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Abstract. New particle formation (NPF) is an important at-

mospheric phenomenon. During an NPF event, particles first

form by nucleation and then grow further in size. The growth

step is crucial because it controls the number of particles that

can become cloud condensation nuclei. Among various phys-

ical and chemical processes contributing to particle growth,

condensation by organic vapors has been suggested as im-

portant. In order to better understand the influence of bio-

genic emissions on particle growth, we carried out modeling

studies of NPF events during the BEACHON-ROCS (Bio–

hydro–atmosphere interactions of Energy, Aerosol, Carbon,

H2O, Organics & Nitrogen – Rocky Mountain Organic Car-

bon Study) campaign at Manitou Experimental Forest Ob-

servatory in Colorado, USA. The site is representative of the

semi-arid western USA. With the latest Criegee intermedi-

ate reaction rates implemented in the chemistry scheme, the

model underestimates sulfuric acid concentration by 50 %,

suggesting either missing sources of atmospheric sulfuric

acid or an overestimated sink term. The results emphasize the

contribution from biogenic volatile organic compound emis-

sions to particle growth by demonstrating the effects of the

oxidation products of monoterpenes and 2-Methyl-3-buten-

2-ol (MBO). Monoterpene oxidation products are shown to

influence the nighttime particle loadings significantly, while

their concentrations are insufficient to grow the particles dur-

ing the day. The growth of ultrafine particles in the daytime

appears to be closely related to the OH oxidation products of

MBO.

1 Introduction

Atmospheric aerosols have the potential to change the cli-

mate as they influence the Earth’s radiative balance as well

as the hydrological cycle (e.g., Lohmann and Feichter, 2005;

Kerminen et al., 2005). Apart from their climatic influences,

aerosols reduce visibility and impact health. Therefore it

is important to understand the life cycle of atmospheric
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aerosols and estimate their impacts on climate and health.

One important phenomenon associated with the atmospheric

aerosol system is new particle formation (NPF) (Kulmala et

al., 2004b). During a NPF event, particles first form from

nucleation. The exact mechanism behind nucleation is still

unclear, but various studies have suggested possible nucle-

ation compounds including water, sulfuric acid, ammonia,

and organic compounds (Zhang et al., 2004; Sipilä et al.,

2010; Kirkby et al., 2011; Schobesberger et al., 2013). The

nucleated particles then grow further via various processes

including condensation of vapors and coagulation (Kulmala

et al., 2004a; Kulmala and Kerminen, 2008; Kerminen et al.,

2010). This growth step determines the formation rate of de-

tectable particles (usually > 3 nm) as well as the impact of

NPF on cloud condensation nuclei populations (Kulmala et

al., 2013). Organic compounds are the main drivers of the

growth step and are thus critical for aerosol formation (Ker-

minen et al., 2000; Sellegri et al., 2005; Boy et al., 2005;

Allan et al., 2006; Laaksonen et al., 2008; Ehn et al., 2014).

Volatile organic compounds (VOCs) are of both anthro-

pogenic and biogenic origin. Vegetation produces biogenic

volatile organic compounds (BVOCs) for a variety of phys-

iological purposes (e.g., Fuentes et al., 2000; Sharkey et al.,

2008). There are complex mechanisms that control BVOC

emissions. The emission abundance and chemical speciation

varies by vegetation species as well as environmental con-

ditions such as light and temperature. Since the first enclo-

sure study of BVOC emissions in the late 1920s (Isidorov,

1990), numerous assessments by lab experiments and field

measurements have been carried out to quantify BVOC emis-

sions. The global BVOC emissions by terrestrial ecosystems

are estimated to be about 1000 Tg C yr−1, of which about

50 % is isoprene and 15 % is monoterpenes (Guenther et

al., 2012). This is nearly 8 times the global VOC emissions

of anthropogenic origin, which are estimated to be about

130 Tg C yr−1 (Lamarque et al., 2010).

The impact of these huge BVOC emissions is of great sci-

entific interest. Apart from their potential impacts on air qual-

ity (Andreae and Crutzen, 1997; Atkinson, 2000), BVOCs

are known to affect the climate system by contributing to

aerosol formation and growth. However, the understanding

of how BVOCs contribute to aerosol formation is incom-

plete. The vast amount of different BVOC species, numer-

ous atmospheric chemistry reaction pathways and uncertain

microphysics make a complete understanding of these pro-

cesses very difficult. Many studies have suggested the con-

densing organic compounds to be nonvolatile or have ex-

tremely low volatility (Spracklen et al., 2011; Riipinen et al.,

2011; Donahue et al., 2011; Kulmala et al., 2013). For ex-

ample, Ehn et al. (2014) investigated extremely low volatil-

ity organic compounds (ELVOCs) arising from monoterpene

oxidation, which has been predicted by Kulmala et al. (1998)

to enhance the condensational growth of aerosols in chamber

experiments under atmospherically relevant conditions. This

study has supplemented the link between secondary organic

aerosol (SOA) formation and one of the most abundant fam-

ilies of BVOCs, monoterpenes. Besides monoterpenes, 2-

Methyl-3-buten-2-ol (MBO), another important BVOC emit-

ted by pine trees in western North America (Harley et al.,

1998), is also a potential precursor of SOA (Chan et al.,

2009). Recent smog chamber studies and field measurements

revealed that OH-initiated oxidation of MBO leads to SOA

formation (Zhang et al., 2012, 2014).

Building on past research about the role of organic com-

pounds in new particle formation, we aim to study in partic-

ular the influence of biogenic organic compounds on particle

growth via a modeling approach. This modeling activity was

conducted for the Bio–hydro–atmosphere interactions of En-

ergy, Aerosol, Carbon, H2O, Organics & Nitrogen – Rocky

Mountain Organic Carbon Study (BEACHON-ROCS) field

campaign at the Manitou Experimental Forest Observatory

(MEFO) during August 2010 (Ortega et al., 2014). The cam-

paign focused on the biosphere–atmosphere exchange of re-

active organic gases and thus provided an excellent data set

of aerosol precursor gases. The Manitou Experimental Forest

Observatory is a mountainous forest site in close proximity

to human activity. It provides an opportunity to study bio-

genic SOA formation at a rural–urban interface (Cui et al.,

2014). Various studies have indicated that biogenic SOA for-

mation in forest environments can be enhanced by the inflow

of anthropogenic pollutants (Boy et al., 2008; Hoyle et al.,

2011; Jung et al., 2013). The modeling tool used in this study

is the chemical-transport column model SOSAA (model to

Simulate Organic vapors, Sulfuric Acid and Aerosols; Boy et

al., 2011; Zhou et al., 2014). Despite the limitation for sim-

ulating horizontal transport, this process-orientated model is

valuable for gaining detailed understanding of local phenom-

ena. Due to the complex terrain at the Manitou site, the first

task in this study was to assess the accuracy of reconstructing

the highly variable meteorological conditions using a column

model. The second task was to compare the modeled aerosol

precursor gases against the measurements. In addition to sul-

furic acid (H2SO4), we focused on MBO and monoterpenes

because they dominate the biogenic emissions at the site

(Karl et al., 2014; Kaser et al., 2013a, b; Kim et al., 2010).

After assessing the model performance with respect to the

meteorology and related precursor gases, we proceeded with

the study on the effects of BVOCs and their oxidation prod-

ucts on particle growth.

2 Materials and methods

2.1 Manitou Experimental Forest Observatory and

BEACHON-ROCS field campaign

All observations presented in this study were obtained dur-

ing the BEACHON-ROCS field campaign at Manitou Exper-

imental Forest Observatory in August 2010. The campaign

is part of the BEACHON project, which aims to investigate
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ecosystem–atmosphere exchange of trace gases and aerosols

and their potential feedbacks between biogeochemical and

hydrological cycles. Ortega et al. (2014) have provided a

very detailed description of the BEACHON project as well

as MEFO; here we only provide a summary of the site and

campaign descriptions related to this study.

MEFO is located in the Front Range of the Colorado

Rocky Mountains (39.1◦ N, 105.1◦W; 2370 m above sea

level). It is a mountainous site in close proximity to large ur-

ban centers (e.g., Denver is about 85 km northeast of the site,

and Colorado Springs about 40 km to the southeast). Due to

shielding by the Rampart Range to the east and Pikes Peak

to the south, the site normally encounters clean continental

air masses from the southwest. Exceptions include episodic

but frequent intrusions of anthropogenic air masses due to

upslope flow during the mornings and air moving downslope

from the south during the evenings. Ponderosa pine is the

dominant tree species at the forested site. The median tree

age at the site was 49.5 years and the average canopy height

was about 18.5 m in 2010 (DiGangi et al., 2011). Approxi-

mately 50 % of the precipitation falls as rain during the sum-

mer season (June–September), primarily during afternoon

thunderstorms characterized by brief but intense periods of

rainfall and lightning. The site is representative for the semi-

arid western USA, where biosphere–atmosphere exchange

processes of energy, water, carbon, and nitrogen are sensi-

tive to the amount of precipitation.

Measurements of VOCs used a valve-switching system

which changed sampling lines every 5 min and cycled

through six Teflon inlets mounted at 1.6, 5.0, 12.0, 17.7, and

25.1 m over a 30 min period. VOC concentrations were mea-

sured by a proton-transfer-reaction mass spectrometer (PTR-

MS, Ionicon Analytik GmbH). The instrument is based on

soft chemical ionization using protonated water ions (H3O+)

(Hansel et al., 1995; Lindinger et al., 1998). Other trace-

gas measurements from the measurement mast include CO,

CO2, water vapor, NO, NO2, O3 and SO2. The mast was

also equipped with sonic anemometers as well as tempera-

ture and radiation probes for continuous meteorological mea-

surements and for observing turbulent fluxes using a closed-

path eddy covariance system. Detailed descriptions of the

flux and concentration measurements of VOCs are presented

in Kaser et al. (2013b). Sulfuric acid and OH concentrations

were measured using chemical-ionization mass spectrome-

try (CIMS) (Tanner et al., 1997). The inlet was 2.7 m above

ground level, facing perpendicular to the primary wind di-

rection. The uncertainties for H2SO4 measurements are esti-

mated to be 30–60 % (Plass-Dülmer et al., 2011). The uncer-

tainties for OH measurements are estimated as 35 % with a

detection limit at 4× 105 molecules cm−3 (Kim et al., 2013).

Downwelling NO2 photolysis rates were measured by fil-

ter radiometers (Meteorologie Consult GmbH, Junkermann

et al., 1989) at the top of the chemistry measurement mast.

The ratio of downwelling to upwelling NO2 photolysis rate

was measured on 10 August 2010. The ratio was then used

to estimate the total NO2 photolysis rate for the rest of the

campaign period (DiGangi et al., 2011).

Dry-particle size distribution measurements between 15

and 350 nm were made at ground level using a differen-

tial mobility particle sizer (DMPS) during the campaign pe-

riod. Sample flow first passed through a diffusion drier and a

bipolar charge neutralizer (Aerosol Dynamics Inc.), contain-

ing four 210Po strips (NRD Staticmaster 2U500). Particles

were then size-selected using a differential mobility analyzer

(DMA; TSI 3071) and counted with a condensation parti-

cle counter (CPC; TSI 3010). The DMA stepped through 20

dry-particle diameters chosen such that dlog10Dp remained

constant. Measurements were made at each size setting for

30 s.

The NCAR GPS Advanced Upper-Air Sounding System

(GAUS) launched sondes to investigate the evolution of the

boundary layer. The measurements are available from 12 Au-

gust at noon to 14 August 2010 at noon and from 21 August

at noon to 23 August 2010 at noon. The interval between

each measurement point is either 1 or 2 h.

2.2 SOSAA model

The SOSAA model is a one-dimensional chemical-transport

model with detailed aerosol dynamics. It was constructed to

study various processes in the planetary boundary layer in

and above a forest canopy, which includes biogenic emis-

sions, vertical transport, air chemistry and aerosol dynam-

ics (Boy et al., 2011; Zhou et al., 2014). The different pro-

cesses have been modularized so that the model is optimized

for implementing various parameterizations. The boundary

layer meteorology code is based on the one-dimensional

version of SCADIS (SCAlar DIStribution; Sogachev et al.,

2002, 2012). The emission module in the model is based

on MEGAN (Model of Emissions of Gases and Aerosols

from Nature; Guenther et al., 2006). The chemical mech-

anism scheme is produced by selecting chemical reactions

primarily from the Master Chemical Mechanism, MCM v3.2

(Jenkin et al., 1997, 2012; Saunders et al., 2003), via the web-

site http://mcm.leeds.ac.uk/MCM. The selected chemical re-

actions are processed using the KPP – kinetic preprocessor

(Damian et al., 2002). The chemical scheme accommodates

great flexibility in selecting desired reactions. The aerosol

module in SOSAA is based on the aerosol dynamics model

UHMA, which is a sectional box model developed for stud-

ies of tropospheric new particle formation and growth un-

der clear-sky conditions (Korhonen et al., 2004). It includes

all basic aerosol processes, including nucleation, condensa-

tion, coagulation and dry deposition. The model performance

has been validated against field measurements from Hyytiälä,

Finland, in various studies (Boy et al., 2013; Mogensen et al.,

2011, 2015; Smolander et al., 2014).

The biogenic emission module based on MEGAN requires

emission factors for representative vegetation types to es-

timate the net fluxes of BVOCs from canopy to the atmo-
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sphere. The emission factors define the emission of a given

compound at standard conditions and have an uncertainty of

a factor of 3 or more when global default values are used, pri-

marily due to the large variability in emission rates for differ-

ent plants (Guenther et al., 1995). In this study monoterpene

emission factors were obtained from leaf cuvette measure-

ments (Harley et al., 2014), while the MBO emission factor

is suggested by Kaser et al. (2013a), which is based on both

leaf cuvette emission measurements and canopy-scale analy-

sis.

The chemistry scheme employed by the model for this

study includes the full MCM chemical paths for the fol-

lowing parent molecules: methane, methanol, formaldehyde,

acetone, acetaldehyde, MBO, isoprene, alpha-pinene, beta-

pinene, limonene and beta-caryophyllene. For other emit-

ted organic compounds, for which no MCM chemistry path

is available, we have included their first-order oxidation

reactions with OH, O3 and NO3. Those compounds in-

clude myrcene, sabinene, 3-carene, ocimene, cineole and

“other” monoterpenes, and farnesene and “other” sesquiter-

penes (Atkinson, 1994). In the case of linalool we have in-

cluded its reaction with OH and NO3 to form acetone and

“condensable material” and its reaction with O3 to addition-

ally produce formaldehyde. For the reactions of the stabilized

Criegee intermediates (sCI) from alpha- and beta-pinene and

limonene, we used the rates from Mauldin III et al. (2012),

similar to “Scenario C” in Boy et al. (2013). For the sCI from

isoprene, we used the rates from Welz et al. (2012) as done

in “Scenario D” in Boy et al. (2013). Sulfuric acid and nitric

acid are removed from the gas phase based on the condensa-

tion sinks calculated from background aerosol loading.

It is not fully understood which mechanisms drive nucle-

ation in the atmosphere. Various parameterizations have been

created for predicting atmospheric nucleation (e.g., Pierce

and Adams, 2009; Paasonen et al., 2010). The nucleation

mechanism, however, has minor influence on the actual pro-

duction rate of the observable particles compared to the

subsequent growth step because the nucleated clusters have

rather short lifetimes (Kulmala and Kerminen, 2008; Kul-

mala et al., 2013). For this reason, we opted to use only the

kinetic nucleation parameterization in this study (Weber et

al., 1997). It was chosen also because Zhou et al. (2014)

showed that the SOSAA model with kinetic nucleation pa-

rameterization gave good predictions of NPF events at a bo-

real forest site in Hyytiälä, Finland. In kinetic nucleation, two

sulfuric acid molecules collide to form a cluster as in the

kinetic gas theory. Some of the formed clusters will break

apart, but some will remain stable and then grow to become

particles. The nucleation rate, J , is related to the sulfuric acid

concentration, [H2SO4], via

J =K · [H2SO4]
2, (1)

whereK is the kinetic coefficient that includes both the colli-

sion frequency and the probability of forming a stable cluster

after the collision (Weber et al., 1997; Sihto et al., 2006; Zhou

et al., 2014). The nucleated particles were then added to the

first size bin (at 2 nm) in the model. Before carrying out our

modeling studies for particle growth, a sensitivity study was

done to establish a suitable value for the nucleation coeffi-

cient K . As a result of comparing the simulated and DMPS-

measured total number concentrations for particles between

20 and 80 nm, K was set to 5× 10−15 cm−3 s−1.

The SOSAA model requires four groups of input data. The

first group includes the site land cover characteristics, such

as the leaf density and canopy height. The second group

consists of meteorological parameters, including radiation,

vertical profiles of wind speed, temperature and relative hu-

midity (RH). These inputs are available from the microm-

eteorology mast measurements at MEFO. ERA-Interim re-

analysis data by ECMWF (Dee et al., 2011) for wind speed,

temperature and humidity were used as the boundary condi-

tions for the upper border of the model column. Since one

of the radiation inputs, the actinic flux spectrum, was not

measured at MEFO, we used the scaled actinic flux spectrum

from the Tropospheric Ultraviolet and Visible (TUV) Radia-

tion Model (Madronich, 1993). The scaling factors are based

on the measured NO2 photolysis rates and the TUV-modeled

rates (Madronich and Flocke, 1998). The third group consists

of five inorganic gas concentrations (NO, NO2, CO, O3 and

SO2) measured from the chemistry measurement mast and

the sulfuric acid sink to the background particles. The con-

densation sink of sulfuric acid was calculated based on the

method described by Pirjola et al. (1999). These parameters

were read in every half hour with a linear interpolation in

between. The last group of input data is the measured par-

ticle number size distribution. The model only reads in the

measured number size distribution once a day at midnight

for initialization. More detailed description of model input is

available from Boy et al. (2011).

2.3 Modeling experiments

In order to investigate the influence of organics on particle

growth, three organic vapors (vapors I–III) were set to take

part in the condensation process in addition to sulfuric acid.

Since the main biogenic emissions at the site are MBO and

monoterpenes, vapors I–III were set to be the lumped sums

of first stable reaction products from OH, O3 and NO3 oxi-

dation of MBO and/or monoterpenes. This treatment of or-

ganic condensing vapors is similar to the approach of Lauros

et al. (2011) and Zhou et al. (2014). Three model experiments

were designed to study the influence of MBO and monoter-

penes on particle growth:

– Experiment I: lumped sums of first stable reaction prod-

ucts from OH, O3, and NO3 oxidation of monoterpenes

were included as the organic condensing vapor I, II, and

III, respectively.

– Experiment II: lumped sums of first stable reaction

products from OH, O3, and NO3 oxidation of MBO
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Figure 1. Averaged modeled and measured diurnal cycles of tem-

perature (left), wind speed (middle), and relative humidity (RH,

right). Measurement average (line) and ±1 standard deviation

(shaded area) are in blue; model average (line) and ±1 standard

deviation are in red. The comparisons are made above canopy at

30 m.

were included as the organic condensing vapor I, II, and

III, respectively.

– Experiment III: lumped sums of first stable reaction

products from OH oxidation of both monoterpenes and

MBO were included as the organic condensing vapor I.

Lumped sums of first stable reaction products from O3

and NO3 oxidation of monoterpenes were included as

the organic condensing vapors II and III, which were

the same as vapors II and III in experiment I.

The aerosol module simulates particle growth by calculating

the condensation flux of each condensing vapor onto the par-

ticle surfaces (Korhonen et al., 2004). An iterative method

was used in each experiment to estimate the saturation va-

por concentration of the condensing organic vapors, by vary-

ing the saturation vapor pressure of each compound and by

comparing the modeled particle size distribution with the

observed distribution. In all experiments, sulfuric acid con-

denses onto particles with the assumption that, once it is con-

densed, it will not evaporate from the particles.

3 Model validation for meteorology and chemistry

Since the SOSAA model does not accommodate precipita-

tion, all the observational data presented in this section have

been filtered to exclude rain events. When comparing aver-

aged diurnal profiles of a specific parameter, the modeled

profile is the average of the period for which observation data

are available.

3.1 Meteorology

Figure 1 presents the average behavior of the modeled tem-

perature, wind speed and relative humidity compared to the

measurements above the canopy at 30 m. Because the site is

situated in a north–south slope (draining to the north), the

meteorology is influenced by the diurnal mountain–valley

Figure 2. Observed and modeled vertical profiles of potential tem-

perature at different time on 22 August 2010 (DOY 234). The y axis

(height) is in logarithmic scale.

flows. While daytime wind directions are variable, nighttime

winds are dominated by the drainage from the south (Or-

tega et al., 2014). Unfortunately the column model SOSAA

cannot capture this behavior related to the topography. The

model simulates a comparable temperature for daytime but

fails to decrease the temperature sufficiently during night-

time. The big diurnal variation applies not only to the tem-

perature but also to the relative humidity. The model again

simulates comparable RH levels during the day but fails to

capture it at night. The underestimation in RH at night is

mainly a result of the overestimation of temperature. The

simulated wind speed agrees well with the measurements

during daytime. At night, the wind speed was observed to

fluctuate around 2 m s−1 above the canopy, but the mod-

eled wind speed is around 3 m s−1. As already mentioned,

the model cannot simulate the drainage flows related to the

topography, and a clear discrepancy of the nighttime wind

speeds can be expected as the nighttime drainage has been

observed to be effective at the site. In general the model gave

satisfactory predictions of the three meteorological variables

during daytime, though notable deviations are found during

nighttime.

Out of the five sounding days, 22 August 2010, day of year

(DOY) 234, was selected to demonstrate vertical profiles of

the potential temperature at the site (Fig. 2). Mast measure-

ments are provided in addition to sounding data in order to

extend the measured profile close to the surface. Mast mea-

surements and sounding measurements differ because (1) the

mast observations presented are half-an-hour averages, while

the sounding can only provide an instantaneous value; (2) the

instruments are not the same (least likely and only has mi-

nor contribution to the difference); and (3) measurements

were not made at exactly the same location. At 05:00:00 LT,

both the model and measurements show a typical nocturnal

stable boundary layer. We focus on the gradient of poten-

tial temperature that describes the stability. The model ex-

hibits a stronger gradient at the canopy top (18.5 m) com-

pared to both the mast measurements and the sounding ob-

www.atmos-chem-phys.net/15/8643/2015/ Atmos. Chem. Phys., 15, 8643–8656, 2015
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Figure 3. Averaged modeled and measured diurnal cycles of la-

tent heat flux (left), sensible heat flux (middle) and friction veloc-

ity (right). Measurement average (line) and ±1 standard deviation

(shaded area) are in blue; model average (line) and ±1 standard de-

viation (shaded area) are in red. The comparison is made above the

canopy at 30 m.

servation. The modeled profile improves during daytime. At

11:00:00 LT, the boundary layer has developed since morn-

ing up to about 800 m in the model, while the sounding data

show it may be higher than 1 km. The simulated potential

temperature gradient near the ground is similar to the mast

measurements, despite a slight difference in magnitude. At

19:00:00 LT, the gradients have already become positive. The

strongest gradient modeled is again a few hundred meters

lower than the sounding data. This tendency of SOSAA to

slightly underestimate the height of the mixed layer has also

been observed in studies made in Hyytiälä, Finland (Mo-

gensen et al., 2015). At 22:00:00 LT, the nocturnal boundary

layer has built up. We see the model profile shows a gradient

below the canopy at around 10 m, indicating an inversion in-

side the canopy. The sounding measurements show strongest

potential temperature gradient above the canopy. In general,

despite the underestimated daytime boundary layer height,

the model at least predicted a satisfactory potential tempera-

ture profile up to the top of the measurement mast.

To investigate the model performance with respect to the

surface energy balance and the vertical mixing strength, we

compared the modeled average diurnal profile of the latent

and sensible heat fluxes and friction velocity with the eddy

covariance measurements above canopy (Fig. 3). A positive

flux indicates that the atmosphere is gaining heat from the

surface and vice versa for the negative flux. The modeled

latent heat flux is in general comparable with observations

except during morning, when the model underestimates the

fluxes slightly. The sensible heat flux is in general overesti-

mated during daytime. This is probably related to inaccura-

cies of the other components of the energy balance, namely

the heat flux and storage to the soil and the net radiation.

These can also cause the leaf temperature to be modeled in-

correctly, which promotes the simulated sensible heat flux.

The friction velocity is well simulated compared to the mea-

surements during daytime. The nighttime overestimation is

due to the overestimation of wind speed (Fig. 1), which in-

Figure 4. Averaged modeled and measured diurnal cycles of MBO

(left) and monoterpene (MT, right) concentrations. Measurement

average (line) and ±1 standard deviation (shaded area) are in blue;

model average (line) and±1 standard deviation (shaded area) are in

red. The comparison is made at 3.5 m.

creases vertical wind shear and thus the amount of turbulent

mixing. The well-modeled friction velocity suggests that the

model should have reasonable vertical turbulence mixing.

To summarize, the model’s meteorological performance is

satisfactory during daytime. The simulated basic meteoro-

logical parameters (temperature and its gradient, humidity,

and wind speed) as well as the turbulent fluxes of latent heat

and momentum (which directly depends on the magnitude of

the friction velocity presented in Fig. 3) agree well with the

observations. The height of the boundary layer, which dic-

tates the volume of air into which the emitted compounds

are diluted, had a tendency to be underestimated by around

20 %. As the difference relative to the total boundary layer

height is not large, this is not expected to have a large im-

pact. However, during nighttime the drainage flows down the

side of the mountain cause difficulties for the model to sim-

ulate the meteorological conditions. We therefore focus on

daytime conditions in the following analysis.

3.2 Chemistry

The chemistry analysis focuses on aerosol precursor gases

(MBO, monoterpenes and sulfuric acid), OH and the oxida-

tion products of MBO and monoterpenes. Averaged diurnal

concentrations are presented in this section to show the gen-

eral behavior of modeled chemistry. The averages are made

for the periods of 13–14 and 16–13 August 2015, when the

measurements of all species mentioned above are available.

The averaged diurnal profiles show that the monoterpene

concentration has a clear diurnal variation in both the obser-

vations and model simulation (Fig. 4). The concentration is

high during the night and low during the day. The nighttime

concentration is high mainly due to the suppressed boundary

layer height and the decreased losses from oxidation. On the
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Figure 5. Measured and modeled MBO concentration at 3.5 m.

other hand, the concentration decreases during daytime as

the boundary layer height increases and due to the presence

of OH. The model simulated comparable concentrations but

an increasing trend for MT during nighttime. The main rea-

son could be that the model overestimated the nighttime tem-

perature up to 5◦, which possibly leads to overestimation of

monoterpene emissions. Sensitivity studies have been con-

ducted for the response of total monoterpene emission rate

to temperature. An increase of 5 ◦C in the night may increase

the emission rates by 80 to 100 %. On average the simulated

monoterpene concentration during daytime agrees well with

the measurement (Fig. 4). The MBO concentration is high

during daytime and low during nighttime due to the light-

dependent production. The model captures the diurnal trend

of MBO concentration well (Fig. 4). The simulated daytime

MBO concentration is about 20 to 25 % lower than the ob-

servation, which slightly exceeds the instrument uncertainty

of 20 %. Because of the large standard deviations of the mea-

surement data set, Fig. 5 presents the modeled and measured

MBO concentrations from 10 to 23 August 2010 (DOY 222

to 235). It shows that the modeled concentration is compara-

ble to the measurement except during some nights when the

concentration is overestimated.

The modeled average diurnal profile of OH is in good

agreement with the observations before noon (Fig. 6). Af-

ter this time, the model results become higher than the

observations, which should result from (1) missing sinks

and (2) overestimated production. The missing sink terms

have been studied previously at MEFO by Nakashima et

al. (2014). Based on measurements, Nakashima et al. (2014)

concluded a missing OH reactivity of 29.5 %, which may

mainly be due to oxidized products of biogenic species. Mo-

gensen et al. (2011) also concluded missing OH reactivity of

more than 50 % in a boreal forest environment in southern

Finland. In addition to unknown missing sinks, the underes-

timated MBO concentrations may also contribute to the over-

estimated MBO. We suspect the photolysis production of OH

may be overestimated due to the method in scaling the actinic

flux spectrum. Though the modeled NO2 photolysis rate is

within a measurement uncertainty of 10 to 20 % (Seroji et

Figure 6. Averaged modeled and measured diurnal cycles of OH

concentration (left) and sulfuric acid concentration (right). Mea-

surement average (line) and ±1 standard deviations (shaded area)

are in blue; model average (line) and ±1 standard deviations

(shaded area) are in red. The comparisons for OH and sulfuric acid

are made at 2 m.

Figure 7. Averaged modeled and measured diurnal cycles of pho-

tolysis rate NO2. Measurement average (line) and ±1 standard de-

viations (shaded area) are in blue; model average (line) and ±1

standard deviations (shaded area) are in red. The comparison for

photolysis rate is made above the canopy at 25 m.

al., 2004), it is still possible that the photolysis rate is indeed

overestimated in the afternoon, as can be seen in Fig. 7. Ex-

cept for 13 August 2015, all days in the period for which the

averaged profiles are made were cloudy in the afternoon. The

deviation in both OH concentration and NO2 photolysis rate

suggest either the molecular parameterizations in predicting

photolysis rates or the scaling method in preparing the actinic

flux spectrum may be biased during cloudy conditions.

The modeled sulfuric acid concentration is only half of

the observed value (Fig. 6). One reason could be that the

condensation sink of sulfuric acid is overestimated. Another

reason should relate to the unknown sulfuric acid production
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Figure 8. Averaged modeled diurnal cycles of OH, O3, and NO3

oxidation products of monoterpenes (plotted against left y axis in

blue) and MBO (plotted against right y axis in green). The error

bars are ±1 standard deviation.

term missing from the chemistry scheme (Eisele and Tanner,

1993; Boy et al., 2013; Berresheim et al., 2014). Because the

underestimation is observed during both night- and daytime,

the missing production term is likely not related to photoly-

sis. It should also be noted that the CIMS measurements may

have uncertainties of 30 to 60 % (Plass-Dülmer et al., 2011).

Importantly, the diurnal trend in sulfuric acid concentrations

is well captured, which is crucial for correctly simulating a

new particle formation event.

The modeled diurnal concentration profiles of the sum of

first stable reaction products from OH, O3 and NO3 oxida-

tion of monoterpenes and MBO are shown in Fig. 8. The

list of first stable reaction compounds are listed in Table 2.

The concentrations of reaction products from MBO oxida-

tion are 10 to 100 times higher than the concentrations of

reaction products from monoterpenes, except in the case of

NO3 oxidation. The concentrations of O3 oxidation products

are about 2 to 3 orders of magnitude greater than that of

OH oxidation products, irrespective of the precursor species.

Comparing to the concentrations of first stable O3 oxida-

tion products of MBO, which are fairly stable at a level of

3–6× 1011 molecules cm−3, the concentrations of NO3 oxi-

dation products of MBO are negligible. The nighttime con-

centrations of NO3 oxidation products of monoterpenes are

comparable with the daytime concentrations of OH oxidation

products of monoterpenes. The concentrations of NO3 oxida-

tion products of monoterpenes exhibit a clear diurnal trend of

the concentrations being high during the night and low dur-

ing the day, which is explained by the same diurnal trends

of NO3 and monoterpenes concentrations. Opposite to the

trend of NO3 oxidation products of monoterpenes, the con-

centrations of OH oxidation products of MBO show a clear

diurnal profile that peaks at noon and drops during nighttime.

Because the fast growth of nucleated clusters often happens

during daytime, it is suspected that the OH oxidation prod-

ucts of MBO may possibly contribute to the early growth of

particles at the site.

Figure 9. Averaged 1-day number size distributions based on the

DMPS measurements and model experiments I–III. The concen-

tration unit: molecules cm−3. DMPS instrument has cutoff size at

15 nm. The averages are made only for periods when measurements

are available.

Table 1. Saturation vapor concentration of each organic condensing

vapor; unit: # cm−3.

Vapor I Vapor II Vapor III

Experiment I 1 1010 1

Experiment II 106 1011 1

Experiment III 106 1011 106

The overall outcome of emissions and chemistry is satis-

factory in that all relevant aerosol precursor gases are well

simulated with respect to the diurnal trends. In theory, un-

derestimation of sulfuric acid concentrations should lead to

less SOA formation, but this problem can be compensated for

during the sensitivity studies of the nucleation coefficient.

4 Aerosol simulations

The saturation vapor concentrations of organic condensing

vapors (vapors I, II, and III) in two model experiments are

listed in Table 1. The simulation results provide strong evi-

dence that BVOCs play an important role in particle growth

at MEFO (Fig. 9). In experiment I, despite using a very low

saturation vapor concentration of 1 molecule cm−3 for va-

por I (OH oxidation products of monoterpenes), the model

simulated insufficient growth for particles to reach 15 nm,

which is the minimum detectable size of the DMPS instru-

ment used during the campaign. The saturation vapor con-

centration for the ozone oxidation products (vapor II) cannot

be less than 1010 molecules cm−3 due to its high concentra-

tion during the night; otherwise it would cause unrealistic

nighttime particle growth (Fig. 8). With the same considera-

tion, the saturation vapor concentration of vapor II in exper-

iment II was also kept quite high, at 1011 molecules cm−3.

In experiment II, nucleated clusters are able to grow large

enough to pass the instrument detection limit, but the parti-

cles do not continue to grow strongly enough in the evening.
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Table 2. Stable reaction products of OH, O3 and NO3 oxidation of monoterpenes and ozone based on MCM chemistry.

OH O3 NO3

Monoterpenes LIMAO2 LIMBO2

LIMCO2 BPINAO2

BPINBO2 BPINCO2

APINAO2 APINBO2

APINCO2

LIMOOA LIMBOO

C92302 NOPINOOA

NOPINONE NAPINOOA

NAPINOOB

NLIMO2 NBPINAO2

NBPINBO2 NAPINAO2

NAPINBO2

MBO MBOAO2 MBOBO2 IBUTALOH MBOOO

IPROPOL CH3COCH3

NMBOAO2 NMBOBO2

Since there is no MBO source during the night, there should

be some other aerosol precursor gases present, for example,

monoterpenes. Experiment III combined the contributions

from the oxidation products of both monoterpenes and MBO

– the OH oxidation products from MBO enable the freshly

nucleated particles in the daytime to grow large and fast

enough, while the nighttime NO3 oxidation products from

monoterpenes allow particles to grow up to 100 nm. The sim-

ulated growth of particles above 15 nm compares well with

the DMPS measurements. These simulations are also consis-

tent with results from Levin et al. (2012, 2014) for hygro-

scopicity measurements at the BEACHON-ROCS site; these

authors showed that growth of new particles was likely driven

by biogenic secondary organic species, and the NPF events

ultimately impacted aerosol chemical and physical properties

for particles up to cloud condensation nuclei (CCN) sizes.

Since lump sums of different oxidation products were

used as the condensing vapors in this modeling study, it

was not possible to assign exact physical properties to the

vapors. Based on the implemented chemistry scheme, the

molar mass of the three condensing vapors should range

from 200 to 300 Da. The saturation vapor concentration of

106 molecules cm−3 would thus correspond to approximately

0.0001–0.0005 µg m−3, which is close to the saturation va-

por concentration of the extremely low volatility compounds

suggested by Donahue et al. (2011). The three experiments

suggest the importance of extremely low volatility com-

pounds for growing particles, especially the role of monoter-

penes and MBO as precursor gases at different times of day.

Particle number size distributions are shown together with

above-canopy wind direction observations for the period of

19 to 22 August 2010 (DOY 231 to 234, Fig. 10), when con-

tinuous sulfuric acid, MBO and monoterpene concentration

measurements were available (Fig. 11). We see that the mod-

eled onset of nucleation, the first appearance of sub-3 nm

particles in simulated number size distribution, usually starts

when the wind direction changes from south to north. This

is consistent with the fact that the source of anthropogenic

influence is from the Denver area northeast of the site. An-

thropogenic SO2 is advected to the forest and is oxidized

to H2SO4 on the way. The H2SO4 then triggers nucleation.

We see the H2SO4 concentration rise in tandem with the

Figure 10. Particle number size distribution from 19 August 2010

(DOY 231) to 22 August 2010 (DOY 234) based on the model ex-

periment III (top) and DMPS measurements (bottom). The DMPS

instrument has a 15 nm lower detection limit. Particle concentra-

tion units: molecules cm−3. Observation of wind direction at 30 m

is plotted as white dots in the lower portion of the bottom figure.

Figure 11. Modeled and measured H2SO4 (top), MBO (middle)

and monoterpene (MT, bottom) concentrations from 19 August

2010 (DOY 231) to 22 August 2010 (DOY 234). Data were re-

moved for late afternoon–early evening of day 231 to exclude in-

fluence from precipitation for 2 h after precipitation ended. Mea-

surements are shown as blue circles, and the model simulations are

indicated by the red line. Comparisons for sulfuric acid are made at

2 m; comparisons for MBO and MT are made at 3.5 m.

change in wind direction. On 19 August 2010 (DOY 231)

around noon the wind direction changed from west to north-

east and to north. At the same time as the air mass changed,

we see a decrease in the concentration of measured back-
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ground particles larger than 100 nm. At that time a burst of

particles between 20 and 50 nm was observed. These parti-

cles were likely formed north of the measurement site and

then brought to the site through advection. A few hours later

at about 19:00:00 LT, a short rain quickly washed out most

particles. This burst of particles before the rain matched well

with the simulated particle number size distribution for the

same time period. We suspect that a new particle formation

event did occur in the forest on that day but was just not cap-

tured by the measurement instrument. In the evening, par-

ticles were removed by precipitation. Similarly on 20 Au-

gust 2010 (DOY 232), when the wind direction fluctuated

between north and south and the air mass was transported

around the forest, we see a burst of particles between 20

and 50 nm in the afternoon. For the rest of the day the par-

ticles were observed to continue growing while wind per-

sisted blowing from the south. The southern wind was likely

to bring polluted air to the site in the late evening, which

appeared as the high concentration of particles between 50

and 100 nm. Apart from this abrupt increase in concentra-

tions of 50–100 nm particles, which cannot be captured by

the column model, the observed number size distribution is

well simulated. Although no new particle formation was ob-

served on 21 August 2010 (DOY 233), the model simulated a

weak formation event. This tendency of the model to predict

new particle formation events when none are observed has

already been reported in the previous SOSAA model study

by Zhou et al. (2014). It likely results from our incomplete

understanding of the NPF phenomenon, especially in cluster

nucleation. Kinetic nucleation parameterization by sulfuric

acid is indeed too simple to account for the process, which

makes the simulated nucleation too sensitive to sulfuric acid

concentration. On 22 August 2010 (DOY 234), the DMPS

instrument captured Aitken mode particles for just a short

period of about an hour, and the model simulation shows the

same distribution at the same time. The high MBO concen-

tration observed on that day also favored SOA formation. We

thus suspect that the particles were forming in the area but the

instrument failed to capture the complete process due to the

strong turbulence in the forest.

5 Conclusion

We applied the 1-D chemical-transport model with detailed

aerosol dynamics, SOSAA, to simulate results obtained dur-

ing the summer 2010 BEACHON-ROCS campaign at Mani-

tou Forest Observatory. The model succeeded in reconstruct-

ing the meteorological conditions and several important gas

species including OH, MBO and monoterpenes during the

daytime. Although the latest Criegee reaction rates have been

included, sulfuric acid concentration is still underestimated

by 50 % compared to the measurements.

The SOSAA model indicated that mixing strength and

chemistry can be reasonably predicted, and so aerosol sim-

ulations were then conducted in order to investigate particle

growth. Due to the assumption of horizontal homogeneity

for a column model, there is some uncertainty due to the in-

complete description of the area’s complex terrain and inho-

mogeneous forest composition. Nevertheless, model simula-

tions are useful for investigating SOA formation, depicting

the phenomenon with less influence of horizontal advection,

which can hamper our direct field observations. By diluting

the advection effects via averaging, Fig. 9 presents a possible

pattern of particle growth at the site based on measurements

and a successful reproduction of the phenomenon by a state-

of-the-art model incorporating the latest knowledge of the

processes involved. The modeled results emphasize the con-

tribution from local BVOC emissions to the particle growth.

It is indicated that the organic condensing compounds re-

sponsible for the growth of ultrafine particles may have a low

saturation vapor concentration around 106 molecules cm−3.

The compounds should have a similar daily pattern and con-

centration level to the OH oxidation products of MBO, which

is the dominant locally emitted biogenic compound. The con-

centrations of monoterpene oxidation products are found to

be insufficient for growing the ultrafine particles during day-

time, but their contribution to the particle loading during

nighttime could be important. Due to the anthropogenic ori-

gin of SO2, which is the precursor gas of sulfuric acid that

triggers nucleation, the model study suggests that new parti-

cle formation events are likely to happen locally in the forest

in the meantime under the influence of anthropogenic pollu-

tion.

The SOSAA model has been shown as a good tool for

studying various atmospheric processes, including SOA for-

mation constrained by observations. The model is expected

to improve in several aspects, one of which is the growth

parameterization. At the moment the chosen condensing

molecules are lumped to several condensing vapor classes

and assigned with approximated properties. A new parame-

terization that calculates the exact physical properties, such

as saturation vapor pressure, for each specific condensing

molecule is being developed.
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