and 25,6 GB/s of Intel Core i7 3770, the theoretical compute
performance of Nvidia Titan is around twenty times faster and memory
bandwidth roughly ten times greater. These figures must be considered

24

in the right perspective; GPU requires massively parallel computations
with minimal branching to achieve even a large fraction of the maximum
performance, while CPUs are much more flexible.

6.2 Energy efficiency

The specialized design also allows GPUs to be very power efficient compared
to most currently available general purpose computation platforms. A
reasonably accurate ballpark figure can be calculated using the manufacturer
provided thermal design power (TPD) and assuming the processor consumes
that much energy for maximum performance. The Intel specifications give i7
3770 a TDP of 77W, while Nvidia specifications list 250W for Titan. This
gives us 3 GFLOPS per watt performance for i7 and 18 GFLOPS per watt
for Titan.

The performance in actual computational tasks is much lower than the
theoretical figures, as full utilization of the GPU is hard to achieve in practice
and a GPU accelerated system still needs a CPU in order to function.

Despite these limitations heterogenous computation systems are occupy-
ing all top 10 positions in the Green500 November 2015 ranking [42], the
most current list of energy efficient supercomputers at the time of writing.
The top position is held by the Shoubu supercomputer from RIKEN, which
utilizes Intel Xeon CPUs and PEZY-SC 1.4 accelerators [43]. Remaining nine
positions are occupied by supercomputers using Intel Xeon processors and
graphics processing units. Results for top three systems are shown in Table
1, with the remaining systems in top 10 use Intel Xeon and Tesla K80 or
K40 combination and all systems in top 40 using heterogenous computation
platforms.

The performance shown in Green500 list is tested using High-Performance
Linpack benchmark (HPL) [44]. HPL has been criticized for being too opti-
mized for specific machines and being focused on dense matrix computations
[45].

However, even given its limitations the HPL benchmark is widely adopted.
It is used here since it is the only actual benchmark for which results are
readily available for different platforms. As such it is more useful than
theoretical results, even if it does not cover all possible use cases in scientific
computing.

25

MFLOPS
W Site Computer Total

Power
(kW)

1 7031.58 Institute of Physical
and Chemical Research
(RIKEN)

Xeon E5-2618Lv3 8C
2.3GH, PEZY-SC

50.32

2 5331.79 GSIC Center, Tokyo
Institute of Technology

Intel Xeon E5-2620v2
6C 2.1GHz, NVIDIA
Tesla K80

51.13

3 5271.81 GSI Helmholtz Center Intel Xeon E5-2690v2
10C 3GHz, AMD Fire-
Pro S9150

57.15

Table 1: Top 3 most energy efficient supercomputers in the world [42].

6.3 CUDA Thread Organization

Compared to a CPU threads, the GPU threads have a very low launch over-
head, but given the hardware limitations shown in SIMT model, they are also
a lot less versatile. While there is an ongoing process to make heterogenous
computing with CPU and GPU more transparent from the programmer’s
point of view, writing fast GPU code still requires the programmer to be
aware of the strengths and limitations of the underlying technology.

While the basic elements of the thread and memory organization remain
the same between different CUDA capable hardware, the optimal and max-
imum sizes for different elements, such as grid, block and shared memory,
vary between hardware versions. Unless otherwise noted, later references
for such figures are for the Titan GPU and CUDA compute capability 3.5
hardware.

The threads in CUDA code are organized on three levels, shown in Figure
3. On the lowest level there are individual threads, which can be identified
in either one-, two- or three-dimensional thread block by their 3-component
threadIdx vector. These thread blocks are in turn organized into grids,
which can also be one-, two- or three-dimensionally indexed. Individual
blocks in the grid are identified by their 3-component blockIdx vector. The
multidimensionality of the grids and blocks exists just to help in mapping
multidimensional problems into CUDA programs, but does not affect the

26

Figure 3: The organization of CUDA threads.

execution performance as the multidimensional structures are mapped into
one dimension for execution.

Each block is assigned to single multiprocessor for execution so threads
inside a block can use registers and shared memory – which are physically
on the same chip – for inter-thread communication and can be explicitly
synchronized using computationally inexpensive __syncthreads() calls. If
the size and the resource usage of the blocks are low enough, multiple blocks
can be scheduled for parallel execution on a single multiprocessor.

While an obvious solution to best utilize the multiprocessor resources
is to launch a large enough block to utilize all available compute units a
few times over, it might not always lead to the best possible performance.
While a large block allows the multiprocessor to hide memory latencies by
computing other warps while one is waiting, smaller concurrently executed
blocks can also hide blockwise synchronization overhead by executing threads
from the other block.

Some GPU, multiprocessor (SMX) and thread resource limitations are
listed in table 2.

27

Scope Resource Amount
GPU Multiprocessors 14
GPU CUDA Cores 2688
GPU Global Memory 6144 MB
GPU Max Grid Size (x, y, z) 2147483647, 65535, 65535
SMX Max Threads 2048
SMX Shared Memory 64 KB
SMX 32-bit Registers 65536
SMX L1 Cache + Shared Mem. 64 KB
Block Max Threads 1024
Block Max Dimensions 1024, 1024, 64
Thread 32-bit Registers 255

Table 2: Some of the resource limitations of Nvidia Geforce GTX Titan
GPU.

Just as the goal of the block size and resource usage optimization is to
keep the single multiprocessor busy, similarly the grid size is chosen to keep
the entire GPU busy. Thus, the number of blocks in the grid should be
large enough to schedule at least as many blocks for each multiprocessor
as required to fully utilize its resources, although there is no penalty on
launching larger grids. This means the number of blocks should essentially
be as large as possible within the constraints set by the hardware and data
since this also allows better scaling for future devices.

The threads, blocks and grids are the building elements for the pro-
grammer and map to the hardware on multiprocessor level. However, the
execution of the threads in a block assigned to a multiprocessor is scheduled
in warps, which on current hardware is a group of 32 threads. This is im-
portant to keep in mind when defining the block size, which should usually
be a multiple of the warp size for higher occupation and coalesced memory
accesses, which is better explained in Section 6.4.

CUDA kernels are essentially C functions, which are executed logically
in parallel for all threads in the accompanying grid and block structure.

On hardware with compute capability 2.0 or greater, the multiprocessors
can execute multiple kernels concurrently with the maximum of 32 simul-
taneous kernels for compute capability 3.5 device. While not used in our
application, this allows splitting the computation into multiple kernels where
it is necessary to simplify the code or for dynamic kernel launching, and to
create implicit synchronization points without large performance degradation

28

Figure 4: Kepler memory hierarchy and latencies.

from idle SMXs. It also allows the execution of the less parallel parts of the
code on the GPU, while the more parallel calculations are running, potentially
avoiding slow memory transfers between the GPU and CPU memory.

6.4 CUDA Memory Organization

The memory organization scheme in CUDA and Titan GPU requires a bit
more care from the programmer than modern CPU programming. The user
needs to be aware of the performance and limitations of different memory
areas, an overview of which is shown in Figure 4. While modern CPU memory
organization is also complex, the platform is more mature and usually takes
more of the memory management burden from the programmer. Achieving
similar level of transparent optimization – if even possible for massively
parallel processing – is at least a few software and hardware generations
away.

From the programmer’s perspective the most important distinction is
between the on-chip and off-chip memory. The registers and shared memory
reside on the SMX chip, and are divided between all blocks concurrently

29

executing on the same SMX and allow access within few multiprocessor clock
cycles. These memory areas are fairly small, with 64K 32-bit registers per
multiprocessor and 255 registers per thread, as well as 64K on-chip memory
which is split between L1 cache and shared memory.

The off-chip memory areas include global, per-thread local, constant and
texture memory. Of these, the most important for our application is the
global memory, which – as the name suggests – is accessible for any thread. It
is the main memory area in which the GPU processed data resides. Because
accessing the global memory takes up to several hundred clock cycles, it is
important to get coalesced memory reads and writes in order to minimize
the number of memory accesses and maximize the throughput.

Non-coalesced memory accesses can severely reduce the memory band-
width, as the cached reads and writes will handle a full 128-byte blocks
regardless of the number of actually required bytes within that block. This
is illustrated in Figure 5.

Figure 5: The Effect of aligned and misaligned memory accesses. The aligned
access reads the whole 128-byte memory segment in one L1 transaction,
while misaligned access requires two transactions [46].

30

7 GP-UCB Implementation

As both Gaussian process literature and CUDA terminology use the word
kernel, the word kernel is used when referring to Gaussian process kernels
and CUDA kernel is used when referring to GPU implementations.

We made two different implementations for running the CUDA code
from the Python environment used for the rest of the application. Our first
implementation consisted of two parts: Python code and CUDA kernels
written in CUDA C. Python code was used to do higher level processing and
initialize the PyCUDA environment, which was then used to call the actual
CUDA kernels. Library functions were used for all operations other than the
distance kernel calculation. Due to problems with interoperability between
PyCUDA and Django, the PyCUDA code had to be run as a separate process.

Given the easy implementation of C-Python interfaces, it is then a fairly
small step to implement the CUDA code as a separate CUDA C program
and simply call that from the Python code. At the time of implementation
the PyCUDA had limited support for the features required to implement
concurrent memory transfers and kernel execution, which was one reason for
switching to pure CUDA C for the third implementation. Other reason for
the switch was speed, as the new version does more work outside the CUDA
kernel.

Our implementation of Gaussian process focuses on using it for prediction
in the UCB algorithm with small number observations. This allows us to
avoid some calculations and memory overhead, especially on kernel function
matrix computations. Combined with the fact that we only need to calculate
the variance instead of the full covariance matrix, the required amount of
memory and processing is much smaller than with general purpose Gaussian
process implementation.

It is also possible to speed up the Gaussian process calculations by
storing a precalculated covariance matrix and simply look up the results.
In our application the cost saving measures used above would not apply,
and we would need to store the full covariance matrix. Storing a covariance
matrix for 500 000 data points using 32-bit floats would require almost
one terabyte of memory, which is a prohibitively large amount on current
desktops and requires specialized hardware. Even SSDs would be of limited
use on large, low dimensional datasets which our implementation can process

31

quickly. Precalculated covariance matrix would also be far less flexible, as
our implementation allows using different kernel functions or parameters
between iterations.

Both the Python/PyCUDA and pure CUDA C versions of the algorithm
have the same overall structure:

1. Read dataset into CPU memory.

2. Transfer dataset into GPU memory.

3. Upon receiving user feedback, transfer the features of the observed
items into GPU memory.

4. Calculate the kernel function matrix between the observed items and
the dataset.

5. Calculate everything else on the CPU.

6. Return mean and variance.

7.1 Time requirements

The two sets of calculations done in our Gaussian process implementation
are

µ̄t = K∗[K + σ2
nI]−1ȳt

σ̄2
t = diag(K∗∗ −KT

∗ [K + σ2
nI]−1K∗),

Here µ̄t and σ̄2
t are the vectors of mean and variance values for all the elements

of X at time t, while ȳt is the vector of all relevance scores received so far. K
is a shorthand for the covariance matrix between the observed elements of X ,
K∗ is the covariance matrix between the observed and unobserved elements
and K∗∗ the covariance matrix between unobserved elements of X .

In the following, the variables n and m are the number of unobserved
and observed elements, while d is the data dimensionality.

As we only use the variance, there is no need to calculate the full K∗∗
matrix. Instead, a vector of n random numbers drawn from the normal
distribution is used to simulate the diagonal in the matrix subtraction. We
can also avoid the last matrix multiplication in KT

∗ [K + σ2
nI]−1K∗, which

32

would create an n× n matrix, and calculate only the diagonal of the result
instead.

Calculating the σ̄2
t requires two covariance matrix calculations, one ma-

trix inversion and three matrix multiplications. The time complexity of
calculating the K matrix with our distance kernel is O(m2d), while the time
complexity of K∗ calculation is O(nmd). Matrix inversion is O(m3). Since
m� n in our application, the computation of K∗ is in reality significantly
more time consuming than any other part of the computation.

In our implementation the small size of the matrix inversion allows us to
use NumPy implementation of matrix inverse calculation [47] for calculating
K(X,X) + σ2

nI]−1 without any significant performance degradation. We
also use library functions for other matrix multiplication except for the last
operation in KT

∗ [K + σ2
nI]−1K∗ calculation, where we only compute the

diagonal. The actual running times for different parts of the algorithm are
analyzed in Section 8.

7.2 CUDA kernel implementations

The first implementation of the distance function for K(X,X∗) calculation is
shown in algorithm 3. It calculates x, y and z indices using the block index,
block dimensions and thread index. The algorithm uses the full image feature
matrix feat for the calculations. To extract the training and prediction
sets from the image matrix it is indexed using index vectors obs-idx and
unobs-idx, which in turn are indexed using x and y respectively.

Each thread on GPU calculates the distance between values
data[obs-idx[x]][z] and data[unobs-idx[y]][z] divided by dims and
adds it to the result matrix K_x[x][y].

Because multiple threads would be writing to the same location in the
result matrix, this has to be done using atomicAdd operation. There is no
explicit copying to shared memory, as each of the original values are only
used once per processed block.

The first version shows how reasonably efficient CPU code can be very
inefficient when mapped directly to the GPU. The three loops of the CPU
code – over observed datapoints, unobserved datapoints and dimensions
– are replaced by three-dimensional grid and block structure. A single
thread calculates the distance between one value in the observed data vector
and unobserved data vector. It then divides the result by the number of

33

Algorithm 3: Initial code for the CUDA kernel used to calculate
K(X∗, X).
Data: feat, obs-idx, unobs-idx, n-obs, n-unobs, dims
Result: K_x
x = blockIdx.x * blockDim.x + threadIdx.x;
y = blockIdx.y * blockDim.y + threadIdx.y;
z = blockIdx.z * blockDim.z + threadIdx.z;
if (z > dims || y > n-unobs || x > n-obs) return;

atomicAdd(&K_x_gpu[y * n-shown + x],
fdividef(

fabsf(
feat[obs-idx[x] * dims + z] - feat[unobs-idx[y] * dims + z]

), dims));

dimensions and adds it to the value in the result matrix cell. The calculation
of K(X,X) could be implemented using the same kernel function, simply
using obs-idx and n-obs in the place of unobs-idx and n-unobs.

The major problems with this implementation were:

• Repeated uncoalesced reads and writes to the result matrix with atom-
icAdd operation. The atomicAdd in itself is not the cause of the poor
performance, but instead the memory bandwidth is limited by the
repeated uncoalesced global memory accesses.

• Unnecessary floating point division on each write to the result matrix.

The calculation of the diagonal of the cov(f∗) matrix is also implemented
as a CUDA kernel. It is a straightforward modification of the basic matrix
multiplication, which can be found in CUDA samples provided by Nvidia. It
uses the thread x coordinate, calculated as shown in Algorithm 3, to index
the result vector and a for loop for calculating the result for each index.
As its processing takes less than one percent of the total time, no further
optimization was done.

The listed problems were fairly easy to correct for the second version of
the code (GPUv2) shown in Algorithm 4. Changing matrix to column-based
made it simple to loop over dimensions while retaining coalesced memory
access pattern. Using a temporary register variable for intermediate result
removed the need for repeated global memory access, thus minimizing the

34

issue of the race condition. Nevertheless, register memory bank conflicts
may affect performance so the loop size was set to equal the number of data
points in the data chunk being processed to remove race condition between
threads.

Algorithm 4: CUDA kernel code for GPUv2 algorithm. Variables x
and y indicate the starting index in the two data matrices, and they
are also used to calculate the index for the result in matC. Variables i
and j loop over the matA and matB in column size loops.
Data: matA, matB, matC, n, m, cols
Result: K_x
x = blockIdx.x * blockDim.x + threadIdx.x;
y = blockIdx.y * blockDim.y + threadIdx.y;
chunksize = n * cols;
i = x;
j = y;
tmp = 0;
for (; i < chunksize; i += n, j += m) do

tmp += fabs(matA[i] - matB[j]);
end
matC[x * m + y] = fdividef(tmp);

Assigning each chunk a number of data points that splits evenly to warps
gives correctly aligned coalesced memory access for the chunk size loop in
the kernel. Chunking makes it easy to avoid data padding or other methods
often used to achieve warp-size aligned data as we can simply process the
non-aligned last chunk on CPU if necessary. Due to the asynchronous nature
of the GPU computation, this can be done in parallel while GPU is processing
the rest of the data. It also allows easy scaling to multiple GPUs or nodes.

8 Results

The most computationally intensive part of the algorithm is calculating the
distances between observed and unobserved points of data. It is the main
focus of the optimization and will be covered more thoroughly. Comparisons
for the scaling between matrix inversion and distance calculations are also
shown, as well as total running times over data dimensionality, number of
observations and total size of the data.

Testing was done on a server with Intel Xeon processor with two Nvidia

35

GeForce GTX Titan GPUs, although only one was used by the GPU algo-
rithm.

The images used for testing were taken from MIRFLICKR 1 million image
set [48]. The 4096-dimensional feature data was extracted using Overfeat deep
convolutional neural network [28]. Due the hardware memory constraints
only part of the images and feature data was used in the experiments.

8.1 Computation time

The single core CPU speed comparison baseline for calculating the K(X∗, X)
matrix was obtained by running the distance calculation using Python Scipy
package. While the scipy.spatial.distance.cdist function is not the fastest
available, it is reasonably well optimized and significantly faster than a naive
C implementation.

The initial GPU distance implementation (GPUv1) was already signifi-
cantly faster than the baseline CPU code despite being fairly inefficient. It
did a float division for each dimension of the input vectors, as well as an
atomic addition due to the fact there were multiple threads writing into the
same result cell.

In the second version (GPUv2) the data is stored in a column first format
and the kernel accesses the data one column at a time. This allows easy
cache line aligned coalesced memory accesses and eliminates access conflicts
when writing the results into the matrix. Using a register variable for storing
the intermediate results removes the need for atomic operations and repeated
global memory accesses. Floating point division is only done once for each
result cell, just before writing the result from temporary register variable
into the result matrix.

The second version also splits the data into smaller chunks to allow
concurrent data transfers and computations on the GPU as well as calculates
part of the data concurrently on the CPU if the data does not split evenly
into defined chunk size. By defining the chunk size to be a multiple of
the block size, it also avoids the requirement for data padding or other
handling of the non-blocksize data on GPU further simplifying the GPU
code implementation.

The performance of GPUv2 also depends on how the data is stored in
the main memory. As the image feature data set is static in our case, it is
possible to order it in a fashion where each chunk of the image feature data

36

is stored contiguously. This significantly improves the performance of the
data transfer from main memory to GPU memory.

If the data was stored in the original column-wise format, each feature
for all images would be stored contiguously in the main memory. This would
require strided memory access, e.g. after transferring first feature of the first
image chunk, the algorithm would need to skip over the first feature of all
the images not in the chunk in order to reach the second feature for the
images in the chunk. By storing all the features for each chunk contiguously
we avoid the need for strided memory access.

A comparison of the calculation times between the single core CPU
implementation and the GPU versions can be seen in Table 3. Scaling for
both versions is very close to linear, with GPUv1 being consistently over
eight times faster than the single core CPU version and GPUv2 around 40
times faster than the CPU and nearly five times faster than the GPUv1.
The performance difference between other versions and GPUv2 increase as
the data size increases, as the increased calculation time dominates over the
time required for data transfer between CPU and GPU memory.

Data points cdist (s) GPUv1 (s) GPUv2 Speedupv1 Speedupv2
2000 1.219 0.145 0.035 8.40 34.83
5000 3.211 0.386 0.088 8.32 36.49

10000 6.520 0.803 0.165 8.12 38.80
20000 13.182 1.628 0.333 8.10 39.59
30000 19.832 2.470 0.491 8.03 40.39
60000 39.803 4.902 0.931 8.120 43.22
120000 92.25 10.20 1.996 9.04 46.21

Table 3: A comparison of the K(X∗, X) distance matrix calculation CPU
and GPU running times.

This speedup allows using larger datasets while doing the calculations
almost in real time, which is important in our application. Since the speed
scaling is linear over the number of required calculations, i.e. it is linear
over features as well as over the number of data points, this technique allows
scaling up to millions of data points on lower-dimensional data.

The scaling is also close to linear over the number of observations up to
the point where pseudoinversion of the K(X,X) matrix starts dominating
the calculation time. Compared to the distance calculation of the K(X,X)
matrix on CPU the turning point is around 4100 observations, as can be

37

seen from Figure 6. This can be further improved by calculating the matrix
pseudoinverse on GPU, which can be done using CUDA 7 cuSOLVER library
QR factorization routines.

In practice the time used for pseudoinverse is never large enough to be a
concern in our application. It would dominate the calculation time only if the
size of the data matrix was small compared to the number of observations,
which in our case can only happen with a particularly persistent user willing
to go through very large number of images in order to locate the right one.

Figure 6: Running times for the K(X∗, X) distance matrix calculation and
pinv(K(X,X)) calculation in seconds. Pseudoinverse in red and distance
matrix calculation in blue.

As can be seen, the running time of the K(X∗, X) grows linearly over
the number of observations, while the pseudoinverse running time growth
is quadratic. Obviously the actual running time for the pseudoinverse
calculation is negligible in our use scenario, where the number of observations
is usually much less than 1000.

38

8.2 Accuracy

Although numerical accuracy and the absolutely correct order of the results
is not critical for our application, overly large variation from a more accurate
implementation might still give less optimal results and thus degrade the
user experience. As such it is important to compare the performance with a
reference implementation to make sure the results remain within reasonable
distance from the optimal results.

Since the results are calculated from the initial data on each loop, there
is no chance of floating point errors accumulating over multiple rounds. This
means we only need to consider the errors in the initial distance matrix
calculations and their effect on the Gaussian process results.

8.2.1 GPU Kernel accuracy

To quantify the error, the accuracy of the calculated distances was compared
to results obtained with Python SciPy function scipy.spatial.distance.cdist
[49]. I will only consider the case with Overfeat output, for which the starting
values are the default printed decimal output of the Overfeat program with 6
digits of precision. The results are only calculated for multiples of the chunk
size, as non-evenly splitting data would have been calculated partially on
the CPU with the GPUv2 implementation.

The following precision and accuracy results only apply if the values
being represented lie within the range of normal values of the IEEE 754
floating point format, which is shown in Figure 8.2.1. In addition to values
above the floating point maximum and minimum, they also does not apply to
subnormal floating point numbers near zero, i.e. values with zero exponent
and no implicit leading 1-bit.

Figure 7: IEEE 754 32-bit floating point number example [50].

There is a possible rounding error – known as wobble – when converting
decimal numbers to binary and vice versa, as well as in any floating point
calculation [51]. Since wobble can waste almost a full bit of precision when

39

converting decimal to binary, uniquely representing 6 digits in normal pre-
cision binary float requires up to 6 ∗ log 10

log 2 + 1 ≈ 20.93 bits. This unique
representation does not mean the decimal number could be exactly repre-
sented, merely that same binary representation is not shared by any two
decimal numbers in the input space i.e. there is enough precision to uniquely
represent the number but the representation is not necessarily accurate.

This means the size of the operands in addition and subtraction can differ
up to 3 bits or 3 ∗ log 2

log 10 ≈ 0.9 decimal places before loss of precision in 32-bit
floating point addition – and subtraction, which is in principle similar to
addition but with sign bit inverted – can potentially happen.

The error in the addition and subtraction, and thus the error in sum
accumulation as well, stems from the way floating point addition works. In
order to add two floating point numbers together, they are shifted so that
the corresponding bits line up. If one of the values is significantly larger than
the other, limited size of the mantissa may cause some of the least significant
bits in the smaller value to be discarded. While this can happen in a single
addition operation, summation using an accumulator variable is especially
prone to this kind of error.

There are various methods to minimize the error, such as increasing the
precision of the floating points by using doubles or using Kahan summation
algorithm [52] or exact floating point summation with faithful rounding [53].
We did not use any additional methods for minimizing the error, as they are
also significantly slower to run on a GPU and, with the exception of simply
converting floats to doubles, also harder to implement.

There are two locations in the algorithm 4 where loss of precision is pos-
sible – subtraction and summation. If the matA[i] and matB[j] magnitude
difference is large enough, some of the least significant bits may be discarded
in the subtraction. It is also possible that the accumulation of the sum to a
temporary variable in the for loop can also cause accumulation of a large
floating point error.

The loss of precision in the subtraction is less critical for our algorithm;
if the magnitude of the operands – and thus the distance between two data
points in that dimension – was large enough to cause loss of precision, the
least significant bits are unlikely to contain critical distance information.

The error accumulating in the summation is worse, as the difference
between the accumulator variable and summands grows as the dimensionality

40

Figure 8: The maximum and mean relative difference between SciPy calcu-
lated and GPU calculated distances over the number of dimensions, with
4096 data points and 128 observations.

of the data increases. For example, if all summands are close to 1 in a
4096-dimensional vector, the final addition in the summation is roughly
4095 + 1. The difference in floating point exponent is 139− 127 = 12 and
the mantissa of the result has to be shifted accordingly, which means the
least significant bits will be lost. This loss of precision can be seen in the
empirical results in Table 4 and Figures 8 and 9.

The SciPy cdist function calculating Manhattan distance also does sum-
mation in naive fashion, but given the limited accuracy of the initial values
and the comparatively small number of features, 64-bit floating point values
(double precision) are enough to store full precision of the summation results.
Compared to a 32-bit floating point with 23-bit mantissa, the double preci-
sion floating points have 52-bit mantissa and can uniquely represent at least
15 significant decimal digits as opposed to the at least 6 digits of the single
precision format.

SciPy also allows using NumPy float128 data type, which on Intel x86
architectures is an extended precision double – a padded 80-bit floating point
number [54, 55, 56]. This 80-bit floating point format has 15 bit exponent
and 64 bit mantissa. Because the accuracy of doubles is sufficient to store
the full precision of our summation results, we get – within the required

41

Figure 9: The maximum and mean relative difference between SciPy calcu-
lated and GPU calculated distances. The relative difference is |xi−yi|

maxX , where
x ∈ X are the distance values calculated using doubles in SciPy, y ∈ Y are
calculated using GPUv2 and i are indices [0, |X|]. Results were calculated
with 4096 data points and 128 observations.

precision – exactly matching distance calculation results using doubles and
extended precision doubles.

Dims Max diff Mean diff Max rel diff Mean rel diff
64 6.1035156e-05 1.0306016e-05 4.7683716e-07 9.0542017e-08
128 0.00024414062 3.6993064e-05 6.5565109e-07 1.2231612e-07
256 0.00073242188 0.00012575462 1.0728836e-06 1.9761592e-07
512 0.0017089844 0.00034622755 1.4901161e-06 2.9111106e-07

1024 0.0053710938 0.00094844773 2.0861626e-06 3.8137023e-07
2048 0.013671875 0.0026632845 2.5033951e-06 4.8529182e-07
4096 0.047851562 0.0083170682 4.3511391e-06 7.493536e-07

Table 4: The difference between GPUv2 results and SciPy results for 1024
data points and 64 observations. Max and mean diff are the absolute
differences between calculated results. Max and mean rel diff are calculated
as |xi−yi|

maxX , where x ∈ X are the distance values calculated using doubles in
SciPy, y ∈ Y are calculated using GPU and i are indices [0, |X|].

42

8.2.2 Gaussian Process Accuracy

The distance matrix calculation is just the first step in computing the
Gaussian process result for UCB algorithm. We also need to take into
account the possible error accumulating from the matrix operations in the
mean and covariance calculations in equations

f̄∗ = E[f∗|y, X∗, X] = K(X∗, X)[K(X,X) + σ2
nI]−1y,

cov(f∗) = K(X∗, X∗)−K(X∗, X)[K(X,X) + σ2
nI]−1K(X,X∗).

It turns out that the matrix multiplication in NumPy uses a BLAS imple-
mentation – in our case ATLAS library – which have quite strict numerical
stability requirements [57, 58, 59]. Given the limited accuracy of our starting
values and the fact the matrix operations are done using 64-bit values, they
do not add significant error to the result.

Figures 10 and 11 shows the effect of the single precision floating point
calculation error compared to a double precision implementation in the
output to the user. These figures show the difference in indices of the sorted
results with the SciPy and GPUv2 algorithms. If a data point with the
highest score in SciPy result has the second highest score in GPUv2 result,
it would have index difference of one – and correspondingly there would be
at least one other data point with index difference of at least one. These
results were calculated on actual data with 128 observations. The difference
over number of dimensions was calculated using 4096 points of data, while
difference over data size was calculated using 4096 dimensions. There is a
slight difference in the order of the images, which may affect results shown
to the user, but given the low mean index difference it is unlikely to cause
significantly worse result than using a more precise algorithm.

43

Figure 10: The maximum and mean difference in sorted data point indices
between SciPy calculated and GPU calculated Gaussian process, where score
for data point x = µ+ σ.

Figure 11: The maximum and mean difference in sorted data point indices
between SciPy calculated and GPU calculated Gaussian process, where score
for data point x = µ+ σ.

44

9 Conclusions

In this thesis I have presented a simple method for accelerating Gaussian
process upper confidence bound algorithm with graphics processing unit in
order to allow larger image datasets in our content based image retrieval
system. Even with a simple, fairly unoptimized GPU implementation using
a powerful – but still consumer grade – GPU we were able to use the system
with 30 to 40 times more data than with the same computer setup without
the GPU.

Using only a single CPU core for the Gaussian process calculations our
implementation is able to process 3000 image datasets with 512 features
per image in around 2 seconds, which might still be considered reasonable
waiting time in an application. With a GPU implementation of the Gaussian
process we can process 120000 images in roughly the same time – 40 times
the amount of a single core CPU implementation. It would be possible to
further increase the performance by balancing the calculations between a
multicore CPU implementation and the GPU, but due to time constraints it
was not possible for this version.

It is also apparent that care must be taken when implementing algorithms
on GPU. While similar measures are important on CPU algorithms as well,
even greater care must be taken on GPU where the implicit parallel process
may hide the points of error accumulation. It may also be tempting to make
a 32-bit implementation, especially with consumer grade GPUs which have
large difference between 32-bit and 64-bit floating point performance.

Using 32-bit calculations is perfectly viable in applications where numeri-
cal accuracy is not critical and the algorithm does not reuse the previous
results in a fashion that would cause accumulation of large floating point
errors. Even then the effect of reduced precision is noticeable and might
actually become a problem with very high dimensional data.

In order to allow processing even larger sets of image data, future work
for this algorithm should include a distributed verson. While the structure
of the GPUv2 algorithm makes moderately sized distributed implementation
relatively straightforward, there are lot of details that need to be considered.
The algorithm should also be combined with other search methods in order
to further limit the search space and refine the results.

45

References

[1] D. Głowacka and S. Hore, “Balancing exploration–exploitation in image
retrieval,” in Proceedings of UMAP, 2014.

[2] S. Hore, L. Tyrvainen, J. Pyykko, and D. Glowacka, “A reinforcement
learning approach to query-less image retrieval,” in Symbiotic Interaction,
pp. 121–126, Springer, 2014.

[3] J. Z. Wang, N. Boujemaa, A. Del Bimbo, D. Geman, A. G. Hauptmann,
and J. Tesić, “Diversity in multimedia information retrieval research,”
in Proceedings of the 8th ACM international workshop on Multimedia
information retrieval, pp. 5–12, ACM, 2006.

[4] A. W. Smeulders, M. Worring, S. Santini, A. Gupta, and R. Jain,
“Content-based image retrieval at the end of the early years,” Pattern
Analysis and Machine Intelligence, IEEE Transactions on, vol. 22, no. 12,
pp. 1349–1380, 2000.

[5] D. Glowacka and J. Shawe-Taylor, “Content-based image retrieval with
multinomial relevance feedback,” in Proceedings of ACML, 2010.

[6] I. F. Rajam and S. Valli, “A survey on content based image retrieval,”
Life Science Journal, vol. 10, no. 2, pp. 2475–2487, 2013.

[7] J. Domke and Y. Aloimonos, “Deformation and viewpoint invariant
color histograms.,” in BMVC, pp. 509–518, 2006.

[8] T. Gevers and H. Stokman, “Robust histogram construction from color
invariants for object recognition,” Pattern Analysis and Machine Intel-
ligence, IEEE Transactions on, vol. 26, no. 1, pp. 113–118, 2004.

[9] X. Wang, J. Wu, and H. Yang, “Robust image retrieval based on color
histogram of local feature regions,” Multimedia Tools and Applications,
vol. 49, no. 2, pp. 323–345, 2010.

[10] R. Min and H. Cheng, “Effective image retrieval using dominant color
descriptor and fuzzy support vector machine,” Pattern Recognition,
vol. 42, no. 1, pp. 147–157, 2009.

46

[11] J. Huang, S. R. Kumar, M. Mitra, W. Zhu, and R. Zabih, “Image
indexing using color correlograms,” in Computer Vision and Pattern
Recognition, 1997. Proceedings., 1997 IEEE Computer Society Confer-
ence on, pp. 762–768, IEEE, 1997.

[12] K. E. Van De Sande, T. Gevers, and C. G. Snoek, “Evaluating color
descriptors for object and scene recognition,” Pattern Analysis and
Machine Intelligence, IEEE Transactions on, vol. 32, no. 9, pp. 1582–
1596, 2010.

[13] D. A. Clausi, “An analysis of co-occurrence texture statistics as a
function of grey level quantization,” Canadian Journal of remote sensing,
vol. 28, no. 1, pp. 45–62, 2002.

[14] N. Suematsu, Y. Ishida, A. Hayashi, and T. Kanbara, “Region-based
image retrieval using wavelet transform,” in Proc. 15th international
conf. on vision interface, pp. 9–16, Citeseer, 2002.

[15] L. Soh and C. Tsatsoulis, “Texture analysis of sar sea ice imagery using
gray level co-occurrence matrices,” Geoscience and Remote Sensing,
IEEE Transactions on, vol. 37, no. 2, pp. 780–795, 1999.

[16] E. Gadelmawla, “A vision system for surface roughness characterization
using the gray level co-occurrence matrix,” NDT & E International,
vol. 37, no. 7, pp. 577–588, 2004.

[17] A. Krizhevsky and G. E. Hinton, “Using very deep autoencoders for
content-based image retrieval.,” in ESANN, Citeseer, 2011.

[18] J. A. Hartigan and M. A. Wong, “Algorithm as 136: A k-means clustering
algorithm,” Applied statistics, pp. 100–108, 1979.

[19] U. Von Luxburg, “A tutorial on spectral clustering,” Statistics and
computing, vol. 17, no. 4, pp. 395–416, 2007.

[20] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of
data with neural networks,” Science, vol. 313, no. 5786, pp. 504–507,
2006.

[21] C. Rao, S. S. Kumar, B. C. Mohan, et al., “Content based image
retrieval using exact legendre moments and support vector machine,”
arXiv preprint arXiv:1005.5437, 2010.

47

[22] R. Liu, Y. Wang, T. Baba, D. Masumoto, and S. Nagata, “Svm-based
active feedback in image retrieval using clustering and unlabeled data,”
Pattern Recognition, vol. 41, no. 8, pp. 2645–2655, 2008.

[23] M. Koskela and J. Laaksonen, “Convolutional network features for scene
recognition,” in Proceedings of the ACM International Conference on
Multimedia, pp. 1169–1172, ACM, 2014.

[24] A. Karpathy and L. Fei-Fei, “Deep visual-semantic alignments for gen-
erating image descriptions,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 3128–3137, 2015.

[25] J. Wan, D. Wang, S. C. H. Hoi, P. Wu, J. Zhu, Y. Zhang, and J. Li,
“Deep learning for content-based image retrieval: A comprehensive study,”
in Proceedings of the ACM International Conference on Multimedia,
pp. 157–166, ACM, 2014.

[26] J. E. Sklan, A. J. Plassard, D. Fabbri, and B. A. Landman, “Toward
content based image retrieval with deep convolutional neural networks,”
in SPIE Medical Imaging, pp. 94172C–94172C, International Society for
Optics and Photonics, 2015.

[27] X. S. Zhou and T. S. Huang, “Relevance feedback in image retrieval: A
comprehensive review,” Multimedia systems, vol. 8, no. 6, pp. 536–544,
2003.

[28] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. Le-
Cun, “Overfeat: Integrated recognition, localization and detection using
convolutional networks,” arXiv preprint arXiv:1312.6229, 2013.

[29] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement
learning: A survey,” Journal of artificial intelligence research, pp. 237–
285, 1996.

[30] M. N. Katehakis and A. F. Veinott Jr, “The multi-armed bandit problem:
decomposition and computation,” Mathematics of Operations Research,
vol. 12, no. 2, pp. 262–268, 1987.

[31] T. Lai and H. Robbins, “Asymptotically efficient adaptive allocation
rules,” Adv. Appl. Math., vol. 6, pp. 4–22, Mar. 1985.

48

[32] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Mach. Learn., vol. 47, pp. 235–256, May
2002.

[33] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine
Learning (Adaptive Computation and Machine Learning). The MIT
Press, 2005.

[34] N. Srinivas, A. Krause, S. M. Kakade, and M. Seeger, “Gaussian process
optimization in the bandit setting: No regret and experimental design,”
arXiv preprint arXiv:0912.3995, 2009.

[35] K. Chaloner and I. Verdinelli, “Bayesian experimental design: A review,”
Statistical Science, pp. 273–304, 1995.

[36] A. Krause and C. E. Guestrin, “Near-optimal nonmyopic value of infor-
mation in graphical models,” arXiv preprint arXiv:1207.1394, 2012.

[37] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, “An analysis of approx-
imations for maximizing submodular set functions—i,” Mathematical
Programming, vol. 14, no. 1, pp. 265–294, 1978.

[38] L. Dorard, D. Glowacka, and J. Shawe-Taylor, “Gaussian process mod-
elling of dependencies in multi-armed bandit problems,” in Proceedings
of the 10th International Symposium on Operational Research SOR 09,
pp. 77–84, 2009.

[39] A. Medlar, D. Głowacka, H. Stanescu, K. Bryson, and R. Kleta,
“Swiftlink: parallel mcmc linkage analysis using multicore cpu and
gpu,” Bioinformatics, vol. 29, no. 4, pp. 413–419, 2013.

[40] M. Flynn, “Some computer organizations and their effectiveness,” Com-
puters, IEEE Transactions on, vol. C-21, pp. 948–960, Sept 1972.

[41] NVIDIA Corporation, “Kepler gk110,” 2012.

[42] CompuGreen, LLC, “The green500 list,” 2015.

[43] PEZY Computing, “Pezy-sc many core processor,” 2015.

[44] A. Petitet, C. Whaley, J. Dongarra, and A. Cleary, “Hplinpack,” 2008.

49

[45] H. Gahvari, M. Hoemmen, J. Demmel, and K. Yelick, “Benchmarking
sparse matrix-vector multiply in five minutes,” in SPEC Benchmark
Workshop (January 2007), 2007.

[46] NVIDIA Corporation, “Cuda best practices guide,” 2015.

[47] S. van der Walt, S. C. Colbert, and G. Varoquaux, “The numpy array:
A structure for efficient numerical computation,” Computing in Science
& Engineering, vol. 13, no. 2, pp. 22–30, 2011.

[48] M. J. Huiskes and M. S. Lew, “The mir flickr retrieval evaluation,” in
MIR ’08: Proceedings of the 2008 ACM International Conference on
Multimedia Information Retrieval, (New York, NY, USA), ACM, 2008.

[49] E. Jones, T. Oliphant, P. Peterson, et al., “SciPy: Open source scientific
tools for Python,” 2001–. [Online; accessed 2015-09-10].

[50] Fresheneesz, “Example of ieee 754 floating point number,” 2007. [Online;
accessed 2015-10-13].

[51] D. Goldberg, “What every computer scientist should know about floating-
point arithmetic,” ACM Computing Surveys (CSUR), vol. 23, no. 1,
pp. 5–48, 1991.

[52] W. Kahan, “Pracniques: further remarks on reducing truncation errors,”
Communications of the ACM, vol. 8, no. 1, p. 40, 1965.

[53] S. M. Rump, T. Ogita, and S. Oishi, “Accurate floating-point summation
part i: Faithful rounding,” SIAM Journal on Scientific Computing,
vol. 31, no. 1, pp. 189–224, 2008.

[54] S. van der Walt, S. Colbert, and G. Varoquaux, “The numpy array: A
structure for efficient numerical computation,” Computing in Science
Engineering, vol. 13, pp. 22–30, March 2011.

[55] Intel Corporation, “Intel c++ compiler 16.0 user and reference guide,”
2015.

[56] IEEE Standards Association et al., “Standard for floating-point arith-
metic,” IEEE 754-2008, 2008.

50

[57] N. J. Higham, “Exploiting fast matrix multiplication within the level 3
blas,” ACM Transactions on Mathematical Software (TOMS), vol. 16,
no. 4, pp. 352–368, 1990.

[58] M. Badin, P. D’Alberto, L. Bic, M. Dillencourt, and A. Nicolau, “Im-
proving the accuracy of high performance blas implementations using
adaptive blocked algorithms,” in Computer Architecture and High Per-
formance Computing (SBAC-PAD), 2011 23rd International Symposium
on, pp. 120–127, IEEE, 2011.

[59] R. C. Whaley and A. Petitet, “Minimizing development and main-
tenance costs in supporting persistently optimized BLAS,” Soft-
ware: Practice and Experience, vol. 35, pp. 101–121, February 2005.
http://www.cs.utsa.edu/~whaley/papers/spercw04.ps.

51

	Introduction
	Image Retrieval
	Content-Based Image Retrieval
	Low-level Feature Extraction Methods
	Semantic methods

	Reinforcement Learning
	Exploration vs. Exploitation
	Upper Confidence Bound Algorithms (UCBs)

	Gaussian Process Regression
	Bayesian methods
	Predicting with GP regression

	Gaussian Process UCB Algorithm
	Experimental Design Algorithm
	GP-UCB Algorithm
	Regret Bounds

	GPU Acceleration
	Nvidia Titan Architecture
	Energy efficiency
	CUDA Thread Organization
	CUDA Memory Organization

	GP-UCB Implementation
	Time requirements
	CUDA kernel implementations

	Results
	Computation time
	Accuracy
	GPU Kernel accuracy
	Gaussian Process Accuracy

	Conclusions
	References

