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Abstract

Background: Development and maintenance of the identity of tissues is of central importance for multicellular organisms.
Based on gene expression profiles, it is possible to divide genes in housekeeping genes and those whose expression is
preferential in one or a few tissues and which provide specialized functions that have a strong effect on the physiology of
the whole organism.

Results: We have surveyed the gene expression in 78 normal human tissues integrating publicly available microarray gene
expression data. A total amount of 1601 genes were identified as selectively expressed in one or more tissues. The tissue-
selective genes covered a wide range of cellular and molecular functions, and could be linked to 361 human diseases with
Mendelian inheritance. Based on the gene expression profiles, we were able to form a network of tissues reflecting their
functional relatedness and, to certain extent, their development. Using co-citation driven gene network technique and
promoter analysis, we predicted a transcriptional module where the co-operation of the transcription factors E2F and NF-
kappaB can possibly regulate a number of genes involved in the neurogenesis that takes place in the adult hippocampus.

Conclusions: Here we propose that integration of gene expression data from Affymetrix GeneChip experiments is possible
through re-annotation and commonly used pre-processing methods. We suggest that some functional aspects of the
tissues can be explained by the co-operation of multiple transcription factors that regulate the expression of selected
groups of genes.
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Introduction

The human body consists of numerous cell types that are highly

organized into functional units constituting tissues and organs.

Expression patterns of genes have been under selection for eons

and, as a result, cell types and tissues differ from each other both

morphologically and functionally. The mechanisms leading to the

development, differentiation, and maintenance of tissues have

been under intensive investigation by generations of scientists.

A generally accepted view of gene expression programs divides

genes in two main categories: i) housekeeping genes that are

virtually always expressed in every tissue and work to maintain

basic cellular functions; and ii) genes whose expression is

preferential in one or a few tissues and which provide specialized

functions that have a strong effect on the physiology of the whole

organism.

Compared to the housekeeping genes, tissue-specific genes have

been described as longer [1], with longer introns [2], a lower GC

content [3], and lower substitution rates at non synonymous sites

[4]. Moreover, tissue-specific genes seem to evolve faster and they

are more likely to be mutated in genetic diseases with Mendelian

inheritance [5].

In terms of gene expression, tissue specificity can be addressed

in strict terms of genes that are exclusively transcribed in only one

particular tissue type, but there is evidence indicating that most

tissues with similar function share many expression patterns.

Therefore, the concept of tissue-selectivity, which considers those

genes whose expression is enriched in one or more similar tissues

[6], might be more useful. Affymetrix high-density oligonucleotide

arrays [7] have been already used for investigating tissue-specific

expression patterns [6,8]. However, there are several problematic

aspects in the GeneChip technology, related especially to the mis-

annotation of many probes. Dai and collaborators [9] have

observed that updating the probe annotation for all the Affymetrix

chipsets affects a large number of the probe sets. More recently, it

has been shown that updating the definitions of the Affymetrix

probes leads to more precise and accurate results as compared

with the original annotations provided by the manufacturer [10].

Re-annotation of the Affymetrix probes has been also shown to

improve the cross-platform reproducibility and meta-analysis of

independent microarray experiments [11].

The aim of this study was to investigate tissue-selective

expression patterns, integrating publicly available gene expression

data. A total of 195 images of Affymetrix GeneChips were
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collected from the GEO database (http://www.ncbi.nlm.nih.gov/

geo/). All probes present on the chipset were re-annotated

according to the latest release of the Entrez Gene database

(http://www.ncbi.nlm.nih.gov/sites/entrez?db = gene). After ex-

tended quality control and preprocessing, we explored the tissue-

selective expression patterns.

Results

Identification of tissue-selective genes
We searched for genes expressed in a tissue-selective manner. A

tissue-selectivity score was computed for each gene and used as a

weight for the expression values. After permutation test we could

identify 1601 genes selectively expressed in one or more tissues.

About 35% of 1601 genes were selectively expressed only in one

tissue, 20% were shared by two, and 13% by three tissues. Ten

percent of the tissue-selective genes were shared by six or more

tissues. The majority of tissue-selective genes shared by ten or

more tissues were expressed in neural system tissues. The majority

of the tissue selective genes were found in the immune system

(32% of 1601), followed by central and peripheral nervous systems

(17%), muscles (15%) and reproductive organs (9%). Altogether,

the other categories accounted 27% of selective genes.

Functions of tissue-selective genes
The 1601 tissue-selective genes covered a wide range of cellular

and molecular functions as they could be annotated into 1694

distinct Biological Process, 1094 Molecular Function and 290

Cellular Component functional families from the three gene

ontology classifications (File S1, tables 0.2, 0.3 and 0.4). The gene

ontology classification revealed a suggestive distribution of the

1601 tissue-selective genes into functional families: 19% of them

were classified in the Molecular Function family ‘‘signal transducer

activity’’, and about 8% in the group of ‘‘receptor binding’’

proteins. Moreover, when the same genes were grouped according

to the Cellular Component ontology, about 18% were annotated

under the family ‘‘extracellular region’’.

The classification of the 1601 tissue-selective genes according to

the Biological Process ontology also showed that about 16% were

associated with the term ‘‘development’’, and almost 14% to the

term ‘‘immune response’’.

The gene ontology annotation was also used to characterize the

genes identified in each of the 78 tissues separately (details in File

S1). For example, ‘‘blood coagulation’’, ‘‘iron ion homeostasis’’,

‘‘lipid metabolism’’, and ‘‘gluconeogenesis’’ were found over-

represented in liver with p,1.0E-4 (File S1, table 44.2). Similarly,

‘‘male gamete generation’’ and ‘‘spermatogenesis’’ were found in

testis with p,1.0E-18 (File S1, table 55.2). Generally, the selective

genes in all the analyzed tissues showed excellent correlation with

the known physiological functions.

Tissue-selective genes and human diseases
It has been suggested that slow-evolving housekeeping genes are

underrepresented among disease genes, due to a higher chance of

embryonic lethality when mutated [5]. The 1601 tissue-selective

genes were enriched in disease-genes as they were linked to 361

diseases described in the OMIM database (http://www.ncbi.nlm.

nih.gov/sites/entrez?db = OMIM). We also observed that, in most

of the cases, the 1601 tissue-selective genes are associated to

pathological phenotype in the tissues or organs where they are

found selectively expressed.

For instance, among the genes we found selectively expressed in

fetal heart, GATA4 and NKX2.5 have been associated with Atrial

Septal Defect 2 [12,13]. In addition, mutations of the gene

NKX2.5 have been described in Tetralogy of Fallot [14,15] and in

Atrial Septal Defect with Atrioventricular Conduction Defect

[16,17]. The placenta-selective gene RASA1 is reported in two

diseases characterized by aberrations of blood vessels: the Parkes

Weber Syndrome and Capillary Malformation-Arteriovenous

Malformation [18]. Several muscle-selective genes have been

described in a number of myopathies, as well as several gland-

selective genes are associated with syndromes of the endocrine

system and metabolic diseases. More extensive listing of diseases is

available in the supplemental results (File S1, table 0.5).

Tissue connectome
We wanted to investigate the hypothesis that tissues and organs

sharing tissue-selective genes might present some degree of

relatedness.

For this propose, we built a network of tissues that we named

connectome. In the connectome, each node represented a tissue

and the genes selectively expressed in two or more tissues formed

the edges between the nodes. Each edge was thus associated with

the number of shared genes.

The number of edges in the network was computed as a

function of the number of shared genes between the tissues and

three cutoff values (30 or more genes, 20 or more genes, and 5 or

more genes) were chosen as representative of different degrees of

connectivity (Figure 1d).

The 30 sharing genes connectome. It was possible to

observe separate networks of seven central nervous system (CNS)

tissues, five testis tissues, twelve immune cells, and six muscles

(Figure 1a). Moreover, a chain-like connection was found between

fetal lung – fetal liver – liver – kidney. The forebrain structures,

consisting of telencephalic and diencephalic structures, clustered

together. The central tissue in the CNS cluster was amygdala,

which is consistent with the view that amygdala, rather than being

a structural and developmental unit, is a collection of adjacent cell

groups within the forebrain [19,20]. Whole blood had extended

connections with several circulating cells, such as T cells, B cells,

natural killer cells, monocytes, and BDCA4-dendritic cells. On the

other hand, tight connections were also formed between the cells

resident in the bone marrow, such as early erythroid cells, B

lymphoblasts, endothelial cells, and CD34 clones.

The 20 sharing genes connectome. Two larger sub-

networks emerged, constituted respectively of CNS tissues, and

immune cells and tissues, muscles, excretory organs, and thyroid

(Figure 1b). Tonsil bridged the connection between immune cells

and muscles. This makes sense as in the tonsil there are both

myoepithelial and immune cells. Tonsil presented also connections

with B cells, BDCA4-dendritic cells, and lymph node. Histologic

studies of the tonsil showed that they are lymphoid structures

consisting mainly of B-lymphocytes, but they are occupied also by

T-lymphocytes, activated B-lymphocytes and other cells of the

immune system. Tonsil shares histological features with lymph

nodes as its cells are supported by a fine network of reticular fibers

and high-endothelial venules function in the ‘‘homing’’ of

circulating lymphocytes [21,22]. During the fetal life massive

erythropoiesis happens in several tissues such as the liver [23].

Fetal liver, in fact, connected early erythroid cells and CD105-

endothelial cells that are precursors of circulating cells and which

reside in the bone marrow after the birth. The testis tissues still

appeared unconnected to any other tissue. The cluster of 15 CNS

tissues included structures spanning from the spinal cord to

telencephalic structures, forming the center of this network.

The 5 sharing genes connectome. All CNS tissues,

including the olfactory bulb clustered together (Figure 1c). In

addition, some peripheral nervous system structures joined this
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cluster. This sub-network was no longer distinct but shared links

with other structures, particularly fetal tissues such as heart and

lung. In addition, muscles shared links with the CNS cluster,

which may be due to the innervation of the muscle samples as well

as to the genes involved in ion homeostasis, which are expressed

both in neurons and muscular cells. Fetal brain, hippocampus and

olfactory bulb bridged the CNS cluster with other tissues.

Neurogenesis, production of new neurons, continues in adult

hippocampus and olfactory bulb and the genes expressed in these

newborn neurons may give them immature characteristics, which

are shared by fetal brain and other fetal tissues [24].

Hypothalamus and pituitary gland, which are anatomically

connected, linked together.

The hippocampus regulatory gene network
One of the goals of our analysis was to find clear correspon-

dence between the tissue-selective gene expression programs and

specific functions of tissues. Within the CNS, neurogenesis during

adult life takes place in the hippocampus during normal and

pathological conditions. The analysis of the connectome showed

interesting links of the hippocampus with other anatomical

structures where cell duplication and differentiation are known

to happen. We wanted to test the hypothesis that genes selectively

expressed in hippocampus would form a transcriptional network

underlying this specific function. For this, we built a network of the

hippocampus-selective genes based on their co-citation into the

Pubmed database as well as the presence of specific transcription

factor binding sites (TFBS) in their promoter regions (Figure S1).

The transcription factor NF-kappaB, which was not among the

hippocampus-selective genes, presented an interesting topological

position as it had connections with a number of hippocampus-

selective genes (Figure S1). Detailed analysis of the promoters of

the NF-kappaB interactors revealed the presence of a significantly

conserved binding sequence for E2F and, 92–115 bp downstream,

one for NF-kappaB (Figure S2). Screening the whole set of known

human promoters, we found the E2F-NF-kappaB module in 1901

regulatory sequences, suggesting a common mechanism of

transcriptional regulation. The gene ontology clustering of these

genes showed significant over-representation of the families

‘‘nervous system development’’, ‘‘cell adhesion’’, ‘‘transmembrane

receptor protein tyrosine kinase signaling pathway’’, and ‘‘retinoic

acid receptor activity’’ (details in File S2). In addition to the

hippocampus-selective genes, also some fetal brain-selective,

amygdala-selective, and prefrontal cortex-selective genes could

be regulated by the E2F-NF-kappaB module. All these areas have

been extensively investigated for neurogenesis [25].

Discussion

We have integrated microarray data produced in several

laboratories for exploring the tissue-selective expression patterns

in 78 normal human tissues.

One of the interests about the tissue-specific genes concerns

their functional role in normal and pathological conditions. We

observed that the group of tissue-selective genes is enriched in

‘‘signal transducer activity’’, ‘‘receptor binding’’, and ‘‘extracellu-

lar region’’, as well as ‘‘development’’ and ‘‘immune response’’

functional families. Our results are largely concordant with the

findings of Winter and collaborators, who have reported that

genes encoding secreted proteins highly correlate with tissue

specificity [5]. Freilich and collaborators also reported that genes

with tissue-specific expression patterns mainly encode for regula-

tory proteins involved in signal transduction activity [26]. In

addition, they observed that the tissue-specific group is possibly

enriched in transcription factors encoding genes [26]. We found

only 59 transcription factor genes expressed in a tissue-selective

manner. Accordingly, Yu and collaborators have reported that

ubiquitously expressed transcription factors can combine with

other factors contributing to tissue-specificity. In addition, they

observed that individual transcription factors can participate in

tissue-specific gene regulation by interacting with distinct partners

in different tissues [27]. We propose that many transcription

factors are evenly expressed in many tissues and that several

stimuli mediated by tissue-specific signal transduction machineries

mediate the functional activation of specific combinations of them

at the protein level only in certain tissues and in defined temporal

windows.

The connectome shows a novel and intriguing way to

investigate the relatedness of human tissues and organs. While

interpreting these results, it should be also taken into account that

many human tissues have a complex architecture, as they consist

of a certain number of specialized cells with variant transcriptional

profiles. Microarrays can reliably detect cRNA species at the

concentration of a few pico-molars, but it can be problematic to

assign a certain gene expression event to the correct cell

subpopulation of complex tissues. Nevertheless, we believe that
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Figure 1. Tissue Connectome. Color code: Central Nervous System RED; Peripheral Nervous System ORANGE; Testis YELLOW; Muscles GREEN;
immune cells LIGHT BLUE; Immune Organs DARK BLUE; Respiratory System PINK; Pancreas and Islets DARK PINK; Adrenal Gland and Adrenal Cortex
LIGHT PINK; Thyroid and Fetal Thyroid SEPIA; Others WHITE. The edges have been drawn between tissue nodes sharing: a) 30 or more genes; b) 20 or
more genes; c) 5 or more genes. d) the number of edges as a function of tissue-selective genes shared by two or more tissues. The tissue indexes are
reported in Table 1.
doi:10.1371/journal.pone.0001880.g001
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the tissues should be always studied as functional entities and their

global gene expression should be target of interest. When thinking

of the liver, for instance, it should be considered that the identity of

this organ is given by the combination of expression programs in

several kinds of cells, more than just hepatocytes. Moreover, it is

reasonable to think that in samples of many tissues some amount

of blood cells are also present. This can easily explain the wide

connections that circulating cells form with other kinds of

anatomical structures in terms of shared gene expression.

However, we observed a very tight intra-connectivity within the

groups of nervous tissues, blood cells, testis tissues, and muscles,

suggesting that the identity of these anatomical structures is

determined by the differential expression of many genes. This is

also evident from several clustering analyses we preformed on the

data (details in File S3). The connectome of tissues also shows

interesting interactions largely explained by the functional and

morphological similarity of some tissues. It is the case, for instance,

of the connection between the tonsil and lymph node. In other

cases, the topological features of certain tissues in the network are

suggestive of developmental mechanisms, as for the central

position of the amygdala within the central nervous system

connectome.

Increasing attention is being oriented to the inference of

transcriptional regulatory networks from high throughput gene

expression screenings. These approaches aim to link gene

expression data to the activity of transcription factors in cause-

effect models. Some effort has been already put also into the

investigation of regulatory gene networks of tissue-specific genes

having a central role in the physiology and development of specific

anatomical structures [28,29,30]. We investigated in detail the

expression patterns that might play a role in determining some

functional aspect of the hippocampus. We computationally

predicted a promoter module formed by conserved consensus

motifs for the transcription factors E2F and NF-kappaB present on

1901 human known promoters. The gene ontology classification

suggests that these genes are directly involved in neurogenesis and

central nervous system development.

The E2F family of transcription factors, by interaction with

several partners such as pRb, p107 or p130, are thought to

regulate the cell cycle [31,32] and trigger signals that also either

promote cellular growth, cell cycle exit, or terminal differentiation

in neurons [32,33]. NF-kappaB has been described as playing an

important role in synaptic activity and plasticity, neuroprotection,

and in behavioral aspects of learning and memory [34]. Moreover,

members of NF-kappaB family have been found to be expressed in

areas of active neurogenesis in post-natal and adult mouse brains

[35].

Altogether, these results expand our understanding of how gene

expression programs determine the functional identity of human

tissues.

Methods

Data collection
Total number of 195 Affymetrix HG-U133A CEL files was

collected from the GEO database (http://www.ncbi.nlm.nih.gov/

geo/) from 6 different data sets. All the gathered arrays had been

hybridized to normal adult or fetal human tissues or cell types for a

total of 78 different classes (Table 1). Data were selected according

to the following criteria: i) all the experiments had been

documented according to the MIAME standard; ii) all the arrays

had been hybridized with samples isolated from human tissues and

experiments were not carried out with cell lines; iii) all the samples

came from healthy control subjects or from reference RNA

samples; iv) the raw array images (CEL files) were available for

download; and v) the Affymetrix chipset used for the hybridization

was the human HGU-133A. A quality check of the data was

performed using the recommendations of the manufacturer.

Altogether, 195 sets of individual array data were used for further

analysis.

Data Pre-processing
Sequence-based re-annotation of the Affymetrix probes on an

HGU-133A chipset [9] according to the latest release of the Entrez

Gene database was used (http://www.ncbi.nlm.nih.gov/sites/

entrez?db = gene). The expression values for each gene were

calculated using the RMA algorithm [36].

Tissue-selectivity analysis
A tissue-selectivity score was computed for each tissue-gene pair

from the expression data matrix. Permutation test was performed

to define a significance threshold. Details in Table S1.

Gene ontology analysis
Fisher’s exact test was performed in order to select over-

represented gene ontology classes in the tissue-selective genes. The

functional families presenting p,0.01 were considered as

significantly represented.

Gene network and promoter analysis
The hippocampus-selective genes were processed in the

software Bibiosphere to build up gene networks based on their

co-citation in the literature as well as the presence of TFBS for

known transcription factors in their promoter regions (http://

www.genomatix.de/products/BiblioSphere/). Because of the ex-

tensive connectivity of NF-KappaB within the network, the genes

presenting a significant TFBS for NF-KappaB were selected for

further analysis. The promoter sequences of these genes were

retrieved using the Gene2Promoter software (http://www.

genomatix.de/online help/help eldorado/Gene2Promoter Intro.

html) and analyzed with FrameWorker (http://www.genomatix.

de/online help/help gems/FrameWorker.html) to search for com-

mon models containing at least two TFBS. Finally, the significant

model constituted by E2F and NF-KappaB was screened for in the

whole set of known human promoters using ModelInspector (http://

www.genomatix.de/online help/help fastm/modelinspector help.

html).
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