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Abstract

In the mammalian central nervous system (CNS) an important contingent of dopaminergic neurons are localized in the
substantia nigra and in the ventral tegmental area of the ventral midbrain. They constitute an anatomically and functionally
heterogeneous group of cells involved in a variety of regulatory mechanisms, from locomotion to emotional/motivational
behavior. Midbrain dopaminergic neuron (mDA) primary cultures represent a useful tool to study molecular mechanisms
involved in their development and maintenance. Considerable information has been gathered on the mDA neurons
development and maturation in vivo, as well as on the molecular features of mDA primary cultures. Here we investigated in
detail the gene expression differences between the tissue of origin and ventral midbrain primary cultures enriched in mDA
neurons, using microarray technique. We integrated the results based on different re-annotations of the microarray probes.
By using knowledge-based gene network techniques and promoter sequence analysis, we also uncovered mechanisms that
might regulate the expression of CNS genes involved in the definition of the identity of specific cell types in the ventral
midbrain. We integrate bioinformatics and functional genomics, together with developmental neurobiology. Moreover, we
propose guidelines for the computational analysis of microarray gene expression data. Our findings help to clarify some
molecular aspects of the development and differentiation of DA neurons within the midbrain.
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Introduction

In the mammalian brain, dopaminergic (DA) neurons are mainly

located in the ventral midbrain (mesencephalon, Mes) in which they

are arranged in three distinct nuclei: substantia nigra (SN, A10), the

ventral tegmental area (VTA, A9) and the retrorubral formation

(A8). Neurons originating in the SN project abundantly to the

dorsolateral striatum, forming the nigrostriatal pathway. DA

neurons of the VTA project mainly to the ventromedial striatum,

nucleus accumbens and frontal lobe, forming the mesocorticolimbic

pathway. Although midbrain dopamine neurons (mDA) are

relatively few (20000–40000 in the rodent), they play an important

role in regulating several aspects of basic brain function. Alterations

of development or survival, or impairment in DA signalling are

involved in a variety of behavioural, movement, and psychiatric

disorders. Specifically, nigrostriatal pathway has been implicated in

Parkinson disease [1] and Huntington disease [2], as well as in drug

abuse toxicity [3]. Instead, alterations in VTA outputs are involved

in schizophrenia[4], depression [5], attention deficit hyperactive

disorder [6] and addiction [7].

Analyses of mouse mutants defective in mDA development have

highlighted several transcription factors contributing the specifi-

cation of the neurotransmitter identity [8–10], as well as neuronal

identity and maintenance [11,12]. The molecular environment

surrounding the mDA neurons plays an important role for their

differentiation. Cooperative signalling by Sonic Hedgehog (SHH)

from the floor plate and fibroblast growth factor (FGF) 8 from the

isthmus induces mDA [13–16].

The mDA neuronal primary cultures represent a valuable tool

to investigate the molecular mechanisms involved in the

development and maintenance of these neurons. The expanded

mDA cultures are generated from E11.5 rat ventral Mes, when a

large number of mDA precursors are present [17]. Previously, we

have demonstrated that the addition of the FGF 2 (also known as

basic FGF) from the beginning of the culture in serum-free

medium induces neuroblasts proliferation [18,19]. Furthermore

mDA differentiation is increased in the culture treated with SHH

and FGF8. As in vivo, also in vitro these factors are the inductive

signals that specify mDA phenotype [14,19,20]. Markers of

differentiated mDA neurons are observed in primary cultures

when FGF2, SHH and FGF8 are withdrawn after six days in vitro

(DIV) and ascorbic acid is added. Particularly, TH immunostain-

ings show a high number of mDA neurons. In fact at this time

in vitro, the number of TH+ cells is increased about 20 folds when

compared to 3 DIV cultures [19] and comparable to the number

of mDA neurons present in primary cultures with or without
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serum plated at a 20-fold higher cell concentration [21,22]. These

expanded cultures also show the presence of both neuroblasts, as

shown by nestin-immunoreactivity, as well as more mature

neurons. At least 90% of the expanded cells are nestin-positive,

and at least 70% are medium neurofilament-positive (NFM). Thus

there is a co-localization of nestin and NFM in at least 30% of the

cells. Cells expressing glial markers, such as the glial fibrillary acid

protein (GFAP), are extremely rare (on average one or two GFAP-

positive cells/well at 9 DIV) [19,23]. Glutamatergic and

GABAergic neurons are also present, as indicated by the levels

of the glutamic acid decarboxylases (GAD65, GAD67 and EP10)

and glutamate transporter (EAAT1) mRNAs. Instead serotonergic

and noradrenergic neurons are absent, as indicated by lack of

5HT (serotonine transporter, SERT and tryptophan hydroxylase,

TrpH) and NE (noradrenaline transporter, NET) markers,

respectively [23]. In these cultures, mDA neurons are well

differentiated since all molecular mDA markers, such as tyrosine

hydroxilase (TH), (Dat), Nr4a2 (also known as Nurr1), and

vesicular monoamine transporter 2 (Vmat-2), tyrosine kinase

receptor Ret (Ret), GDNF family receptor alpha 1–2 (GFRalpha

1–2) are expressed [17]. Moreover, they also show mature

functional signature since high affinity uptake, a marker of mature

DA function, is present at 9 DIV. The latter is specific since it is

blocked in the presence of selective dopamine uptake inhibitors

but not by serotonergic and noradrenergic uptake inhibitors [23].

However, there is a lack of general picture concerning the global

gene expression program of these cultures as compared to the

tissue of origin.

We have carried out extensive gene expression survey of rat

E11.5 mesencephalon (MesE11) and Mes primary culturesPC

(MesPC) at 9 DIV generated from it. For this, a microarray

experiment using the Affymetrix GeneChips RAE230A has been

carried out. Because of the inaccuracies in the original annotation,

we have performed the computational analysis by re-annotating all

the probes present on the RAE230A chipset according to three

major sequence databases, such as Entrez Gene [24], RefSeq [25],

and Ensembl gene [26]. The results have been then combined in

order to create a robust set of result for further analysis. Finally, by

using computational techniques of gene networks and promoter

sequence analysis, we have uncovered possible regulatory modules

responsible for the expression of multiple genes both in MesE11

and MesPC.

Results

In order to characterize the expanded mesencephalic neuronal

primary cultures and their expression profiling, as well as to

identify new genes involved in mDA neurons differentiation and

maturation, we performed the microarray analysis. To fulfill our

aim we used three independent re-annotation systems based on the

alignment of each oligonucleotide probe present on the RAE230A

chipset against the Entrez Gene (EG), RefSeq (RS), and Ensembl

gene (ENS) databases. Based on the new identities for probes we

performed three independent analyses abbreviated from now on as

EG, RS, and ENS. According to the original annotation released

by the manufacturer, the RAE230A chipset contains 15923 probe

sets; after re-annotation the probes were re-arranged in 8676 (EG),

13224 (RS), and 7600 (ENS) probe sets. After moderated t-test, we

obtained 1016 genes in EG (11.7% of all the screened genes), 1568

(9.8% of all the screened genes) genes in RS, and 862 (11.3% of all

the screened genes) genes in ENS to be differentially expressed

between MesE11 and MesPC with p-value,0.001 (Table 1). We

annotated the gene lists using DAVID which is a gene-centered

database where gene entities from several databases are uniquely

stored [27]. We took advantage of this system for parsing the gene

lists from the three analyses. As many as 987 genes from EG, 1038

genes in RS, and 567 genes in ENS respectively had a reliable

DAVID identifier. Of these, 425 unique genes were shared

between the three annotations (Figure 1). The RefSeq-based set

showed the largest overlapping with the other two annotation

systems. From the set of 425 common genes, 268 genes were

upregulated in MesPC, and 157 were upregulated in MesE11

(Table S1). Functional classification of these groups of genes was

carried out with the DAVID-based Fisher’s exact test. Overall, the

three annotations produced very consistent fold change estimation

for all of the 425 common genes (average standard deviation = 0.04).

Genes upregulated in midbrain neuronal expanded
cultures

Five functional categories were dominating among the 268

genes over-expressed in MesPC: developmental process (95 genes),

lipid metabolic process (34 genes), mitochondrion (29 genes),

extracellular matrix (22 genes), and lysosome (15 genes).

Additionally, neurogenesis (16 genes) and neuron differentiation

(14 genes) were also significantly over-represented. Interestingly,

10 genes coding for collagens were among this group of genes with

high fold change (Table S2).

Microarrays are capable to observe changes in the expression of

transcripts providing no explanation on how this is modulated

within the cells. Gene transcription is also regulated by proteins

that recognize short DNA sequence motifs, called transcription

factor binding sites (TFBSs). TFBSs are in most cases located in

the promoter regions of the genes. Similar TFBSs patterns within

the promoters of transcripts are expressed in the same tissue under

similar conditions. Thus, the organization of promoter motifs

represents a framework of the regulatory mechanisms in a specific

biological context. The smallest entities on the level of TFBSs

combinations are called promoter modules. These are defined as

two or more individual elements that act coordinately and are

similarly arranged in the promoters of co-regulated transcripts.

We investigated the interactions of the MesPC genes based on

the PubMed co-citation and the presence of TFBS in their

promoter sequences. From this analysis, a number of genes

Table 1. Summary of the statistical analysis.

EG RS ENS

Total genes analyzed (a) 8676 13224 7600

Significant genes (% of tot) (b) 1016 (11.7%) 1568 (9.8%) 862 (11.3%)

Significant genes with annotation (% of tot significant) (c) 987 (97%) 1038 (66.2%) 567 (65.7%)

In the columns are shown the three re-annotations used for analyzing the dataset (Entrez Gene (EG), RefSeq (RS), and Ensembl gene (ENS)). The absolute number of
genes analyzed (a), found significant (b), and with an annotation in DAVID database (c) is shown. In parenthesis, the percent of all the genes analyzed is also shown.
doi:10.1371/journal.pone.0004977.t001
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emerged to have a specific consensus binding sequence for EGR1

transcription factor in their promoters (PCR validation of the

microarray results shown in Figure S1). By multiple alignments, we

found a conserved module constituted by a binding site for EGR1

and a second site for SP1 (Figure 2). Next, we searched for this

module in the whole set of known promoter sequences in Rattus

norvegicus, locating it in the promoters of 659 genes. Geneontology

classification showed significant over-representation of such

families as neuron differentiation (34 genes), neurogenesis (37

genes), and neuron development (26 genes), suggesting a central

role of EGR1-SP1 module during production and differentiation

of neurons (Table S3).

Genes upregulated in mesencephalon at E11
We found 157 genes to be significantly over-expressed in

MesE11 as compared to MesPC. These genes covered a variety of

cellular and molecular functions, such as developmental process

(43 genes), synaptic transmission (17 genes), nervous system

development (16 genes) and neurogenesis (9 genes), and ion

channels (9 genes). Interestingly, genes involved in oxygen

transport (5 genes) and iron binding (11 genes) were also in this

group (Table S4). As for the MesPC genes, we have inferred

MesE11 gene network based on the PubMed co-citation and the

presence of TFBS in their promoter sequences. This revealed a

possible role for members of transcription factors of the NEUR

and NR2F families in regulating the expression of many genes

upregulated in MesE11. Particularly, the genes encoding respec-

tively Neurod3 (NEUR family) and Nr2f2 (NR2F family) were

significantly over-expressed in MesE11 (Figure 3). We also

scanned the whole set of known Rattus norvegicus regulatory

sequences, finding 726 promoters with the NEUR-NR2F module.

Genes of the dopamine metabolism (Cyp2d22, Tgfb2, Nr4a2,

Sncaip_predicted, Th, PCR validation of the microarray results

for Nr4A2 and Th shown in Figure S1), synaptic transmission (30

genes) and development (24 genes) emerged as possible targets of

NEUR-NR2F (Table S5).

Dopamine-related genes
The Genomatix software Bibliosphere allows to search for

genes that are co-cited in the PubMed abstracts with biological

themes. By this approach, we have created a catalog of 1339

Rattus Norvegicus genes related in literature to dopamine. Of these,

1032 were present on the re-annotated Affymetrix chipset 230A.

A total of 84 genes were found differentially expressed in all the

three datasets (Table 2), when comparing MesPC (46 genes) and

MesE11 (38 genes). Interestingly, 18 dopamine-related genes over-

expressed in MesPC are described as involved in cell differenti-

ation; a subgroup of this, composed of 8 genes, is involved in

neuron differentiation. Five dopamine-related MesPC genes are

also associated with neurodegenerative diseases. The dopamine-

related genes over-expressed in MesE11 better resampled

neurophysiologic events, as they were found associated to synaptic

transmission (9 genes), transmission of nerve impulse (9 genes),

and behavior (7 genes). Further, we have tested the hypothesis that

the transcriptional models inferred from the MesPC and MesE11

gene networks would have a potential role in the regulation of

some dopamine-related genes inferred from the literature scan.

This seems to be the case, as 283 (,21%) dopamine-related genes

presented the EGFR-SP1F module in their promoter regions.

This group was enriched in genes involved in neuron differenti-

ation. Similarly, the promoters of 132 (,10%) dopamine-related

genes showed the ability to bind the NEUR-NR2F module. This

group was enriched in genes involved in neurophysiologic

processes, such as transmission of nerve impulse and synaptic

transmission.

Discussion

Model organisms are widely used in biomedical research

elucidating mechanisms which would be impossible to experiment

on using human samples. Mice and rats are often regarded as

optimal choices for working on the mammalian CNS. However,

Rattus norvegicus genome has been annotated much less in detail, as

compared to the Mus musculus genome. In this paper we utilized

up-to-date methods for annotating rat arrays with the best possible

accuracy. We have used the transcriptional profiling for

comparing tissue samples from rat brain to primary cells from

the same origin. We studied the effect of re-annotation and at the

same time elucidated how well primary cells resemble the original

tissues in the level of transcriptional profile. We have extensively

investigated the gene expression in rodents’ mesencephalon at

E11.5 and neuronal primary cultures after 9 DIV, derived from it.

For this, we have carried out a microarray experiment using the

Affymetrix GeneChips RAE230A for the Rattus norvegicus genome.

Because of the design inaccuracies and of the fast speed of

updating information concerning the genes and transcripts

sequences, many Affymetrix probes are known to have severe

design problems as such. Particularly for the chipset RAE230A,

several probe sets contain probes with multiple genome hits

(13.2%), with no known target (3.6%), with allele-specific probes

(19.5%) [28]. Currently, several re-annotation methods are

available allowing the probes to be mapped to genes, transcripts,

or even exons sequences stored in public databases. However,

exon-based re-annotation leads to decreased precision and

increased variance in estimating gene expression, probably due

Figure 1. Significant genes with an annotation in DAVID
database. The numbers of significant genes with a reliable DAVID
annotation in each re-annotation analysis are shown. The intersections
show the amount of common genes between two or all the three
analyses. Proportional-area Venn diagrams were built as suggested by
Chow and Rodgers [55].
doi:10.1371/journal.pone.0004977.g001
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to the smaller number of probes that map to each exon [29].

Moreover, due to the fact that the majority of the probes are

designed ignoring splicing variances, we find more convenient to

work with gene-based rather than transcript-based re-annotations.

During the re-annotation process, each single oligonucleotide

probe is re-assigned to the correct gene. However, some probes are

eliminated, because they don’t reliably recognize any transcript,

they have been designed for matching the antisense sequence of a

given transcript, or they are designed in allele-specific regions. For

instance, only the 53.6% (EG), 60.5% (RF), and 44% (ES) of all

the RAE230A probes can be utilized for re-annotation. Long lists

of differentially expressed candidate genes are usually produced

from microarray analysis. However, they cannot be considered as

the end point of the analysis but rather as the starting point of a

more meaningful interpretation, by taking advantage of the

increasing knowledge about the functions of the genes within the

cells. The annotation of the genes or transcripts is usually obtained

from public libraries such as Gene Ontology [30] or KEGG [31].

Similarly, one can test whether the expression of genes located in

specific portions of chromatin (i.e. cytobands or entire chromo-

some) are involved in certain experimental conditions. For any of

the annotations used for grouping the genes, the terms are defined

a priori and constructed independently from the experimental data.

The DAVID database is one of the most reliable tools for

annotating genes and transcripts, as well as for finding over-

represented functional groups of genes in a given gene list.

Interestingly, as many as 97% of all the significant EG entities

were mapped into DAVID, while only 66.2% and 65.7%

respectively from the RS and ENS presented a reliable DAVID

annotation. Therefore, we conclude that the re-annotation of the

Affymetrix probes according to the Entrez Gene database is the

best in terms of gene annotation and functional analysis. Similar

results were observed also during the re-annotation of the

Affymetrix probes for human genes [32,33]. Investigating gene

expression by microarrays presents some limitations especially

related to the fact that microarrays can estimate only the levels of

the transcripts within the cells, not giving any information

concerning the post-transcriptional regulations. In addition, only

rigorous statistical methods allow keeping the false discovery rates

at reasonable levels, as many technical sources of variations can

affect the measurements. Other restrictions to be considered when

working with large-scale gene expression studies consist in the

Figure 2. Knowledge-based gene network of the MesPC-specific genes. The nodes represent the genes. In BLUE, the MesPC-upregulated
genes; in WHITE, the transcription factors not included in the list of significant genes that interact with the MesPC specific genes. The BLACK edges
indicate co-citation of two genes in the PubMed database; the GREEN edges indicate the presence of a significant TFBS on the promoter of the given
gene for the specific interacting transcription factor. Lower-right corner: summary of the regulatory model possibly regulating the expression of
MesPC genes. The matrix elements present in the model (V$EGRF and V$SP1F), the DNA strand where they are present on the promoter regions, their
relative distance, and the p-value are shown.
doi:10.1371/journal.pone.0004977.g002
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inaccuracy of the functional annotation of some genes: for

instance, many genes are annotated in the ontology ‘‘apoptosis’’,

without being directly correlated to this specific process, but simply

being involved more generally in cell homeostasis. Careful

inspection is always needed for a correct interpretation of long

gene lists resulting from microarray assays. Finally, microarrays

detect transcripts at very low concentrations, but when working

with complex tissues, such as the brain, assigning the expression

patterns to a certain cellular subpopulation is impossible.

Nevertheless, we believe that the tissues should always be intended

as functional entities and their global gene expression should be

target of interest.

When examining whole tissues, gene expression from a variety

of cell types, including non-neuronal tissues (especially blood), is

recorded. This explains why we observed gene groups of

haemoglobins and oxygen transport as significantly over-repre-

sented in MesE11 over MesPC. Overall, our results suggest that

the MesPC are a reliable tool to be used in developmental

neurobiology, as their gene expression programs largely resemble

the tissue of origin. As these cell cultures comprise a mixed cell

population, they are used by the scientific community because they

mirror the midbrain neuronal composition better than more

homogeneous cell lines [19,23]. Thus we believe that it is

important to know what the gene expression profiles are in these

cultures. We found genes of the extracellular matrix and of the

focal adhesions to be upregulated in MesPC. In the mesenceph-

alon, the adhesion structures are synthesized and maintained by

glial cells, that are absent in primary cultures. The protocol used to

establish midbrain neuronal cultures enhances dopaminergic

differentiation, thus leading to enrichment in positive neurons,

when compared to standard cultures [34]. However, some genes of

the dopamine biosynthesis were found over-expressed in MesE11.

This finding is consistent with the decrease of TH mRNA

observed during the in vitro culture progression [19,23,34], and can

be due to the decrease of trans-synaptic stimulation following the

dissociation of the tissue.

We identified Egr1 and Sp1 as key elements in the regulation of

the transcription patterns in MesPC. Particularly, early growth

response genes encode for transcription factors that regulate gene

expression in response to a variety of stimuli influencing cell

growth and differentiation, as well as response to injury and

reaction to chronic nervous system diseases [35]. Following

depolarization, transcription of the Egr1 gene increases in the

MesPC [36], suggesting that this immediate early transcription

factor might be a key gene mediating the electrical activity leading

to neuronal differentiation. Mice lacking EGR genes present a

wide range of developmental abnormalities, including infertility

[37], defects of the hindbrain morphogenesis [38], defective

Figure 3. Knowledge-based gene network of the MesE11-specific genes. The nodes represent the genes. In BLUE, the MesE11-upregulated
genes. The BLACK edges indicate co-citation of two genes in the PubMed database; the GREEN edges indicate the presence of a significant TFBS on
the promoter of the given gene for the specific interacting transcription factor. Lower-right corner: summary of the regulatory model possibly
regulating the expression of MesE11 genes. The matrix elements present in the model (V$NEUR and V$NR2F), the DNA strand where they are present
on the promoter regions, their relative distance, and the p-value are shown.
doi:10.1371/journal.pone.0004977.g003
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Table 2. Dopamine-related genes found significant comparing MesPC versus MesE11.

EGID ENSID RSID GENESYMBOL AvgLogFC AvgAdjPvalue Relative Over-expression

24772 ENSRNOG00000013589 NM_022177 CXCL12 3.10 3.186E-07 MesPC

24153 ENSRNOG00000028896 NM_012488 A2M 2.30 6.543E-05 MesPC

25692 ENSRNOG00000019018 NM_013151 PLAT 2.13 2.730E-07 MesPC

24596 ENSRNOG00000005392 NM_012610 NGFR 2.06 6.497E-07 MesPC

171163 ENSRNOG00000012876 NM_133623 SLC6A13 2.05 9.467E-07 MesPC

25625 ENSRNOG00000031312 NM_013091 TNFRSF1A 1.94 5.763E-05 MesPC

29539 ENSRNOG00000001344 NM_032416 ALDH2 1.82 1.480E-07 MesPC

64513 ENSRNOG00000005917 NM_033485 PAWR 1.77 5.590E-05 MesPC

83619 ENSRNOG00000001548 NM_031789 NFE2L2 1.77 1.405E-04 MesPC

54702 ENSRNOG00000005053 NM_019371 EGLN3 1.74 2.600E-06 MesPC

117549 ENSRNOG00000002524 NM_057201 GPR37 1.65 5.267E-06 MesPC

24212 ENSRNOG00000007290 NM_012505 ATP1A2 1.64 3.262E-04 MesPC

24423 ENSRNOG00000029726 NM_017014 GSTM1 1.58 3.070E-06 MesPC

315714 ENSRNOG00000008680 NM_001012125 LOXL1 1.52 2.213E-06 MesPC

316742 ENSRNOG00000015906 NM_001015020 TGIF 1.50 4.307E-05 MesPC

29318 ENSRNOG00000001239 NM_024131 DDT 1.46 9.887E-06 MesPC

25728 ENSRNOG00000018454 NM_138828 APOE 1.45 3.105E-04 MesPC

24223 ENSRNOG00000017123 NM_012512 B2M 1.40 2.920E-06 MesPC

295217 ENSRNOG00000013356 NM_001025648 SNAPAP 1.18 1.663E-06 MesPC

85272 ENSRNOG00000007108 XM_342591 BMP7 1.16 1.742E-04 MesPC

81818 ENSRNOG00000018087 NM_031140 VIM 1.15 4.160E-06 MesPC

81632 ENSRNOG00000002636 NM_031003 ABAT 1.10 4.378E-04 MesPC

25112 ENSRNOG00000005615 NM_024127 GADD45A 1.09 9.963E-06 MesPC

25104 ENSRNOG00000019372 NM_012744 PC 1.02 1.747E-04 MesPC

25227 ENSRNOG00000011150 NM_033443 ARSB 1.01 3.541E-04 MesPC

24392 ENSRNOG00000000805 NM_012567 GJA1 1.00 2.673E-04 MesPC

25177 ENSRNOG00000000875 NM_001033926 FHL1 0.93 3.247E-05 MesPC

25491 ENSRNOG00000018681 NM_012987 NES 0.90 4.750E-04 MesPC

83584 ENSRNOG00000009508 NM_031775 CASP6 0.90 2.798E-04 MesPC

24686 ENSRNOG00000021259 NM_012631 PRNP 0.90 1.443E-05 MesPC

25508 ENSRNOG00000033280 NM_013000 PAM 0.84 4.407E-06 MesPC

363875 ENSRNOG00000001068 NM_134366 RAC1 0.83 6.853E-05 MesPC

24530 ENSRNOG00000019573 NM_017024 LCAT 0.81 3.600E-05 MesPC

50719 ENSRNOG00000018824 NM_017353 SLC7A5 0.79 1.085E-04 MesPC

24788 ENSRNOG00000017291 NM_017052 SORD 0.79 9.679E-05 MesPC

79212 ENSRNOG00000006527 NM_024371 SLC6A1 0.79 8.860E-06 MesPC

84485 ENSRNOG00000019691 NM_053425 CCS 0.78 2.463E-04 MesPC

286898 ENSRNOG00000012062 NM_173118 NPC2 0.72 7.973E-06 MesPC

25125 ENSRNOG00000019742 NM_012747 STAT3 0.71 6.022E-04 MesPC

25368 ENSRNOG00000012325 NM_012895 ADK 0.62 2.013E-04 MesPC

171135 ENSRNOG00000014475 NM_133600 SLC31A1 0.62 3.827E-04 MesPC

299858 ENSRNOG00000025053 XM_243524 LRP1 0.57 2.421E-04 MesPC

83799 ENSRNOG00000012640 NM_031973 DPP7 0.57 3.506E-04 MesPC

29499 ENSRNOG00000006120 NM_017221 SHH 0.47 1.974E-04 MesPC

24786 ENSRNOG00000002115 NM_017050 SOD1 0.44 8.478E-04 MesPC

24644 ENSRNOG00000002467 NM_053291 PGK1 0.39 6.110E-04 MesPC

112400 ENSRNOG00000010392 NM_031588 NRG1 20.33 7.169E-04 MesE11

24807 ENSRNOG00000005853 NM_012667 TACR1 20.35 3.776E-04 MesE11

24600 ENSRNOG00000009348 NM_021838 NOS3 20.43 2.880E-04 MesE11

114856 ENSRNOG00000003977 NM_053769 DUSP1 20.43 3.614E-04 MesE11
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myelination in the peripheral nervous system [39], and defects in

learning and memory [40,41]. Gene network and promoter

alignment techniques suggested that several key transcripts found

in MesE11 can be regulated by the binding of transcription factors

of the NEUR and NR2F families. Moreover, the levels of Neurod3

(NEUR) and Nr2f2 (NR2F) were found over-expressed in

MesE11. Neurogenic basic helix-loop-helix (bHLH) factors

Mash1, neurogenins (Ngns) and NeuroD3 (also known as Ngn1)

play important roles in Nurr1-induced mDA neuronal differenti-

ation [42]. While the role of Ngn2 in the development of mDA

neurons is well known [43,44], less information is available

concerning Neurod3. In addition to inducing neurogenesis by

functioning as a transcriptional activator, Neurod3 seems to inhibit

the differentiation of neural stem cells into astrocytes [45]. COUP-

TFII (Nr2f2) seems to be involved in tangential GABAergic

interneurons migration in the developing brain, through the

regulation of short- and long-range guidance cues [46]. Functions

of Nr2f2 in the mDA phenotype definition are still to be described.

In summary, we present a broad view of the transcriptome of the

DA neurons in primary cultures and in Mesencephalon E11. By

employing gene network techniques, we propose novel models that

could explain the transcription regulatory events taking place in

the maintenance of the transcriptional identity of the mesenceph-

alon, and in primary cultures derived from this CNS area, with a

crucial role in physiology and pathology.

Materials and Methods

Animals and Dissections
Timed pregnant Sprague-Dawley rats (Charles River Breeding

Laboratories, Milan, Italy) were sacrificed in accordance with the

Society for Neuroscience guidelines and Italian law. Embryonic (E)

EGID ENSID RSID GENESYMBOL AvgLogFC AvgAdjPvalue Relative Over-expression

171099 ENSRNOG00000014761 NM_133568 RASD2 20.44 5.449E-04 MesE11

192215 ENSRNOG00000028844 NM_138858 SLC9A5 20.44 5.824E-04 MesE11

29410 ENSRNOG00000022405 NM_019207 NEUROD3 20.48 1.579E-04 MesE11

113912 ENSRNOG00000030920 NM_053613 RTN4R 20.51 1.507E-04 MesE11

29427 ENSRNOG00000000853 NM_017196 AIF1 20.51 4.323E-05 MesE11

54305 ENSRNOG00000002793 NM_019348 SSTR2 20.53 4.593E-04 MesE11

25033 ENSRNOG00000022714 NM_012719 SSTR1 20.69 5.147E-05 MesE11

116669 ENSRNOG00000019689 XM_342759 VWF 20.73 2.187E-05 MesE11

24832 ENSRNOG00000006604 NM_012673 THY1 20.75 3.745E-04 MesE11

117059 ENSRNOG00000016977 NM_053988 CALB2 20.76 3.637E-05 MesE11

54705 ENSRNOG00000016180 NM_019372 PPM2C 20.79 8.380E-04 MesE11

300519 ENSRNOG00000033217 NM_001004245 ESAM 20.79 2.047E-04 MesE11

25017 ENSRNOG00000022968 NM_022178 MYO5A 20.80 1.551E-04 MesE11

24318 ENSRNOG00000008428 NM_012547 DRD2 20.81 2.270E-05 MesE11

81718 ENSRNOG00000000158 NM_052809 CDO1 20.90 5.650E-05 MesE11

24626 ENSRNOG00000005905 NM_017031 PDE4B 20.92 5.956E-04 MesE11

25256 ENSRNOG00000034191 NM_012792 FMO1 20.92 1.957E-05 MesE11

24778 ENSRNOG00000007284 NM_138827 SLC2A1 20.94 2.427E-05 MesE11

29700 ENSRNOG00000000566 NM_001007601 PCBD1 21.02 4.220E-06 MesE11

360918 ENSRNOG00000028015 NM_001007729 CXCL4 21.05 5.917E-06 MesE11

25550 ENSRNOG00000014816 NM_013032 SLC1A1 21.07 5.360E-04 MesE11

171128 ENSRNOG00000012290 NM_133595 GCHFR 21.13 7.110E-05 MesE11

54294 ENSRNOG00000002730 NM_019341 RGS5 21.17 2.654E-04 MesE11

63885 ENSRNOG00000011310 NM_022236 PDE10A 21.24 4.630E-04 MesE11

25549 ENSRNOG00000008890 NM_013031 SLC18A2 21.29 8.150E-06 MesE11

25361 ENSRNOG00000014333 NM_012889 VCAM1 21.33 4.330E-06 MesE11

54278 ENSRNOG00000005600 NM_019328 NR4A2 21.38 3.559E-04 MesE11

24688 ENSRNOG00000015643 NM_012633 PRPH1 21.51 1.306E-05 MesE11

24806 ENSRNOG00000007374 NM_012666 TAC1 22.02 1.387E-06 MesE11

24588 ENSRNOG00000013916 NM_017029 NEF3 22.11 2.025E-04 MesE11

84487 ENSRNOG00000016147 NM_053427 SLC17A6 22.12 3.212E-04 MesE11

25085 ENSRNOG00000020410 NM_012740 TH 23.01 2.853E-07 MesE11

24797 ENSRNOG00000001837 NM_012659 SST 23.12 3.522E-07 MesE11

24440 ENSRNOG00000033465 NM_033234 HBB 26.41 7.133E-10 MesE11

doi:10.1371/journal.pone.0004977.t002

Table 2. cont.
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age was determined by considering the day of insemination (as

confirmed by vaginal plug) as day E0. Prenatal brains were quickly

removed and placed in phosphate buffered saline (PBS) without

calcium and magnesium and supplemented with 33 mM glucose.

The ventral midbrain was carefully dissected under a stereoscope

in sterile conditions and processed for cell cultures (MesPC) or

RNA isolation (MesE11). The use of animals was approved by the

Institute of Genetics and Biophysics ethical committee and is in

agreement with the European Community Directives. All efforts

were made to minimize animal suffering and to reduce the

number of animals used.

Cell Cultures
Cells were dissociated from the embryonic rat ventral midbrain

and cultured as described [19,22,23]. In brief, the tissues were

dissected from E11.5 embryos and dissociated using mechanical

trituration with a fire polished Pasteur pipette in culture medium

(see below) and 0.01% pancreatic deoxyribonuclease (Sigma,

Milan, Italy); cells were centrifuged 10 min at 500 g, suspended in

Neural Basal Medium (NBM, Invitrogen, Milan, Italy), counted

and plated in NBM at a density of 18.000/cm2 in dishes coated

with 15 ug/ml of poly-D-Lysine (Sigma). Multiwell plates

(Corning Costar, Milan, Italy) were used for all cultures. NBM

was supplemented with B27 (Invitrogen, Milan, Italy), fibroblast

growth factor 2 (FGF2, 20 ng/ml, Sigma), the N-terminal

fragment of Sonic hedgehog protein (SHH, 50 ng/ml) and

fibroblast growth factor 8 (FGF8, 10 ng/ml) for 6 days in vitro.

SHH was purified as previously described [23]. Half of the

medium was changed every three days. After six days the medium

supplements were withdrawn with the exception of B27, and was

added the ascorbic acid. Cultures were left for an additional three

days.

Microarray strategy and sample preparation RNA
isolation

To minimize biological variability four pregnant rats were

sacrificed and the E11 embryos were mixed obtaining three

groups. Each group was treated separately. The ventral midbrains

dissected from each group were pooled (MesE11) or dissociated

and the cells were cultured in duplicate. After 9 days in vitro the

cultures were collected (MesPC). Three microarrays were

hybridized with MesE11 and three with MesPC independent

samples.

RNA isolation and RT-PCR
RNA obtained from tissues or from primary cultures was

extracted using the Tri-Reagent isolation system (Sigma) accord-

ing to the manufacturer’s instructions. The RNA from the culture

duplicates was pooled. The yield and integrity of RNA were

determined by a spectrophotometer of A260 and agarose gel

electrophoresis respectively. Total RNA was treated with a DNA

free kit (Ambion Inc., Milan, Italy) to eliminate possible DNA

contaminations. For microarray hybridation an additional clean-

up of total RNA was performed using the RNeasy kit (Qiagen,

Milan, Italy). RNA samples were further processed for microarray

hybridization or for RT-PCR. RT-PCR analyses were as

previously described [47,48]. In brief, two ug of RNA were

reverse transcribed using random hexanucleotides as primers (New

England Biolabs Inc., Milan, Italy, 6 mM) and 200 U of moloney-

murine leukemia virus reverse transcriptase (Ambion). 1/20 of the

reverse transcribed cDNA was amplified in a 25 ul reaction

mixture containing AmpliTaq Gold DNA polymerase buffer

(Applied Biosystem, Milan, Italy), 0.2 mM dNTPs (Finnzymes

OY, Espoo, Finland), 0.4 mM each primer, 1.25 U AmpliTaq

Gold DNA polymerase (Applied Biosystem) and 1 mCi

[32P]dCTP (3000 Ci/mmol, Amersham Biosciences, Milan, Italy).

As previously described [48], different sets of primer pairs were

used in the same reaction tube to co-amplify cDNA, together with

primers for the hypoxanthine-phosphoribosyl-transferase (Hprt), a

constantly expressed gene during CNS development, used as an

internal standard [49]. After a first denaturing step at 95uC for

8 min, PCR amplification was performed for 28 cycles organized

as follows: 95uC for 0.5 min; 56uC–58uC for 0.5 min; 72uC for

0.5 min and was followed by a final extension step (72uC for

5 min). The specificity of PCR primers was determined by

performing BLAST searches against the databases. Non-reverse-

transcribed RNA templates and mock controls were always run in

PCR reactions and never gave amplification products. The [32P]-

labeled amplified products were separated by electrophoresis in

1.5% agarose gel, dried and exposed to a PhosphorImager screen

(Amersham). Quantitation was achieved by integrating the volume

areas of each fragment obtained from scanning the screens with

PhosphorImager apparatus (Amersham), equipped with Image-

Quant software. The ratio between the yield of each amplified

product and that of the co-amplified HPRT allowed a relative

estimate of the mRNA levels [48]. Triplicate samples allowed

statistical analysis.

Probe preparation and microarray hybridization
Using the protocol supplied by the manufacturer (Affymetrix,

Santa Clara, CA), double-stranded cDNA was synthesized from

total RNA and was used to obtain biotin-labeled cRNA by an in

vitro transcription reaction (ENZO Diagnostics, Farmingdale, NY).

Biotin-labeled cRNA was fragmented and hybridized with

Affymetrix RAE230A rat genome GeneChip microarrays, accord-

ing to the manufacturer’s protocol, after verifying the quality of the

biotin-labeled cRNA on a Test Chip (Affymetrix).

Affymetrix probes re-annotation
We used a sequence-based re-annotation of the Affymetrix

probes on RAE-230A chipset [28]. The R packages used in this

study can be retrieved at http://brainarray.mbni.med.umich.edu/

Brainarray/Database/CustomCDF/CDF_download_v10.asp

Data Quality Control
Extensive quality control of the data microarray raw data has

been carried out using the methods implemented in the

BioConductor packages affy [50] and affyQCReport [51]. All

the microarrays showed excellent quality according to the

standards, thus all of them were considered for further analysis

(data not shown available upon request from the authors).

Data preprocessing
The preprocessing was carried out with the methods imple-

mented in R (http://www.R-project.org) and BioConductor

(http://www.bioconductor.org). The CEL files were imported

into R environment. After standard quality control (results not

shown), the re-annotated data were preprocessed using the RMA

algorithm [52]. The RMA allows robust estimation of inter-array

variability by employing quantile normalization and by fitting a

linear model for each probe set across all the arrays of the dataset.

Feature Selection
The statistical algorithms implemented in the package Limma

[53] were employed for selecting the differentially expressed genes.

The genes having p-value,0.001 after Benjamini-Hockberg
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correction [54] were considered as significantly differentially

expressed.

Functional analysis
The DAVID gene annotation system was used in order to select

over-represented biological terms. Default statistical parameters

were employed [27].

Gene network and promoter analysis
For each contrast analyzed, the genes up-regulated in each

array group were separately imported into the software Genoma-

tix Bibiosphere to build up gene networks based on their co-

citation in the literature as well as the presence of TFBS for known

transcription factors in their promoter regions (http://www.

genomatix.de/products/BiblioSphere/). The transcription factors

(TF) presenting extensive or interesting connectivity within the

network were chosen. Consequently, the genes presenting a

significant consensus for the selected TFs were further analyzed.

The promoter sequences of the genes were retrieved using the

software Genomatix Gene2Promoter (http://www.genomatix.de/

online help/help eldorado/Gene2Promoter Intro.html) and ana-

lyzed with Genomatix FrameWorker (http://www.genomatix.de/

online help/help gems/FrameWorker.html) to search for common

models containing at least two TFBS. Finally, the significant

models were screened for the whole set of known Rattus norvegicus

promoters by using Genomatix ModelInspector (http://www.

genomatix.de/online help/help fastm/modelinspector help.html).

Statistical analysis
The analyses applied to the microarray data have been

described above. For all other experiments, analysis of variance

was carried out, followed by post hoc comparison (ANOVA,

Scheffè F-test). Data were expressed as mean+/2SEM.

Supporting Information

Figure S1 Summary of the PCR validations of the microarray

results:The Nr4a2, Th, and Egr1 gene expression have been tested

by PCR and statistically validated as described in materials and

methods.

Found at: doi:10.1371/journal.pone.0004977.s001 (0.04 MB TIF)

Table S1 Genes significant in the three analyses with a DAVID

annotation. Fields: DAVIDID: DAVID unique ID; EG: Entrez

Gene ID; logFC_EG: logarithmic fold change (MesPC-MesE11)

based on the EG re-annotation; P.Value_EG: p-value based on

the EG re-annotation; adj.P.Val_EG: adjusted (Benjamini-Hoch-

berg) p-value based on the EG re-annotation; ENSID: Ensembl

gene ID; logFC_ENS: logarithmic fold change (MesPC-MesE11)

based on the ENS re-annotation; P.Value_ENS: p-value based on

the ENS re-annotation; adj.P.Val_ENS: adjusted (Benjamini-

Hochberg) p-value based on the ENS re-annotation; RSID:

RefSeq ID; logFC_RS: logarithmic fold change (MesPC-MesE11)

based on the RS re-annotation; P.Value_RS: p-value based on the

RS re-annotation; adj.P.Val_RS: adjusted (Benjamini-Hochberg)

p-value based on the RS re-annotation; GeneName: official gene

name.

Found at: doi:10.1371/journal.pone.0004977.s002 (0.15 MB

XLS)

Table S2 Functional analysis of the genes significantly over-

expressed in MesPC. Each stack represents a group of related

functional terms. Each term within each stack is in a row of the

table. The number of genes annotated, the percent of represen-

tation of the term, and the enrichment p-value are shown.

Found at: doi:10.1371/journal.pone.0004977.s003 (0.29 MB

XLS)

Table S3 Summary of the Genomatix ModelInspector analysis

for V$EGR-V$SP1F. Rattus norvegicus promoter sequences

showing the V$EGR-V$SP1F module. For each match, the

sequence annotation, the position of the module, and the strand

are indicated. Over-represented Geneontology terms are also

shown starting from page 53.

Found at: doi:10.1371/journal.pone.0004977.s004 (0.39 MB

PDF)

Table S4 Functional analysis of the genes significantly over-

expressed in MesE11. Each stack represents a group of related

functional terms. Each term within each stack is in a row of the

table. The number of genes annotated, the percent of represen-

tation of the term, and the enrichment p-value are shown.

Found at: doi:10.1371/journal.pone.0004977.s005 (0.19 MB

XLS)

Table S5 Summary of the Genomatix ModelInspector analysis

for V$NEUR-V$NR2F. Rattus norvegicus promoter sequences

showing the V$NEUR-V$NR2F module. For each match, the

sequence annotation, the position of the module, and the strand

are indicated. Over-represented Geneontology terms are also

shown starting from page 57.

Found at: doi:10.1371/journal.pone.0004977.s006 (0.35 MB

PDF)
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