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ABSTRACT

In this article, we introduce a new algorithm called randomised multichannel singular spectrum analysis

(RMSSA), which is a generalisation of the traditional multichannel singular spectrum analysis (MSSA) into

problems of arbitrarily large dimension. RMSSA consists of (1) a dimension reduction of the original data via

random projections, (2) the standard MSSA step and (3) a recovery of the MSSA eigenmodes from the reduced

space back to the original space. The RMSSA algorithm is presented in detail and additionally we show how to

integrate it with a significance test based on a red noise null-hypothesis by Monte-Carlo simulation. Finally,

RMSSA is applied to decompose the 20th century globalmonthlymean near-surface temperature variability into

its low-frequency components. The decomposition of a reanalysis data set and two climate model simulations

reveals, for instance, that the 2�6 yr variability centred in the Pacific Ocean is captured by all the data sets with

some differences in statistical significance and spatial patterns.

Keywords: multichannel singular spectrum analysis, random projection, dimensionality reduction, El Niño �
southern oscillation, 20th century reanalysis, HadGEM2-ES, MPI-ESM-MR

1. Introduction

Our motivation to focus on advanced spatio-temporal data

analysis is to better understand the decadal climate varia-

bility in the Earth system and illuminate the capabilities

of prediction tools to capture the associated signals (Meehl

et al., 2014). Inter- and intra-decadal climate variability is

inherent to the ocean�atmosphere system and is further

coupled to other Earth system components, such as sea-ice

and land surface (Meehl et al., 2009). The variability appears

as complex four-dimensional (or spatio-temporal) structures

in Earth system variables, such as wind, temperature and

precipitation (Solomon et al., 2011).

These structures are embedded in extremely large-

dimensional data sets gathered and generated in reanalysis

of atmospheric and oceanic observations, and in massive

simulation endeavours using Earth system models world-

wide. Applicability of advanced data analysis tools is

severely hampered by the very large dimensionality of the

climate data.

Many common analysis methods, such as principal

component analysis (PCA; Von Storch and Zwiers, 1999),

involve eigen-problems, which become impossible to solve

with increasing data dimension. Earlier we illustrated the

use of random projections (RP) as a tool to tackle high-

dimensional problems (Seitola et al., 2014). We demon-

strated how PCA can be applied in three-dimensions to

problems that are beyond practical computational limits

without efficient dimension reduction. PCA is not an ideal

tool, however, to extract and illustrate four-dimensional

eigen-features in climate data. In this respect, the multi-

channel singular spectrum analysis (MSSA; Broomhead

and King, 1986a, b) is a much more appealing method since

the MSSA eigen-problem inherently contains the auto-

covariance in the lagged copies of the original data vectors.

The computational burden is, however, even larger than in

PCA.Weovercome thisburdenbyanovel randomised version

of MSSA, called RMSSA. To our knowledge, this approach

has not been suggested before. We note that Oropeza

and Sacchi (2011) incorporate a randomising operator into

MSSA for noise attenuation in seismic data, but their algo-

rithm is not aimed directly at large-dimensional problems.

In RMSSA, RPs are used essentially to enable analysis of

extremely large-dimensional data sets.
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In this article, we present the RMSSA algorithm in

detail and also include a test for the statistical significance

of the results (Monte-Carlo MSSA; Allen and Robertson,

1996) in the algorithm. We demonstrate the use of RMSSA

by decomposing the 20th century global monthly mean

near-surface temperature variability into its low-frequency

components. The data sources are described in Section 2.3.

2. Methods and Data

2.1. Multichannel singular spectrum analysis

MSSA was introduced into the study of dynamical systems

by Broomhead and King (1986a, b). The method is equiva-

lent to extended empirical orthogonal function (EEOF)

analysis (Weare and Nasstrom, 1982), but there are differ-

ences in the choice of some important parameters and in the

interpretation of the results (Plaut and Vautard, 1994).

In traditional PCA or EOF analysis (e.g. Rinne and

Karhila, 1979), spatial correlations (in case of climatic data

sets) are used in determining the patterns that explain

most of the variability in the data set, but MSSA differs

from this traditional method by also taking into account the

temporal correlations. In other words, standard PCA decom-

poses a spatio-temporal field into spatial PC loading patterns

(EOFs) and corresponding PC score time series (PCs), whereas

MSSA also adds a temporal dimension to EOFs. MSSA PCs

andEOFs are often called space-time PCs (ST-PCs) and space-

time EOFs (ST-EOFs), and we have adopted this notation

here.Amore detailed description ofMSSA is presented inGhil

et al. (2002) and in Appendix A.1 here.

2.1.1. Choice of the lag window. The idea of MSSA, in

brief, is to find the patterns that maximise the lagged

covariance of the data set XN�L within M lags. In case of a

gridded climate data set, N represents the time steps and L

is the number of grid points. The columns of the data

matrix X are often called channels. The length of the lag

windowM is a user choice. For example, Elsner and Tsonis

(1996) suggest that the results of MSSA do not change

significantly with varying M as long as N��M and they

recommend using M�N/4. Vautard and Ghil (1989) re-

commend to choose M no larger than approximately N/3.

Clearly, if the number of channels L is large in the

beginning, choosing large M would result in a very high-

dimensional data matrix with M�L columns, including

lagged copies of each channel in X.

Determining the length of the lag window M is a trade-

off between spectral resolution and statistical significance

of the obtained components. The larger M is chosen, the

more temporal information can be extracted but at the

same time the variance is distributed on a larger set of

components. If M is small, the statistical significance of the

obtained components is enhanced. In this study, we used

several values of M in order to test its effects on the results.

2.1.2. Assessing statistical significance with Monte-Carlo

MSSA. ST-PCs/ST-EOFs often appear in pairs (’sinusoi-

dal’) that explain approximately the same variance and are

p/2 out of phase with each other. These pairs are said to

present stationary or propagating oscillatory modes of the

data set (Plaut and Vautard, 1994). Modes with period less

than or equal to M can be only presented by such pairs.

However, existence of such a pair does not guarantee any

physical oscillation, and according to Allen and Robertson

(1996) such pairs can also be generated by non-oscillatory

processes, such as first-order autoregressive noise.

This finding led Allen and Robertson (1996) to formulate a

test for the statistical significance of MSSA components. The

identified components are tested against a null-hypothesis of

the data being generated by independent AR(1) processes

(i.e. red noise) with the same variance and lag-1 autocorrela-

tion as the original input time series. This procedure is called

Monte-Carlo MSSA (MC-MSSA), and it is described in more

detail in the original study of Allen and Robertson (1996) as

well as in Appendix A.1 of this article.

2.1.3. Reconstructed components. ST-PCs cannot be

compared to the original time series as such; instead, they

can be represented in the original coordinate system by

their reconstructed components, RCs (Plaut and Vautard,

1994; Ghil et al., 2002). In the reconstruction, the ST-PCs

are projected back onto the eigenvectors (ST-EOFs) and

each RC is a kind of filtered version of the original

multivariate time series. Construction of RCs is illustrated

in Fig. 1. Several ST-PCs/ST-EOFs can be used in the

reconstructions, and if there is an oscillation that appears

as a sinusoidal pair, both of these ST-PCs/ST-EOFs should

be included in the reconstruction of that certain oscillatory

mode. This is done by summing up the corresponding RCs.

No information is lost in the reconstruction, and the

original time series is a sum of all individual RCs.

2.2. Randomised algorithm for MSSA

As mentioned earlier, the computational burden of MSSA

becomes soon prohibitively high if the original data set

is high-dimensional and M is chosen to be large. This is

typically the situation in studies of low-frequency variability

in climate data sets. Traditionally, the dimensionality reduc-

tion has been obtained by calculating first a conventional

PCA and retaining a set of dominant PCs for the MSSA
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(see chapter 2.2.3). However, in this article we apply a

different approach to dimensionality reduction. That is, we

use RP to reduce the dimensionality of the original data set

before performing MSSA.

In Halko et al. (2011), it is stated that randomised methods

provide a powerful tool for constructing approximate matrix

factorisations. Compared with standard deterministic algo-

rithms, the randomised methods are often faster and more

robust.Halko et al. (2011) present also numerical evidence that

these algorithms succeed for real computational problems.

2.2.1. Description of RMSSA. In our approach, RP is

applied to reduce the dimension of the original data matrix

X after which the traditional MSSA calculation is per-

formed in the lower-dimensional subspace. Finally, we

reconstruct the ST-EOFs and RCs in the original space.

We call this algorithm randomised multichannel singular

spectrum analysis (RMSSA).

In RP, the original data set is projected onto a matrix R

of Gaussian distributed (zero mean and unit variance)

random numbers in order to construct a lower-dimensional

representation P of the data set:

PN�k ¼ XN�LRL�k (1)

In other words, we are projecting our data set onto k

random directions determined by the column vectors of R.

From these projections a lower-dimensional representation

of the original data set can be constructed. Due to the

simplicity of RP, involving only matrix multiplication, it can

be applied to a wide range of data sets, even very high-

dimensional ones.

RP has already been applied to climate data in Seitola

et al. (2014) and it has been shown to preserve structures

of the original data very well. In that article, the theoreti-

cal background of RP is presented in more detail with

additional references.

1 2 3 4
RC1.1

Channel 1

0

Channel 3

Channel 2

L

N

Shifted
copies of
ST-PC1

RC1.2 RC1.3

t –> N–M+2

M   –< t –< N–M+1

t –< M–1

ST-PC1
M

M0

Fig. 1. Example calculation of the reconstructed components (RCs). A matrix of M shifted copies of a ST-PC (ST-PC1 in this example)

is constructed to calculate reconstructions of that ST-PC in a time series of each channel (grid point). This matrix is then multiplied with

that part of ST-EOF that corresponds to each channel. If t5M, the elements of RC are divided by t, if M5t5N�M�1, divided by M,

and if t]N�M�2, divided by N�t�1.
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The projected lower-dimensional data set P can be pro-

cessed through MSSA where instead of original L channels

we have now only k channels. This implies substantial com-

putational savings (see Appendix A.2, algorithm 1). In the

literature, there are some estimates of an appropriate value

for k (e.g. Frankl andMaehara, 1988; Dasgupta and Gupta,

2003). However, these theoretical lower bounds for k are

the worst case estimates and usually much lower values for

k still give good results, retaining most of the information

of the original data set (see e.g. Bingham and Mannila,

2001; Seitola et al., 2014). In practice, the value for k is

usually chosen adaptively keeping the desired size for lower-

dimensional approximation in mind.

A final step of the algorithm is to calculate the recon-

structed components. This requires the recovery of the MSSA

eigenmodes from the reduced space back to the original space,

allowing the reconstruction of the original time series. This

means that the eigenvectors (ST-EOFs) should be calculated

in the original space instead of the reduced one. This part of

the algorithm is also presented in Appendix A.2. Furthermore,

in Appendix A.4 we explain how RP preserves the lagged

covariance structure of the original data set.

2.2.2. Comparison of RMSSA to previous work. To our

knowledge, the proposed RMSSA algorithm is unique. Some

published work comes close to our approach but RMSSA

has some important differences to the randomised MSSA

algorithms used in seismic data processing (Oropeza and

Sacchi, 2011; Chiu, 2013). The aim of Chiu (2013) was to

introduce a new rank-based-reduction denoising algorithm to

perform coherent and random noise filtering concurrently.

Chiu (2013) named this algorithm, or rather filter, MSSARD

(MSSA in the randomised domain). In MSSARD, the ran-

domising operator randomly rearranges the order of the input

data and reorganises the coherent noise into incoherent noise.

The most important difference to our algorithm is in the

randomising operator: In our case, we are using RP to reduce

the dimensionality of the input data whereas Chiu’s (2013)

approach is to randomly rearrange the input data.

The technique of Oropeza and Sacchi (2011) was to embed a

spatial data at a given temporal frequency into a block Hankel

matrix after which a randomised singular value decomposition

(SVD) was adopted to accelerate the rank reduction stage of

the algorithm.Construction of aHankelmatrix corresponds to

the construction of an augmented data matrix A in our

algorithm (see Appendix A.1). Our algorithm is different in

the sense that we apply RP on the original input data before

construction of the augmented (or Hankel) matrix. This

notably reduces the computational burden of MSSA because

we are processing a much smaller data set already in the

augmentation phase of the algorithm (see algorithm 1 in

Appendix A.2).

In addition to these main differences, the above-

mentioned seismological applications involve handling a

data set where each time/frequency slice of spatial (x-y)

data is processed separately through the algorithm. In our

case, we are processing the whole time�longitude�latitude
data set at once through the RMSSA algorithm.

2.2.3. Enhancing PC-based MSSA. In many studies,

where MSSA is used as an analysis method (e.g. Plaut and

Vautard, 1994; Moron et al., 2012), the dimension of the

original data matrix has been reduced by calculating a

conventional PCA of the original data matrix and then

limiting MSSA into the dominant PCs. One has to bear in

mind that the problem dimension may be prohibitive to

contemplate solving even PCA, let alone MSSA. Never-

theless, the number of retained PCs is a somewhat arbitrary

choice, but can be estimated by inspecting the eigenvalue

spectrum and choosing the PCs that account for themajority

of the variance and are separated from the rest of the

spectrum. In geophysical datasets, however, the eigenvalue

spectrum often decreases monotonically and it is difficult to

distinguish the appropriate cut-off point. The aim of the

study does also affect the choice of the PCs. For example,

if the focus is on large-scale patterns, it might be more

convenient to choose the low-frequency PCs for further

analysis. Performing the calculations with different number

of PCs and comparing the results can also help in finding

the appropriate number of PCs. Importantly, RMSSA

(AppendixA.2, algorithm1) does not suffer from this problem

because the lower-dimensional data set has essentially the

same structure as the original high-dimensional data set.

PCA-based dimensionality reduction is, however, a pre-

ferred method if the oscillatory modes identified withMSSA

are tested against a red noise null-hypothesis through

Monte-Carlo simulation. According toAllen andRobertson

(1996) the test is only useful if the channels in the data

matrix are orthogonal or at least very nearly so. The PCs

fulfil the orthogonality condition exactly. The randomised

method can still accelerate � and in the case of a very-high-

dimensional data set even enable � the calculation of the PCs

(see Appendix A.2, algorithm 2).

This also raises the question as to whether the projected

data set [i.e. matrix P in eq. (1)] could be used directly in

MC-MSSA. Like the PCs, RP is also an orthogonal pro-

jection and the columns of P are also nearly orthogonal.

However, this question is beyond the scope of this study

and will not be discussed here any further.

2.3. Data

As an illustration of applying the RMSSA algorithm, we

analysed the monthly mean near-surface air temperature
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field from the 20th Century Reanalysis V2 data, hereafter

20CR, provided by the NOAA/OAR/ESRL PSD (Compo

et al., 2011). In addition, we repeated the analysis for the

historical 20th century simulations by Hadley Global

Environment Model 2 � Earth System HadGEM2-ES

(Collins et al., 2011), hereafter HadGEM2, and MPI Earth

System Model (ESM) running on a medium resolution grid

MPI-ESM-MR (Stevens et al., 2013), hereafter MPI-ESM.

We extended the historical simulations (1901�2005) until

2012 using the rcp45 simulations. The historical and rcp45

simulations were extracted from the CMIP5 data archive

and they follow the CMIP5 experimental protocol (Taylor

et al., 2012). In the 20th century simulations, the historical

record of climate forcing factors such as greenhouse gases,

aerosols and natural forcings such as solar and volcanic

changes is used. Rcp45 simulations follow the RCP4.5 green-

house gas scenario. We used a single ensemble member of

each model: r2i1p1 in case of HadGEM2 and r1i1p1 in case

of MPI-ESM.

The 20CR data set is produced using an ensemble of

perturbed reanalyses, and the final data set corresponds to

the ensemble mean. Only surface pressure observations are

assimilated, and the observed monthly sea-surface tem-

perature and sea-ice distributions are used as boundary

conditions to generate full three-dimensional estimates of

the state of the troposphere (Compo et al., 2011). The

20CR data set is available from 1871 to 2012 but to be

consistent with HadGEM2 and MPI-ESM simulations, the

time sequence analysed here is 1901�2012 (1344 time steps).

20CR has �2.0 degree horizontal resolution and we have

used Gaussian gridded (192�94) data from 3-hour fore-

cast values. HadGEM2 and MPI-ESM have both a global

grid of 144�73 points. Thus, we have original data sets

XN�L with N�1344, L�18048 (20CR) and L�10512

(HadGEM2 and MPI-ESM).

As an illustrative example of the high-dimensionality of

the MSSA problem, let’s choose a lag window of M�240

(months). In the case of the 20CR data set, this would result

in an augmented matrix with M�L�4331520 columns.

Clearly some kind of dimensionality reduction is needed in

order to make the computations more efficient or evenmake

them possible.

3. Results

3.1. Application of RMSSA to climatic data sets

In the previous section, we have introduced the RMSSA

algorithm and the data sets to be analysed. Next we will

proceed to the applications of the proposed method and

discuss the results.

First, the original data sets weremean centred andRMSSA

(algorithm 1 in Appendix A.2) was applied with k�500.

The first 1�30 ST-PCs of 20CR are shown in Fig. 2. In

order to find the most powerful frequencies associated

with the ST-PCs, the Multitaper spectral analysis method

(Thomson, 1982; Mann and Lees, 1996) was applied. The

power spectra of the ST-PCs are shown on the right in Fig. 2.

The first pair of ST-PCs is clearly related to the annual cycle

and this pair together explains the majority of the variance

of the data set (almost 90%). The pairs of ST-PCs 3�4, 7�8
and 12�13 are the subharmonic frequencies of the annual

cycle. The periods of ST-PCs 5, 6 and 11 as well as of ST-PCs

14, 17 and 18 fall outside the lag window length M and are

the so-called trend components. ST-PC5 may be related to

a centennial scale warming trend and ST-PC11 has a multi-

decadal scale variability. ST-PCs 22 and 24 have clear

spectral peaks on a 5�6 yr period and ST-PCs 29 and 30

are oscillating on a period of 3�4 yr. Those ST-PCs might be

related to the El Niño-Southern Oscillation (ENSO) which

is a prominent phenomenon on those time scales. ST-PCs

19�21 are related to a decadal scale variability, but the

spectra of those components are quite broad on a 10�20 yr

time scale.

The above analysis was also performed for theHadGEM2

and MPI-ESM data sets (figures not shown). As the annual

cycle is too dominating in each data set, the analysis in

the following sections will be repeated without the annual

cycle. We also integrate a MC-MSSA step in the RMSSA

algorithm (Appendix A.2, algorithm 2) in order to study the

statistical significance of the obtained components.

3.1.1. Pre-processing the data for Monte-Carlo MSSA.

Some pre-processing of the original data sets was crucial

in order to assess the statistical significance of the low-

frequency variability using MC-MSSA. First of all, the

original data sets were standardised (i.e. the time series of

each grid point was mean centred and divided by its stan-

dard deviation) in order to avoid overweighting the grid

points with higher variance. Furthermore, the annual cycle

of the time series of each grid point was estimated by STL

(Loess based Seasonal-Trend Decomposition) and removed

from the original data set. The STL method is a filtering

procedure for decomposing a time series into trend, seasonal

and remainder components. It includes some parameter

choices controlling, for instance, how rapidly the trend and

seasonal components can change. Themethod is described in

detail in Cleveland et al. (1990) and we have followed their

guidelines in choosing the related parameters. Without this

procedure the annual cycle would dominate the results and

starve the lower ranked MSSA components of power when

tested against the red noise null-hypothesis. Linear trends

were also fitted and removed from the data sets in order to

avoid the dominance of the centennial scale trend.

RANDOMISED MULTICHANNEL SINGULAR SPECTRUM ANALYSIS 5



For the sake of comparison, the annual cycle was also

estimated by calculating the mean values of each calendar

month and those values were subtracted from the data to

get monthly anomaly time series. However, determining the

base for the anomaly calculation is not that straightforward

and the choice of a base period may have severe impacts on

the results (Kawale et al., 2011). Furthermore, the average

annual cycle is only removed and if the annual cycle varies

in the time series, the anomalies still contain a residual

annual cycle.

The dimensions of the original data sets were reduced by

applying RP with k�500 to have a lower-dimensional

approximation PN�k of each data set. To be able to

perform MC-MSSA, we further calculated SVD of P and

retained 30 first PCs of each data set, explaining approxi-

mately 72% (20CR), 67% (HadGEM2) and 64% (MPI-

ESM) of the variance. Those 30 PCs were used as input

channels in the MC-MSSA-step.

3.1.2. Decomposition of the pre-processed data sets. The

ST-PCs 1�30 of each data set and their spectra are

presented in Figs. 3�5. These figures show the results after

applying the steps 1�8 of algorithm 2 in Appendix A.2

(note that the annual cycle and linear trend were removed

from the original data sets). In 20CR (Fig. 3), the ST-PCs

1�2 are so-called trend components explaining together

almost 9% of the variability of the data set. Pairs of
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Fig. 2. ST-PCs 1�30 of 20CR monthly near-surface temperature 1901�2012 and their spectra. The lag window lengthM used in RMSSA

is 20 yr (240 months). The data set is centred and algorithm 1 of Appendix A.2 is applied. The proportion of the variance explained by each

component is also presented in the figure.
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ST-PCs 3�4 and 5�6 in 20CR have clear peaks in

frequencies corresponding to 3�4 yr and over 5 yr periods.

In addition, 2�3 yr periodicities are distributed on several

ST-PCs beginning from the 14th one. When the model

simulations are compared to the 20CR components, the

main differences are the prominent decadal scale compo-

nents of HadGEM2 (ST-PCs 2�3, 9.3% of explained

variance) and the 2�7 yr variability of MPI-ESM that is

distributed on a large set of successive components. For

more details, the readers are advised to study Figs. 3�5.
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Fig. 3. ST-PCs 1�30 of 20CR monthly near-surface temperature 1901�2012 and their spectra. The lag window lengthM used in RMSSA

is 20 yr (240 months). The annual cycle and linear trend are removed from the original data set and algorithm 2 of Appendix A.2 is applied.

The proportion of the remaining variance explained by each component is also presented in the figure.
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3.2. Identifying significant oscillations

In MC-MSSA step, in total of 1000 realisations of red-noise

surrogates were generated and the red-noise basis was used to

estimate the 90, 95 and 99% confidence intervals for the

eigenvalues generated by the noise model that consists

of independent first-order autoregressive processes. Figure 6

shows the results of the Monte-Carlo significance test of

20CR, HadGEM2 and MPI-ESM with a 20 yr lag win-

dow (M�240 months). In that figure, the data eigenvalues

and 2.5th and 97.5th percentiles of the distribution of the

surrogate eigenvalues are plotted against the dominant fre-

quencies of the corresponding red-noise basis vectors (noise

ST-EOFs). The dominant frequencies are estimated using fast
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Fig. 4. ST-PCs 1�30 of HadGEM2 monthly near-surface temperature 1901�2012 and their spectra. The lag window length M used in

RMSSA is 20 yr (240 months). The annual cycle and linear trend are removed from the original data set and algorithm 2 of Appendix A.2 is

applied. The proportion of the remaining variance explained by each component is also presented in the figure.
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Fourier transform (FFT). It should be noted, that the estimate

of the dominant frequency of the noise ST-EOFs may not

be exactly the same as the dominant frequency of the data

ST-EOFs which may cause some small inaccuracies in the

results.

The significant signals (at 5% significance level) in Fig. 6

are those whose data eigenvalues lie above the 97.5th

percentiles of the surrogate eigenvalues. According to the

test these signals have more variance than would be ex-

pected to have from a noise process. According to Plaut and
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Fig. 5. ST-PCs 1�30 of MPI-ESM monthly near-surface temperature 1901�2012 and their spectra. The lag window length M used in

RMSSA is 20 yr (240 months). The annual cycle and linear trend are removed from the original data set and algorithm 2 of Appendix A.2 is

applied. The proportion of the remaining variance explained by each component is also presented in the figure.
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Vautard (1994) the use of a lag window length M typically

allows the distinction of oscillations with periods in the range

[M/5,M]. Therefore we only show the significance test of the

periodicities that are covered by the 20 yr lag window used in

this example. From Fig. 6, we can see that in 20CR data set

there are some significant periodicities (at 5% level) between

1.7 and 5.5 yr. HadGEM2 has somewhat more significant

periodicities compared to 20CR, especially on 10 yr time

scales, butMPI-ESMhas hardly any eigenvalues lying above

the 97.5th percentile.

3.2.1. Results with different lag window lengths. As noted

earlier, the Monte-Carlo simulations were performed with

varying lag windowM to estimate its effect on the statistical

significance of the oscillations. Spectral resolution increases

with lag window length and oscillatory pairs with longer

periodicity can be identified. However, at the same time the

statistical significance of the identified oscillationsmay decline.

We used the following values of M: 5 yr (M�60 months),

10 yr (M�120), 20 yr (M�240), approx. 28 yr [M�340:N/4,

following the recommendation of Elsner and Tsonis (1996)]

and approx. 38 yr [M�450:N/3, following Vautard and

Ghil (1989)].

The identified periodicities and their significance levels

with increasing lag window are presented in Fig. 7. The

numbers in Fig. 7 show the dominant periods associated

with the oscillations. These dominant periods are estimated

using FFT. From Fig. 7 we can see that in 20CR the

significant periodicities are consistently found at 3.6, 2.3

and 1.7 yr, depending to some extent on M. Those periods

are more or less visible in HadGEM2 and to a lesser extent

in MPI-ESM. Significant 5�6 yr oscillations are identified

in all the data sets and especially a �5.5 yr variability is

found consistently.

2�6 yr oscillations are usually attributed toENSOwhich is

a globally dominating form of variability on annual to

decadal time scales (e.g. Kleeman, 2008). It is a broadband

phenomenon with several spectral peaks and the highest

peak is around 4 yr. This can also be seen in our analysis of

20CR, HadGEM2 andMPI-ESM data sets because most of

the significant oscillations are concentrated on 2�6 yr time

scales. However, the spectra of MPI-ESM (Fig. 5) differs

distinctly from the spectra of the other two data sets: the

Fig. 6. MC-MSSA test of the monthly near-surface temperature variability in 20CR, HadGEM2 and MPI-ESM data sets 1901�2012.
PCs 1�30 of RP�PCA (see Appendix A.2, algorithm 2) are used as input channels in the analysis and the lag window length M is 20 yr

(240 months). In MC-MSSA, the red-noise basis is used. Red squares show the data eigenvalues plotted against the dominant frequency of

the ST-PC corresponding to each eigenvalue. The vertical bars show the 2.5th and 97.5th percentiles of the eigenvalue distribution

calculated from 1000 realisations of the red-noise surrogates. The ST-PCs that correspond to eigenvalues rising above the 97.5th percentiles

are considered significant at the 5% level. Note the missing power at 1 yr due to the removal of the annual cycle.
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power on 2�8 yr time scales is distributed on a large set of

components (especially ST-PCs 4�18) which also decreases

the statistical significance of oscillations on those time scales.

In HadGEM2, significant decadal scale oscillations are

identifiedwith all lagwindow lengths.Dominant peak on the

decadal time scales has been noted by Collins et al. (2008)

and one of the possible reasons for this is in deficiencies

of simulation of the ENSO phase-changing process in

HadGEM2 (Martin et al., 2010).

There are also significant multi-decadal components in

20CR data set, but their period decreases with increasing

lag window M. The time series to be analysed become
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Fig. 7. Periodicities (years) detected by RMSSA/MC-MSSA with varying lag window length (years) for each data set (20CR, HadGEM2

and MPI-ESM). The similar periodicities among the data sets are aligned. Numbers in the figure are in bold if the significance level of a

periodicity is 1%, and with grey background if 10%. Otherwise the significance level is 5%. Dominant frequencies of the oscillations are

estimated using fast Fourier transform (FFT).
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shorter with increasing M and this may have an effect on

the identified period length. We did not find significant

multi-decadal components in HadGEM2 and MPI-ESM

data sets, although 27 yr and 26 yr periods are identified

on 10% significance levels, but only with a single lag win-

dow length. However, the use of a lag window M typically

allows only the distinction of oscillations with periods 5M

and thus the interpretation of those multi-decadal compo-

nents remains uncertain.

3.3. Reconstruction of the significant oscillations

The final step of our analysis is to reconstruct the decomposed

signals in the original space. As an illustration, we have chosen

to reconstruct the signal corresponding to approximately

5.5 yr variability, which was identified in all the data sets.

In order to see the time evolution of the �5.5 yr

variability, we have reconstructed the time series in each

gridpoint of the original data set with the ST-PCs corre-

sponding to the signal of interest. I.e., in the reconstruction

we have projected the original (centred) data set onto ST-

PCs (calculated in the reduced space) to obtain ST-EOFs

in the original space and then projected the ST-PCs onto

those ST-EOFs (see Appendices A.2 and A.4 for more

details). In order to see the global effects of the �5.5 yr cycle,

the time series of each grid point has its original variance.

The above calculations were completed for each data set

using their own �5.5 yr patterns. ST-PCs 5 and 6 of the

20CRdata set (Fig. 3), ST-PCs 6 and 7 ofHadGEM2 (Fig. 4)

and ST-PCs 4 and 5 of MPI-ESM (Fig. 5) were used in the

reconstruction.

Once we have reconstructed the time series in each

gridpoint we can plot the anomalies related to the signal

month by month. These plots are presented as animations

of each data set (20CR, HadGEM2 and MPI-ESM) for a

time period of 1901�2012 (the animations are available at

www.youtube.com/channel/UCRjwc6cI-TzbvtShONYZ7cg).

In Fig. 8, we also show the global patterns of the �5.5 yr

variability of near-surface temperature anomaly. The pat-

terns are composites of eight cases, when the oscillation is in

its positive phase in the equatorial Pacific. Positive events are

defined as an average of wintermonths (November�March).

The temperature anomalies of 20CR have many simila-

rities to global El Niño effects, such as above average tem-

peratures in the central and eastern equatorial Pacific Ocean,

in the western and northern parts of North-America and

South-America as well as in South-East Asia, Australia

and southern Africa. Below average anomalies are found in

the south-east parts ofNorth-America, in the north-west and

south-west Pacific as well as in northern parts of Eurasia.

Fig. 8. Global patterns of �5.5 yr oscillation of the near-surface temperature anomaly (8C) in 20CR, HadGEM2 and MPI-ESM data

sets 1901�2012. The patterns are calculated as composites of eight cases, when the oscillation is in its maximum positive phase in the

equatorial Pacific. Those positive events are defined as an average of winter months (Nov�Mar). See the text for more details on the

reconstruction procedure. The identified patterns have similarities to El Niño -phenomenon.
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In 20CR, a typical north-south wave train is also seen, but

the east-west patterns areweaker, except for the anomalies at

the Amazonas.

HadGEM2 and MPI-ESM show similarities to 20CR,

but differences can be seen, for example, in the Pacific

forcing patterns. Especially in MPI-ESM the centre of the

forcing pattern seems to be more western. In the model

simulations, the negative anomaly near the west-coast of

North-America extends to the continent, which is not

detected in 20CR. The positive anomalies in HadGEM2

and MPI-ESM also extend into the northern Eurasia and

there are anomaly patterns in the southern Indian Ocean

which are absent in 20CR. MPI-ESM has a stronger

positive anomaly in the coast of South-East Asia compared

to the other two data sets. In addition, there is a strong

anomaly near the Antarctic Peninsula in the Weddel Sea in

the 20CR data set which is not detected in the model

simulations. The anomaly patterns in the Atlantic Ocean

are also weaker in 20CR compared to simulations.

The animations of the �5.5 yr pattern (available at

www.youtube.com/channel/UCRjwc6cI-TzbvtShONYZ7cg)

show some more features in addition to the ones seen

in Fig. 8. For instance, in 20CR animation there is a quite

strong anomaly pattern to the west of Ural Mountains.

This pattern is not usually associated with ENSO, and its

maximum negative and positive phases seem to occur at

different times compared to the ENSO-related anomaly

patterns in the Pacific. However, this pattern to the west

ofUralmight also reflect someother phenomenon,mixedwith

the ENSO patterns.

The animations also show that the variability has a more

propagating character in 20CR data set whereas the anomaly

patterns in the model simulations are more stationary. In

the northern and southern Pacific Ocean, for example, the

anomalies seem to propagate eastward in the 20CR animation.

Compared to 20CR, HadGEM2 and MPI-ESM show a

richer structure in Fig. 8 and in the animations. One has to

remember that the reanalysis data set is an ensemble mean

whereas the analysis of the climate model simulations is

conducted on a single ensemble member of each model.

This may also contribute to the structure seen in the model

simulations. Different, more or less real, phenomena may

also be mixed in the variability patterns of the simulations.

4. Summary and Discussion

We have introduced an RMSSA algorithm, which allows

the calculation of MSSA of extremely high-dimensional

problems. The RMSSA algorithm first reduces the dimen-

sion of the original data set byRP, then decomposes the data

set into components of different frequencies by calculating

MSSA in a reduced space, and finally reconstructs the com-

ponents in the original high-dimensional space.

We have applied the RMSSA algorithm to decompose

the monthly mean near-surface air temperature of the 20th

century reanalysis and the historical 20th century simula-

tions of HadGEM2-ES and MPI-ESM-MR extracted from

the CMIP5 data archives. We have also performed Monte-

Carlo simulations in order to estimate the significance of

the identified low-frequency components. Our analysis

shows that 2�6 yr oscillations are present in all the data

sets. Their statistical significance is highest in HadGEM2

while in MPI-ESM the power on those timescales is

distributed on a large set of components decreasing their

statistical significance.

2�6 yr oscillations are usually attributed to ENSO which

is a globally dominating form of variability on annual to

decadal time scales. Our global monthly animations of 5�6
yr near-surface temperature cycle match quite well with

the known temperature anomalies related to ENSO. The

reanalysis and the historical simulations have similar

anomaly patterns in the central and eastern Pacific Ocean,

around the northern part of Indian Ocean as well as in the

north-west North-America, but also some notable differ-

ences in several areas, such as Eurasia. Also, our anima-

tions of the 5�6 yr cycle reveal a propagating structure

in the near-surface temperature anomalies of 20CR, while

the variability in HadGEM2 and MPI-ESM data sets is

more stationary. The focus of this study was to introduce

the RMSSA algorithm and the discussion on the possible

causes for the differences in oscillatory patterns of the

data sets is limited. However, this would be a subject for a

further study with a larger set of climate model data sets

included.

RMSSA algorithm is a powerful tool when the dimen-

sions of the data sets become prohibitively large. It allows

a computationally efficient way of decomposing a data

set into its spatio-temporal patterns. Several climatic state

variables can be incorporated in the RMSSA at the same

time in order to find the co-varying signals and illustrate

their propagation. RMSSA can also be used in studying the

oscillations in three dimensions including data from several

atmospheric levels in the analysis.
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Appendix A

A.1. MSSA and Monte-Carlo MSSA

A.1.1. Multichannel singular spectrum analysis

(MSSA)

The aim of MSSA is to identify spatially and temporally

coherent patterns in a multivariate data set. In MSSA

terminology, the columns of the original data matrix XN�L

are called channels. In case of gridded data set, N

represents the time steps and L is the number of grid points:

X ¼

x1;1 x1;2 � � � x1;L

x2;1 x2;2 � � � x2;L

..

. ..
. . .

. ..
.

xN;1 xN;2 � � � xN;L

2
6664

3
7775 (A1)

The next step is to construct an augmented data matrix A,

which contains M lagged copies of each channel in X:

Yi ¼

x1;i x2;i � � � xM;i

x2;i x3;i � � � xMþ1;i

..

. ..
. . .

. ..
.

xN0;i xN0þ1;i � � � xN;i

2
6664

3
7775; i ¼ 1:::L (A2)

and

A ¼ Y1 Y2 � � � YL½ � (3)

In MSSA, M represents the lag window. A has now ML

columns and N 0 ¼ N �M þ 1 rows. The singular value

decomposition (SVD) of A can now be calculated:

A ¼ UAD1=2
A VT

A ; (4)

The vectors of UA are the eigenvectors of ZA ¼ 1
ML

AAT and

VT
A contains the eigenvectors of CA ¼ 1

N0A
T A. These vectors

are orthogonal and often called space-time principal

components (ST-PCs) and space-time empirical orthogonal

functions (ST-EOFs), respectively. Diagonal elements of

DA are the eigenvalues of CA or ZA.

Optionally the lag-covariance matrix CA (or ZA) and its

eigendecomposition can be calculated to yield eigenvectors

VT
A (or UA) and eigenvalues (diagonal elements of matrix

DA ¼ VT
ACAVAor DA ¼ UT

AZAUA). Matrix UA (or VT
A) can

be obtained by projecting A onto VT
A(or UA). If N 0 > ML

(or ML > N 0), it is more convenient to estimate CA (or ZA)

because it is smaller. See Allen and Robertson (1996) for

details.

A.1.2. Monte-Carlo MSSA

The components obtained by MSSA can be tested against a

null-hypothesis of the data being generated by independent

AR(1) processes (i.e. red noise). The red noise model has

the form:

utþ1;s ¼ csut;s þ aswt;s; (A5)

where gs is the lag-1 autocorrelation of channel s (in the

original data set), as ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
csð1� c2

s Þ
p

(c s is the variance of

channel s) and Wt,s is Gaussian white noise. The data set

generated by the model in (A5) is called the surrogate data

set and it is subjected to MSSA in the same way as the

original data set. Large number of surrogates are generated

in order to estimate the confidence limits for the MSSA

results of the original data set.

In the test of Allen and Robertson (1996), the lag-

covariance matrices of the original data set and the red-

noise surrogates are projected either onto the data-adaptive

basis (i.e. UA or VT
A) or the null-hypothesis basis. The null-

hypothesis basis can be calculated from the expected lag-

covariance matrix CN of the red-noise surrogates. CN can

be estimated analytically by

½CN � ¼
1

ML

XML

s¼1

csc
ii�jjj j

s (A6)

Projection onto the red-noise basis is considered more

reliable because the use of the data-adaptive basis assumes

the existence of an oscillation even in a case where it is

uncertain whether or not the oscillation is significant.

According to Allen and Robertson (1996), the input

channels should be uncorrelated (or at least nearly) at zero

lag for the test to be useful. In the case of a gridded data

set, where all the grid point time series are used as input

channels, the decorrelation condition is not valid. The test

might still be useful if we are using grid points sufficiently

far from each other as the input channels for the test (Ghil

et al., 2002).

A.2. Randomised algorithms for MSSA

1: Original MSSA algorithm enhanced by RP

(1) construct the original data matrix XN�L

(2) (pre-processing of X, if needed)

(3) generate k L-dimensional vectors of Gaussian dis-

tributed random numbers to get matrix R (and

optionally orthogonalise the random vectors)

(4) project the original data matrix onto random

vectors: PN�k ¼ 1ffiffi
k
p XN�LRL�k

(5) generate augmented matrix ARP of P

(6) calculate SVD: ARP ¼ URPD1=2
RP VT

RP (or covariance

matrix CRP or ZRP and its eigendecomposition)

(7) calculate ST-EOFs in the original space: VA:

AT URPðD
1=2
RP Þ

�1
(see Appendix A.4 for an explanation)

(8) calculate RCs using ST-EOFs of step 7.
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2: PC-based MSSA algorithm enhanced by RP

(1) construct the original data matrix XN�L

(2) (pre-processing of X, if needed)

(3) generate k L-dimensional vectors of Gaussian

distributed random numbers to get matrix R (and

optionally orthogonalise the random vectors)

(4) project the original data matrix onto random

vectors: PN�k ¼ 1ffiffi
k
p XN�LRL�k

(5) calculate SVD of P (see Appendix A.3 for an

explanation of how the covariance is preserved in

RP�SVD)

(6) retain e.g. 30 first PCs of P to obtain reduced

matrix T

(7) generate augmented matrix APC of T

(8) calculate SVD: APC ¼ UPCD1=2
PC VT

PC (or covariance

matrix CPC or ZPC and its eigendecomposition)

(9) (MC-MSSA step)

(10) calculate ST-EOFs in the original space: VA:

AT UPCðD
1=2
PC Þ

�1
(seeAppendixA.4 for an explanation)

(11) calculate RCs using ST-EOFs of step 10.

A.3. RP and SVD

The method to back-project from the reduced space to the

original space in the case of RP�SVD is explained in

Seitola et al. (2014) (Appendix A.1) but we also present it

briefly here:

The SVD of the original data matrix XN�L is:

XN�L ¼ UN�NDN�LVT
L�L (A7)

U contains the eigenvectors of Z�XXT.

Random projection (RP) of X is P�XR, where RL�k is

the projection matrix and the row vectors of R are scaled to

have unit length. Thus, we can write:

ZRP ¼ XRðXRÞT ¼ XRRT XT � XXT ¼ Z (A8)

In the previous, we have assumed that RRT � I because the

row vectors of R are nearly orthonormal. It is also possible

to make the vectors of R strictly orthonormal, in which

case RRT ¼ I. However, orthogonalisation is often not

necessary, because the difference between the orthogona-

lised and non-orthogonalised random vectors is very small,

especially in high-dimensions.

Let’s rewrite (A7) as XN�L ¼ UN�rDr�rV
T
r�L, where

r�rank(X). Now we can manipulate (A7):

X ¼ UDVT ðUT U ¼ IÞ
UT X ¼ DVT ðD�1D ¼ IÞ
VT ¼ D�1UT X transpose of both sides
V ¼ XT UðD�1ÞT ¼ XT UD�1 ðA9Þ

Because Z:ZRP we can approximate

U � URP;
D � DRP and
V � XT URPD�1

RP ðA10Þ

In the previous, we have defined URP as N�k and DRP as

a k�k matrix, where k is the rank of matrix PN�k.

A.4. RP and MSSA

In this appendix, we will explain how to get from the

reduced space back to the original space in the case of

RP�MSSA.

Let’s write the original data matrix XN�L as

X ¼

x1;1 x1;2 � � � x1;L

x2;1 x2;2 � � � x2;L

..

. ..
. . .

. ..
.

xN;1 xN;2 � � � xN;L

2
6664

3
7775 ¼

x1

x2

..

.

xN

2
6664

3
7775; (A11)

where xi are the row vectors of X.

The augmented matrix A of X is already defined in

Appendix A.1. Now let’s calculate AAT.

AAT ¼ Y1 Y2 � � � YL½ �

YT
1

YT
2

..

.

YT
L

2
6664

3
7775

¼ Y1YT
1 þ Y2YT

2 þ � � � þ YLYT
L

� �
(A12)

After some algebra we get

AAT¼

x1xT
1 þ x2xT

2 þ � � � þ xMxT
M x1xT

2 þ x2xT
3 þ � � � þ xMxT

Mþ1 � � � x1xT
N0 þ x2xT

N0þ1 þ � � � þ xMxT
N

x2xT
1 þ x3xT

2 þ � � � þ xMþ1xT
M x2xT

2 þ x3xT
3 þ � � � þ xMþ1xT

Mþ1 � � � x2xT
N0 þ x3xT

N0þ1 þ � � � þ xMþ1xT
N

..

. ..
. . .

. ..
.

xN0x
T
1 þ xN0þ1xT

2 þ � � � þ xNxT
M xN0x

T
2 þ xN0þ1xT

3 þ � � � þ xNxT
Mþ1 � � � xN0x

T
N0 þ xN0þ1xT

N0þ1 þ � � � þ xNxT
N

2
6664

3
7775 (A13)
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Now let’s calculate RP of X:

XR ¼

x1

x2

..

.

xN

2
6664

3
7775R ¼

x1R
x2R

..

.

xNR

2
6664

3
7775 (A14)

The augmented matrix of is ARP:

ARP ¼

x1R x2R � � � xMR
x2R x3R � � � xMþ1R

..

. ..
. . .

. ..
.

xN0R xN0þ1R � � � xNR

2
6664

3
7775 (A15)

Let’s calculate ARPAT
RP:

ARPAT
RP ¼

x1R x2R � � � xMR
x2R x3R � � � xMþ1R

..

. ..
. . .

. ..
.

xN0R xN0þ1R � � � xNR

2
6664

3
7775

�

RTxT
1 RTxT

2 � � � RTxT
N0

RTxT
2 RTxT

3 � � � RTxT
N0þ1

..

. ..
. . .

. ..
.

RTxT
M RTxT

Mþ1 � � � RTxT
N

2
6664

3
7775 (A16)

Because RRT � I, the first element of ARPAT
RP can be

written as x1RRTxT
1 þ x2RRTxT

2 þ � � � þ xMRRTxT
M � x1xT

1

þx2xT
2 þ � � � þ xMxT

M

After calculating all the elements of ARPAT
RP as above, we

see that AAT � ARPAT
RP. Therefore, as in Appendix A.3, we

can approximate

UA � URP;
DA � DRP and
VA � AT URPD�1

RP ðA17Þ

Same kind of reasoning applies also when the PCs of the

data set are used as channels in MSSA. We can write PCs

as UN�rDr�r ¼ XN�LVL�r, where r�rank(X). Vectors of

V are orthonormal, so in the above calculations we can

replace R with V.
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