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Abstract. In double quantum dot singlet–triplet qubits, the exchange
interaction is used in both quantum gate operation and the measurement of the
state of the qubit. The exchange can be controlled electronically by applying gate
voltage pulses. We simulate the exchange induced charge state transitions in one
and two singlet–triplet qubit systems using the exact diagonalization method.
We find that fast detuning pulses may result in leakage between different singlet
charge states. The leakage could cause measurement errors and hinder quantum
gate operation for example in the case of the two-qubit Coulomb gate.
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1. Introduction

The development of experimental methods has enabled the fabrication of ‘artificial atoms’ with
a controlled number of electrons, ranging from a few to a few hundred, confined in a tunable
external potential inside a semiconductor [1–3]. These quantum dots (QDs) have been proposed
as a possible realization for the qubit of a quantum computer [4, 5].

A framework for using two-electron spin eigenstates as qubits was proposed by Levy [6]
in 2002. The two-electron double QD (DQD) spin states have natural protection against the
decoherence by the hyperfine interaction and allow for a scalable architecture for quantum
computation [7]. The universal set of quantum gates for two spin singlet–triplet DQD qubits
has been demonstrated experimentally. These gates include one qubit rotations generated by
the exchange interaction [8], stabilized hyperfine magnetic field gradients [9] and two qubit
operations using long distance capacitative coupling by the Coulomb interaction [10, 11].

The exchange interaction results from the symmetry properties of the spatial many-body
wave function. In the singlet state, the electrons behave effectively like bosons, an overlap of
the wave functions of the electrons lowers the energy of the state. In the triplet state, the effect is
opposite. In singlet–triplet DQD qubits, the exchange interaction can be turned on by electrically
detuning the two dots of the qubit by applying gate voltages [8].

In S–T0 qubits, the exchange interaction is used to drive both one qubit rotations [4, 8, 9,
12–14] and two-qubit interactions [6, 10, 11, 15–17]. In addition to quantum gate operation, the
exchange interaction is also exploited in measuring the state of the S–T0 qubit [8, 18]. As the
detuning of the dots is increased, the singlet state localizes into the dot with lower potential,
undergoing a transition from (1, 1) charge state (one electron in each dot) to (0, 2). Due to the
repulsive exchange force, the triplet stays in (1, 1) [8, 14, 19]. The state of the qubit can then be
measured using a charge sensor.

In this paper, we use the exact diagonalization (ED) method to simulate the transition
between singly and doubly occupied singlet states. The transition is induced by increasing the
detuning between the dots of the qubit. We study the effect of the speed of the detuning sweep
and find that a fast increase can lead to Landau–Zener type leakage between the charge states.
We propose that this kind of leakage could cause errors in measuring the singlet probability.
We also study the operation of the capacitatively coupling Coulomb gate and discover that the
leakage may result in the gate not achieving maximal Bell-state entanglement.

2. Model and methods

We model lateral GaAs QD systems with the two-dimensional Hamiltonian

H(t)=

N∑
j=1

[
−

h̄2

2m∗
∇

2
j + V (r j , t)

]
+

∑
j<k

e2

4πεr jk
, (1)

where N is the number of electrons, V the external potential and m∗
≈ 0.067me and ε ≈ 12.7ε0

are the effective electron mass and permittivity in GaAs, respectively. In numerical work, it is
convenient to switch into effective atomic units by setting m∗

= e = h̄ = 1/4πε = 1. In these
units, energy is given by Ha∗

≈ 11.30 meV and length in a∗

0 ≈ 10.03 nm.
In our computations, a singlet–triplet qubit is modeled with a DQD potential. A system of

two singlet–triplet qubits is modeled as four QDs. In the model, the external potential V (r) for
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Figure 1. A two dot potential and the detuning. The potential of equation (2),
with two minima at R1 = (−40 nm, 0) and R2 = (40 nm, 0) and with no detuning
is shown in the x-axis (the thick blue line). The confinement strength is h̄ω0 =

4 meV. A detuning potential Vd of ε = 6 meV is shown as the thin red line. The
detuning is a step function that is made continuous with a linear ramp. The
detuned potential is shown with the dashed black line.

QD systems consists of several parabolic wells. A confinement potential of M parabolic wells
can be written as

V (r, t)=
1
2m∗ω2

0 min16 j6M{|r − R j |
2
} + Vd(t, r), (2)

where {R j}16 j6M are the locations of the minima of the parabolic wells and ω0 is the
confinement strength. A time dependent detuning potential Vd(t, r) is included.

The detuning is modeled as a step function that assumes constant values at each well. The
detuning of a singlet–triplet qubit is defined as the potential energy difference between the two
parabolic minima of the qubit, i.e. if the qubit consists of the minima at R1 and R2, the detuning
is ε(t)= V (R1, t)− V (R2, t). A DQD potential and the detuning are illustrated in figure 1.

The Hamiltonian (1) is diagonalized using the ED method. In the ED calculations,
the one-particle basis is the eigenstates corresponding to the confinement potential (2). The
one-particle eigenstates are computed using the multi-center Gaussian basis (the method is
described in detail by Nielsen et al [20]). The matrix elements Vi, j = 〈φi |V (r)|φ j〉 and Vi, j,k,l =

〈φi |〈φ j |Vint|φl〉|φk〉 can be computed analytically in the Gaussian basis. The matrix elements
corresponding to the one-particle eigenstates are then computed from the Gaussian elements by
a basis change.

In the computation of the one-particle eigenstates, an evenly spaced grid of about 200
Gaussian functions (209 in the two dot case and 189 in the four dot case) was used. The
grid dimensions and the Gaussian widths were optimized and the convergence of the states
was verified by comparing the energies to ones obtained with a much larger grid of around
2000 Gaussians. We performed the basis change of the interaction matrix elements Vi, j,k,l with
an Nvidia Tesla C2070 graphics processing unit, which was programmed with CUDA [21], a
parallel programming model for Nvidia GPUs.
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The time evolution of the wave function is computed by propagating the initial ground
state ψ(0),

ψ(t +1t)= exp

(
−

i

h̄
H(t)1t

)
ψ(t). (3)

The ED Hamiltonian is stored as a sparse matrix and its eigenvalues and eigenvectors are
computed by the Lanczos iteration. The ground state of the system can be obtained by directly
applying the Lanczos method. The higher states can then be computed by a ‘ladder operation’.
The nth state |ψn〉 is obtained as the ground state of the Hamiltonian

Hn = H + δ
n−1∑
j=1

|ψ j〉〈ψ j |, (4)

where H is the original Hamiltonian of the system, δ > 0 is a penalizing term and {|ψ〉 j}
n−1
j=1 are

the eigenstates below the nth. The matrix exponentiation in (3) is also done by Lanczos.

3. One qubit

The logical basis of a two-electron singlet–triplet qubit consists of the two lowest eigenstates,
the singlet state, |S〉 =

1
√

2
(|↑↓〉− |↓↑〉) and the Sz = 0 triplet state, |T0〉 =

1
√

2
(|↑↓〉 + |↓↑〉)

(the arrows denote the direction of the electron spins). In singlet–triplet qubits, the exchange
interaction is used to drive the z-axis rotations around the Bloch-sphere. The singlet and
triplet states are close to degenerate with zero detuning, and the charge state |S(1, 1)〉 (one
electron in each dot) is the ground state. Increasing the detuning ε generates an energy splitting
between the S and T0 states due to the exchange interaction. When the detuning is increased
enough, the charge state |S(0, 2)〉 becomes the ground state as the detuning overcomes the
Coulomb repulsion caused by occupying one dot with two electrons. This allows for a projective
measurement of the state of the qubit, as the triplet state stays in the (1, 1) configuration due to
the repulsive exchange force [8].

In our one-qubit computations, the distance of the parabolic wells of the singlet–triplet
qubit is a = |R1 − R2| = 80 nm. The confinement strength is h̄ω0 = 4 meV. Other dot-distances
and confinement strengths were also studied and the results were qualitatively similar to the
ones shown here. We use the 24 first one-particle eigenstates of the system in the many-body
ED-computations. This basis size was found to be sufficient for the convergence of the results
(the relative difference of the many-body ground state energies with 18 and 24 single particle
states is less than 0.1% up to very high detuning region).

We first study the energies of the lowest many-body eigenstates as a function of the
detuning ε. The energy levels are plotted in figure 2. The singlet states |S(1, 1)〉 and |T0(1, 1)〉
are nearly degenerate at low detuning, and |S(1, 1)〉 is the ground state. Around ε = 4.7 meV,
|S(1, 1)〉 and |S(0, 2)〉 anti-cross and |S(0, 2)〉 becomes the ground state. In the actual anti-
crossing area, the ground state is a superposition of |S(1, 1)〉 and |S(0, 2)〉. The size of the
anti-crossing gap is 1= 68µeV. The transition from |T0(1, 1)〉 to |T0(0, 2)〉 happens at much
higher detuning and it is not shown in the figure.

We then study the non-adiabatic charge transitions from |S(1, 1)〉 to |S(0, 2)〉 by sweeping
the detuning past the anti-crossing area to the (0, 2)-regime (i.e. the regime where the projective
measurement of the singlet probability would be done [8]) with varying speeds. The system is
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Figure 2. The lowest energy levels of a two-electron DQD-system as function
of the detuning. The singlet states are shown with thick blue line, and the triplet
state (|T0(1, 1)〉) with the thin red line.
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Figure 3. The probability of the lowest singlet state (|S(1, 1)〉 with low detuning
and |S(0, 2)〉 with high detuning) as a function of normalized time t/τ with
different rise times τ . The initial state is |S(1, 1)〉. The detuning is increased
linearly from 0 to 5.0 meV in a time of τ . After the detuning has reached its
maximum value, the system is let to evolve for a time of 0.1τ .

initiated in the |S(1, 1)〉 state, and the detuning was then increased linearly to its maximum value
5.0 meV during a time of τ . After the detuning has reached its maximum value, the system is
let to evolve for a time of 0.1τ . The time step length is τ/1000 (it was found to be small enough
to produce accurate dynamics of the situation). The occupations of the lowest singlet state with
different rise times τ are shown in figure 3.

When the detuning is increased adiabatically (with respect to the charge state transition)
through the anti-crossing area, the occupation of |S(1, 1)〉 in the beginning equals the occupation
of |S(0, 2)〉 in the end. If the increase is too fast, the final state is a superposition of |S(1, 1)〉
and |S(0, 2)〉. The faster the increase the bigger the contribution of |S(1, 1)〉. The probability
of the ground state oscillates at the end of the detuning sweep, as seen in figure 3, as changing

New Journal of Physics 15 (2013) 103015 (http://www.njp.org/)

http://www.njp.org/


6

0.1 0.15 0.2 0.25 0.3
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

t(ns)

q 1(C
)

 

 

τ=0.2 ns

τ=1 ns

Figure 4. The charge in the left dot of the DQD qubit as a function of time.
The qubit is initiated in |S(1, 1)〉. The detuning is then increased linearly to
ε = 5 meV in a time of τ . After the detuning sweep, the system is let to evolve
for 0.1 ns. For clarity, the curves are shown so that in both cases the detuning
reaches its maximal value at t = 0.2 ns (i.e. the τ = 0.2 ns sweep starts at t = 0
and the τ = 1 ns sweep at t = −0.8 ns).

the detuning couples the two charge states. The oscillations end abruptly when the detuning has
reached its maximum value, at t/τ = 1. During the evolution after t/τ = 1, the wave function
is a superposition of the eigenstates of the Hamiltonian, and the time-evolution only produces
phases, hence the kink in the probability curves at t/τ = 1 (the kink is most prominent in the
τ = 0.2 ns curve).

Too fast an increase of the detuning leads to a Landau–Zener transition to the higher state,
|S(1, 1)〉. Indeed, the final probabilities of the ground state |S(0, 2)〉 agree very well with the
Landau–Zener formula

P(|S(0, 2)〉)= 1 − exp

(
−
π12

2h̄|v|

)
, (5)

where1 is the width of the anti-crossing gap, and v =
d
dt (ES(0,2) − ES(1,1)) is the Landau–Zener

velocity. For example with τ = 0.2 ns, the simulation (figure 3) gives p(|S(0, 2)〉)= 0.42 at the
end of the detuning sweep while the Landau–Zener formula gives p(|S(0, 2)〉)= 0.43.

The results are similar if instead of |S(1, 1)〉 the initial wave function is some arbitrary
superposition of |S(1, 1)〉 and |T0(1, 1)〉, i.e. the singlet component behaves according to the
Landau–Zener theory. The same applies also if the initial state is |S(0, 2)〉 and the detuning is
decreased to zero linearly.

In the non-adiabatic case, the final wave function is a superposition of two charge states.
The charge density starts to oscillate between the dots after the detunings have reached their
maximal values. Figure 4 shows the charge in the left dot (the one with lower potential) during
and after the detuning sweep to ε = 5 meV. The charge oscillations are approximately sinusoidal
and have the same frequency regardless of τ . As expected, the higher the rise time τ , the more
charge ends up in the left dot (with an adiabatic passage, the charge is constant, q1 = 2 C after
t = 0.2 ns). The oscillating component of the charge density is rather small compared with
the overall amplitude that is determined by the occupations of the charge states |S(0, 2)〉 and
|S(1, 1)〉.
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Figure 5. The energy levels of the two-qubit system as a function of the detuning.
Both qubits are in the same detuning εA = εB = ε. The |SS〉 states are shown with
the thick blue lines, the |ST0〉 and |T0S〉 states with the red lines and the |T0T0〉

state with the dashed black line.

4. Two qubits

The logical basis of the two-qubit system (qubits A and B) consists of the lowest singlet and
T0 states for the two qubits, {|SS〉, |ST0〉, |T0S〉, |T0T0〉}, where |SS〉 = |S〉A ⊗ |S〉B and so on.
The two-qubit system is simulated as four QDs in a line (the minima are located at the x-axis).
The four dots are separated into two DQDs. The intra-qubit distance of the minima in the DQDs
is aA = |R1 − R2| = aB = |R3 − R4| = 80 nm. The inter-qubit distance is |R2 − R3| = 120 nm.
The confinement strength is h̄ω0 = 4 meV.

We first study the energy levels of the two-qubit system (four electrons in the four dots) as
a function of the detunings εA = V (R2)− V (R1) and εB = V (R3)− V (R4). The 18 first single-
particle states were used in the ED computations. The single-particle states were created with
εA = εB = 4 meV, as this localizes the states more into the dots with lower potential, which leads
to better convergence of the many-body results when the detuning is high. The convergence of
the energies was checked, and the basis of 18 states was found sufficient for good accuracy (the
relative difference of the many-body ground state energies with 18 and 24 single particle states
was less than 0.1% up to very high detuning region).

The lowest energy levels with symmetric detuning (εA = εB = ε) are shown in figure 5.
In this case, there is an anti-crossing area at around ε = 4.4 meV. It is at a lower detuning
compared to figure 2. due to the fact that the detunings εA and εB were defined such that the
furthest away dots 1 and 4 are in the low detuning. Hence, the Coulomb repulsion between the
dots 2 and 3 facilitates the transition to the |S(0, 2)〉 states. The more complex anti-crossing
region involves four |SS〉-type states, |S(1, 1)〉A ⊗ |S(1, 1)〉B , |S(0, 2)〉A ⊗ |S(0, 2)〉B and two
linear combinations of states |S(1, 1)〉A ⊗ |S(0, 2)〉B and |S(0, 2)〉A ⊗ |S(1, 1)〉B . The latter two
states are ‘the bonding state’, and ‘the anti-bonding state’,

1
√

2
|S(1, 1)〉A ⊗ |S(0, 2)〉B ±

1
√

2
|S(0, 2)〉A ⊗ |S(1, 1)〉B, (6)

where + corresponds to the bonding state and − to the anti-bonding state. Only the bonding
state is coupled to |S(1, 1)〉A ⊗ |S(1, 1)〉B and |S(0, 2)〉A ⊗ |S(0, 2)〉B .
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Figure 6. The energy levels of the two-qubit system as a function of the detuning.
Here, εB = ε− 0.1 meV and εA = ε. The |SS〉 states are shown with the thick
blue lines, the |ST0〉 and |T0S〉 states with the red lines and the |T0T0〉 state with
the dashed black line.

Figure 7. The energy levels of the two-qubit system as a function of the detuning.
Here, εA = ε− 0.5 meV and εB = ε. The |SS〉 states are shown with the thick
blue lines, the |ST0〉 and |T0S〉 states with the red lines, and the |T0T0〉 state with
the dashed black line.

Breaking the symmetry of the two qubits splits the bonding and anti-bonding states into
|S(1, 1)〉A ⊗ |S(0, 2)〉B and |S(0, 2)〉A ⊗ |S(1, 1)〉B . Figure 6 shows the energy levels with εA 6=

εB . Here, εA = ε and εB = ε− 0.1 meV. As qubit A in now at higher detuning, the corresponding
state |S(0, 2)〉A ⊗ |S(1, 1)〉B is at lower energy compared to |S(1, 1)〉A ⊗ |S(0, 2)〉B . Both states
couple to |S(1, 1)〉A ⊗ |S(1, 1)〉B and |S(0, 2)〉A ⊗ |S(0, 2)〉B . Figure 7 shows the energy levels
with a larger asymmetry εA = εB − 0.5 meV= ε− 0.5 meV. In this case, the detuning difference
between the qubits is so large that there are two anti-crossing regions, one for each qubit. The
transition from |S(1, 1)〉A ⊗ |S(1, 1)〉B to |S(0, 2)〉A ⊗ |S(1, 1)〉B happens when ε = 4.8 meV,
and to |S(1, 1)〉A ⊗ |S(0, 2)〉B at ε = 4.3 meV. The transition to |S(0, 2)〉A ⊗ |S(0, 2)〉B happens
at ε = 5 meV.
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Figure 8. The probability of the lowest |SS〉 as a function of normalized time
t/τ with different rise times τ . The initial state is |S(1, 1)〉A ⊗ |S(1, 1)〉B . The
detuning is increased linearly from 0 to 4.8 meV in a time of τ . After the
detuning has reached its maximum value, the system is let to evolve for a time of
0.1τ . The probabilities of the ground states shown in figure 8 look very similar
to the one qubit results. However, in the two qubit case, the leakage involves
four charge states |S(1, 1)〉A ⊗ |S(1, 1)〉B , |S(0, 2)〉A ⊗ |S(0, 2)〉B , |S(0, 2)〉A ⊗

|S(1, 1)〉B and |S(1, 1)〉A ⊗ |S(0, 2)〉B that are all coupled to each other.

The charge state leakage occurs also in the two qubit system if the detunings are increased
too fast. However, as there are now more states in the anti-crossing region, the phenomenon
becomes more complex. Figure 8 shows the probability of the ground state |SS〉 as a function of
time when the detunings εA and εB are increased to their maximum values with different speeds.
Both qubits are initiated in the |S(1, 1)〉 state, and the detunings are then increased linearly to
their maximum value 4.8 meV. Here, εA = εB .

With very fast detuning sweeps (τ = 0.01 and 0.2 ns in figure 8), the leakage tends to
happen mainly to |S(1, 1)〉. A little bit slower increase (still non-adiabatic though) leads to
larger occupation of the bonding state (i.e. the states |S(0, 2)〉A ⊗ |S(1, 1)〉B and |S(1, 1)〉A ⊗

|S(0, 2)〉B). With τ = 0.01 ns, the occupations at the end of the simulation shown in figure 8 are:
P(|S(0, 2)〉A ⊗ |S(0, 2)〉B)≈ 0.02, P(BOND)≈ 0.05 and P(|S(1, 1)〉A ⊗ |S(1, 1)〉B ≈ 0.94.
With τ = 0.2 ns, P(|S(0, 2)〉A ⊗ |S(0, 2)〉B)≈ 0.54, P(BOND)≈ 0.18 and P(|S(1, 1)〉A ⊗

|S(1, 1)〉B ≈ 0.28. The leakage can happen also between different |ST0〉 and |T0S〉 charge states.
In this case, it is effectively similar to the one qubit case shown in figure 3, as the T0 part is not
affected by the detuning.

With small asymmetry in the detunings, the leakage is qualitatively very similar to the
symmetric case apart from the fact that the bonding state is now spilt into |S(0, 2)〉A ⊗

|S(1, 1)〉B and |S(1, 1)〉A ⊗ |S(0, 2)〉B . In the highly asymmetrical case in figure 7, the states
|S(1, 1)〉A ⊗ |S(1, 1)〉B and |S(0, 2)〉A ⊗ |S(0, 2)〉B are not coupled due to the fact that the
charge transitions happen at different detunings in the two qubits. The transitions, and the
leakages, happen for one qubit at a time. |S(0, 2)〉A ⊗ |S(1, 1)〉B and |S(1, 1)〉A ⊗ |S(0, 2)〉B

leak to |S(1, 1)〉A ⊗ |S(1, 1)〉B at the respective anti-crossings and |S(0, 2)〉A ⊗ |S(0, 2)〉B may
leak to |S(1, 1)〉A ⊗ |S(0, 2)〉B at ε = 5 meV. All these transitions are essentially of the one-
qubit type, involving only two charge states, as in figures 2 and 3.
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Figure 9. The charge in the left dot of the qubit A as a function of time.
The behavior of the charge in the right dot of the qubit B is identical. The
qubits are initiated in |S(1, 1)〉. The detunings are then increased linearly to
εA = εB = 4.8 meV in a time of τ . In the figure, the detuning sweeps end at
t = 0.2 ns. The system is then let to evolve for 0.1 ns. For clarity, the curves are
shown so that in both cases the detuning reaches its maximal value at t = 0.2 ns
(i.e. the τ = 0.2 ns sweep starts at t = 0 and the τ = 0.6 ns sweep at t = −0.4 ns).

Charge oscillations similar to the ones in figure 4 also occur in the two-qubit case.
However, the oscillations can be more complex, as there are more |SS〉-type eigenstates.
Figure 9 shows the charge in the left dot of qubit A during and after the detunings are
increased to their maximal values εA = εB = 4.8 meV. The charge is plotted only for the qubit
A as the behavior of the charge in the right dot of B is identical to the one shown. The
τ = 0.2 case exhibits complex charge oscillations as the wave function is now a superposition
of three eigenstates of the system. In the case of τ = 0.6 ns, the system is predominantly
in the |S(0, 2)〉-state, with much smaller contribution in the |S(1, 1)〉-state than in the
bonding state, P(|S(0, 2)〉A ⊗ |S(0, 2)〉B)≈ 0.914, P(|BOND〉)≈ 0.077 and P(|S(1, 1)〉A ⊗

|S(1, 1)〉B)≈ 0.006. Hence, the oscillations due to |S(1, 1)〉A ⊗ |S(1, 1)〉B are suppressed, and
the charge oscillates approximately sinusoidally.

With smaller qubit–qubit distances (while keeping the intra-qubit dimensions intact), the
energy difference between the |S(0, 2)〉A ⊗ |S(0, 2)〉B and the bonding state is increased due
to the stronger repulsion between the qubits. The anti-crossing region also starts at a lower
detuning in this case (around ε = 4.15 compared to the ε = 4.3 meV shown in figure 5). For
example, with the qubit–qubit distance being 100 nm, there is a 36% increase in this anti-
crossing region energy gap compared to the 120 nm case shown in figure 5. The gap between
the bonding state and the (1, 1)-state does not seem to be affected as much. The larger energy
gap between the (0, 2) state and the bonding state was found to reduce the charge state
leakage slightly. For example, in a sweep to ε = 4.8 meV in a time τ = 0.2 ns, the ground state
occupation was found to be P(|SS〉)≈ 0.60 compared to the P(|SS〉)≈ 0.54 shown in figure 8.

The charge state leakage can also affect the functioning of the entangling two-qubit
Coulomb gate. The qubits A and B can become entangled due to the fact that under the exchange
interaction, the charge densities of the |S〉 and |T0〉 states differ (the singlet is a superposition
of the (1, 1) and (0, 2) charge states), and hence the Coulomb repulsion between the qubits
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Figure 10. The concurrence as the qubits evolve under exchange. Both qubits, A
and B, are initiated in the xy-plane of the Bloch sphere. The detunings are then
turned on linearly during a time of τ . The thick blue curve shows the adiabatic
and the red curve the non-adiabatic case. (The adiabatic rise started at t = 0 and
the non-adiabatic at t = 0.99 ns.) At time t = 1 ns the detunings have reached
their maximal values (εA = εB = 4.28 meV) and the qubits are let to evolve
for 1 ns.

depends on the states of the qubits. This conditioning creates an entangled state when the qubits
are evolved under exchange. This allows the creation of a two-qubit CPHASE gate that along
with one-qubit operations enables universal quantum computation [7, 10, 11].

For the correct operation of the gate, it is necessary to achieve maximal Bell-state
entanglement. The degree of entanglement can be determined by some entanglement measure.
One such measure is the concurrence. In this case, it is given as e.g.

C = 2|αSSαT0T0 −αST0αT0 S|, (7)

where αSS = 〈ψ |SS〉, i.e. the projection of the wave function of the system onto the lowest |SS〉-
state, and similarly for the other α’s. Concurrence assumes values between 0 and 1. A non-zero
C is a property of an entangled state, and the higher the value of C , the higher the degree of
entanglement. The maximally entangled Bell states have C = 1 [22].

We simulate the operation of the two-qubit Coulomb gate. Both qubits are initiated in the
xy-plane of the Bloch sphere, in the state |↑↓〉 = 1/

√
2(|S〉 + |T0〉). The detunings are then

turned on (linearly during a rise time of τ ), and when they have reached their maximal values
(εA = εB = 4.28 meV), the qubits are let to evolve. As the qubits evolve under exchange, they
start to entangle and disentangle in an oscillatory manner. The frequency of the oscillations
is proportional to the energy difference 1E = ESS + ET0T0 − EST0 − ET0 S. The concurrence is
computed at each time step to study the entanglement of the qubits and the effect of the length
of the rise time τ .

Figure 10 shows the computed concurrence. In the adiabatic case (τ = 1 ns), the
concurrence reaches its maximal value 1, i.e. the two qubit system becomes maximally
entangled. When the detunings are increased non-adiabatically (τ = 0.01 ns), the concurrence
never reaches values above 0.7 due to probability leaking out of the qubit basis. The frequency
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of the concurrence oscillations is not affected by the leakage, as it is determined by the energy
difference of the qubit basis states.

5. Discussion

We have studied the non-adiabatic charge state leakage in singlet–triplet qubits using the ED
method. We have found that when the detuning is increased too quickly, a Landau–Zener
transition to a higher lying singlet charge state can occur. In the one qubit case, this transition
involves states |S(1, 1)〉 and |S(0, 2)〉. In the two-qubit case, the situation is more complex.
There are four |S〉A ⊗ |S〉B-type states, and they all are coupled to each other by detuning.
We have also simulated the two-qubit Coulomb gate and studied the effect of the charge state
leakage on the gate’s entangling properties. We find out that the leakage can result in the gate
not achieving the maximal Bell state entanglement.

Our ED model does not contain any decoherence effects, as including them would make
the computations too heavy. The main source of decoherence in GaAs singlet–triplet qubits
is the hyperfine interaction with the semiconductor nuclear spins [23–26]. In S–T0-qubits, the
hyperfine interaction couples the singlet to the triplets. It does not affect the coupling between
different singlet charge states, that governs the leakage effect discussed in this paper. In addition,
the relevant time scale for the nuclear spin induced decoherence is in the order of tens of
nanoseconds (i.e. the dephasing time T ∗

2 is in this order) [8, 25, 27], while the leakage effects
shown here become pronounced in the sub-nanosecond scales.

In conclusion, we have found that using too fast detuning pulses can lead to leakage
between singlet charge states in S–T0 qubits. This could cause measurement errors in
determining the singlet probability by projecting the state of the qubit onto |S(0, 2)〉, i.e. a
singlet could be interpreted as a triplet if the detuning pulse is too fast. The leakage could also
result from quantum gate operation if the gates involve fast detuning pulses, in which case the
correct functioning of the gate could be compromised.
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