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Abstract. Ocean acidification is caused by increasing

amounts of carbon dioxide dissolving in the oceans lead-

ing to lower seawater pH. We studied the effects of low-

ered pH on the calanoid copepod Eurytemora affinis during

a mesocosm experiment conducted in a coastal area of the

Baltic Sea. We measured copepod reproductive success as a

function of pH, chlorophyll a concentration, diatom and di-

noflagellate biomass, carbon to nitrogen (C : N) ratio of sus-

pended particulate organic matter, as well as copepod fatty

acid composition. The laboratory-based experiment was re-

peated four times during 4 consecutive weeks, with water and

copepods sampled from pelagic mesocosms enriched with

different CO2 concentrations. In addition, oxygen radical ab-

sorbance capacity (ORAC) of animals from the mesocosms

was measured weekly to test whether the copepod’s defence

against oxidative stress was affected by pH. We found no ef-

fect of pH on offspring production. Phytoplankton biomass,

as indicated by chlorophyll a concentration and dinoflag-

ellate biomass, had a positive effect. The concentration of

polyunsaturated fatty acids in the females was reflected in

the eggs and had a positive effect on offspring production,

whereas monounsaturated fatty acids of the females were re-

flected in their eggs but had no significant effect. ORAC was

not affected by pH. From these experiments we conclude that

E. affinis seems robust against direct exposure to ocean acid-

ification on a physiological level, for the variables covered in

the study. E. affinis may not have faced acute pH stress in the

treatments as the species naturally face large pH fluctuations.

1 Introduction

The concentration of carbon dioxide (CO2) in the atmo-

sphere is rising at a ten times faster rate than during the

past 55 million years. The oceans absorb CO2 from the at-

mosphere leading to lower seawater pH and a reduction in

carbonate concentration. Since pre-industrial times the ocean

acidity has increased by 28 % (IPCC, 2013). The fast in-

crease in CO2 and change in seawater chemistry will have ad-

verse effects on many marine species and ecosystems (Fabry

et al., 2008; Kroeker et al., 2010). Due to lower buffering

capacity of brackish water, the Baltic Sea is especially sensi-

tive to elevated CO2 (Havenhand, 2012). Modelling suggests

a decrease of 0.26–0.40 pH units for the Baltic Sea by the

year 2100 (BACC II, 2015). In addition, high CO2 levels in-

teract with other climate change related factors that may have
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negative effects on marine organisms (Kroeker et al., 2013;

Talmage and Gobler, 2012). Especially the coastal zones are

under heavy pressure from anthropogenically driven ocean

acidification due to eutrophication and oxygen minimum

zones (Fabry et al., 2008; Melzner et al., 2013; Wallace et

al., 2014).

Copepods are the most abundant zooplankton in the

oceans. They constitute major parts of the diet of juvenile

fish, and are hence an important part of the food web. Low-

ered pH may disturb the acid-base balance, thereby altering

the reproduction, hatching, and development (Kurihara et al.,

2004; Mayor et al., 2007; Weydmann et al., 2012). Besides

the direct effects of acidification, rising CO2 can adversely

affect consumers and food webs due to changed nutritional

value of prey (Rossoll et al., 2012). Polyunsaturated fatty

acids (PUFA) are essential metabolites for copepods and

need to be obtained from the diet. Certain PUFA have spe-

cific roles in central processes of copepod reproduction in-

cluding egg production (20:5ω3 EPA), egg hatching (22:6ω3

DHA), and development (18:3ω3 and 18:5ω3) (Jónasdót-

tir et al., 2009). Important ω3 fatty acids decreased signifi-

cantly in the diatom Thalassiosira pseudonana grown at high

CO2 with lower levels of PUFA with following decreased

egg production in the copepod Acartia tonsa (Rossoll et al.,

2012). Further, CO2-related changes in the fatty acid compo-

sition and content of several primary producers have been

reported (Bermúdez et al., 2016, and references therein).

Furthermore, ocean-acidification-induced changes in phyto-

plankton species composition can have an indirect effect on

food quantity and quality for heterotrophic consumers. El-

evated CO2 levels can increase C : N ratios of primary pro-

ducers, which alter their nutritional value and can adversely

affect the growth and reproduction of copepods (Schoo et al.,

2013).

Ocean acidification can induce oxidative stress in ma-

rine organisms (Tomanek et al., 2011; Kaniewska et al.,

2012). Hence, biochemical responses to low pH conditions,

such as changed activity of antioxidants and enzymes may

show higher sensitivity than, for example, survival and re-

production (Gorokhova et al., 2010; Zhang et al., 2012).

An enhanced antioxidant defence in response to increased

reactive oxygen species (ROS) concentration may occur at

the expense of reduced investment in other metabolic pro-

cesses, such as growth and reproduction. The defence ca-

pacity against oxidative stress can be assessed by measuring

the capacity to quench ROS (see review by Monaghan et al.,

2009).

E. affinis is a common copepod in the Baltic Sea and dom-

inates the zooplankton community together with Acartia bi-

filosa in the study area during summer. E. affinis is an egg-

bearing copepod that produces subitaneous eggs during sum-

mer and diapause eggs in autumn. The copepods recruit from

small overwintering populations, and by hatching from the

sediment (Katajisto et al., 1998). Previous studies on the ef-

fects of ocean acidification on A. bifilosa from the Baltic Sea

have shown adverse effects in combination with warming

(Vehmaa et al., 2012a, 2013). The increase in egg production

with warmer temperature was lower when copepods were si-

multaneously exposed to warmer temperature and lowered

pH (Vehmaa et al., 2012a).

The main objectives of this study were to examine effects

of ocean acidification on reproductive success and antioxi-

dant defence of the copepod E. affinis, as well as measuring

the effects of food quality and quantity on offspring produc-

tion. We studied how lowered pH, phytoplankton biomass

(indicated as chlorophyll a), biomass of diatoms and di-

noflagellates and the C : N ratio of particulate organic mat-

ter (POM) affect the offspring, i.e., nauplii production in E.

affinis. In addition, we looked at the effect of pH on essen-

tial fatty acids of incubated egg-bearing females to reveal in-

direct effects via the food. We also tested whether the fatty

acid levels of the females were reflected in their eggs under

a range of f CO2 values representative for the future ocean

(IPCC, 2013).

2 Material and methods

2.1 Experimental set-up

The study was conducted using KOSMOS mesocosms

(Riebesell et al., 2013) within the framework of the SO-

PRAN project (Paul et al., 2015). The mesocosms were lo-

cated at Storfjärden, an offshore pelagic area in the vicin-

ity of Tvärminne Zoological Station (University of Helsinki)

Baltic Sea (59◦51′20′′ N, 23◦15′42′′ E) from the beginning

of June until the middle of August, 2012. Storfjärden has

a maximum depth of 34 m. The water is brackish with a

mean salinity of 6. The area receives inflow of freshwater

from the river Svartån, and periodical inflows of cold water

from the open Baltic Sea with higher salinity (Niemi, 1976).

Six mesocosms, consisting of 17 m deep bags made of ther-

moplastic urethane, each enclosing ∼ 55 m3, were moored

on site on June 12. The mesocosms were covered by a net

(mesh size 3 mm) at the top and the bottom during filling and

left open for 4 days before the net was removed and the top

was pulled up 1.5 m above the water surface and closed at

the bottom (see Riebesell et al., 2013 and Paul et al., 2015

for details on the experimental design) to enclose the natu-

ral plankton community. The water column was mixed at the

beginning of the experiment in order to avoid a salinity strat-

ification. Four of the mesocosms were stepwise manipulated

with CO2-enriched seawater, during 3 consecutive days. Two

bags were untreated and used as controls. Due to outgassing,

CO2 was also added on day 15 of the experiment to the upper

7 m of the high CO2 mesocosms to maintain the treatment

levels. No nutrients were added. The average f CO2 levels

during the period of our incubation experiments (t1− t30)

were 346, 348, 494, 868, 1075, and 1333 µatm (Paul et al.,

2015).
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2.2 Sampling and incubations

Our copepod experiment was conducted during a 4-week pe-

riod with weekly incubations. We sampled water and cope-

pods from the mesocosms on days t3, t10, t17 and t24 (t0 be-

ing the day of first addition of CO2 into the bags). Zooplank-

ton was sampled with a 300 µm net (∅ 17 cm) from 17 m

depth to the surface from all mesocosms and transferred to

containers pre-filled with 4 L of seawater from a depth of 9 m

from the respective mesocosm. On the same day, unfiltered

water samples were taken from each mesocosm with depth-

integrated water samplers (IWS, HYDRO-BIOS, Kiel) which

take equal amount of seawater from every depth (0–17 m). In

order to minimize handling of the restricted water available,

to keep food conditions as similar to in situ conditions as pos-

sible, and to avoid gas exchange, the water was directly trans-

ferred into airtight 1.2 L Duran bottles for incubations. Wa-

ter samples and zooplankton were transported to a light- and

temperature-controlled room at Tvärminne Zoological Sta-

tion. Egg-bearing females of E. affinis (n= 10 per treatment)

were incubated in the 1.2 L Duran glass bottles which con-

tained mesocosm water. Temperature and pH were measured

before adding the copepods to the bottles. Bottles were filled

up and sealed without airspace, ensuring no air bubbles were

present, to prevent CO2 outgassing. The bottles were slowly

inverted after sealing and incubated in a 16:8 h light-dark cy-

cle at in situ temperature, as an attempt to match the natural

environment. A light source was installed above the incuba-

tion bottles, yielding 7 µmol m−2 s−1 (LI-COR LI-1000). All

pH and temperature measurements were conducted with an

Ecosense pH10 pH/temperature Pen directly from the bottles

before closing and directly after opening (Table 1). The pen

was calibrated with standard buffer solutions (Centipur, Titri-

pac pH 4.00, 7.00 and 10.00) every second day. The bottles

were inverted three times a day and their location on the shelf

was randomly changed.

Each incubation lasted 4 days. Copepods and nauplii were

gently filtered once daily onto a 250 and 30 µm mesh, re-

spectively. The status of the adult copepods was checked un-

der a dissecting microscope by submerging the sieve in a

petri dish filled with water from respective mesocosm, be-

fore returning the copepods to bottles containing new unfil-

tered seawater sampled the same day from respective meso-

cosm. The nauplii were preserved in acid Lugol’s solution

and counted under a dissecting microscope (Nikon SMZ800,

25×magnification). As we could not follow individual cope-

pods, we counted the nauplii produced daily, and the num-

ber of live females in the incubation bottles (survival > 95 %)

when filtering out the nauplii. Only first stage nauplii of E.

affinis were included in the analyses. The number of nau-

plii produced per female was calculated from the daily nau-

plius count divided by the number of females in the bot-

tles. The bottles with new water was temperature-adjusted in

the climate chamber before transferring the copepods. When

changing the water we checked for oxygen depletion every

second day with a hand-held oxygen probe (YSI Environ-

mental ProODO) in the old water used in the incubation bot-

tles.

At the end of each weekly incubation (t7, t14, t21, t28)

the copepods were counted and checked for eggs and sur-

vival. Egg sacs were cut off from incubated egg-bearing fe-

males, with a thin needle and transferred to pre-weighted

tin cups. The females were then stored separately. The sam-

ples were frozen in an ultra-freezer (−80 ◦C) until fatty acids

were measured by gas chromatography as fatty acid methyl

esters (FAMEs) following instructions in Klein Breteler et

al. (1999). Fatty acids were separated into three groups that

were used in the analyses; polyunsaturated (PUFA), monoun-

saturated (MUFA), and saturated fatty acids (SAFA) and

were expressed as ng mg dry weight−1.

With each start of the weekly, sub-experiments, female

E. affinis with egg sacs were picked from the mesocosms

for analyses of oxygen radical absorbance capacity (ORAC).

The animals (n= 30± 2) were carefully moved with tweez-

ers onto a piece of plankton net gauze and stored in Eppen-

dorf tubes in −80 ◦C until they were homogenised in 150 µL

Tris-EDTA buffer containing 1 % sarcosyl. The antioxidative

capacity was assayed as ORAC according to Ou et al. (2001).

As a source of peroxyl radicals, we used 2,2-azobis (2-

amidinopropane) dihydrochloride (AAPH) (152.66 mM) and

fluorescein was used as a fluorescent probe (106 nM). We

used trolox (218 µM, Sigma-Aldrich) as a standard and

the assay was performed on a 96-well microplate and to

each well, 20 µL sample, 30 µL AAPH and 150 µL flu-

orescein were added. ORAC values were normalized to

protein concentration and expressed as mg Trolox equiva-

lents mg protein−1. Protein concentration was measured with

NanoOrange® (Life Technologies).

Phytoplankton was sampled every second day, fixed with

acidic Lugol’s iodine (2 % final concentration) and counted

with the inverted microscope method (Utermöhl, 1958).

Samples for chlorophyll a (Chl a) measurements were col-

lected onto GF/F filters and measured as described by

Welschmeyer (1994).

Samples for carbon (C) and nitrogen (N) concentrations

were collected as for Chl a and stored in glass petri dishes

at −20 ◦C until analyses. For further details on sampling and

analyses, please refer to Paul et al. (2015).

2.3 Statistical analyses

2.3.1 Nauplii production

A linear mixed-effects model (LMM) was applied, as we

did repeated measures of nauplii production of the same

groups of individuals from the same mesocosms, to test if

pH or food quantity and quality affected the nauplii pro-

duction of E. affinis. Collinearity between all explanatory

variables was checked (Pearson’s product-moment correla-

tion). Chl a concentration and the abundance of filamen-
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Table 1. f CO2 values (t1− t30), average weekly pH, temperature, and dissolved oxygen (DO) and saturation in incubation bottles.

f CO2 treatment (µatm) Mesocosm Week pH temp. (C◦) DO mg L−1 DO%

346 1 1 8.12 11.21 10.61 96.0

1 2 8.24 14.51 10.30 98.7

1 3 8.12 15.08 8.71 99.5

1 4 8.03 15.80 9.42 93.8

348 5 1 8.14 10.00 10.94 96.7

5 2 8.20 13.37 10.64 98.3

5 3 8.07 14.99 9.88 99.8

5 4 8.02 15.10 9.61 98.9

494 7 1 7.93 9.98 10.87 96.2

7 2 8.02 13.31 10.62 97.7

7 3 7.90 15.00 9.96 100.6

7 4 7.91 14.96 9.60 98.7

868 6 1 7.68 10.24 10.83 95.2

6 2 7.80 13.33 10.56 97.3

6 3 7.74 15.01 9.85 99.6

6 4 7.76 15.13 9.65 98.9

1075 3 1 7.59 10.23 10.85 96.4

3 2 7.72 13.63 10.61 98.3

3 3 7.67 14.60 10.00 101.4

3 4 7.71 15.29 9.57 98.5

1333 8 1 7.52 9.96 10.07 96.0

8 2 7.63 13.35 10.65 98.0

8 3 7.59 14.76 9.98 100.5

8 4 7.62 15.14 9.72 99.7

tous cyanobacteria correlated. As these correlating variables

explain partly the same thing, the variable that explained

the variation in nauplii production the best (Chl a) was in-

cluded in the model. In the model the average number of

nauplii produced female−1 day−1 (log-transformed) for each

treatment was set as response variable. Incubation pH (cal-

culated as weekly mean values from daily measurements

from incubation bottles), Chl a concentration, biomass of

diatoms (Chaetoceros sp. Skeletonema marinoi and pennate

diatoms, total µg C L−1), C : N < 55 µm fraction of POM,

biomass of mixotrophic dinoflagellates (Amylax triacantha,

Dinophysis spp., Heterocapsa triquetra and Micracantho-

dinium spp., size range ∼ 10–100 µm, total µg C L−1) and

incubation temperature were used as fixed effects (Table 2).

We used only the most abundant diatoms as the other species

had a very scarce and inconsistent abundance in the samples.

The main groups of diatoms were present in all mesocosms.

The smaller fraction of C : N < 55 µm was used instead of to-

tal C : N as the total fraction may have included large zoo-

plankton such as copepods which could affect the results.

The explanatory variables used included data of each meso-

cosm of the corresponding day of sampled water used for the

incubations. When sampling days were missing, the average

values (of total µg C L−1 for diatoms and dinoflagellates, and

mol : mol of C : N) for the previous and the next day were

used. Day nested within week, nested within mesocosm, was

used as random intercept as nauplii production of the same

animals was measured four times per week and as weekly

incubations were dependent on each other, and they were

repeatedly sampled from the same mesocosms. The model

simplifications were done manually in a backward stepwise

manner by removing the non-significant effects and by us-

ing Akaike’s information criterion (AIC) to achieve the min-

imum adequate model for the data. We report t-statistics of

the retained variables for the LMMs (Table 3).

2.3.2 Fatty acids

Linear mixed-effects models were applied to test if pH has

a direct effect on the fatty acid content of female cope-

pods. EPA, DHA, and their precursor 18:3ω3 autocorrelated

strongly with each other, and with total PUFA (Pearson’s

product-moment correlation); therefore we decided to use

PUFA in the LMM. Separate models were made for each

fatty acid group, which was set as a response variable, with

pH as fixed effect and mesocosm as random effect. To test

the effects of essential fatty acids on weekly nauplii produc-

tion, we used separate LMMs, as PUFA and MUFA autocor-

related. In the models, PUFA, MUFA, and SAFA were used

as fixed effects and mesocosm was tested as a random factor

(Table 2).

To test whether female fatty acid content are reflected in

the fatty acid content of eggs, each fatty acid group (PUFA,

MUFA and SAFA) was tested separately in a LMM. In the

Biogeosciences, 13, 1037–1048, 2016 www.biogeosciences.net/13/1037/2016/
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Table 2. Variables that were used in the full LMM models (numbers indicate separate models). Repeated measures were used as random

effects in the models, as samples from the same enclosures are dependent on each other.

LMM Fixed effects Definition Response variable

1 pH The ocean acidification effect Nauplii production

Chl a The food quantity effect

Diatoms The food quality effect

C : N < 55 µm The food quality effect

Dinoflagellates The food quality effect

Incubation temp.

Fatty acids in females:

2 Incubation pH The ocean acidification effect PUFA

3 Incubation pH The ocean acidification effect MUFA

4 Incubation pH The ocean acidification effect SAFA

Fatty acids in females: Fatty acids in eggs:

5 PUFA Relationship between female PUFA

6 MUFA fatty acids and their eggs MUFA

7 SAFA SAFA

Fatty acids in females:

8 PUFA Nauplii production

9 MUFA Nauplii production

10 SAFA Nauplii production

11 pH ORAC

model, fatty acids of eggs was set as a response variable and

female fatty acid content as fixed effect; mesocosm was used

as a random factor. Not all females had egg sacs left at the

end of weeks 3 and 4 and therefore not enough material (egg

sacs) was obtained for all treatments. The variables of corre-

sponding samples that were missing the egg data were there-

fore removed.

2.3.3 Antioxidative capacity

We tested whether there was an effect of pH on the copepods’

antioxidant capacity (ORAC) with a LMM. ORAC was set

as response variable, pH (measured the same day from water

samples taken for incubations) as fixed factor and mesocosm

was set as random factor. In addition, to test for potential cor-

relation between ORAC and nauplii production, a Pearson’s

product-moment correlation was performed. In the ORAC

data, values for mesocosms 5 (control) and 6 (868 µatm) were

missing.

For all models, model validation was done by plotting the

standardised residuals against the fitted values. All statisti-

cal analyses were performed with R 2.15.2 and the nlme-

package (Pinheiro et al., 2012) was used for the LMM anal-

yses (R Development Core Team, 2012).

3 Results

The oxygen saturation was continuously high (> 93.8%)

in all incubations (Table 1). Temperature in the climate-

controlled room followed the in situ temperature except dur-

ing the fourth weekly incubation (t24-t28) when the room

was not adjusted to the sudden in situ drop in temperature

that occurred. Temperature in the treatment bottles increased

from around 10 ◦C in the first week to 15 ◦C during the

fourth week (Table 1). The pH remained stable in the bot-

tles (SD < 0.08 within a week based on daily measurements,

(Table 1) and matched the in situ pH and CO2 treatments.

Chl a concentration was relatively stable at ∼ 2 µg L−1 in

all mesocosms but then decreased to ∼ 1 µg L−1 on t17. A

significant positive effect of CO2 on Chl a was observed

after t17 (Paul et al., 2015). Dinoflagellates were on av-

erage 4.41± 1.39 µg CL−1 (+SD) (range 0–7.32) and de-

clined rapidly after t17. The C : N values included in our

analyses (our sampling days) were on average 7.66± 0.42

(range 6.13–8.77). A more comprehensive description of

C : N is found in Paul et al. (2015). The diatoms included

in our analyses were on average 0.06± 0.10 (range 0–

0.53 µg C L−1). CO2 treatment did neither effect dinoflagel-

lates, C : N < 55 µm, nor diatoms.

Nauplii production in incubations was highest in water

from M3, 1075 µatm (pH 7.6) with on average 12.6± 9.6

nauplii produced per female per day during the whole

study period. For clarity and easier comparison between

studies within this mesocosm project, average f CO2 lev-

www.biogeosciences.net/13/1037/2016/ Biogeosciences, 13, 1037–1048, 2016
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Table 3. T -statistics of the retained fixed effects in the LMM.

LMM Response variable Variable Value df t p

1 Nauplii production∗ Chl a 1.09± 0.20 69 5.440 < 0.001

Diatoms −2.79± 0.66 69 −4.231 < 0.001

Dinoflagellates 0.14± 0.05 69 2.731 0.008

Incubation temp. 0.16± 0.05 17 3.388 0.004

Fatty acids in females:

2 PUFA Incubation pH 75.99± 112.80 16 0.673 0.510

3 MUFA Incubation pH −7.70± 34.60 16 −0.223 0.827

4 SAFA Incubation pH −135.27± 325.21 16 −0.416 0.683

Fatty acids in eggs: Fatty acids in females:

5 PUFA PUFA 1.15± 0.40 13 2.864 0.013

6 MUFA MUFA 1.08± 0.37 13 2.922 0.012

7 SAFA SAFA −2.51± 1.68 13 −1.497 0.158

Fatty acids in females:

8 Nauplii production PUFA 0.09± 0.02 17 3.989 0.001

9 Nauplii production MUFA 0.185± 0.09 17 2.031 0.058

10 Nauplii production SAFA 0.006± 0.01 17 0.644 0.528

11 ORAC Incubation pH −0.02± 0.04 15 0.057 0.580

∗log-transformed

els (t1− t30) are included in Fig. 1 to describe the treat-

ments. The effect of pH on nauplii production was not sta-

tistically significant. Particulate matter C : N (< 55 µm) had

no impact on nauplii production. Chl a concentration, as

an indicator of total food availability had a positive ef-

fect (LMM; t = 5.440, p =< 0.001, Fig. 2a). Dinoflagellate

biomass (t = 2.731, p = 0.008, Fig. 2c) stimulated nauplii

production, whereas diatom biomass (LMM; t =−4.231,

p =< 0.001, Fig. 2b) had an adverse effect. There was a posi-

tive relationship between incubation temperature and nauplii

production (t = 3.388, p =< 0.004) (Table 3).

The fatty acid contents (ng mg dry weight−1) of the fe-

males were not affected by pH (LMM p => 0.5, see also

Supplement). Female MUFA and PUFA content significantly

affected the MUFA and PUFA content of the eggs (LMM

MUFA; t = 2.922, p = 0.012, LMM PUFA; t = 2.864,

p = 0.013), whereas female SAFA did not (Fig. 3a–c,

LMM; t =−1.497, p = 0.158). Female PUFA concen-

tration stimulated nauplii production (LMM; t = 3.989,

p = 0.001), whereas MUFA (LMM; t = 2.031, p = 0.058),

and SAFA content had no statistically significant effect

(LMM; t = 0.644, p = 0.528, Fig. 4a–c, Table 3).

ORAC was not affected by pH (LMM; t =−0.057,

p = 0.580) and there was no correlation between female

ORAC and nauplii production (rho= 0.297, p = 0.180)

(Fig. 5).

Figure 1. Weekly nauplii production, as averages of 10 females per

bottle, for all mesocosms (treatment target f CO2 in brackets, as

averages of t1− t30). Time point 1 is the average weekly nauplii

production t3− t7, 2= t10− t14, 3= t17− t21, and 4= t24− t28.

4 Discussion

4.1 Effects of lowered pH

Experimental CO2 concentrations did not affect the nauplii

production of E. affinis in the current study. However, nauplii

production in our incubations corresponded well with pat-

terns of nauplii abundance observed in the mesocosm bags.

The total number of copepods in the mesocosms showed no

significant relation with CO2 either (Lischka et al., 2015).
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Figure 2. Daily nauplii production of E. affinis as a function of

(a) Chl a concentration, (b) diatom biomass, and (c) dinoflagellate

biomass.

This is also in line with findings of Niehoff et al. (2013),

who found no effect of CO2 on zooplankton community de-

velopment or abundance of single taxa in a similar mesocosm

study in Kongsfjorden, Svalbard.

The physicochemical conditions in the research area is nat-

urally fluctuating, therefore the plankton community may be

adapted to large variability in CO2 concentration and pH. In

addition, organisms such as copepods are exposed to daily

variation in pH and there is evidence that species perform-

ing vertical migration may be more robust to changes in CO2

Figure 3. Fatty acids; (a) PUFA, (b) MUFA, and (c) SAFA content

of females and eggs.

(Lewis et al., 2013). E. affinis undertakes diel vertical migra-

tion and particularly ovigerous E. affinis females stay below

20 m depth and experience > 0.5 units change (7.51–8.1) in

pH on a daily basis (Almén et al., 2014), in the area where the

current study was conducted. Thus, this could partially ex-

plain why E. affinis reproduction did not respond to lowered

pH. Cripps et al. (2014), on the other hand, found severely

reduced nauplii survival for Acartia tonsa kept at a pCO2 of

1000 µatm, while other life stages were less affected. There

appears to be a large variation in CO2 sensitivity between

species, even for organisms from the same study area. Dur-

ing this KOSMOS study, Vehmaa et al. (2015) found a nega-

www.biogeosciences.net/13/1037/2016/ Biogeosciences, 13, 1037–1048, 2016
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Figure 4. Relationship between nauplii production and female

(a) PUFA, (b) MUFA, and (c) SAFA content.

tive effect of increased f CO2 on body size and development

index for A. bifilosa, another common copepod in the Baltic

Sea. The increasing hatching rate of E. affinis with higher

temperature reported by Andersen and Nielsen (1997) is also

reflected in our results with higher incubation temperatures,

affecting the nauplii production positively.

Figure 5. Correlation between weekly ORAC of E. affinis females

and nauplii production (as averages of 10 females).

4.2 Effects of food

We found that nauplii production was positively affected

by food availability (Chl a concentration, Fig. 2a). Our re-

sults are in agreement with Zervoudaki et al. (2014) who

neither found discernible effects of lowered pH, whereas

both higher temperature and food concentration (Chl a)

positively affected egg production in A. clausi in a low

nutrient Mediterranean system. According to fractionated

Chl a measurements during the mesocosm campaign (Paul

et al., 2015) > 90 % of the Chl a consisted of nanophyto-

plankton (< 20 µm), which possibly constituted an important

food source for the filter-feeding E. affinis (Motwani and

Gorokhova, 2013).

Although nauplii production of E. affinis was negatively

affected by diatoms, no effect of CO2 on diatom abundance

was found. The abundance of diatoms was high during the

first days but then declined rapidly. Low hatching frequency

has, however, previously been observed for E. affinis during

the diatom spring bloom in the same area (Ask et al., 2006).

Some diatoms contain inhibitory compounds or lack essen-

tial nutrients that may be crucial for copepod reproduction

(Lee et al., 1999). In the current study, diatoms consisted

of Chaetoceros spp., Skeletonema marinoi and pennate di-

atoms. Vehmaa et al. (2012b) reported low egg production

for E. affinis on a S. marinoi dominated diet in the study

area. Skeletonema can produce potentially harmful aldehy-

des affecting copepod egg production (Ianora and Miralto,

2010). Significant negative correlation between Chaetoceros

spp. and E. affinis hatching frequency has also been reported

(Ask et al., 2006). However, there could potentially be a

non-causal relationship between low diatom abundance and

high nauplii production. It is possible that the end of the

diatom bloom and peak abundance coincided (Ask et al.,

2006). Dinoflagellates are in some cases considered superior

food source for copepods, as opposed to diatoms (Ianora et

al., 2004; cf. Vehmaa et al., 2012b). In this study dinoflag-
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ellates positively stimulated nauplii production. Dinoflagel-

lates probably contributed to nutritional quality as they are

high in essential fatty acids (Galloway and Winder, 2015).

We do not know to which extent the copepods fed on the dif-

ferent species; however, E. affinis is able to feed on both H.

triquetra and Dinophysis spp., although the latter has toxic

strains (Setälä et al., 2009).

We realize that some copepods and nauplii probably were

introduced with the unfiltered water to the incubation bot-

tles. We assume that it did not have a major effect on the

results as the copepod nauplii abundance did not vary be-

tween the mesocosms (Lischka et al., 2015), and only E. affi-

nis nauplii were counted. We observed a lot of epibionts (Vor-

ticella) attached to adult copepods during the third week in

the mesocosms. This was probably due to ageing (Jamieson

and Santer, 2003), or the lack of predators that would other-

wise have removed infested individuals which are more visi-

ble due to epibionts causing impaired escape ability (Souissi

et al., 2013). The age of the E. affinis adults incubated in our

experiments, was estimated to be 2–3 weeks to > 1 month.

The higher age structure of E. affinis occurring in the meso-

cosms, as well as the decreasing Chl a levels could partly ex-

plain the decreased nauplii production in the third and fourth

week of the experiment. Decreasing levels of PUFA in fe-

males towards the fourth week (Bermúdez et al., 2016), could

also have affected copepod nauplii production. In the current

study, the natural phytoplankton composition in the meso-

cosms did not change significantly due to CO2 (Bermúdez et

al., 2016; Annegret Stuhr, personal communication, 2015).

Rossoll et al. (2013) and Bermúdez et al. (2016) suggest

that a dampening of CO2 effects can be expected for coastal

communities adapted to strong natural fluctuations (cf. Wald-

busser and Salisbury, 2014), as also proposed here. Rossoll

et al. (2013) found no changes in phytoplankton community

composition and no direct effect of lowered pH or indirect

CO2 effect, via changed food quality on A. tonsa reproduc-

tion, exposed to similar treatment levels as in the present

study.

4.3 Antioxidative capacity and fatty acids

Our results suggest that the oxidative balance was maintained

in the copepods in all treatments regardless of pH, as we did

not observe any change in ORAC. As noted by Vehmaa et

al. (2013), ORAC is affected by lowered pH, rather in com-

bination with warmer temperatures, but not by moderately

lowered pH alone. An oxidative imbalance, favouring ROS

production can result in oxidative stress, as ROS can attack

biomolecules, such as lipids, proteins, and DNA (Monaghan

et al., 2009). Developmental stage (Fanjul-Moles and Gon-

sebatt, 2012), environmental condition (Lushchak, 2011), as

well as feeding activity (Furuhagen et al., 2014) can affect

levels of oxidative stress, suggesting the importance of mea-

suring several biomarkers (Monaghan et al., 2009). We con-

clude that E. affinis did not face pronounced pH stress and

therefore seems fairly robust to future ocean acidification, at

least based on results in the present manuscript.

Analyses of fatty acid concentration in E. affinis females

from our incubations revealed that PUFA in females was

transferred to the eggs and stimulated nauplii production sig-

nificantly, whereas no significant effect of pH on FA con-

tent in females was revealed. Despite the fact that Rossoll et

al. (2012) found CO2-induced changes in fatty acid content

of phytoplankton in laboratory-based experiments, no CO2-

induced changes on phytoplankton or copepod fatty acid

composition were found during the current mesocosm study

(Bermúdez et al., 2016). The authors suggest that phospho-

rus limitation, being homogeneous in all mesocosms as nu-

trient addition was not practised, may have a stronger influ-

ence on community composition and their associated fatty

acid profile than CO2. Isari et al. (2015) found neither direct

effects on copepod vital rates, nor indirect effects, via phy-

toplankton fatty acid composition, in two copepods Acartia

granii and Oithona davisae. However, most PUFA showed

a positive correlation with pCO2 during part of a mesocosm

study in Svalbard, which the authors attribute to taxonomical

changes due to rising dinoflagellate abundances (Leu et al.,

2013). In the present study female MUFA were reflected in

their eggs, whereas SAFA were not, and none of them had

a significant effect on nauplii production. These fatty acids,

at least MUFA, are rather used for metabolism and storage

(McMeans et al., 2012).

5 Conclusions

From our results we conclude that E. affinis is not sensitive

to near-future levels of ocean acidification on a physiological

level for the variables measured in the study. Offspring pro-

duction was not affected after one generation. Food quality,

in terms of dinoflagellate biomass and higher PUFA stimu-

lated nauplii production, but we observed no difference in

fatty acid composition due to pH. We also did not observe an

effect of pH on ORAC. In the study area E. affinis is proba-

bly adapted to high pH variability due to diel vertical migra-

tion and may, therefore, not have faced pronounced pH stress

from the treatment levels used in this study. We found that the

effects of food quantity had an impact on nauplii production

of E. affinis. For the time we conducted the laboratory-based

experiments, we, however, did not observe an indirect CO2

effect via phytoplankton biomass. Chl aconcentration corre-

lated positively with CO2, but only clearly discernible for

picophytoplankton from t25 onwards (Paul et al., 2015) and

we sampled no longer than t27. How the indirect effect of

CO2 (via the food) would affect the copepods on a longer

timescale remains unclear. Future studies should focus on

copepod adaptation in relation to coastal pH variability and

tolerance towards extreme events.
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