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ABSTRACT
Deconvoluting the molecular target signals behind observed drug
response phenotypes is an important part of phenotype-based drug
discovery and repurposing efforts. We demonstrate here how our
network-based deconvolution approach, named target addiction
score (TAS), provides insights into the functional importance of
druggable protein targets in cell-based drug sensitivity testing
experiments. Using cancer cell line profiling data sets, we
constructed a functional classification across 107 cancer cell
models, based on their common and unique target addiction
signatures. The pan-cancer addiction correlations could not be
explained by the tissue of origin, and only correlated in part with
molecular and genomic signatures of the heterogeneous cancer
cells. The TAS-based cancer cell classification was also shown to be
robust to drug response data resampling, as well as predictive of the
transcriptomic patterns in an independent set of cancer cells that
shared similar addiction signatures with the 107 cancers. The critical
protein targets identified by the integrated approach were also shown
to have clinically relevant mutation frequencies in patients with
various cancer subtypes, including not only well-established pan-
cancer genes, such as PTEN tumor suppressor, but also a number
of targets that are less frequently mutated in specific cancer
types, including ABL1 oncoprotein in acute myeloid leukemia. An
application to leukemia patient primary cell models demonstrated how
the target deconvolution approach offers functional insights into
patient-specific addiction patterns, such as those indicative of
their receptor-type tyrosine-protein kinase FLT3 internal tandem
duplication (FLT3-ITD) status and co-addiction partners, which may
lead to clinically actionable, personalized drug treatment
developments. To promote its application to the future drug testing
studies, we have made available an open-source implementation of
the TAS calculation in the form of a stand-alone R package.

KEY WORDS: Cell-based drug sensitivity profiling, Drug-target
addiction scoring, Experimental-computational target
deconvolution, Pan-cancermodeling, Personalized cancermedicine

INTRODUCTION
With the emerging challenges of translating the cancer genome
sequencing information into clinically actionable, targeted drug
treatment strategies, it has become evident that we also need

complementary strategies for functional investigation of druggable
vulnerabilities and cellular addictions of cancer cells. Advances
in cell-based high-throughput compound screening have made it
possible to profile the cellular activity of an extensive collection of
bioactive small molecules, thereby enabling a functional phenotype-
based approach to unbiased identification of candidate compounds
for individual cancer patients (Pemovska et al., 2013, 2015; Tyner
et al., 2013). In addition, such functional information can be used
to identify pathway dependencies behind drug sensitivity and
resistance patterns in hundreds of cancer cell models across
various cancer subtypes (Barretina et al., 2012; Garnett et al.,
2012; Heiser et al., 2012; Basu et al., 2013). Compared with
transcriptomic-based functional classification of cancer cells, which
predominantly reflects their tissue of origin (Klijn et al., 2015),
comprehensive drug sensitivity profiling provides more actionable
information in the preclinical setting, which may be used
subsequently to guide the development of personalized treatment
regimens or to design so-called basket clinical trials (Redig and
Janne, 2015).

Identification of the cellular targets behind the observed drug
response profiles (so-called target deconvolution) is an important
aspect of the rational phenotype-based drug discovery approach
(Terstappen et al., 2007). Knowledge of the active target sub-space
of those drug compounds that show potency in the cell models is
fundamental for understanding their mechanism of action, which in
turn is critical for the drug development process as well as for drug
repurposing applications. Systematic mapping of the full activity
spectrum, ranging from the compound’s primary targets to its
secondary or ‘off-targets’, provides a basis for the development of
more effective and safe therapeutic options that could also avoid
severe side effects. Such system-wide addiction maps may offer
insights not only into the mechanism of action of the compounds,
but also means for improved understanding of their cell type-
specific and cancer-selective efficacies. There is a broad array of
experimental strategies for phenotype-based target deconvolution
(Terstappen et al., 2007). Computational target deconvolution can
guide the purely experimental approaches, but the existing
computational approaches have focused on a single cancer type
only or are limited merely to kinase inhibitors (Tyner et al., 2013;
Yadav et al., 2014; Szwajda et al., 2015).

In the present study, we applied an experimental-computational
target deconvolution approach in a diverse collection of cancer
cell models. Our computational target addiction scoring (TAS)
algorithm integrates cell-based compound sensitivity profiling with
global drug-target interaction networks that capture a broad
spectrum of both on- and off-target effects of the compound
panel, comprising not only kinase inhibitors but also other
important drug target classes. The integrated approach is
applicable both to cell line models in vitro and to patient-derived
samples ex vivo; for a given cancer cell model, it provides aReceived 7 April 2015; Accepted 6 August 2015
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functional importance scoring of the drug targets, according to an
estimate of how much the cell sample is addicted to the particular
target protein. In an application to >100 cell lines, we deconvoluted
the target signal patterns across the heterogeneous cancer cell
collection, hence revealing pan-cancer correlations in their addiction
signatures between both shared and unique genetic and tissue
backgrounds. A specific application to leukemia patient primary
cancer cell models demonstrates how the target deconvolution
approach can yield functional and actionable insights into patient-
specific addiction patterns towards clinical translation.

RESULTS
Target addiction scoring in cell-based models
We implemented an experimental-computational platform that
identifies critical drug targets in individual cancer cell lines or
patient-derived cell models (Fig. 1). The approach takes as its input
the observed response profile of a particular sample to a large and
broad panel of bioactive compounds (Pemovska et al., 2013), and
then transforms this phenotypic profile into a target addiction
profile, through information encoded in system-wide drug target
networks that connects the compounds to their wide classes of
cellular targets (see Materials and Methods for the details of the
collection of target information for the compound panels used in
this study). Systematic mapping of such target addiction signatures
provides a ranking of the drug targets according to their functional
importance in the given cancer sample. The network pharmacology
approach aims to identify druggable signal addictions, that is, such

molecular vulnerabilities of a given cancer sample that are
pharmacologically actionable and may therefore lead to
straightforward drug development or repurposing opportunities.
Here, we used primary leukemic cells as an example disease model
to demonstrate how this target deconvolution approach may lead to
novel therapeutic developments in patient-derived cell models.

We first systematically tested the TAS approach using the
comprehensive cell line data from the Genomics of Drug Sensitivity
in Cancer (GDSC) project, which is the largest public resource for
information on drug sensitivity in cancer cells along with their
comprehensive genomic and molecular characteristics (Yang et al.,
2013). We calculated the TAS profiles for the subset of 107 cell
lines with complete drug responses to the full panel of 138 drug
compounds under clinical and preclinical investigation
(supplementary material Table S1). As the primary drug response
metric, we used the drug sensitivity score (DSS), which was recently
shown to improve the prediction of drugs’ mechanism of action, as
well as the identification of drug-responsive cell lines and patient-
derived cancer cells (Yadav et al., 2014; Pemovska et al., 2015). We
also tested the performance of other response metrics, including
the standard half-maximal inhibitory concentration (IC50), as well
as the area under the dose-response curve (AUC), as available in the
GDSC resource. The pairwise addiction signatures between the cell
lines were compared with those derived from the genomic
signatures of the selected cell lines, using congruence analysis,
and later the predictive power of the TAS signatures was assessed in
an additional set of 20 cell lines from GDSC.

Comparison with tissue type and genomic profiles
We first derived unsupervised molecular and functional
classifications of the 107 cancer cell lines based on their
transcriptional, drug response and target addiction profiles. As
expected, the cancer cell line clustering based on the gene
expression profiles was largely driven by the tissue origin of these
cells (Fig. 2A,C; P=0.0001, permutation test of the Kendall
coefficient). In contrast, the cell line clustering based on the target
addiction profiles was effectively independent of the tissue type
(Fig. 2B; supplementary material Fig. S1). The same was also true
when using the DSS alone, although not as prominent as with the
DSS-TAS transformation (Fig. 2C; supplementary material
Fig. S2). For instance, gastrointestinal (GI) tract cell lines formed
a clear sub-cluster in the expression-based clustering, whereas these
cells were scattered in various sub-clusters of the TAS-based
functional classification. This indicates that the pan-cancer
functional relationships in the addiction patterns carry information
beyond the tissue origin alone, which may therefore be more closely
connected to the underlying biology shared by multiple cancer
subtypes.

To determine the degree to which the target addiction-based
classification of the cancer cells could be explained by their pan-
cancer genomic or molecular correlates, we next compared the
similarities and differences in the TAS patterns with those derived
from the genomic and molecular signatures of the same set of 107
cell lines. In order to capture effectively the joint variability
between gene expression (GE), copy number (CN) and mutation
status (MUT) across the genetically heterogeneous cancer cells,
we used a sparse extension of the Bayesian group factor analysis
(GFA; Virtanen et al., 2012; Khan et al., 2014), which enabled
us to identify a shared set of active components between these
three high-dimensional genomic and molecular data sets
(supplementary material Fig. S3B). The novel GFA analysis
resulted in both unique and common genes in the shared active

RESOURCE IMPACT

Background
Cell-based drug sensitivity testing is becoming a popular approach to
provide a functional profile not only for cancer cell lines but also for
primary patient cells to map pathway dependencies in specific cancer
subtypes and to select optimal personalized treatments for cancer
patients. However, several critical challenges remain; in particular, how
to deconvolute signals of addiction – a phenomenon describing the
dependency of certain tumors on a single oncogene for growth and
survival – behind the drug sensitivity and resistance phenotypes, which
is a critical step in the phenotype-based drug development process and
an important prerequisite for many translational applications.

Results
In this study, the authors implemented a network-based experimental-
computational approach that makes use of polypharmacological effects
of drug compounds to identify pharmacologically actionable target
signals in individual cancer cell subtypes and in patient-derived cell
models. When applied to >100 cancer cell lines, this approach mapped
target signal profiles across heterogeneous cancer cell models; these
profiles revealed pan-cancer correlations in the addiction signatures of
different cancer cell subtypes that have both shared and unique genetic
and tissue backgrounds. Specific application to leukemia patient primary
cell models demonstrated how the target deconvolution approach offers
functional insights into patient-specific addiction patterns that might lead
to clinically actionable treatment strategies.

Implications and future directions
This computational target deconvolution method represents an open-
source and extendable approach that can be used to identify target
addiction profiles across heterogeneous cancer cell lines and leukemia
patient primary cell models. This approach should thus provide a
valuable resource for the community to enable translation of drug
sensitivity testing results into many exciting drug development and
repurposing opportunities.
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components, including, for instance, well-known cancer
oncogenes, such as MYCN and CDKN2A, which were common
to all the three data sets, whereas TP53 and KRAS were unique to
the MUT data set only (Fig. 3A).
When comparing the target addiction signatures and the

combined genomic signatures from the GFA analyses, it was
found that the TAS version calculated with DSS led to the
overall best concordance (Fig. 3B; P=0.003, permutation test).
Likewise, the AUC response metric showed slightly improved
concordance after its TAS transformation, whereas the IC50

metric showed a totally opposite trend in concordance.
Surprisingly, the combination of the CN and MUT components
resulted in a lower concordance with the addiction signatures,
compared with that when using the mutation status alone,
perhaps owing to the relatively high dependency (anti-
correlation) of the genomic information captured by the copy
number alterations and somatic point mutations, as observed in
recent pan-cancer analyses (Ciriello et al., 2013). These results
were based on systematic concordance analysis using various
distance measures on both functional and genomic profiles,
which supported the overall good performance of the cosangle
dissimilarity (otherwise known as uncentered correlation;
supplementary material Fig. S4).

Robustness and predictive power of addiction signatures
To verify that the TAS-based cell line cluster solutions were not
obtained by chance, for instance, owing to the specific data sample
only or a single run of the clustering algorithm, we repeated the cell
line clustering on 10,000 bootstrap samples of the original 107 cell
lines. Strikingly, the robustness of the cell line classifications based
on each drug response metric could be improved by using the TAS
transformation (Fig. 4A), most significantly with the IC50 metric
(P=0.009, Wilcoxon rank-sum test). Although the average
robustness values over the whole spectrum of sub-cluster
structures were relatively similar between the three response
metrics, the DSS-TAS combination resulted in the most consistent
cluster solution over the bootstrap samples. Notably, each of the
cluster solutions made without the TAS transformation had sub-
clusters with 0% robustness also at the upper levels of hierarchy in
the corresponding dendrograms (supplementary material Fig. S5),
indicating that these larger sub-clusters at higher levels were in fact
very sensitive even to small changes in the drug response input data.
In contrast, the TAS-based cluster solutions resulted in notably
higher robustness values for each sub-cluster, especially at the upper
levels of the dendrogram (supplementary material Fig. S6),
compared with their TAS-free counterparts (supplementary
material Fig. S5).
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Fig. 1. Schematic diagram of the target addiction scoring. The approach uses as its input the response profiles of a cancer sample to a large panel of bioactive
compounds, and then transforms this response profile into a target addiction score using information encoded in system-wide drug-target networks. The example
network was constructed using STITCH, but other drug-target sources were also used here (see Materials and Methods for details). Only a sub-set of the
749 protein targets of the full target addiction score (TAS) profiles is illustrated here as calculated across the 107 cancer cell lines (the full target addiction
matrix is available in supplementary material Table S1). As the drug response metric, here we used the drug sensitivity score (DSS), which combines multiple
dose-response parameters, including the standard half-maximal inhibitory concentration (IC50), in the area under curve (AUC) calculation. DSS differs from
standard AUC in terms of using both the maximal asymptotic response (Rmax) and the minimal activity threshold (Amin) when normalizing the response metric
(Yadav et al., 2014). The target addiction signatures of the cancer cells were compared with those from the genomic signatures of the same cell lines using
distance-based congruence analysis.
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To evaluate whether the DSS-TAS profiles could also carry a
predictive signal for the genomic characteristics of the cancer cell
lines, we combined 20 additional cell lines from GDSC (tested with
fewer than 138 compounds) with the original analyses done on the
basis of the 107 cell lines (supplementary material Table S1).
Within each of the detected eight addiction sub-clusters, we
compared the GE, CN and MUT profiles of the newly added cell
lines with those of the original cell lines, often representing different
tissue types (supplementary material Fig. S7). As expected, the gene
expression profiles were highly correlated among all the cancer
cell line pairs, leading to a shifted background distribution with a
positive mean (Spearman correlation 0.8). However, the expression
correlations of the new cell lines with those predicted to share
similar addiction patterns were significantly higher (Fig. 4B;
P<0.004, empirical significance based on the permuted null
distribution). Likewise, the TAS-based clusters were fairly
predictive of the CN profiles, whereas the mutation status of the
new cell lines could not be predicted accurately (data not shown).

This is likely to result from the relatively small number of genes
whose mutation status was available (out of the 84 genes profiled in
GDSC, only 51 genes harbored mutations in these 107 cell lines).

Clinical relevance of the identified addiction signatures
Next, we combined the target addiction signatures of the cancer cell
lines into GFA in order to study the similarities and differences in
the active components revealed by the genomic and functional
profiles. Overall, the shared active components had only a few
common genes, indicating the complementary nature of these
profiles (Fig. 5A). In particular, the DSS-TAS active component
shared only three genes with both the GE (HOXA1, GPRC5A and
LYZ) and CN (ABL1, ABL2 and CTNNB1) and none with the
mutational profiles; although this surprisingly small overlap may be
attributed in part to the rather sparse mutation panel, it also
demonstrates that the functional drug/target profiling provides
added value to the genomics-only-based analyses and that the
targets deemed functionally critical by the addiction scoring are not
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necessarily overlapping with those detected by genomic analyses of
the same cancer cells.
As a specific example, we focused more closely on the four

common genes that were included in the shared active components
between DSS-TAS, GE and CN (ABL1, ABL2, GPRC5A and
CTNNB1). An interaction network was constructed by combining
these genes with each other using direct, experimentally validated
and manually curated interactions from the Ingenuity Pathway
Analysis knowledgebase (IPA; QIAGEN, www.qiagen.com/
ingenuity). In addition to novel links, the network analysis also
identified missing players between these four genes, including RAS
oncogene, EGFR and BCR, all of which are well established as
having a role in the pathogenesis and treatment of many cancer
types, including breast, colorectal, pancreatic and lung cancer; these
molecules are either serving as biomarkers for cancer prognosis and/
or prediction of treatment efficacy (supplementarymaterial Fig. S8).
We next investigated how frequently the genes shared by at least

two data sets are mutated in cancer patients using data from The
Cancer Genome Atlas (TCGA) resource. In addition to pan-cancer
recurrent genes, such as PTEN, which are mutated at high frequency
in multiple cancers, this analysis also revealed a number of genes
that are more uniquely mutated in specific cancer types; for instance,
ABL1 in acute myeloid leukemia (AML) and HOXA1 in lung
adenocarcinoma (Fig. 5B). In leukemia, the BCR-ABL1 fusion gene
is a known driver oncogene in chronic myeloid leukemia and

Philadelphia chromosome-positive acute lymphoblastic leukemia.
Using an unbiased drug sensitivity testing of primary leukemia cells
ex vivo, we recently identified the tyrosine kinase inhibitor axitinib
as a selective and highly effective inhibitor for T315I-mutant BCR-
ABL1-driven leukemia (Pemovska et al., 2015).

Application of TAS to primary leukemia patient cells
Using leukemia as an example disease model, we carried out an
‘in silico personalized medicine’ case study. Specifically, we
applied the TAS approach to the cell-based drug response data
obtained from a recent study where the sensitivity of primary
leukemia patient cell samples was assessed to a panel of 66 kinase
inhibitors ex vivo (Tyner et al., 2013). The TAS signatures across
the 151 leukemia samples revealed patient-specific addiction
patterns that were not explained by their diagnostic classification
(supplementary material Table S2). Based on our previous
analysis of ex vivo drug response patterns in AML patients, where
receptor-type tyrosine-protein kinase FLT3 internal tandem
duplication (FLT3-ITD) mutation status was found to be
associated with functional classification of the AML subtypes
(Pemovska et al., 2013), here we focused specifically on the FTL3-
ITD addiction levels across the leukemia patient samples.

In the sub-set of the leukemia patients with known FLT3-ITD
status, the TAS-based ranking distinguished the positive and
negative cases (Fig. 6A; P=0.00017, Wilcoxon rank-sum test).

4
6

8
10

12

Spearman correlation

D
en

si
ty

0.7 0.8 0.9

0
2

S
ub

-c
lu

st
er

 1
 a

nd
 3

S
ub

-c
lu

st
er

 2
 a

nd
 5

S
ub

-c
lu

st
er

 4
 (p

 =
 0

.0
00

13
)

S
ub

-c
lu

st
er

 6

S
ub

-c
lu

st
er

 7

S
ub

-c
lu

st
er

 8
 (p

 =
 0

.0
04

)

BA

TAS
DSS

DSS TAS
AUC

AUC TAS
pIC50

pIC50

S
ub

-c
lu

st
er

 ro
bu

st
ne

ss

0.0

0.2

0.4

0.6

0.8

1.0

p = 0.026 p = 0.32 p = 0.009

Fig. 4. Robustness and predictive power of addiction profiles. (A) Robustness of the sub-clusters based on 10,000 bootstrapped samples. The red dotted line
indicates themedian robustness of the TAS-DSS combination (supplementary material Figs S5 and S6 show the robustness values separately for each individual
sub-cluster in the clustering dendrogram). Statistical significance of the difference in robustness with and without TAS transformation was assessed using the
Wilcoxon rank-sum test. (B) Background gene expression correlation among all the cancer cell line pairs. The red continuous lines indicate the average
expression correlation of the new sets of cell lines with those predicted to share a similar addiction pattern based on the TAS clustering (supplementary material
Fig. S7 shows the eight detected sub-clusters). Empirical statistical significance was assessed using the background null distribution.

A
B

L1

A
B

L2

C
C

N
D

1

C
D

K
N

2A

C
TN

N
B

1

FG
FR

3

G
P

R
C

5A

H
M

G
A

2

H
O

X
A

1

H
O

X
A

9

LY
Z

M
Y

C

M
Y

C
N

P
TE

N

R
B

1

S
M

A
D

4

0.0

0.1

0.2

0.3

0.4 Uterine corpus endometrioid carcinoma
Stomach adenocarcinoma

Head and Neck squamous cell carcinoma

Bladder urothelial carcinoma
Colorectal adenocarcinoma

Acute myeloid leukemia

Lung adenocarcinoma
All cancers

Fr
eq

ue
nc

y

A B

0

185

0

0

0

0271

0

91

GE CN

MUT TAS
DSS

MYCN
CDKN2A

MYC
CCND1
HMGA2
HOXA9
FGFR3

SMAD4
PTEN
RB1
CDKN2a.p14

HOXA1
GPRC5A
LYZ

CTNNB1
ABL1
ABL2

TP53
VHL
MS.HL

NRAS
EWSFLI1

Fig. 5. Clinical relevance of the
identified addiction signatures.
(A) Overlap of genes in active
components shared by GE, CN, MUT
and the TAS-DSS in the GFA.
(B) Frequency of the mutations in
cancer patients from The Cancer
Genome Atlas (TCGA). Color coding
indicates different cancer subtypes
selected based on their frequency
distribution being different from that of
all the cancers. Each bar plot for the
cancer subtypes starts from zero.

1259

RESOURCE ARTICLE Disease Models & Mechanisms (2015) 8, 1255-1264 doi:10.1242/dmm.021105

D
is
ea

se
M
o
d
el
s
&
M
ec
h
an

is
m
s

http://www.qiagen.com/ingenuity
http://www.qiagen.com/ingenuity
http://dmm.biologists.org/lookup/suppl/doi:10.1242/dmm.021105/-/DC1
http://dmm.biologists.org/lookup/suppl/doi:10.1242/dmm.021105/-/DC1
http://dmm.biologists.org/lookup/suppl/doi:10.1242/dmm.021105/-/DC1
http://dmm.biologists.org/lookup/suppl/doi:10.1242/dmm.021105/-/DC1
http://dmm.biologists.org/lookup/suppl/doi:10.1242/dmm.021105/-/DC1


PCR analysis revealed one of the patient samples (ID 08024) to
exhibit FLT3-ITD with loss of the wild-type FLT3 allele in the
original study (Tyner et al., 2013); in contrast, our target addiction
analysis revealed a number of additional patient samples having
strong addiction to FLT3-ITD, and also some without this mutation
detected in the standard molecular diagnostic test (e.g. ID 09438).
The calculation was based on a number of compounds with both on-
and off-targeting of FLT3-ITD, including sunitinib, sorafenib and
ponatinib (Fig. 6B), all of which are approved for other indications,
and may therefore lead to straightforward drug repurposing
opportunities.
To investigatewhether the target addiction scoring can also reveal

co-addiction relationships between drug targets, we correlated
the addiction profile of FLT3-ITD with all of the other kinase
targets across the 151 leukemia patient samples. This led to the

identification of significant FLT3-ITD co-addiction partners
VEGFR2, RET and GAK (Spearman correlation >0.94,
Bonferroni-corrected P<10−5). Whereas VEGFR2 and RET shared
a number of common inhibitors with FLT3-ITD, partly explaining
their correlated addiction profiles, GAK displayed a more distinct
inhibitor panel, with only one potent inhibitor common with FLT3-
ITD (midostaurin; Fig. 6B). Such distinct addiction correlations
may imply multitargeting opportunities for treating FLT3-ITD-
driven leukemia, which currently lacks effective targeted treatment
options.

DISCUSSION
We have shown in the pan-cancer cell-based approach that the
target addiction profiles provide functional information that is
effectively independent of the tissue of origin, hence making it
possible to start capturing functional relationships in molecular
addiction patterns across various cancer subtypes. This is in line
with recent pan-cancer analyses that have found shared mutation
patterns behind many otherwise unrelated cancer subtypes
(Alexandrov et al., 2013; Ciriello et al., 2013; Kandoth et al.,
2013; Hoadley et al., 2014; Leiserson et al., 2014). However, we
found that the information encoded in the addiction signatures was
only concordant in part with that extracted from their genomic
signatures, suggesting that similarities observed in the addiction
patterns between cancer cells cannot be attributed solely to their
shared genetic background. This demonstrates that the functional
target addiction profiling provides complementary information,
when compared with the genomics-only-based profiling of cancer
cells, which has not yet fulfilled its promises in providing clinically
actionable therapeutic strategies for many cancer types. In contrast,
addiction signatures provide pharmaceutically actionable insights
into the importance of druggable protein targets in a cell-type-
specific manner, which could support the development of
personalized therapeutic strategies for many cancer types.
However, additional levels of genomic and molecular information
should be included in future studies, including chromosome re-
arrangements, protein activities and methylation changes, to study
in more detail the genomic and molecular correlates behind the
observed addiction patterns.

Genomics-based analyses typically identify cancer-related genes
as those that are frequently mutated in large cancer cohorts.
Such cancer drivers are often classified into either loss of function
(e.g. tumor-suppressor genes whose perturbation contributes to
tumorigenesis) or gain of function (e.g. oncogenes whose abnormal
activity provides a growth advantage to the cancer cells). In practice,
only proteins with activating mutations can be targeted directly with
small-molecule inhibitors. In contrast, loss-of-function cancer
genes, including TP53 or PTEN, could be targeted through other
means, such as those based on the concept of synthetic lethality
(Rubio-Perez et al., 2015). However, beyond a few successful
examples, these strategies are not yet very mature in clinical
practice. Therefore, oncoproteins such as ABL1, which have been
found to be mutated only in a subset of leukemia patients, could be
more directly actionable with ABL1-targeting tyrosine kinase
inhibitors, such as imatinib, nilotinib, dasatinib, bosutinib and
ponatinib, all of which are approved for ABL1-driven diseases.
Likewise, HOXA1, found to be mutated in lung adenocarcinoma, is
associated with a hypermethylation phenotype (Tsou et al., 2007;
Selamat et al., 2011); hence, it might be targetable by DNA
methyltransferase inhibitors, such as decitabine and azacitidine,
suggesting a molecularly stratified treatment strategy for this patient
population.

FLT3-ITD

FL
T3

-IT
D

 ta
rg

et
 a

dd
ic

tio
n 

sc
or

e

0

5

10

15

20

25

30
07

33
5

09
70

5
08

02
4

09
43

8
10

13
6

08
10

2
08

05
3

07
35

2
08

07
6

09
81

4
10

17
2

09
47

3
08

11
8

10
05

0
08

10
9

09
14

5
08

19
5

08
15

1
10

04
5

08
18

3
09

80
1

08
02

7
09

01
5

08
23

3
09

16
0

09
02

0

Positive
Negative

p = 0.0017

AML
CMML
B/T ALL

A

B

RET

Dovitinib

Flavopiridol
Barasertib

Sorafenib

SB.203580Vandetanib

Gefitinib

Pelitinib

SB.202190
Pazopanib

GAK

Dasatinib

Erlotinib

Ponatinib

VEGFR2

Tandutinib

Midostaurin

Sunitinib

FLT3(ITD)

Fig. 6. Application of the addiction scoring to leukemia patients.
(A) Ranking of the leukemia patients based on their addiction to FLT3-ITD.
Only a subset of those patients is shown with known FLT3-ITD status as
determined with standard molecular diagnostic testing in the original study
(Tyner et al., 2013). Statistical significance of the distinction between the
positive and negative FLT3-ITD cases was assessed using theWilcoxon rank-
sum test. Color coding indicates the patient diagnostic subtypes (more detailed
sample characteristics are listed in supplementary material Table S2).
(B) Compound-target interaction network combining the four selected target
kinases (gray nodes) with their unique and shared inhibitors (red nodes). For
illustrative purposes, only the most potent compound-target interactions were
included based on the target classification from Tyner et al. (2013).

1260

RESOURCE ARTICLE Disease Models & Mechanisms (2015) 8, 1255-1264 doi:10.1242/dmm.021105

D
is
ea

se
M
o
d
el
s
&
M
ec
h
an

is
m
s

http://dmm.biologists.org/lookup/suppl/doi:10.1242/dmm.021105/-/DC1


In the leukemia patient application, we focused specifically on
the activating internal tandem duplication (ITD) mutations in FLT3
(FLT3-ITD), which are detected in approximately 20% of AML
patients associated with a poor prognosis (Thiede et al., 2002).
Clinical trials have not yet been able to demonstrate a significant
clinical benefit for FLT3-ITD inhibition monotherapies, suggesting
significant rewiring and cross-play within and between multiple
signaling pathways during the disease development and treatment
relapse. Therefore, our results showing correlated addiction patterns
between FLT3-ITD and other targets, such as GAK, may provide
leads for more effective combinatorial targeting of FLT3-ITD-
driven diseases. It is known thatGAK plays a crucial role in clathrin-
mediated membrane trafficking and maintenance of centrosome
maturation and mitotic chromosome assembly (Eisenberg and
Greene, 2007; Sato et al., 2009; Shimizu et al., 2009). In addition,
GAK is critical for cell growth (Lee et al., 2008), highly expressed in
different cancer cell types, and has been shown to regulate the
epidermal growth factor receptor (EGFR; Zhang et al., 2004), as
well as to serve as a transcriptional coactivator of androgen receptor
(Ray et al., 2006). GAK is also involved in regulation of hepatitis C
viral entry and assembly (Neveu et al., 2015), and pathogenesis of
Parkinson’s disease (Dumitriu et al., 2011). Given such wide
implications in cellular processes, GAK might represent a critical
node to target along with more established targets to achieve clinical
benefit in FLT3-ITD patients, provided this leads to a tolerable
toxicity profile.
To model the polypharmacological effects and mechanism of

action of multitargeting compounds, we wanted to consider here a
wide spectrum of both direct and indirect compound-target
interactions (supplementary material Table S3), because the
observed drug response (that we want to capture) is elicited not
only through the direct binding targets, but also through secondary
and downstream effects (Xie et al., 2012). Therefore, we extended
the compound-target mappings beyond the primary targets listed in
the GDSC (Yang et al., 2013) by collecting both on- and off-targets
for the 138 compounds using other publicly available resources. For
the kinase inhibitors, we extracted bioactivity data from large-scale
selectivity profiling assays, including those by Davis et al. (2011)
and Metz et al. (2011), which have been shown to provide high-
quality, quantitative bioactivity data (Tang et al., 2014). Compared
with the existing computational target deconvolution methods, we
also extended the drug target mapping beyond the kinase targets
only. For the non-kinase targeting compounds, we used data
available in drug databases, such as ChEMBL17 (Gaulton et al.,
2012) and STITCH4 (Kuhn et al., 2014). In particular, STITCH
provided a relatively extensive list of additional target annotations
for many of the compounds, not available from the other resources
(supplementary material Fig. S9). Even though we made our best
effort to include only the most reliable targets, through stringent
filtering criteria and manual curation, it is likely that the target
mappings from these databases include both false-positive and
false-negative interactions (Tang et al., 2014). Although the TAS
results showed a relatively robust behavior (supplementary material
Fig. S10), future improvements in both the compound and target
coverage of the quantitative bioactivity mappings should lead to
further improvements in the performance of computational target
deconvolution methods.
Another challenge with the cell-based drug sensitivity testing is

how to distinguish selective responses, i.e. those observed in the
specific cancer subtype only, from those observed in many or all of
the cancers, which often lead to toxic side effects in normal cells.
For distinguishing selective drug responses, it would be beneficial

in future cancer cell line screening efforts also to include a panel of
‘normal’ cell types, through which to estimate the degree of side-
effect toxicity. This also applies to the studies with patient-derived
cell models, where reference drug response profiles from healthy
control subjects have been helpful to sort out the cancer-selective
responses (Pemovska et al., 2013). In large-scale efforts, such as
GDSC or Cancer Cell Line Encyclopedia (CCLE; Barretina et al.,
2012), the pan-cancer reference panel might enable one to estimate
the background distribution of the spectrum of drug response
patterns generalizable to most cell types. Likewise, the target
addiction profiles can be compared across several cancer subtypes,
or against controls when available, to estimate the cancer-specific or
subtype-selective addiction patterns. Furthermore, in clinical
applications, the differential target addiction profiles across the
disease evolution and relapse should provide important insights into
mechanisms behind treatment sensitivity and resistance, and
potentially even suggestions for the second-line treatment
alternatives for the relapsed patients.

We have previously shown in a targeted application to a subset
of breast cancer cell lines, which were perturbed with 40 kinase
inhibitors, that such differential addiction scoring can extract
important information from heterogeneous triple-negative breast
cancer cells toward designing multitargeted combinatorial strategies
that show synergistic inhibition effects (Szwajda et al., 2015). The
present work extends this concept to a pan-cancer approach, using a
wide collection of 107 cancer cell line models of various tissue
origin, as well as broad panel of 138 compounds, including not only
kinase inhibitors but also other important drug target classes.
Importantly, a specific case study in leukemia patient primary cells
demonstrated how this concept is also applicable to patient-derived
cancer cell models. There are multiple ways in which the current
computational pipeline could be improved; for instance, using
probabilistic models that allow multilabel soft clustering and also
incorporating functional annotation of genes to guide the clustering
procedure and to take into account the multitarget effects of many
compounds (Flaherty et al., 2005); however, already the standard
hierarchical clustering algorithm was shown to provide surprisingly
robust solutions to the data resampling. Strikingly, the shared
addiction patterns within the detected cell line sub-clusters were
also highly predictive of the transcriptomic patterns among
independent sets of additional cancer cells. An open-source and
easily extendable implementation of the TAS calculation is made
freely available to support its tailored application to translating drug
sensitivity testing results into addiction scores, which may lead to
many exciting drug development and repurposing applications.

MATERIALS AND METHODS
Cancer cell line material
High-throughput drug screening and molecular and genomic profiling data
for 639 cancer cell lines were available from Garnett et al. (2012), which
included pre-computed area under the dose-response curve (AUC) and half-
maximal inhibitory concentration (IC50) response parameters. We had
access also to the raw dose-response data (kindly provided by Dr Mathew
Garnett, Wellcome Trust Sanger Institute, UK), enabling us to compute our
drug sensitivity score (DSS; Yadav et al., 2014) for all the compounds and
cell lines. Given that not all the cell lines were screened against all the
compounds, we initially chose only the subset of 117 cell lines, which were
tested with all 138 compounds. This set of cell lines was filtered further
based on the availability of genomic and molecular profiles, including gene
expression, mutation and copy number profiles. After filtering, we had a
total of 107 cell lines with complete drug testing and molecular profiling
data, which were used in our further analyses. The IC50 response parameter
was converted into pIC50 by taking −log10 of IC50 at molar concentration.
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The mutation data in Garnett et al. (2012) contain such somatic mutations in
84 genes from COSMIC that affect the protein sequence or function; these
were treated as binary genomic profiles in our analyses.

Drug-target interactions
For the system-level modeling of drugs’ mode of action and
polypharmacological effects, we extended the compound-target mappings
beyond the direct binding interactions and the primary targets listed at
Genomics of Drug Sensitivity in Cancer (GDSC) database of the Sanger
Institute (http://www.cancerrxgene.org/); more specifically, we also
collected secondary and downstream targets for the compounds using a
number of additional resources. For the kinase targeting compounds, we
extracted quantitative bioactivity data from the large-scale kinase inhibitor
selectivity profiling assays by Davis et al. (2011) andMetz et al. (2011). For
the non-kinase targeting compounds, we collected target data available in
public drug databases, such as ChEMBL17 (Gaulton et al., 2012) and
STITCH4 (Kuhn et al., 2014). We selected most reliable targets from
STITCH having either experimental score >10 and combined score >500 or
experimental score <10 and combined score ≥900. For a selected 24
compounds, we extended their target space with experimental scores ≥300.
From the ChEMBL, Davis et al. (2011) and Metz et al. (2011), we selected
compound-target links with bioactivity parameters IC50, Kd, Ki and potency
≤35 nM to focus on the most potent targets only. We also manually filtered
out genes involved in cellular metabolism, such as cytochrome (CYP) and
ATP-binding cassette (ABC) genes. This resulted in an interconnected
network among 138 compounds and 749 protein targets, capturing both
direct and indirect interactions, which was used for modelling the
comprehensive spectrum of not only on-target but also off-target and
downstream effects of the compounds (supplementary material Table S3).

Target addiction scoring
The target addiction score gives an estimate of the sensitivity of a cell to the
inhibition of a particular protein target, thereby extending the concept of
kinase addiction maps introduced by Pemovska et al. (2013) and Yadav
et al. (2014). Formally, given a drug response profile in a specific cell
sample, as obtained from response metrics such as DSS, AUC or pIC50, the
target addiction score (TAS) for a particular target t is calculated by
averaging the observed drug response (DR) over all those nt compounds that
are known to target protein t, as follows:

TASt ¼
Xnt

i¼1

DRi

nt
:

Mathematically, TAS defines a transformation between the spaces spanned
by the compounds and their targets, which maps observed drug responses to
the underlying target addictions. Calculating TAS for various cancer cell
lines provides pan-cancer information about their shared and unique
addiction signals. Calculating TAS in patient-derived samples provides
insights into the individual-level druggable vulnerabilities. The TAS
calculation is available as open-source R implementation at https://
bitbucket.org/BhagwanYadav/target-addiction-score-tas-calculation.

Group factor analysis
Factor analysis is a statistical method, which allows description of the
dependencies among many observed variables using a few factors. Group
factor analysis (GFA) is a recent extension of the standard factor analysis to
capture joint variability across multiple data sets (Virtanen et al., 2012;
Khan et al., 2014). Here, GFA was applied to the genomic and molecular
data sets, namely gene expression, copy number and mutation profiles. GFA
segregates the components that are shared among all the data sets from those
shared among some or only one data set. The genomic and molecular
profiles comprised gene expression of 13,321 genes, copy number of 426
genes and mutational status of 84 genes. The gene expression was filtered
for the most strongly varying genes across the cell lines (s.d. >2), leading to
951 genes. From mutation data, we selected 51 genes such that each gene is
mutated in at least one of the 107 cell lines. The gene expression and copy
number data were converted to log2 scale. Supplementary material Fig. S3A
shows the standard deviation of all genes in the expression data. The genes

with high enough standard deviation (above the red line) were used in GFA.
All the data sets were scaled to unit standard deviation, giving them equal
weight. GFA was run with a varying number of components (K) to model
the total variation in the three data sets. Supplementary material Fig. S3B
shows the activity of the components in GFA. A component is present for a
data set when shown in black, and otherwise absent. The run resulted in
components absent in all the data sets, indicating that K=30 was large
enough to model the data.

Congruence analysis
Kendall’s coefficient of concordance (W) is a non-parametric statistic to
assess the agreement between two rankings (Kendall and Smith, 1939;
Legendre, 2005), which ranges from 0 (no agreement) to 1 (complete
agreement). Here, it was applied to distance matrices, consisting of pairs of
cell lines, based on different data sets, such as drug sensitivity, target
addiction, gene expression, copy number, mutation status or their shared
components from the GFA. We computed W to investigate the congruence
between two distance matrices using ‘ape’ R package (Paradis et al., 2004).
We systematically evaluated congruence using different distance measures,
such as Euclidean, Manhattan, Pearson, Spearman, Kendall and cosangle
distance. We found that cosangle was the most significant distance measure
in our analysis (supplementary material Fig. S4). The statistical significance
of the congruence was assessed by performing 10,000 permutations.
We also performed Mantel’s randomization test using ‘ade4’ R package
(Dray and Dufour, 2007) and obtained similar results to those of Kendall-
based congruence analysis. For the congruence analyses with tissue type
information, we represented each cell line as a binary indicator vector based
on its tissue origin, resulting in binary distance matrix (0 for the same tissue
origin, 1 otherwise). To evaluate the effect of mutation status, copy number
and gene expression profile on congruence, we made three combinations of
the data sets. The first set contains only the mutation status. The second set
contains mutation and copy number, and in the final set, all the three data
sets were combined. We computed GFA using all three combinations, and
used the factors for common components shared by each data set in the
congruence analysis.

External data resources
We selected the genes that were common in GFA analyses between TAS and
each one of the genomic and molecular profiling data sets (gene expression,
copy number and mutation status). We investigated the cancer relevance of
the selected genes using QIAGEN’s IngenuityPathway Analysis (IPA;
QIAGEN Redwood City, www.qiagen.com/ingenuity). We retrieved
mutation information of the selected genes in various cancer patients from
The Cancer Genome Atlas (TCGA) resource. The TCGA data were
downloaded and extracted using the ‘cgdsr’ R package from cBioPortal
(Cerami et al., 2012; Gao et al., 2013). The overall mutational frequency
across all the cancers in the TCGA panel as well as the frequency in each
cancer type was calculated.

Cluster robustness analysis
To assess how strongly the observed data support the clustering solution, we
used the ‘pvclust’ R package (Suzuki and Shimodaira, 2006), which
computes multiscale bootstrap analysis to assess robustness of the detected
clusters. The robustness value ranges between 0% (not robust) to 100%
(highly robust). We used the cosangle distance method and Ward’s linkage
algorithm to cluster the cell lines based on their drug response profiles, such
as DSS, AUC, pIC50 and the corresponding target addiction profiles. The
data were permuted 10,000 times for assessment of the cluster robustness.
We defined a linear weight between 0.1 and 1 that is proportional to the
height of the sub-cluster in the dendrogram. The obtained robustness value
of each sub-cluster was multiplied by its respective linear weight to obtain a
height-normalized robustness value.

Addition of extra cell lines
Beyond the 107 cell lines in our original analysis, we later selected 20
additional cell lines, which were tested with 134-137 compounds. We added
the TAS profiles of the 20 new cell lines to the original clustering based on
the TAS profile of the 107 cell lines, and used the same distance function
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and clustering algorithm to re-compute new clusters. The complete panel of
cell lines was divided into eight sub-clusters (supplementary material
Fig. S7). Within each sub-cluster, we performed Spearman correlation
analysis between the newly added cell lines and the original cell lines within
the sub-cluster to evaluate their average similarity in gene expression and
copy number. To assess the statistical significance of the correlation
coefficients, we computed the background null distribution as pairwise
Spearman correlation coefficients of every pair of the cell lines.

Application to leukemia patients
For the leukemia case study, we extracted the drug screening and clinical
data for 151 primary leukemia patient samples (Tyner et al., 2013). In this
study, the drug sensitivity profiling was carried out using 66 kinase
inhibitors. Each compound’s sensitivity was screened across four serial
dilutions of the compound. The cell viability at each dilution was measured
and normalized with no drug viability. We used the available viability data
from the study for logistic curve fitting and calculated the DSS. We made
use of the compound-target interactions reported in the original study by
Tyner et al. (2013), which were based on the large-scale kinase inhibitor
selectivity assay of Davis et al. (2011). The study by Tyner et al. (2013)
also provides clinical information for some of the patients, including
diagnosis and demographics, white blood cell count, karyotypes,
cytogenetics and the mutational status of a selected set of key leukemia
genes, such as FLT3-ITD.

This article is part of a subject collection on Model Systems in Drug Discovery: from
Bench to Patient. See related articles in this collection at http://dmm.biologists.org/
cgi/collection/drugdiscovery
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