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Abstract

The evolution of vascular tissues was a critical innovation in the colonization of land
by plants. We investigated how vascular tissues, in particular xylem, are patterned
in the root of the model plant Arabidopsis. The vascular tissues of the Arabidopsis
root tip are consistently patterned as a xylem axis flanked by procambial cells,
with phloem poles developing perpendicular to the xylem axis. Cytokinin signalling
inhibits the specification of protoxylem; the AHP6 gene inhibits cytokinin signalling
at the protoxylem position during normal vascular development.

We sought to understand the factors regulating A HP6 expression in the root tip.
Cytokinin signalling is known to flank the xylem axis; we discovered a complementary
domain of auxin signalling throughout the xylem axis. Based on this, we showed
that auxin upregulates A HP6, creating a domain of low cytokinin signalling, and also
acts to specify protoxylem. We used a combination of mutants and pharmacological
treatments to investigate how mutually exclusive auxin and cytokinin signalling
domains are maintained in the Arabidopsis stele. We discovered a feedback loop
between the hormones, in which cytokinin activates auxin exporters, while auxin
represses cytokinin signalling. The mutual inhibition between auxin and cytokinin
regulates the extent of their domains during vascular patterning.

We turned to computational simulations to investigate the sufficiency, stability,
and dynamics of this network. Our simulations confirmed that the network is
sufficient to maintain the hormone domains during vascular patterning, but also
revealed a role for auxin importers, which we confirmed through experiments. While
cytokinin is frequently thought to form gradients guiding developmental processes in
the Arabidopsis shoot and root, we showed that an informative cytokinin gradient
cannot form on the scale of these tissues via diffusion. While auxin is patterned
through the activity of polarly localised transporters, there is no evidence for similar
transport of cytokinin. Nevertheless, our findings highlight the need for a cytokinin
patterning mechanism, such as directed cytokinin transport or patterning of the
cytokinin perception machinery, since diffusion cannot form the observed cytokinin
patterns.

Finally, we discovered a potential link between the auxin-cytokinin feedback
loop in the root tip and the initiation of lateral roots. Since our experimental data
are equivocal on whether or not PIN1 is polarly localised in the procambium, we
investigated both possibilities in our computational model. We discovered that
polar localisation of PIN1 results in a regular flux of auxin towards the centre of the
stele and back out via the xylem axis. This circuit privileges pericycle cells flanking
the xylem axis to accumulate auxin if they experience a brief activation of an auxin
importer; activation of the importer AUX1 in the xylem-pole pericycle cells is one
of the earliest steps in lateral root initiation.

Altogether, my thesis reveals a key role for mutually inhibitory auxin-cytokinin
interactions in vascular development and links these findings to other developmental
contexts. This work also demonstrates how the combination of experimental &
computational approaches enables us to critically evaluate our models and develop
more general insights.



Tiivistelma

Johtosolukon evoluutio oli tédrked askel kasvien siirtyessid vedestd maalle. Tutkimme,
miten juuren johtosolukot muodostuvat mallikasvissa Arabidopsisissa, eli lituruo-
hossa. Johtosolukot lituruohon juuren kirjessi ovat ksyleemi (puu), nila ja esijil-
si. Ksyleemisolut sijaitsevat sddnnonmukaisesti rivissd juuren keskelld ja esijélsi
ksyleemi- ja nilasolujen vélissd. Sytokiniinisignalointi estédd alkuksyleemin mééritte-
lyn. Juuren kehittyessd, A HP6-geeni normaalisti ehkéisee sytokiniinisignalointia
alkuksyleemissa.

Kysyimme, mitké tekijit sdatelevit A HP6:n ilmentymisti juuren kérjessd. Sy-
tokiniinisignaloinnin alue on ksyleemin rivin viereisissé soluissa ja me havaitsimme,
ettd auksiinisignalointi on ksyleemin rivissd. Néin ollen, auksiinisignalointi ja syto-
kiniinisignalointi ovat toisensa poissulkevia juuren poikkileikkauksessa. Osoitimme,
ettd auksiini edistdd AHP6:n ilmentymistd ja alkuksyleemin maédrittymista. Sytoki-
niinisignalointia ei tapahdu AHP6:n ilmentymisen alueella. Tutkimme mutanttien
ja ladkkeiden avulla miten auksiini- ja sytokiniinisignaloinnin toisensa poissulkevat
alueet ylldpidetédén litruohon juuren kérjessd. Havaitsimme takaisinkytkennén, joka
sdatelee kasvihormonien ilmentymisalueita. Sytokiniini lisdéd auksiinin poistamis-
ta soluista, kun taas auksiini ehkéisee sytokiniinisignalointia edistdmé&lld AHPG:a.
Siten auksiinin ja sytokiniinin molemminpuolinen estdminen s#ételee nédiden kasvi-
hormonien ilmentymisalueita johtosolukon muodostuessa.

Kéaytimme tietokonesimulaatioita tutkiaksemme geneettisen verkon vakautta,
riittdvyytta ja dynamiikkaa. Simulaatiomme vahvistivat, ettd verkko on riittava
yllapitdméan kasvihormonien alueita johtosolukon muodostuessa. Simulaatiot osoit-
tivat my0s, ettd auksiinin tuonti soluihin vaikuttaa johtosolukon kehitykseen, ja
vahvistimme tuonnin merkityksen kokeilla. Liséksi, vaikka on ehdotettu ettéd sy-
tokiniinin gradientit ohjaavat kehitysté lituruohon varsissa ja juurissa, osoitimme,
ettd sytokiniinin gradientti ei voi muodostua néiden solukoiden mittakaavassa dif-
fuusiolla. Auksiinin liitkkuminen tapahtuu polaarisilla kuljetusjérjestelmilld, mutta
sytokiniinin kuljetusjirjestelmié ei vield ole selvitetty. Tuloksemme osoittavat, etta
havaittujen sytokiniinikuvioiden muodostuminen vaativat mekanismin, esimerkiksi
suunnattu sytokiniinin kuljetus tai erilainen sytokiniinisignalointi eri soluissa, koska
havaitut sytokiniin kuviot eivit voi muodustua ainoastaan diffuusiolla. Havaitsimme
my0s, ettéd auksiini-sytokiniini takaisinkytkenté juuren kérjessé voisi mahdollisesti
vaikuttaa versojuurien kehityksen initiaatioon. Koetuloksemme eivét selvisti osoita,
onko PIN1-proteiinin (joka poistaa auksiinin soluista) sijainti esijélsisoluissa polaari-
nen vai ei. Siksi tutkimme molempia mahdollisuuksia simulaatioilla, ja havaitsimme,
ettéd kuljetusjérjestelmén polaarinen sijainti aiheuttaa ensin sd&nndéllistd virtausta
juuren keskukseen ja sitten pois ksyleemin kautta. Virtaus suosii auksiinin kertymis-
té lierickettosoluihin ksyleemin vieressé, jos auksiinipitoisuus néissé soluissa nousee
lyhyesti.

Téssé vaitoskirjassa on kerrottu, ettéd auksiinin ja sytokiniinin molemminpuolinen
estdminen on térked tekija johtosolukon muodostumiselle ja ettd se vaikuttaa myos
muihin kehitysprosesseihin. Havainnollistimme my0s, etté kokeelliset ja laskennalliset
menetelmét yhdesséd auttavat mallien arvioinnissa ja oivalluksien tekemisessé.



Summary

Introduction

Plant Vascular Development
The problem of development

The fundamental problem of development is how organized multicellular structures
are produced from a single founder cell by controlling the processes of replication
and growth. Development is a dynamic process involving patterns of genetic and
hormonal activity mediated by and acting in cells which grow and divide; the
processes that constitute and regulate it must reliably reproduce a structure under
variable conditions while retaining the ability to adjust to environmental demands.
Multicellularity has evolved independently in several groups of organisms, each of
which has found their own solution to the problem of reliably regulating cell division
and differentiation to form a body.

The most common recent ancestor of plants and animals was unicellular, so
they have evolved very different mechanisms to regulate their development. The
life history of plants differs fundamentally from that of animals, a factor which
is both a cause and consequence of the profound differences in their development.
Plants are sessile, photosynthetic organisms; unlike animals, they cannot respond
to environmental changes by moving to a different location. Their development
therefore exhibits far greater flexibility in the face of changing conditions. While
animal development is restricted to specific life history phases and is buffered against
environmental effects, plants develop throughout their life, generating novel organs
and structures in a continuous dialogue with their environment. These differing
modes of development influence a wide range of life history traits, from tolerance of
adverse environments to the ease of hybridization, and thus impact the process of
evolution in these two groups of organisms.

Furthermore, unlike animal cells, plant cells are both immobile and totipotent.
Cell migration plays a major role in animal development, but rigid cell walls prevent
plant cells from moving. Plants grow from regions of actively dividing, undiffer-
entiated cells known as meristems, which may be determinate or indeterminate.
Differentiation of plant cells is based on their position within the tissue; environ-
mental, physiological and developmental cues are integrated in the regulation of
growth and the initiation of new organs.

Development in plants is controlled by growth regulators or hormones, a group of
signalling molecules which regulate cellular processes including growth, division, and
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gene expression. Plant hormones are locally produced throughout the organism, and
hormone synthesis, metabolism, and transport serve as a computational system for
plants, integrating information from a wide range of sources to determine a course
of action. Auxin and cytokinins represent two major classes of phytohormones and
are involved in regulating nearly every aspect of plant development, often acting
antagonistically. In this thesis, I investigate how auxin and cytokinin interact during
vascular patterning in the model plant Arabidopsis thaliana.

Auxin in plant development

The story of auxin can be traced back over 250 years to experiments investigating
the influence exerted by one plant organ on another; early researchers posited special
substances which move through plants to control their growth and development,
which we now recognize as hormones (Abel and Theologis, 2010). In the late 19!
century, Charles Darwin famously discovered that phototropism and gravitropism
are mediated by the growing tips of the shoot and root. Darwin demonstrated
that covering the tip of a shoot exposed to a directional light source prevented
the growing plant from curving towards the light; by contrast, covering the basal
portion of the shoot had no effect. He concluded that “some influence is transmitted
from the upper to lower part, causing the latter to bend” (Darwin, 1880). Half a
century later, Frits Went discovered the substance responsible, which was named
auxin from the Greek verb avéewr (auxein), meaning “to grow/increase” (Abel and
Theologis, 2010). Since its discovery as a regulator of tropisms, auxin has emerged
as a central player in nearly every aspect of plant growth and development, from cell
division and elongation to senescence, organ formation, and vascular development
(Sauer et al., 2013).

Auzin metabolism and perception

Auxin is synthesized from precursors generated via the shikimate pathway,
primarily L-tryptophan. Four Trp-dependent biosynthesis pathways involving a
wide array of enzymes are known; the names of the pathways (IPyA, IAM, TRA,
TAOx) are based on the first metabolite formed after L-Trp. Evidence also exists
for a tryptophan-independent auxin biosynthesis pathway branching from the
precursor indole-3-glycerol phosphate, although the genes and enzymes involved in
this pathway are largely unknown. Auxin is deactivated by being degraded into
oxIAA or reversibly inactivated by GH3-mediated conjugation with amides or esters.
A thorough review of auxin metabolism has recently been provided by Ljung (2013).

Activation or repression of auxin-responsive genes is mediated by the AUXIN
RESPONSE FACTOR (ARF) family of transcription factors. At low auxin concen-
trations, the ARFs are bound to AUXIN/INDOLE-3-ACETIC ACID (AUX/IAA)
proteins which inhibit their activity, thereby repressing the auxin response. Intracel-
lular auxin binds to the TIR/AFB family of receptors which are part of the SCFTIRL
(SKP1, Cullin, F-box protein TIR1) ubiquitin protein ligase complex; the binding
of auxin enables the SCFT™®! complex to ubiquitinate the AUX/IAA proteins,
targeting them for 26S-proteasome degradation and thus liberating the ARF's to act
on downstream targets. The auxin response pathway therefore represents a “double
negative” pathway, in which the presence of auxin removes the AUX/IAA proteins
which normally inhibit the ARF transcription factors. The Arabidopsis genome
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contains 29 AUX/IAA genes and 23 ARFs, leading to high levels of redundancy
as well as as creating the potential for extensive combinatorial specificity, enabling
auxin to regulate processes differently based on the expression of AUX/TAA and
ARF genes (Weijers et al., 2005). The SCFT ™! pathway is more thoroughly reviewed
by Abel (2007) and Lau et al. (2008).

An alternative, proteasome-independent pathway was long thought to act via
ABP1 (reviewed by Sauer and Kleine-Vehn (2011); Scherer (2011)), but a recent
study found no phenotype in a null abp! mutant generated via CRISPR/Cas9 or in
a new T-DNA insertion allele of ABP1 (Gao et al., 2015). The discrepancy between
the new study and the ABP1 data accumulated over previous decades is striking,
particularly given that the phenotypes associated with abp1 in the earlier studies
were complemented by wildtype ABP1 (Liu, 2015). Clearly, the results of the new
study will need to be verified and those of the older studies revisited in order to
understand the source of this inconsistency.

Auzin movement

Experiments with inhibitors of auxin transport have demonstrated that polar
auxin transport provides an important signal during plant development (Liu et al.,
1993; Casimiro et al., 2001; Mattsson et al., 1999). Auxin is the only plant hormone
known to be transported in a polar manner; an asymmetric distribution of auxin
transporters results in directed auxin transport through and within plant tissues.
Biochemical and physiological studies in the 1970s led to the proposition of the
chemiosmotic model of auxin transport (Rubery and Sheldrake, 1974; Raven, 1975)
in which polar auxin transport occurs due to the difference in pH between the
inside and outside of plant cells. The apoplast has a pH of 5.5, so auxin indole-3-
acetic acid (IAA)—which is a weak acid—is protonated in the extracellular space;
the protonated form (IAAH) can enter the cell by diffusing freely across the cell
membrane. In the cytoplasm of the cell, which has a higher pH (7), IAA is converted
into its charged form (IAA™). Since the cell membrane is impermeable to TAA™,
it cannot travel out and remains trapped in the cell. Auxin can thus freely enter
cells but has to be actively transported out by exporters located in the plasma
membrane.

Cande and Ray (1976) abraded the cuticle of maize coleoptiles to expose the
apoplast in order to measure the proportion of polar auxin transport occurring in
the “free space” (apoplast); based on their measurements, they concluded that the
“essentially all” auxin transport occurred via the apoplast and not symplastically via
plasmodesmata. In addition, they observed no effect of plasmolysis on polar auxin
transport in Avena coleoptiles, further arguing against a role for plasmodesmata in
polar auxin transport. However, several recent studies have shown auxin-related
phenotypes in plants with altered levels of callose, a polymer which controls the
permeability of plasmodesmata by occluding the aperture (Vatén et al., 2011;
Benitez-Alfonso et al., 2013; Han et al., 2014). Han et al. (2014) identified a
feedback circuit between auxin and the callose synthase gene GSLS; this interaction
could help reinforce the formation of an auxin gradient across a tissue, since increased
callose deposition in cells with high auxin levels would reduce symplastic diffusion of
auxin out of those cells. Furthermore, the regulation of plasmodesmatal aperture by
callose biosynthesis offers an avenue via which auxin might regulate the symplastic
movement of other molecules. Auxin has also been shown to regulate callose-
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degrading genes during lateral root formation (Benitez-Alfonso et al., 2013). For an
overview of the emerging role of plasmodesmata in modulating the distribution of
auxin, the reader is referred to a review by Jackson (2015).

Experiments with radioactively labelled auxin derivatives have shown that
transport is from the apex of the shoot towards the root (Robert and Friml, 2009).
The chemiosmotic theory proposes that polar auxin transport occurs thanks to
asymmetric localization of the efflux transporters on the plasma membrane. Over
the last few decades, three main classes of proteins mediating auxin transport have
been discovered in Arabidopsis, although other molecules, such as the NRTs (Guo
et al., 2002; Krouk et al., 2010), may modulate auxin movement via interaction
with the transporters.

The AUXIN RESISTANT 1/LIKE-AUX1 (AUX1/LAX) proteins serve as influx
transporters of auxin. AUX1 encodes a membrane-localized permease which has
been implicated in auxin transport in Arabidopsis (Bennett et al., 1996; Marchant
et al., 1999; Swarup et al., 2001) and shown to facilitate auxin import when
heterologously expressed in Xenopus laevis oocytes (Yang et al., 2006). LAXI,
LAX2, and LAX3 have also been shown to be involved in auxin import (Bainbridge
et al., 2008). Acting together with AUX1, LAX3 regulates lateral root initiation
and emergence (Swarup et al., 2008; Marchant et al., 2002), while LAX2 has been
implicated in vascular patterning (Péret et al., 2012). Although the chemiosmotic
model proposes that auxin influx can occur even in the absence of auxin importers,
it has been suggested that influx carriers may be crucial where rapid uptake is
required to maintain gradients that would otherwise be lost due to diffusion in the
apoplast (Swarup et al., 2005); given the spatial scale of plant meristems, diffusion
of auxin through the apoplast would smoothen, or perhaps even eliminate, an
auxin gradient unless auxin were somehow sequestered within cells. Computational
modelling also indicates that uptake via auxin importers is crucial to maintain a
high auxin level in tissues with small cells, such as the vascular tissues (Kramer,
2004).

Transcription of most of the auxin importers has been shown to be induced by
auxin. A microarray experiment using Arabidopsis root tips reported that AUX1 is
upregulated by auxin (Laskowski et al., 2006); LAX3 was also shown to be auxin-
upregulated by qRT-PCR (Swarup et al., 2008). Observations of promoter-GUS
fusions following treatment with the auxin 2,4-D showed an increase in LAXI and
LAXS3 expression; however, no change was found in the expression of AUXI or
LAX2 (Péret et al., 2012).

The phosphoglycoprotein (PGP) subfamily of the ABC transporters were first
suggested to have a role in auxin transport based on the observation of spe-
cific and tight binding of certain members to the auxin transport inhibitor 1-
naphthylphthalamic acid (NPA) and reduced polar auxin transport in mutants (Noh
et al., 2001; Murphy et al., 2002). PGPI and PGP19 have been shown to mediate
auxin efflux (Geisler et al., 2005; Petrasek et al., 2006); PGP4 was initially thought
to be an influx transporter based on its activity when heterologously expressed
in yeast or HeLa cells (Terasaka, 2005), but was later shown to act as an efflux
transporter in Arabidopsis (Cho et al., 2007).

The PIN-FORMED (PIN) transporters represent a second class of auxin efflux
transporters. First identified as candidate auxin efflux transporters at the end of
the last century, they exhibit homology to bacterial transporters (Galweiler et al.,
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1998; Luschnig et al., 1998; Miiller et al., 1998; Utsuno et al., 1998; Chen et al.,
1998), and were later confirmed to be a central component of polar auxin transport
(Petrasek et al., 2006; Kramer and Bennett, 2006). The PIN and PGP transporters
are known to interact in auxin transport. The expression patterns of PGP1 and
PGP19 were found to overlap with PINI in the shoot apex and with PINI and
PIN2 the root, and combinatorial pin and pgp mutants show both additive and
synergistic phenotypes (Blakeslee et al., 2007). Furthermore, PGP19 stabilizes
the localization of PIN1 on the plasma membrane (Titapiwatanakun et al., 2009).
Analysis of PIN and PGP over-expression lines showed that both transporter families
are required for patterning during embryogenesis and organogenesis, although they
also exhibit complex interactions, acting synergistically and antagonistically in
different developmental contexts (Mravec et al., 2008). Despite these interactions,
the PINs have been shown to be the rate-limiting efflux transporters in Arabidopsis
regardless of the activity of the PGPs (Petrédsek et al., 2006). The expression pattern
of the PIN proteins and their localization on specific regions of the cell membrane
is crucial in determining the overall pattern of auxin distribution and flux, which
plays an important role in development and patterning processes (Grieneisen et al.,
2007; Blilou et al., 2005; Wisniewska et al., 2006).

Physiological experiments in the 1960s suggested that polar auxin transport
might be regulated by other phytohormones. Osborne and Mullins (1969) observed a
decrease in the polar auxin transport capacity of excised Phaseolus vulgaris petiole
segments several hours after excision; this was concomitant with a decrease in
protein synthesis. Pretreatment with auxin or kinetin (a cytokinin) was found to
prevent the decline in auxin transport, while treatment with ethylene enhanced it;
furthermore, pretreatment with TAA, but not kinetin, protected the excised segments
against the ethylene-induced decline in transport. Since treatment with kinetin
increased protein transcription, Osborne and Mullins suggested that cytokinins
regulate the synthesis of the (then hypothetical) auxin transporter protein, while
ethylene modulates its activity. Recent research has confirmed the role of both
ethylene (Ruzicka et al., 2007) and cytokinins (Dello Toio et al., 2008; Laplaze et al.,
2007; Ruzicka et al., 2009, Chapter IT) in regulating PIN-mediated polar auxin
transport.

Cytokinin in plant development

As the 19" century rolled into the 20", several scientists discovered the existence
of substances which could induce cell division when applied to cultured or wounded
plant tissue (Wiesner, 1892; Haberlandt, 1913; van Overbeek et al., 1941). Miller
et al. (1955) were the first to successfully isolate the active substance (from herring
sperm) which was named kinetin; this was quickly followed by the identification
of another cytokinin, trans-zeatin (Miller, 1961), and then many more (reviewed
in Mok and Mok (2001)). Cytokinins are a class of phytohormones derived from
adenine. Naturally occurring cytokinins can be divided into two groups based on
their side chain: those with isoprene-derived side chains, which are predominant in
plants, and those with aromatic side chains (Sakakibara, 2006). Although cytokinins
were named for their ability to promote cytokinesis, they were soon discovered
to promote shoot growth, inhibit root growth, stimulate cell division and induce
greening in calli (Miller et al., 1956). They have since been found to play a role
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in many other developmental processes in plants, including organ formation, leaf
senescence, shoot meristem formation and maintenance, apical dominance and seed
germination (Mok and Mok, 2001).

Cytokinin metabolism € perception

Research with Arabidopsis thaliana has identified a variety of genes involved in
cytokinin biosynthesis. The seven ATP/ADP isopentenyltransferase genes (IPT1,
IPT3 - IPT8) encode rate-limiting enzymes that synthesize the cytokinin precursor
isopentenyladenine (Kakimoto, 2001; Takei et al., 2001), which is then hydroxylated
by the activity of cytochrome P450 monoxygenases CYP735A1 and CYP735A2
(Takei et al., 2004b). Finally, enzymes encoded by the LONELY GUY (LOG)
gene family convert inactive cytokinins into an active form (Kurakawa et al., 2007).
Cytokinin is degraded by the CYTOKININ OXIDASE (CKX) gene family (Paces
et al., 1971; Houba-Hérin et al., 1999; Schmiilling et al., 2003). The genes responsible
for cytokinin synthesis and degradation are widely expressed throughout the shoots
and roots of Arabidopsis, although individual genes have been shown to have quite
specific expression patterns (Nordstrom et al., 2004; Miyawaki et al., 2004; Werner
et al., 2003). For a comprehensive review of cytokinin synthesis and degradation,
the reader is referred to Frébort et al. (2011).

The discovery that over-expression of CYTOKININ INDEPENDENT (CKI)
induced a cytokinin response in plants (Kakimoto, 1996) was the first suggestion
that cytokinin signalling is mediated by a two-component signalling (TCS) pathway
similar to that found in bacteria, since CKI is homologous to the histidine kinase
genes in bacterial TCS. The cytokinin TCS signalling pathway involves several
players acting in relay to transfer a signal into the nucleus and activate downstream
targets. In brief, cytokinins induce autophosphorylation of a histidine kinase (HK)
protein, resulting in the transfer of a phosphoryl group from a phospho-accepting
histidine residue in the kinase domain to an aspartate residue. The phosphoryl is
then transferred to a conserved histidine on a histidine phosphotransferase (HP)
protein. From there, it is finally transferred to an aspartate in the receiver domain
of a response regulator (RR) protein; while some of the RRs are transcription
factors, others lack the DNA-binding domain and so act as competitive inhibitors
of cytokinin response.

The major components of the cytokinin signalling pathway were identified in
a series of seminal papers around the turn of the century. The first cytokinin
receptor was independently discovered by several research groups. Inoue et al.
(2001) identified CYTOKININ RESPONSE 1 (CRE!) as a cytokinin receptor based
on the reduced cytokinin response of the loss-of-function mutants, while Mahoénen
et al. (2000) identified the same gene as a TCS histidine kinase responsible for the
wooden leg (wol) mutation first described by Scheres et al. (1995). Simultaneous
research with the same gene under the name ARABIDOPSIS HISTIDINE KINASE
4 (AHKZ) demonstrated that it could act as a cytokinin sensor in bacteria and that
its histidine kinase activity was cytokinin-dependent (Suzuki et al., 2001; Ueguchi
et al., 2001); meanwhile, Yamada et al. (2001) demonstrated the cytokinin-binding
activity of WOL/CRE1 in vitro and showed that the wol mutation abolished this
activity. Together with the other cytokinin receptors, AHK2 and AHK3 (Hwang
and Sheen, 2001), AHK/ has recently been shown to be localized primarily on the
ER membrane, suggesting that this compartment may play an important role in
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cytokinin signal transduction (Caesar et al., 2011; Wulfetange et al., 2011).

From the cytokinin receptors, the phosphorelay continues with the transfer of the
phosphoryl group to a conserved histidine residue on the HP proteins, which shuffle
continuously between the cytosol and the nucleus (Hwang and Sheen, 2001; Punwani
et al., 2010). Five HP genes (AHP1-AHP5) with phosphorelay activity have been
identified in the Arabidopsis genome (Suzuki et al., 1998; Imamura et al., 2001; Su-
zuki et al., 2002; Tanaka et al., 2004), along with a sixth pseudo-phosphotransferase
(AHPG) which lacks the conserved histidine and inhibits cytokinin signalling by
competing with the true HPs (Mdhonen et al., 2006a).

Within the nucleus the phosphoryl group is transferred to an RR gene. The
Arabidopsis genome encodes 23 ARABIDOPSIS RESPONSE REGULATOR (ARR)
genes divided into three types (A, B, and C), although only the type A and type B
ARRs are thought to play a role in cytokinin signalling (Kiba et al., 2004; Schaller
et al., 2007). The type A ARRs, which are upregulated by cytokinin, contain a
receiver domain fused to a short carboxy-terminal extension (D’Agostino et al., 2000)
and are stabilized by phosphorylation (To et al., 2007). They are thought to act
as inhibitors of cytokinin signalling, which has been confirmed by genetic analysis
in several cases (To et al., 2004), although ARR4 has been shown to also interact
positively with phytochrome B (Sweere et al., 2001). Type B ARRs possess a GARP
DNA-binding motif in the carboxy-terminal extension in addition to the receiver
domain; phosphorylation enables them to bind to DNA and initiate transcription of
downstream targets (including the type A ARRs). Unlike the type A ARRs, the
type B ARRs are not upregulated by cytokinin (Sakai et al., 1998; Imamura et al.,
1999; Sakai et al., 2000, 2001). Studies of over-expression lines (Kiba et al., 2004;
Tajima et al., 2004; Ren et al., 2009) and mutants with multiple ARRs knocked
out (To et al., 2004; Argyros et al., 2008; Mason et al., 2005) have confirmed this
general picture.

The CYTOKININ RESPONSE FACTOR (CRF) family, which consists of six
closely related APETALA2 (AP2) transcription factors, was recently identified as a
novel class of response regulators (Rashotte et al., 2006). The CRFs were found to
migrate to the nucleus in an HK- and HP-dependent manner, although only CRF2,
CRF5 and CRFG6 were found to be cytokinin upregulated. Functional type B ARRs
were found to be required for this upregulation, and further analysis showed that
the CRFs and type B ARRs overlap in activating many cytokinin target genes.
More recently, the CRFs have been shown to form both homo- and hetero-dimers
with one another (Cutcliffe et al., 2011).

Cytokinin signalling is discussed in more depth in Chapter I and has been the
subject of several recent reviews (e.g., Hwang et al., 2012; Heyl et al., 2012; Brenner
et al., 2012).

Cytokinin movement

Very little is known about how cytokinin is taken up by cells and transported
in plants. While diffusion is likely to be an important factor, evidence from cell
cultures indicates that cytokinin can be actively taken up by cells (Fufleder et al.,
1989; Cedzich et al., 2008), suggesting that directed cytokinin transport mediated
by cytokinin transporters may occur. In addition, grafting experiments in tobacco
(Faiss et al., 1997) and between ipt1;3;5;7 mutants and wild-type Arabidopsis plants
(Matsumoto-Kitano et al., 2008) have demonstrated the importance of long-distance
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cytokinin transport. Furthermore, cytokinins have also been detected in sap and
leaf exudates, indicating that they are present in the transport stream (Takei et al.,
2002, 2004a).

The PURINE PERMEASE (PUP) gene family encodes broad-affinity transport-
ers that represent the most likely candidates for cytokinin transporters. Direct,
active uptake of adenine and various cytokinins by PUP! and PUP2 has been
demonstrated; together with their expression pattern, this has led to the suggestion
that they may play a role in the loading and unloading of cytokinins for long-distance
transport (Gillissen et al., 2000; Biirkle et al., 2003). Another class of potential
cytokinin transporters is the EQUILIBRATIVE NUCLEOSIDE TRANSPORT
(ENT) gene family, members of which have been implicated in cytokinin uptake in
both rice (Hirose et al., 2005, 2008) and Arabidopsis (Sun et al., 2005). Although
these transporters may play a role in cytokinin loading for long-distance transport,
their broad affinity and the lack of strong phenotypes in the mutants suggests that
they do not contribute to major processes that regulate plant development.

Auxin and cytokinin crosstalk

Auxin and cytokinin have long been known to play antagonistic roles in many
developmental processes (Skoog and Miller, 1957). This antagonism has remained
an abiding theme in plant biology (Coenen and Lomax, 1997), although we have
only recently begun to unravel its molecular and mechanistic bases. Interactions
between auxin and cytokinin play a role in maintaining the meristems of the shoot
(Zhao et al., 2010) and root (Dello Ioio et al., 2008), controlling axillary branching
(Bainbridge et al., 2005; Chatfield et al., 2000), and initiating lateral roots (Laplaze
et al., 2007). Extensive crosstalk between the two occurs at all levels—synthesis
(Takei et al., 2004b; Miyawaki et al., 2004; Jones et al., 2010), metabolism (Werner
et al., 2006; Jones et al., 2010), and perception (Dello Ioio et al., 2008; Schlereth
et al., 2010; Miiller and Sheen, 2008; Zhao et al., 2010; Taniguchi et al., 2007)—and
we are now beginning to understand how these networks interact to control a
wide variety of plant responses (Figure 1). These interactions are reviewed more
extensively in Chapter I and their activity in the context of vascular development
are the main focus of the research reported in Chapters II-IV.

Experiments by Skoog and Miller over 50 years ago demonstrated that organo-
genesis in in vitro plant tissue cultures could be controlled by varying the relative
quantities of auxin and cytokinin in the growth medium (Skoog and Miller, 1957).
High auxin:cytokinin ratios induce the formation of roots from callus cultures,
while low auxin:cytokinin ratios favour the development of shoots; at intermediate
concentrations, the cultures continue to proliferate without differentiating. Experi-
ments by Werner et al. (2003) demonstrated that cytokinin affects the shoot and
root meristem in opposite ways. Constitutive over-expression of members of the
CKX gene family led to enlargement of the root meristem but a decrease in shoot
meristem size; likewise, root length and lateral root number increased while leaf
expansion rate and shoot growth decreased. Taken together, these results show that
cytokinins act as negative regulators of root growth and lateral root initiation but
positively on the shoot meristem.

More recent work has established that the type A ARRs ARR7 and ARR15 are
a nexus of interaction between auxin and cytokinin in shoot meristem regulation .
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Figure 1: Auxin and cytokinin interact in many aspects of plant development, often through a
mutual feedback loop. Auxin and auxin activity are in blue; cytokinin and cytokinin activity
are in red. The feedback loop in the “root meristem” box was discovered through research
reported in Chapters II-III. AHK: Arabidopsis histidine kinase 4; AHP: Arabidopsis histidine
phosphotransferase; ARR: Arabidopsis response regulator ; BRC1: branched 1; CLV3: clavata 3;
IPT: isopentenyltransferase; MAX4: more axillary branching 4; MP: monopteros; PIN: pin-formed;
SHY?2: short hypocotyl 2; WUS: wuschel. Modified from El-Showk et al. (2013).

The size of the shoot meristem is determined by a feedback loop between the genes
WUSCHEL (WUS) and CLAVATAS (CLV3) (Brand et al., 2000; Schoof et al.,
2000). Cytokinin regulates shoot meristem growth by promoting the activity of
WUS (Gordon et al., 2009); WUS, in turn, represses ARR7 and ARR15 (Leibfried
et al., 2005), which inhibit cytokinin signalling. However, cytokinin also activates
ARR7 and ARR15 to upregulate CLV3 (Zhao et al., 2010), a negative regulator of
WUS. Auxin acts contrary to cytokinin, repressing ARR7 and ARR15 in the shoot
meristem via the auxin response factor MONOPTEROS/ARFS, which was shown
to bind to a specific auxin response element in the ARR15 promoter (Zhao et al.,
2010). Together, these interactions form a complex regulatory network around
ARR7 and ARR15, with many layers of potential feedback. Furthermore, auxin
signalling has been previously shown to activate these RRs during root specification
in embryogenesis (Miiller and Sheen, 2008), perhaps via interaction of other auxin
response elements in the promoter with different ARF's.

Work with auxin transport mutants has shown that auxin plays an instructive
role in phyllotaxis (Reinhardt et al., 2003). PINI1-mediated polar transport of
auxin leads to accumulation at specific sites and subsequent organ initiation; the
auxin-depleted areas around the site serve as zones of inhibition, preventing organ
initiation nearby and thus established the phyllotactic pattern.

Recent work has extended this model by showing an interaction between auxin
and cytokinin during phyllotaxis. Besnard et al. (2014) observed changes in the
arrangement of leaves and flowers in the shoots of ahp6 mutants and showed that
AHPG is activated by auxin one plastochron after the primary auxin response genes.
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Further examination revealed aberrant ordering of organ initiation in ahp6, with
organs more frequently initiated out of order or simultaneously. Analysis of an
AHP6-GFP protein fusion showed that movement of the AHP6 protein creates
gradients centred around primordia in the shoot meristem. Repression of cytokinin
signalling by the AHP6 gradients creates differential cytokinin signalling within
the meristem, which somehow acts to stabilize the plastochron. No changes were
detected in PIN1 expression or subcellular localization, suggesting that cytokinin’s
regulation of phyllotaxis is mediated by other genes and may not involve the
modulation of auxin transport.

Long before the molecular identity of the polar auxin transporters was known,
Osborne and Mullins (1969) observed a positive effect of cytokinin on polar auxin
transport and, based on physiological experiments with auxin transport inhibitors,
hypothesized that this was due to cytokinin upregulation of hypothetical auxin
transport proteins. It is now well-established that cytokinin regulates the polar
transport of auxin. In a seminal paper, Dello Toio et al. (2008) revealed how
cytokinin modulation of polar auxin transport regulates the size of the root meristem
in Arabidopsis. The AUX/TAA gene TAA3/SHY?2 was known to be a target of
the type B ARR ARR1 (Taniguchi et al., 2007), over-expression of which led to
a significant reduction in root meristem size. Dello Ioio et al. demonstrated a
direct physical interaction between the two proteins and showed that SHY2 acts
downstream of ARRI in regulating the size of the root meristem. They then
observed that expression of PIN1, PINS and PIN7 in the vascular tissues was
downregulated by cytokinin and showed that this was mediated via AHK3, ARRI1,
and SHY?2. Furthermore, SHY?2 was shown to negatively regulate the cytokinin
biosynthesis gene IPT5. The size of the root meristem is thus determined by an
antagonism between auxin and cytokinin mediated by their opposing regulation of
SHY2, which in turn negatively regulates cytokinin biosynthesis while repressing
auxin transport and signalling. This model was later extended by Moubayidin et al.
(2010) to include the upregulation of SHY2 by ARR12 during meristem growth.
Further evidence that cytokinin modulates auxin transport, which is a major theme
of this thesis, was independently discovered in lateral roots (Laplaze et al., 2007),
tobacco cell cultures (Ruzicka et al., 2009), and in Arabidopsis vascular development
(Chapter II).

Root Vasculature
Evolution of roots and vasculature

The successful colonization of land by plants around 500 million years ago required
several developmental innovations. Crucial amongst these were roots to anchor the
plants and vascular tissue to transport water and nutrients and provide support for
an upright body in the competition for light. Support, long-distance transport and
anchorage were challenges unfamiliar to aquatic plants, which could float freely and
absorbed nutrients throughout their entire surface tissue. Simple vasculature and
root-like structures appeared relatively quickly and are amongst the earliest fossils
of land plants. Mosses, hornworts, and liverworts lack true roots or vascular tissue,
which has constrained their ability to evolve to larger sizes on land.

Roots are polyphyletic in origin, having evolved several times in the history of
land plants. Fossil evidence indicates an independent origin of roots in at least two
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different plant lineages, first in lycophytes (which dominated the Carboniferous
forests that make up today’s coal beds) and later in euphyllophytes, a clade which
includes spermatophytes (seed plants) and monilophytes (ferns) (Ravens and Ed-
wards, 2011). The evolution of roots and vascular tissues allowed for an elaboration
of the plant bauplan, enabling the transition from mosses and liverworts to the
gigantic trees of the Devonian forests in only 30-40 million years. Although the
arborescent lycophytes, ferns, and horsetails of those forests are now extinct, the
body plans which emerged are still seen around us today.

Several lines of evidence suggest that roots might be derived from shoots. Like
the simple shoots of early vascular plants, roots are protostelic, comprising a
central column of primary vascular tissue surrounded by ground tissue (Beck, 2005).
Furthermore, analysis of root-like structures found in fossils from the Silurian,
shortly after plants moved onto land, indicates that they were, in fact, underground
stems which served as roots (Ravens and Edwards, 2011). Scheres and Dolan
(1998) identified several developmental parallels supporting the interpretation of
roots as modified shoots: (1) Both shoots and roots have a central zone of cells
controlling the division and differentiation of neighbouring cells; (2) Shoots and
roots use similar genetic modules to regulate epidermal cell fate; and (3) Position
is an important determinant of cell fate in both shoots and roots, as shown by
laser ablation experiments. Later studies have reinforced the common molecular
underpinnings of patterning and proliferation in the shoot and root. WUSCHEL
(WUS) is required for the maintenance of the shoot meristem (Mayer et al., 1998),
while WUSCHEL-related homeobox 5 (WOX5), a paralog of WUS, was identified
as an early marker of the quiescent centre in the root meristem (Haecker, 2004).
Furthermore, SCARECROW (SCR) is required for correct radial patterning in
both the shoot (Wysocka-Diller et al., 2000) and the root (Nakajima et al., 2001)
and is expressed in both the quiescent centre of the root meristem and the L1 of the
shoot apical meristem (Wysocka-Diller et al., 2000). The similarity of the molecular
mechanisms underlying development in the shoot and root lends credence to the
notion that roots evolved via modification of the shoot developmental programme.

Nevertheless, roots differ from shoots in several important ways. Unlike shoots,
roots are positively gravitropic. Their downwards growth into the soil necessitates
the presence of an apical root cap, which serves both to protect the root meristem
and to lubricate the root’s passage through the soil. Furthermore, shoots are
segmented by nodes from which exogenous lateral branches often grow; roots, by
contrast, are not segmented, and root branches are endogenous in origin (Ravens
and Edwards, 2011; Beck, 2005).

Anatomy of the root

Roots, like shoots, grow from an apical meristem; however, unlike the shoot meristem,
the root meristem is covered by a root cap which protects and lubricates it. Within
the root meristem is a zone of minimal cell division activity called the quiescent
centre (QC) (Clowes, 1959), which has been shown to inhibit differentiation of the
surrounding cells (van den Berg et al., 1997). These cells are therefore able to
divide indefinitely; they give rise to the cell files of the root and so are called initials.
Experiments with laser ablation have demonstrated the importance of positional
information rather than lineage in determining cell fate in the developing root;
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following ablation of initials, adjacent cells will take over their position and begin
producing cells of the same type as the ablated initial (van den Berg et al., 1995).

Subsequent divisions push the daughter cells shootwards from the QC and initials
(with the exception of the columella cells, which are apically located). The daughter
cells undergo several more divisions before they begin to elongate. Although the
fate of most cell types is already specified before elongation begins, the cells only
complete the differentiation process during or following elongation. The root can
therefore be roughly divided into three zones: the meristematic zone; the elongation
zone; and the differentiation zone. The presence of root hairs is generally taken
to mark the beginning of the differentiation zone, while the boundary between
the meristematic zone and the elongation zone is determined by the start of cell
elongation.

In Arabidopsis, lateral roots are initiated from the pericycle cells adjacent to
the xylem (Dolan et al., 1993) and tend to alternate between opposite xylem poles
(Dubrovsky et al., 2006) in a manner that is dependent on the activity of the
auxin importer AUX! (de Smet et al., 2007). Initiation of lateral roots is triggered
by auxin accumulation in the xylem-pole pericycle cells (Dubrovsky et al., 2008)
and requires repression of cytokinin signalling in these cells (Bielach et al., 2012).

Vascular tissues

The vascular tissues of plants provide support and serve as
a long-distance transport network for water, nutrients, and
signalling molecules such as hormones. In order to fulfil
these functions, the vascular tissues must be appropriately
positioned to ensure the continuity of the vascular strands
and thus maintain a transport and communication network
between distant tissues and organs. Improving our ability to
manipulate vascular development will also provide significant
practical benefits in areas such as bioenergy and timber
production.

The primary vascular bundle in the root is comprised of
three cell types (xylem, phloem and procambium) surrounded
by an outer layer of pericycle cells; together, these tissues
comprise the stele. In the Arabidopsis primary root, the
vascular tissues are stereotypically organized in a diarch
pattern (Dolan et al., 1993), the regularity of which provides

an ideal system for the study of vascular patterning processes
(Figure 2). Xylem cells are arranged in a single-cell wide
axis spanning the vascular bundle; two phloem poles are
located at ninety degrees to this axis, separated from the
xylem by intervening procambial cells which will later give
rise to the vascular cambium (the lateral meristem involved
in secondary growth). The Arabidopsis stele has two axes of
symmetry, one through the xylem axis and another through
the phloem poles, and is thus bisymmetric.

The xylem axis consists of two different types of xylem
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cells; the marginal cells (i.e., those adjacent to the pericycle) differentiate into
protoxylem, while the central cells differentiate into metaxylem. Protoxylem and
metaxylem can be distinguished by their secondary cell wall thickening. Protoxylem
cells, which differentiate earlier, have annular thickenings of their secondary cell wall,
allowing them to extend during growth; by contrast, metaxylem has a reticulated
pattern of secondary cell wall thickening (Esau, 1977). Primary phloem, which con-
sists of conductive sieve elements and the neighbouring companion cells, is likewise
divided into protophloem and metaphloem. Protophloem sieve elements initiate
at the outer periphery of the vascular cylinder, while metaphloem sieve elements
are found adjacent to the protophloem inside the vascular cylinder. Metaphloem
elements are initiated later than protophloem and so remain functional, while the
protophloem is later obliterated. Differences also exist between pericycle cells; those
at either end of the xylem axis have a distinct function, as they are the only cells
that are competent to become lateral root primordia.

Embryonic development

The Arabidopsis embryo undergoes a well-characterized pattern of cell divisions
during its development, allowing for a clear description of the establishment of the
vascular initials. The vascular initials are specified early during embryogenesis; all
vascular tissues derive from only four initial cells in the globular embryo. These four
cells divide periclinally to give rise to two concentric cell layers; the outer cells then
divide periclinally again to increase the number of cells in the layer. Later, cells in
both the outer and inner layer undergo less regular periclinal divisions to further
increase the number of cell files (Scheres et al., 1994). The embryonic vascular cells
remain undifferentiated, with properties characteristic of different cell types only
appearing post-embryonically (Dolan et al., 1993). S-glucuronidase can be used to
create sectors of cells linked by descent; transposon excision in a single cell activates
the B-glucuronidase gene, which will remain active in daughter cells and can thus be
used to determine the progenitor of the visualized sector. Scheres et al. (1994) used
this technique to confirm that the vascular tissues arise from the vascular initials,
but also observed the spread of the sectors to multiple cells in the mature root,
indicating that later divisions further refine the vascular pattern.

Auxin has been known for some time to play a role in vascular embryogenesis.
PIN1, PINS, PIN/, and PIN7 are all expressed in specific patterns during embryo-
genesis, coordinating auxin transport to initiate many developmental processes. For
example, when the apical-basal axis is forming, PIN7 is apically localized in the
basal cell, transporting auxin into the apical cell; at the globular stage, it switches to
basal localization, transporting auxin into the suspensor cells. The embryos of pinl!
pind ping pin7 plants are highly abnormal, making it impossible to distinguish the
effect of the quadruple mutation on vascular embryogenesis separately from other
processes (Friml et al., 2003). The auxin response factor MONOPTFEROS/ARFS
(MP) is also known to play a key role in vascular development. Strong mp alleles
result in failure to form a root at an early stage, while plants with weaker mp alleles
that do not prevent root development have a reduced stele due to the absence of
the stereotypical ordered pattern of cell division in the basal region of the embryo
(Berleth and Jiirgens, 1993).

The effect of MP on vascular development has recently become better understood
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and some downstream players have been identified. The mp defect could be rescued
by driving TARGET OF MONOPTEROS 5 (TMO&5) under the MP promoter,
indicating that TMOb5 mediates the effect of MP on division of the vascular initials
(Schlereth et al., 2010). TMOS5, which encodes a bHLH transcription factor, is
expressed in all four embryonic vascular initials. The double mutant of TMO5 and
its closest homolog TMO5-LIKFE1, tmo5 t5l1, also has defects in periclinal division of
the vascular initials, although the single mutants do not. Furthermore, roots of tmos
t511 plants show a reduced post-embryonic stele in which the normal bisymmetric
pattern is replaced by only one xylem and phloem pole. This phenotype is similar to
that of another bHLH transcription factor mutant, lonesome highway (lhw) (Ohashi-
Ito and Bergmann, 2007), though LHW is more broadly expressed in embryo and
roots than TMOS (De Rybel et al., 2013). TMOS expression is restricted to xylem
precursors at the heart stage, while LHW is expressed throughout the root pole and
in the cotyledon primordia. Post-embryonically, LHW is expressed throughout the
root meristem in a decreasing gradient from the QC, while TMOJ is only expressed
in xylem precursors. Immunoprecipitation demonstrated that TMO5 and LHW
form a heterodimer where their expression domains overlap; this heterodimer was
found to be necessary and sufficient to trigger the periclinal cell divisions which
establish the vascular pattern in the early embryo.

Although TMOS5 and LHW overlap in the xylem cells, these cells do not undergo
periclinal cell divisions; instead, the surrounding procambium and phloem divide.
Likewise, ectopic expression of TMO5 in the ground tissue (where LHW is already
present) resulted in additional divisions not only in the ground tissue, but also
in adjacent pericycle cells. Together, these data suggest that the TMO5/LHW-
dependent signal acts in a non-cell autonomous manner to control periclinal divisions
in the vascular cells (De Rybel et al., 2013).

Ohashi-Tto et al. (2013) have shown that LHW interacts with auxin signalling
and transport to regulate vascular development. They observed a more diffuse
pattern of PIN1 expression in lhw embryos, as well as altered TMOJ5 expression and
reduced levels of MP. Interestingly, although ectopic expression of LHW throughout
the root led to increased expression of the synthetic auxin reporter DRJ, this was
not accompanied by changes in the amount of endogenous auxin, suggesting that
LHW acts to modulate auxin signalling rather than auxin levels, although it remains
unclear whether it does so directly or via modulation of cytokinin signalling.

Further work in the Arabidopsis embryo revealed the TMO5/LHW heterodimer
upregulates the cytokinin biosynthesis gene LOG/. Expansion of the expression
domain of the two genes leads to excessive periclinal divisions in the developing
embryonic vasculature, and this phenotype is partially suppressed in the triple
mutant log3 log4 log7. Furthermore, treatment of the lhw or t51 mutant with
cytokinin restored the cell number and diarch vascular pattern (De Rybel et al.,
2014).

De Rybel et al. incorporated these findings in a computational model in which
auxin acts via TMO5/LHW to promote cytokinin biosynthesis in a growing two-
dimensional root cross section. Simulations revealed that the initial cell divisions
require a bias from the geometry of the four founder cells in order to consistently
form a central xylem axis; subsequent analysis confirmed the bias in growing embryos.
Furthermore, they propose that local auxin-driven cytokinin biosynthesis generates
a cytokinin gradient centred around the xylem axis and argue that this gradient is
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crucial for regulating growth and vascular patterning. In this model, high levels of
cytokinin in the xylem axis do not lead to periclinal divisions in those cells because
they also have high levels of auxin, which activates AHPG6 to represses cytokinin
signalling. The discrepancy between this model and our findings is discussed further
in the Results & Discussion, as well as Chapter IV.

Postembryonic development

The last 20 years has seen an explosion in our understanding of postembryonic
vascular development. Using Arabidopsis as a model system, many key components
have been identified, although less is known about the specification of phloem than
of xylem and some players likely await discovery. More recently, researchers have
begun integrating these components into interacting networks which establish and
maintain the vascular pattern.

Phloem specification

The ALTERED PHLOEM DEVELOPMENT (APL) gene discovered in 2003
encodes a MYB coiled-coil transcription factor which is required for phloem devel-
opment (Bonke et al., 2003). APL is expressed in the cotyledons and hypocotyls of
nearly mature Arabidopsis embryos. Postembryonically, APL is expressed through-
out the phloem in the shoots and roots of seedlings. Close to the root meristem,
its expression is limited to the protophloem sieve elements; higher up, expression
expands into the developing companion cells and metaphloem sieve elements.

Although APL is only observed in developing phloem and does not appear to
be expressed during the earlier asymmetric divisions, these divisions are delayed
in the seedling-lethal apl mutant. apl plants also fail to form sieve elements and
companion cells; instead, ectopic tracheary element-like cells are often found at
the phloem position. Ectopic expression of APL throughout the vascular cylinder
delays metaxylem differentiation and prevents cells at the protoxylem position from
differentiating into tracheary elements. The undifferentiated protoxylem cells fail to
undergo lignification and autolysis; although these cells undergo a tangential division
similar to phloem precursors, they nevertheless retain a nucleus, indicating that
APL alone is not sufficient to result in ectopic phloem development (Bonke et al.,
2003). The xylem defects seen in these lines indicate that, in addition to specifying
phloem, APL plays a role in inhibiting xylem differentiation at the phloem poles.

A second gene involved in phloem specification was recently identified. OC-
TOPUS (OPS) is a polarly-localized, membrane-associated protein expressed earlier
than APL in the provascular cells and phloem initials (Truernit et al., 2012) and
also in the proto- and meta-phloem (Bauby et al., 2007). Differentiation of the pro-
tophloem in the ops mutant is discontinuous due to the failure of some protophloem
cells to initiate elongation and cell-wall thickening. Over-expression of OPS was not
sufficient to specify phloem cell identity but led to precocious phloem differentiation
within the already-established phloem cell lineage (Truernit et al., 2012). In a later
study, an OPS over-expression line showed a phenotype similar to constitutive
brassinosteroid response. Crosses with the brassinosteroid-insensitive mutants bril
and bin2 and treatment with the brassinosteroid brassinolide or the brassinosteroid
inhibitor brassinazole revealed that OPS interacts with BINZ2, sequestering it at the
plasma membrane and thus preventing its repression of brassinosteroid signalling.
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While treatment of the ops mutant with a BIN2 inhibitor partially rescued the
phloem defects, inhibition of brassinosteroid synthesis did not cause phloem defects,
nor did brassinosteroid treatment rescue ops. These data suggest that brassinoster-
oid signalling is involved in phloem differentiation, but brassinosteroids themselves
are not required for this process (Anne et al., 2015).

Protophloem differentiation is suppressed in wild-type plants treated with the
CLE45 peptide, which binds to BARELY ANY MERISTEM 3 (BAM3) (Depuydt
et al., 2013). Furthermore, transgenic seedlings with increased CLE/5 activity ex-
hibit a phenotype similar to ops mutants, while an increase in OPS expression leads
to CLEA45 resistance (Rodriguez-Villalon et al., 2014). Protophloem specification
therefore seems to depend on a balance between pathways mediated by OPS and
CLE45.

Phloem cells mature into sieve elements, elongated cylindrical cells with per-
forated ends. Sieve element formation consists of enucleation and cellular reorgan-
ization. The process has recently been described in detail via scanning electron
microscopy of serial 40nm sections, together with microarray experiments identifying
the NAC-domain transcription factors NAC45 and NACS86 as key regulators of
these changes (Furuta et al., 2014). The choline transporter CHER1 is required for
correct formation of the sieve plates; there are sieve pores in the cher! mutant and
they are structurally altered (Dettmer et al., 2014).

Cytokinin represses protoxylem

The woodenleg (wol) mutant was identified because of its short, determinate
primary root which arrests growth seven days after germination, though the plants
recover thanks to the formation of adventitious roots. The vascular bundle of wol
contains fewer cells than wild-type, all of which differentiate as protoxylem; phloem
and procambium are found in the wol hypocotyl, which also has more vascular cells
(Scheres et al., 1995). WOL was found to be allelic with the independently identified
loci CYTOKININ RESPONSE 1 (CRE1) and Arabidopsis HISTIDINE-KINASE /4
(AHK/) which encode a cytokinin receptor (Inoue et al., 2001; Suzuki et al., 2001;
Ueguchi et al., 2001; Yamada et al., 2001). CRE! acts as a kinase in the presence
of cytokinin and a phosphatase in its absence (Méihonen et al., 2006a,b). Since
the wol mutation is in the cytokinin binding domain, this results in constitutive
phosphatase activity in wol plants, counteracting the kinase activity of the other
cytokinin receptors.

Cytokinin signalling mediated by CRE1 represses the specification of protoxylem;
the stele in wol plants, which have severely attenuated cytokinin signalling, is
composed entirely of protoxylem cells (Mihonen et al., 2000). Correct specification
of protoxylem in wild-type roots requires the suppression of cytokinin signalling at
the protoxylem position, which is accomplished by a pseudo-phosphotransferase. In
addition to the five functional histidine-phosphotransferase (HP) proteins which relay
the phosphoryl group between the HK and RR proteins, Arabidopsis has a pseudo-
phosphotransferase, ARABIDOPSIS HISTIDINE PHOSPHOTRANSFERASE 6
(AHPG), that lacks the conserved histidine required for phosphotransfer (Mé&honen
et al., 2006a). AHP6, which was discovered in a genetic screen for suppressors of
wol, is expressed in the protoxylem position and the adjacent pericycle cells, where it
inhibits cytokinin signalling by competing with the functional phosphotransferases.
Treatment with exogenous cytokinin or a mutation in AHPG6 results in the spread of
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cytokinin signalling to the protoxylem position and a concomitant loss of protoxylem
(Mé&honen et al., 2006a). The mechanism by which cytokinin signalling is excluded
from the metaxylem remains unclear, though the weak phenotype of the ahp6
mutant suggests that it may have an undiscovered redundant partner.

The triple cytokinin receptor mutant crel ahk2 ahk3 shows a more extreme
phenotype than wol (Mihonen et al., 2006a,b). As in wol, the reduction in the
number of vascular cell files in these mutants results in the entire stele being specified
as protoxylem; in addition, these plants have a determinate root, but unlike in
wol mutants, this is not rescued by adventitious root formation. Expression of
CYTOKININ OXIDASE (CKX), which degrades free cytokinin, in the vascular cyl-
inder phenocopied wol, while treatment with cytokinin led to the loss of protoxylem,
further supporting the importance of cytokinin in repressing protoxylem specifica-
tion (Médhonen et al., 2006a,b). In addition, the wol phenotype is also phenocopied
by higher order mutants in which several (redundant) members of gene families
involved in the downstream relay of cytokinin signalling are knocked out, such as
the quintuple mutant ahp-5 mutant, which lacks all of the functional histidine
phosphotransfer proteins (Hutchison et al., 2006), or the arr! arrl0 arrl2 mutant
(Mason et al., 2004), which lacks the three cytokinin-responsive transcription factors
which are strongly expressed in the primary root (Argyros et al., 2008; Ishida et al.,
2008).

Cytokinin signalling prevents the specification of procambium cells as protoxylem.
In normal plants, expression of AHP6 in the protoxylem position inhibits cytokinin
signalling, allowing the correct specification of protoxylem; by contrast, mutants
defective in cytokinin perception such as wol and crel ahk2 ahk3 show ectopic
protoxylem specification (Méhonen et al., 2006a,b). While these experiments show
that cytokinin signalling inhibits protoxylem specification, they do not identify the
positive factors which specify protoxylem fate, leaving open the question of what
factors promote AHPG expression and protoxylem specification.

The CLE peptides modulate cytokinin

Tracheary element differentiation factor (TDIF) was identified as a peptide
which inhibits tracheary element (xylem) differentiation in Zinnia cell cultures
(Fukuda and Komamine, 1980); in addition, Arabidopsis cultures treated with TDIF
show enhanced proliferation of procambial cells (Hirakawa et al., 2008). TDIF is a
dodecapeptide whose sequence was found to be similar to the C-terminal amino
acids of two Arabidopsis genes, CLE/1 and CLE/4. These genes are members of
the CLAVATA/EMBRYO SURROUNDING REGION-related (CLE) family, which
is comprised of 32 members in Arabidopsis. CLE/1 and CLE4/j are expressed in
the phloem and the neighbouring pericycle cells. A screen of candidate Arabidopsis
T-DNA insertion lines for insensitivity to TDIF led to the identification of the TDIF
receptor, TDR, which is expressed in the intervening procambial cells. A model has
therefore been proposed in which TDIF is produced in the phloem and neighbouring
cells but perceived by TDR in the procambial cells, where it acts to promote their
proliferation and prevent their differentiation into xylem (Hirakawa et al., 2008).

Kondo et al. (2011) treated Arabidopsis seedlings with 26 of the CLE peptides
and found that 17 of them cause defects in protoxylem and reduced root growth.
Since two other CLEs caused a reduction in growth without affecting protoxylem, the
protoxylem defects seem to be independent of the effect on root growth. CLE9 and
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CLE10 are expressed in a stele-specific manner and exogenous treatment with either
inhibits protoxylem formation. A microarray analysis identified ARRS5, ARRG, IPT7
and CKX3 as genes down-regulated by the application of CLE10. While ARR5 and
ARRG are type-A ARRs which negatively regulate cytokinin signalling (To et al.,
2007), CKX38 encodes a cytokinin degradation enzyme (Mok and Mok, 2001), and
IPT7 plays a role in cytokinin biosynthesis (Kakimoto, 2001; Takei et al., 2001).
Interestingly, although all four are cytokinin-related genes, their contradictory roles
suggest that CLE10 may have complex effects on cytokinin status by modulating
both signalling and homoeostasis. While the ahk2 ahk4 mutant, which is defective
in two of the three cytokinin receptors, remains responsive to CLE10 treatment, it is
less sensitive than wild-type plants (Kondo et al., 2011), suggesting that CLE10 may
achieve its effect primarily by affecting cytokinin signalling rather than metabolism,
though the full story is likely to be more complex.

Kondo et al. (2011) also showed that treatment of the arr10 arr12 double
mutant with CLE10 did not cause defects in protoxylem. Since type-A ARRs and
type-B ARRs are likely to compete for phosphotransfer, it is possible that the down-
regulation of ARR5 and ARRG by CLE10 may result in increased activity of the
type-B ARRs ARR10 and ARR12, leading to defects in protoxylem development;
the insensitivity of the arr10 arrl2 mutant to CLE10 is consistent with this model.
Furthermore, they found that application of CLE10 to ahp6 plants enhances the
protoxylem phenotype, suggesting that its mode of action may be independent of
AHPG.

VNDs and xylem maturation

Using an in vitro system to induce the formation of xylem in cell cultures,
Kubo et al. (2005) identified several genes involved in xylem morphogenesis. By
treating an Arabidopsis suspension culture with appropriate hormones, they were
able to induce ~ 50% of the cells to differentiate into xylem elements within 7
days; a microarray analysis identified 23 clusters of co-regulated genes. Of these,
three clusters (comprising 224 genes) showed upregulation 6 days after induction,
coincident with active xylem formation. While these included many genes encoding
proteins that would be expected to play a role in developmental events, such as
proteins involved in cell wall synthesis and programmed cell death, several putative
transcription factors were also identified, including four NAC-domain transcription
factors. These four transcription factors showed significant similarity to another
NAC-domain transcription factor, Z567, previously seen to be upregulated during
xylem formation in cell cultures of Zinnia elegans (Demura et al., 2002). Based on
sequence similarity to Z567, three additional NAC-domain transcription factors were
identified in the Arabidopsis genome; although they had not been recovered in the
clusters, these three genes were also found to be upregulated in the microarray data.
Collectively, these transcription factors were designated VASCULAR-RELATED
NAC-DOMAIN (VND) 1-7. All of the VNDs show a vascular-specific expression
pattern in the shoot and root, with the exception of VNDI1, VND4, and VNDG, which
do not seem to be expressed in the shoot. Within the root vascular tissue, the VND
transcription factors show variable expression patterns; VNDI1, VND2, and VNDS3
are preferentially expressed in the intervening procambial cells adjacent to the root
meristem, while the remainder are observed primarily in mature xylem which does
not yet show obvious secondary cell wall thickening. VND6 and VND7 are nuclear-
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localized in the central metaxylem and immature protoxylem, respectively. While
over-expression of VND1-VND$5 did not result in any morphological changes, over-
expression of VNDG or VND7 resulted in transdifferentiation of various nonvascular
cells into xylem in both poplar and Arabidopsis Kubo et al. (2005). In plants
over-expressing VNDG, the transdifferentiated cells had reticulate, pitted cell walls
similar to those found in metaxylem, while those over-expressing VND7 had annular
cell walls with a spiral thickening pattern similar to protoxylem cells. In addition,
several xylem-specific genes were found to be ectopically expressed in the VND7
over-expression plants. Although knock-out lines of VND6 and VND7 showed no
morphological defects, the dominant repression of either gene (by over-expression of
the gene fused to a strong repressor domain) resulted in shorter roots with defects in
the formation of metaxylem and protoxylem, respectively. Both VND6 and VND7
appear to be positively regulated by auxin and cytokinin.

Yamaguchi et al. (2008) showed that VND7 can form homo- and hetero-dimers
with the other NAC-domain proteins, including the VNDs; in addition, the stability
of VND7 appears to be regulated by proteasome-mediated degradation. Taken
together, these data suggest that the transcriptional activity of VND7 may be
regulated by its interactions with other proteins. In later work, Yamaguchi et al.
(2010, 2011) began to elucidate these interactions and identify other components
regulated by VND7. Using a yeast two-hybrid screen, they identified two NAC-
domain proteins which interacted with VND7, dubbed VND-INTERACTING (VNI)
1 and 2. Binding assays demonstrated that VNI2 interacts with VND7, as well as
with the other VND proteins with a lower affinity. Furthermore, VNI2 is expressed
in the xylem and phloem precursor cells in the root and shoot; this expression
pattern overlaps with that of VND7. Contrary to VND?7, over-expression of VNI2
results in discontinuities in protoxylem formation. Given the overlapping expression
and interaction with VND7, it seems likely that VNI2 affects xylem development by
inhibiting the upregulation of VND7 targets; indeed, a transient Luc reporter assay
demonstrated just such repression. Although the vni2 mutant shows no visible
phenotype, the expression level of several genes involved in xylem formation is
elevated in the mutant, consistent with VINI2 acting as a transcriptional repressor
during xylem development. Finally, a transcriptome analysis by Yamaguchi et al.
(2011) identified 63 putative targets of VND7. These targets include a broad range
of proteins, such as transcription factors and proteolytic enzymes; this suggests
the existence of a transcriptional network downstream of VNDT regulating xylem
differentiation.

Protoxylem or metazylem?

The class 11T homeodomain leucine zipper genes play a central role in determining
the vascular pattern of the mature root. The Arabidopsis genome contains five
HD-ZIP III genes, PHABULOSA (PHB), REVOLUTA (REV), PHAVOLUTA
(PHV), CORONA (CNA), and ATHBS; all five are targets of the microRNAs
miR165 and miR166 (Emery et al., 2003; Mallory et al., 2004). The miRNAs post-
transcriptionally downregulate the HD-ZIP III genes by binding to target sequences
in their mRNA. Over-expression of miR165a in the stele leads to a reduction in
HD-ZIP TIII expression and thereby the production of ectopic protoxylem; conversely,
HD-ZIP III mutants which are resistant to miRNA targeting, such as phb1-d, show
expansion of the metaxylem into the protoxylem and pericycle positions (Miyashima
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et al., 2011). The expression of the miR165 and miR166 is regulated by interactions
between the transcription factors SCARECROW (SCR) and SHORTROOT (SHR).
Movement of the SHR protein from the stele, where it is produced, into the adjacent
layer leads to the asymmetric division of the cortex/endodermis initial, activates
endodermis identity, and promotes the expression of SCR (Nakajima et al., 2001).
SHR and SCR then form a heterodimer which promotes the expression of miR165a
and miR166b, which re-enter the stele and repress HD-ZIP III activity (Carlsbecker
et al., 2010; Miyashima et al., 2011). This mechanism results in high levels of
HD-ZIP III proteins in the centre of the stele and lower levels towards the periphery;
together with the mutant phenotypes, this suggests that HD-ZIP III dosage regulates
xylem identity, with high levels leading to the formation of metaxylem and lower
levels resulting in protoxylem.

The HD-ZIP IIT genes are also known to interact with auxin. ATHBS is auxin
regulated via the MP/ARF5 activity (Baima et al., 1995; Donner et al., 2009)
and has recently been shown to act as a xylem identity gene (Carlsbecker et al.,
2010). Furthermore, the triple HD-ZIP III mutant phb phv rev shows an altered
pattern of PINI expression in the embryo (Izhaki and Bowman, 2007). However,
a reduction in polar auxin transport inhibits the specification of protoxylem but
not metaxylem (Chapter III and (Ursache et al., 2014)); conversely, reduced local
auxin biosynthesis in the taal tar2 mutant led to the replacement of metaxylem
by protoxylem (Ursache et al., 2014). Xylem development in the Arabidopsis root
therefore seems to depend on a coordination and balance between auxin transport
and synthesis.

Regulation of vascular cell number

Post-embryonic divisions in the procambium and phloem normally increase
the number of vascular cell files (Midhonen et al., 2000). Several genes have been
identified which contribute directly or indirectly to this process. The reduced stele
of the wol mutant (Scheres et al., 1995) is due to the absence of these divisions
(Mé#honen et al., 2000). The HD-ZIP III, SHR/SCR, miRNA circuit described above
also seems to regulate the number of vascular cell files; an increased number of
stele cells was observed in both shr-2 and in plants with increased levels of miR165
in the stele (Carlsbecker et al., 2010). Finally, the [hw mutant has roughly half
as many vascular cells as wild-type plants, although the number of cells in the
cortex and endodermis is unaltered (Ohashi-Ito and Bergmann, 2007); embryos
of [hw plants have a reduced number of vascular initials (three instead of four)
which fail to undergo subsequent divisions, indicating that the defect arises early in
embryogenesis (Ohashi-Ito et al., 2013). Plants with the /hw mutation have only a
single vascular pole, while the stele of wol plants is composed entirely of protoxylem;
these observations are in keeping with earlier observations of a correlation between
stele size and the number of vascular poles in dicots (Torrey, 1955).

Modelling Vascular Development

Modelling per se is hardly a novel practice in biology; pen-and-paper models abound
in the literature. In recent years, however, computational modelling has emerged as
a significant new approach complementing existing techniques in the toolbox of plant
biologists. Simple linear models have proven inadequate to depict the ever-widening
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cast of interacting players revealed by experiments; the resulting networks are
often non-trivial and defy our intuition. Complex systems consisting of feedback
loops, coupled networks, and other non-linear interactions exhibit non-intuitive
behaviour that challenges our ability to make predictions about the stability of the
system or the effect of manipulations. In these cases, theoretical and computational
approaches are an indispensable tool to guide our interpretation of data and help
formulate novel hypotheses. Computational modelling also enables us to strip away
much of the complexity inherent to biological systems in the hope of identifying and
understanding the principles underlying the particulars of a specific implementation.
At its best, it allows us to abstract our results away from a particular system to
other organs, organisms, or contexts. In principle, this practice is familiar to any
biologist who has ever proposed a model or used one as the basis for a hypothesis;
computational approaches simply extend this familiar framework beyond the limits
imposed on pen-and-paper models by human intuition.

Recently, a combination of computational modelling and experiments demon-
strated the existence of an inhibitory feedback loop between CLV3 and cytokinin;
this feedback loop acts to dynamically position the WUS domain at an appropri-
ate distance from the shoot apex. Simulations also suggested that the regulatory
network be further elaborated by WUS inhibition of cytokinin biosynthesis via
the repression of LOG/; subsequent observations of LOG/ expressions in the clvs
mutant were consistent with this prediction (Chickarmane et al., 2012).

In the context of vascular development, work by Ibanes et al. (2009) used a
combination of experiments and computational modelling to describe the interaction
of auxin and brassinosteroids in establishing the vascular pattern of the Arabidopsis
shoot. They constructed a model of auxin transport which was able to reproduce
the observed periodic distribution of auxin signalling maxima and to predict the
phenotype of the pinipin2 double mutant. Using this model, they showed that
asymmetric auxin transport, rather than the auxin level, determined the number
of auxin maxima and thus the number of vascular bundles, a result which was
confirmed by experiments with auxin over-producing mutants. Previous work had
already established a link between brassinosteroids and the number of vascular
bundles; analysis of their model indicated that brassinosteroids could modulate the
number of auxin maxima by altering either the period of the pattern or the total
number of cells. Based on this insight, they measured the effect of brassinosteroids
on both parameters and discovered that they affect the total cell number rather
than the period of the auxin pattern.

Subcellular models incorporating the dynamics of transcription, translation, and
turnover have also generated valuable insights. For example, Muraro et al. (2011)
incorporated the effect of cytokinin signalling (and its cross-talk with auxin) into
an earlier model of an AUX/TAA negative feedback loop developed by Middleton
et al. (2010). Their model made testable predictions about the periodic dynamics of
hormonal concentrations in the root apex; interestingly, they also showed that some
elements of the network respond differently to changes in hormonal supply and
genetic mutations. More recently, Muraro et al. (2013) constructed a one-dimensional
model investigating the role of auxin-cytokinin crosstalk in root zonation, followed
by a two-dimensional model of auxin-cytokinin crosstalk in vascular development
(Muraro et al., 2014).

Studies such as these serve as excellent examples of the value of iteration between
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theoretical and experimental approaches in guiding research. Computational and
theoretical approaches have also been applied to great effect in a wide range of other
contexts, from epidermal cell fate patterning (reviewed by Benitez et al. (2011)) to
root stem cell niche development (reviewed by Azpeitia and Alvarez-Buylla (2012)),
using a variety of modelling frameworks (reviewed by Grieneisen and Scheres (2009);
De Vos et al. (2012)).

In addition to investigating specific systems, modelling can also guide our
investigations by exploring the limits and possibilities of different mechanisms. For
example, a mathematical model of auxin movement (Mitchison, 1980) revealed
constraints on auxin velocity and other biophysical constants imposed by various
proposed transport mechanisms, including the chemiosmotic theory. Grieneisen
et al. (2012) examined the robustness of morphogen gradients produced by different
mechanisms to evaluate their ability to generate positional information; focusing
on auxin, they showed that a reflux loop, but not source-decay or unidirectional
transport, could generate a positionally informative gradient. Band and King (2012)
showed that cell length can exert a dominating effect on auxin transport due to
the difference in the time scale of auxin distribution between and within cell files.
They found that auxin flux is driven by the epidermis near the root tip, where
cells are short, but depends on the distribution of auxin carriers in shootward cells
which have elongated. A recent analysis of current models of polar auxin transport
has shown that while existing models are capable of self-organizing to produce
polarized auxin transport patterns, these are limited to unidirectional patterns (van
Berkel et al., 2013); existing models cannot self-organize to produce the bidirectional
“reverse fountain” patterns seen leaf primordia and the root meristem, respectively,
in which auxin . The term “reverse fountain” has been used to describe different
auxin flux patterns in leaf primordia and the root meristem. Grieneisen et al. (2007)
use the term to describe auxin flux in the root meristem, where PINS direct auxin
through the inner, vascular tissues towards a maximum in the QC and then laterally
away and back shootwards in the outer layers; however, van Berkel et al. (2013)
describe this pattern as a “fountain” and use “reverse fountain” for the reversed
pattern in leaf primordia originally described by Reinhardt et al. (2003), in which
PINs in the outer layers direct auxin towards a maximum from whence it is then
transported into the inner tissues.

Chapter IV extends the work of Grieneisen et al. (2007), which modelled auxin dif-
fusion and PIN-facilitated transport in a longitudinal root section. Using empirically-
derived patterns of PIN expression and localization, they demonstrated that the site
of auxin biosynthesis in the root does not affect the steady-state auxin distribution
since the dynamics of auxin transport will quickly redistribute any synthesized
auxin. Instead, the pattern is determined by the dynamics of the auxin reflux
loop, which robustly self-organizes based on the pattern of PIN localization. The
flow of auxin in the root was directed by the PIN efflux transporters in a “reverse
fountain,” travelling from the shoot rootward through the vascular cylinder and
then outward through the columella to return shootward in the epidermis and
cortex. The expression pattern of the PIN proteins and their localization on specific
regions of the cell membrane was shown to be an important factor in determining
the overall pattern of auxin distribution and flux, which generates and maintains
an auxin-signalling maximum at the QC and acts as an “auxin capacitor” capable
of maintaining high levels of auxin signalling in this domain even after transport
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from the shoot has been disrupted.

These findings highlight the need to combine experimental and theoretical
approaches to advance our understanding of the mechanistic basis by which polar
auxin transport is organized. Computational models can reveal the short-comings of
experimentally derived models and thus help to guide the direction of future work.
By requiring a rigorous statement of assumptions and exploring their consequences,
computational and mathematical models can also reveal constraints which limit the
patterning mechanisms available in a given system.
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Aims of the study

The suppression of cytokinin signalling at the protoxylem position seems to place
AHPG6 at a crucial position in the regulation of vascular development in Arabidopsis,
but the factors regulating AHP6 remained unknown at the start of this study.
We therefore set out to identify factors acting upstream of AHP6 and understand
the regulatory network controlling A HP6 positioning and xylem specification. We
discovered that auxin promotes AHP6 expression, leading us to investigate its
interaction with cytokinin during vascular development in the Arabidopsis root.
The specific aims of this study were the following:

1. To identify the factor or factors upregulating AHP6 in vascular development.

2. To investigate the role of auxin in xylem development and its interaction with
cytokinin.

3. To test whether the auxin-cytokinin loop we discovered is sufficient to establish
the observed hormonal signalling domains in the root tip and maintain the
pattern of the Arabidopsis stele.

4. To understand the dynamics of the auxin-cytokinin loop and its implications
in vascular development and more generally.
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Materials & Methods

The materials and methods used are described in detail in the individual publications.
Table 1 lists the methods used in this study together with the publications in which

they were used.

’ Method Publication
Agrobacterium mediated transformation of Arabidopsis II, 111
Algorithmic generation of digital root cross sections v
Analysis of simulation results v
Anatomical analyses (II), (III), IV
Aniline blue staining (I1I)
Confocal microscopy IT, 111, IV
DNA sequencing 1I
Embedding and histological analysis of root cross sections (IT), (III), (IV)
Fuchsin staining of Arabidopsis roots 11, TIT
Genetic crosses of Arabidopsis I1, IIT
Immunolocalisation (IT)
Hormone induction assays (II), (III)
Light microscopy II, II1, IV
Mass spectrometry (IIT)
Plasmid construction 11, (111)
Polymerase Chain Reaction (PCR) analysis I, II1, (IV)
Programming and implementaion of computational simulations v
Quantification of intensity signal in confocal images (IV)
Quantitative real-time PCR analysis I, 111, (IV)
Radiolabelled hormone transport assays (III)
RNA extraction II, TI1
Scintillation analysis (I11)
Segmentation of root cross section images v
Sequence analysis 11, TIT
Statistical analysis II, 111, TV

Table 1: The methods used in this study. Parentheses indicate methods performed by co-authors

in the respective publication.
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Results & Discussion

Vascular patterning
Auxin and cytokinin domains

Although it was known that mutual inhibition between cytokinin and AHP6 position
the protoxylem in the Arabidopsis root (M#honen et al., 2006a), the positive
regulator(s) of AHPG activity remained a mystery. Given cytokinin and auxin’s
well-known antagonism, auxin seemed likely to play a positive role in this process.
We therefore used several different markers to investigate the status of auxin and
cytokinin signalling in the Arabidopsis stele. We queried cytokinin signalling using
two cytokinin-regulated promoters: the type A response regulator ARRS and the
synthetic two-component signalling reporter TCS. In transverse sections, both
reporters showed two domains of cytokinin signalling in the intervening procambium
cells flanking the xylem axis. To our knowledge, this is the first report of the
transverse pattern of cytokinin signalling in the Arabidopsis root meristem. Using
the auxin-responsive promoters IAA2 and DRbrev to examine the auxin response
in the stele, we found a domain of high auxin signalling through the xylem axis
with a stronger signal in the protoxylem cells. Previous work (Swarup et al., 2001)
has reported TAA2 activity in the protoxylem poles; however, the developmental
implications of this finding were not explored further. Auxin and cytokinin signalling
form complementary domains encompassing the entire Arabidopsis stele with the
exception of the pericycle (although weaker auxin signalling was observed in the
xylem-pole pericycle cells), suggesting that these domains may serve as positional
cues during development (Figure 3).

Figure 3: (A, B) Cytokinin and auxin signalling form complementary domains in the stele, shown
by the markers ARR5 and IAA2, respectively. (C-F) The domains alter in response to cytokinin
and in receptor mutants. Yellow arrows mark protoxylem; white arrows mark the position normally
occupied by protoxylem; asterisks mark pericycle cells. ck=cytokinin; wt=wild-type. Modified
from Bishopp et al. (2011).
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Serial sections shootwards of the QC showed that the signalling domains of
the two hormones change along the longitudinal axis. Near the QC, the domain
of both hormones is broader, with cytokinin signalling throughout the stele and
auxin signalling in the stele and endodermis. The domains become restricted to the
complementary pattern reported above around 40pum from the QC. Refinement of
the auxin domain continues in shootwards sections; by 100um shootwards of the QC,
the auxin pattern is restricted to the protoxylem cells, leaving the metaxylem devoid
of either auxin or cytokinin signalling. The overlap of the high auxin signalling
domain with the AHP6 and ATHBS expression domains suggested that auxin might
be promoting xylem specification via these genes.

Auxin specifies protoxylem

We used qRT-PCR to determine whether AHP6 is auxin regulated. Following
a two hour incubation with the auxin indole-3-acetic acid (IAA), we observed a
10-fold increase in the expression of AHPG6, a response profile similar to that of the
primary auxin response gene [AA2. A series of deletions of the AHP6 promoter
revealed that the 755bp upstream of the start codon were necessary and sufficient for
consistent expression in the protoxylem position. This region contains five potential
auxin response elements (TGTC). We created a version of the 755bp promoter in
which these sites had been mutated to abolish ARF binding (TGTC—TGGC) and
observed no expression of GFP in the protoxylem position under this promoter.
Auxin signalling therefore appears necessary for the correct expression of AHP6 in
the Arabidopsis stele.

In order to better understand the relationship between auxin, AHP6, and
protoxylem development, we generated transgenic plants inducibly expressing axr3-
1, a stabilized form of AXR3/IAA17 which acts as an inhibitor of auxin signalling
Rouse et al. (1998), throughout the stele. The azr3-1 mutant has a radially
symmetric stele which lacks protoxylem altogether in the root tip. Induction of
axr3-1 in non-mutant plants led to the loss of AHP6 expression within 24hr, further
supporting the positive relationship between auxin and A HP6. Taken together, these
data suggest that auxin signalling in the protoxylem position activates expression
of AHP6 and the specification of protoxylem.

The PINs position auxin in the xylem axis

To assess the role of polar auxin transport in this process, we treated plants with the
auxin transport inhibitor 1-naphthylphthalamic acid (NPA). We observed changes
in the auxin signalling pattern following 5 days on NPA. Expression of JAA2 and
DRbrev disappeared from the xylem axis and was observed in the pericycle and
throughout the outer cell layers. Likewise, AHP6 was no longer expressed in
the protoxylem position, although its expression spread circumferentially in the
pericycle; induction of auxin biosynthesis under the AHP6 promoter was able to
restore expression in the protoxylem position. NPA treatment also resulted in a
dose-dependent loss-of-protoxylem phenotype similar to that of the ahp6 mutant.
Prolonged NPA treatments led to a proliferation of cells within the stele; this was
coupled with an increase in the number of poles of AHP6 expression after 12 days
and in the number of xylem poles after 21 days, in keeping with the previously
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observed correlation between stele size and the number of vascular poles in dicots
(Torrey, 1955).

Although the precise mechanism by which
NPA accomplishes its effect remains unclear, it
is known to act as an inhibitor of auxin efflux
(Morgan, 1964). We therefore investigated the
expression pattern of the PIN class of auxin
efflux transporters in order to identify candid-
ates which might be involved in establishing the
transverse pattern of auxin distribution. The
radially symmetric expression pattern of PIN2
and PIN/ makes them unlikely candidates to
generate a radially asymmetric auxin pattern.
By contrast, the expression patterns of PINI,
PIN3 and PIN7 are not radially symmetric (Fig-
ure 4). Although PINI is expressed throughout
the stele, immunolocalisation revealed it to be
basally and laterally localized in the cells flank-
ing the xylem axis but only basally localized in
the xylem cells. The expression of PIN3 var-
ies along the longitudinal axis. Approximately
20pm shootwards of the QC it was observed in a

] ] bisymmetric pattern in the xylem-pole pericycle;
Figure 4: Location of PIN1, PIN3, and . .
PIN7 near the root meristem. Asterisks €XPression then expanded to include the central
mark pericycle cells; the xylem axis is Xylem cells by around 50um before becoming
indicated by yellow arrowheads. Modi- radially symmetric around 100pm shootwards
fied from Bishopp et al. (2011). of the QC. PIN7 is expressed in two domains
comprising the intervening procambium cells and the phloem poles in a pattern
similar to ARRS5 expression. The expression patterns of PIN1, PIN3, and PIN7
suggest a model in which enhanced transverse auxin transport in the procambium
coupled with reduced rootwards efflux from the xylem cells leads to an accumulation
of auxin within the xylem axis.

To test this hypothesis, we screened mutants of the PIN transporters for defects
in vascular patterning. We observed abnormal protoxylem patterns in pini but
not in the other single mutants; however, the pin3 pin7 double mutant showed
abnormal expression of AHP6 and DR5, as well as defects in protoxylem formation.
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Cytokinin moulds the auxin domain

In the ahp6 mutant or in plants treated with cytokinin, cytokinin signalling
spreads to include the protoxylem position while auxin signalling is confined to the
metaxylem cells; these plants also show inconsistent specification of protoxylem, with
gaps or only a single protoxylem pole (M&hénen et al., 2006a). By contrast, mutants
with reduced cytokinin expression such as wol or the double cytokinin receptor
mutant crel ahk3 show an expanded domain of auxin signalling concomitant with
a reduction in the cytokinin domain and an increased number of protoxylem cells
(M&honen et al., 2006a). In order to better understand the relationship between
auxin and cytokinin in this context, we treated plants which had altered cytokinin
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signalling with NPA.

Inducing expression of the cytokinin degradation enzyme CKX1 in the stele of
plants grown on NPA led to an expansion of the domain of AHP6 and IAA2 along
with the formation of many strands of ectopic protoxylem. Treating the wol mutant
with NPA had no effect on the all-protoxylem phenotype or AHP6 expression;
although the TAA2 expression pattern remained radially symmetric, it expanded
to include the endodermis cells. Finally, plants treated with both cytokinin and
NPA retained AHPG6 expression, suggesting that cytokinin repression of AHPG is
normally mediated via changes in auxin efflux.

Cytokinin regulates the PINs

These results led us to speculate that cytokinin might affect vascular development
by regulating the expression of the PIN efflux transporters or modulating their
subcellular localization. We therefore looked for alterations in the distribution of
the PINs in response to treatment with exogenous cytokinin and in plants with
perturbed cytokinin signalling. Cytokinin treatment resulted in a shift of the PINS
domain to the central xylem cells, similar to the change in TAA2 expression, and an
expansion of PIN7 expression into the protoxylem position, similar to the ARRS
pattern. A similar change in PIN7 expression was observed with the transcriptional
reporter pPIN7::GFP:GUS, indicating that cytokinin regulation of PIN7 occurs
at the level of transcription. In wol plants, no PIN7 expression was observed in
the meristematic zone, while PINS expands to include the entire stele, although
the signal is faint. The expression pattern of PINI was unaltered in wol, but the
protein was found to be basally localized in all of the vascular cells, in contrast
with wild-type, where it is also laterally localized in cells flanking the xylem axis.
Finally, the PIN7 domain was reduced in crel ahk3, again following the expression
of ARRS, which flanked an enlarged xylem axis. These data demonstrate that the
pattern of PIN localization is sensitive to cytokinin signalling, a finding consistent
with other research conducted around the same time, despite differences in the
regulatory mechanisms uncovered in the studies (Dello Ioio et al., 2008; Laplaze
et al., 2007; Ruzicka et al., 2009). Our results suggest that cytokinin upregulates
PIN7 transcription and PIN1 lateralization in this context, while PINS expression
seems to closely follow (but not entirely correspond with) auxin signalling.

We next investigated the ordering of these events to confirm that the change in
the expression of the markers preceded the anatomical changes rather than being a
consequence of them. We therefore constructed transgenic plants expressing IAA2,
AHP6, PIN7, or DR5 in a background with inducible versions of the constitutive
cytokinin signalling component CKI or the cytokinin degradation enzyme CKX.
Changes in PIN7 expression were observed 12 hours after induction of CKT; this was
followed by changes in the DR5 and AHP6 pattern at 24 hours, while anatomical
changes were not observed until 72 hours after induction. Likewise, induction of
CKX resulted in changes in TAA2 and AHPG6 expression after 24 hours, while
anatomical changes were only observed after 48 hours. These experiments confirmed
that the observed changes in hormonal signalling and gene expression take place
upstream of changes in cell identity and anatomy.
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Basipetal hormone transport in the phloem

Cytokinin has been detected in sap and leaf exudates (Takei et al., 2002, 2004a),
indicating that it may be transported over long distances in the phloem. We
therefore hypothesized that cytokinin transported from the shoot could affect PIN
regulation and developmental processes in the root. We began by testing whether
application of cytokinin to the aerial parts of the plant could elicit a response in
the root. Three hours after application of cytokinin to the hypocotyl of 5-day
old seedlings, we observed a spread of the ARR5 domain in the meristem and
an increase in its expression level. To determine that this was actually due to
translocation of cytokinins, we developed an assay allowing us to visualize the
migration of *C-labelled N®-benzyladenine (BA) using an imaging plate as a
radioactive energy sensor that was processed with a fluorescent image analyser. We
observed a radioactive signal in the root meristem region four hours after applying
radioactively labelled cytokinin to the hypocotyl of 5-day old plants, confirming
that the labelled BA had been transported to the root tip. In order to determine
whether this basipetal transport occurred via the phloem, we also conducted the
assay in backgrounds with impaired phloem connectivity. In addition to the apl
mutant, which lacks phloem (Bonke et al., 2003), we tested a transgenic line in
which we could impair phloem transport by inducing phloem-specific expression of
cals3m, which blocks symplastic connections via rapid callose biosynthesis (Vatén
et al., 2011). Basipetal transport of labelled cytokinin was severely reduced in
both lines, indicating that it occurs via symplastic connections in the phloem.
Induction of cals3m expression also led to a reduction of the ARRS5 response in the
root meristem, indicating that symplastic transport acts as a significant source of
endogenous cytokinin to the root meristem.

We used the same assay to examine the basipetal transport of auxin. Following
application of *C-labelled indole-3-acetic acid (IAA) to the hypocotyl, we observed
a radioactive signal in the root tip; as with cytokinin, the basipetal transport of
auxin was compromised by induction of cals3m in the phloem. However, we observed
only minor changes in the auxin response in the root tip when phloem transport
was blocked, suggesting that bulk auxin transport via the phloem is supplemented
by other transport mechanisms or local biosynthesis. Finally, we tested the effect of
NPA treatment on the basipetal transport of labelled auxin and cytokinin. While
auxin transport was impaired by NPA, cytokinin transport was unaffected.

We next investigated the effect of reduced basipetal cytokinin transport on
vascular patterning by examining the pattern of PIN7, DR5, and AHPG6 expression
in these backgrounds. Impaired phloem transport resulted in altered expression of
all three markers, often causing an expansion of the domain of AHP6 expression
and high auxin signalling, as well as defects in protoxylem formation. However,
these results alone cannot distinguish whether the perturbed pattern is due to
reduced cytokinin transport or an overall reduction in transport via the phloem.
We therefore created pAPL:XVE>>CKX1:YFP plants in which we could inducibly
degrade cytokinin in the phloem and examined the markers in this background.
Again, the plants showed alterations in the expression pattern of all three markers
together with defective protoxylem formation. To confirm that these non-cell-
autonomous effects were due to a decrease of cytokinin in the phloem and not in
the immature phloem of the root meristem, we also drove expression of CKX1:YFP
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Figure 5: A schematic of the proposed model, showing active (dark) and downregulated (faint)
elements in different cells. While the PINs (yellow arrows) were part of the experimentally-derived
model, the role of the importers (red arrows) was revealed by our simulations. Modified from
el-Showk et al. (2015).

under the EARLY PHLOEM MARKER (At2g37950, (Lee et al., 2006)) promoter
but only seldom saw minor effects on protoxylem differentiation. Finally, to confirm
that cytokinin was being transported from the shoot rather than from distal
regions of the root, we grafted 355::CKX2 shoots onto AHP6::GFP rootstocks
and observed an expansion in the AHP6 domain in the roots. Together, these
results demonstrate that although the vascular pattern is initially specified during
embryogenesis, shoot-to-root transport of cytokinin via the phloem is required for
its maintenance throughout the life of the plant.

A model of vascular patterning

Based on these findings, we propose a model in which the vascular pattern of the
Arabidopsis stele is regulated by a mutually inhibitory feedback loop between auxin
and cytokinin mediated by AHP6 and the PIN efflux transporters (Figure 5). High
cytokinin signalling in the procambial cells generates a bisymmetric pattern of
localization of the PIN class of auxin efflux transporters which directs the radial
transport of auxin into the central axis; high auxin signalling promotes the expression
of AHPG6, which reciprocally restricts the domain of high cytokinin signalling. High
auxin output in the xylem axis also promotes the expression of the xylem identity
gene ATHBS and the specification of protoxylem. Manipulation of the transport
or signalling of either hormone shifts the boundary between their domains. Thus,
a feedback loop involving hormone transport dynamics and mutually inhibitory
interactions provides a mechanism to generate positional information to pattern
new organs.



Computational simulations

Computational simulations

We tested whether our experimentally derived model was sufficient to explain the
observed pattern using computational simulations, which also allowed us to better
understand the dynamics of this system. To that end, we implemented a two-
dimensional computational model of transverse auxin transport in two different
root cross sections, a ‘geometric’ cross section generated by algorithmic subdivision
of a circle and a ‘realistic’ section generated by segmentation of confocal cross
sections. We positioned the auxin transporters PIN1, PIN3 and PIN7 according to
experimental observations and included the hormonal regulation described above.
In addition, our model included an auxin importer expressed in all stele cells and
an unregulated exporter in the epidermis, cortex and endodermis to represent the
reported expression of PIN2 (Blilou et al., 2005), PGP1, and PGP19 (Mravec et al.,
2008) in these cells. Our model, which is an extension of the model developed by
Grieneisen et al. (2007), takes into account the spatial structure of cells and cell
walls as well as their organization in a tissue. Along with active transport of auxin,
diffusion of both auxin and cytokinin was included in the model. For a mathematical
description of the formalism, the reader is referred to the Materials & Methods in
Chapter IV and to the description by Grieneisen et al. (2007). We used the model
to simulate auxin flow in cross sections of wild-type, cytokinin-treated, and wol
roots with PINI, PIN3 and PIN7 placed according to experimental observations;
in addition, we simulated pin! and pin7 roots by disabling the appropriate PIN in
the simulations.

‘Static’ simulations in which the transporters were correctly positioned but
did not respond to hormonal regulation (and so were constantly at full strength)
generated the experimentally observed auxin pattern in wild-type roots but not in
wol roots or roots treated with cytokinin. Under these conditions, the expected
auxin pattern was only generated in ‘dynamic’ simulations which included hormonal
regulation of transporter expression levels. While these simulations indicate that the
experimentally derived model is sufficient to explain the auxin pattern in the stele,
they also demonstrate the necessity for hormonal regulation of the transporters;
correct positioning of the PINs alone is not sufficient to consistently reproduce the
observed pattern in all conditions.

In order to understand the contribution of hormonal regulation, we compared
the auxin flux pattern in static and dynamic simulations of wol roots. In the static
simulations, the exporters constantly act at full strength, which leads to higher auxin
levels in the apoplast. Once in the apoplast, auxin can freely diffuse throughout the
root cross-section without crossing any membranes, allowing it to ‘leak’ to the layers
outside the stele. This ‘leakage’ may be obstructed in planta by the Casparian
strip, which was not included in our model. Nevertheless, the difference between
the static and dynamic simulations suggests that future experimental work should
endeavour to measure the expression level of transporters as well as their spatial
distribution pattern.

Cytokinin transport and gradients

Although experimental evidence indicates that cytokinin transport via the phloem
is required to maintain the vascular pattern, our simulations demonstrate that a
cytokinin gradient within the stele is not required; an even distribution of cytokinin

32



Computational simulations

was sufficient to generate the expected auxin pattern in simulations. Furthermore,
physical considerations impose constraints on the ability of cytokinin to form an
informative gradient on the scale of the Arabidopsis stele via diffusion, particularly
given the observation that cytokinin travels over long distances in planta. The
gradient formed by a diffusing substance depends on the diffusion coefficient and
the degradation rate; in order to form an informative gradient on the scale of the
Arabidopsis root (50-100um), these parameters need to be set to values that are
unrealistic for cytokinin. When the cytokinin diffusion coefficient and degradation
rate are similar to those of auxin, a gradient cannot form across the stele via
diffusion since the scale of a diffusive gradient is much larger than that of the stele
(blue line in Figure 6); in order to form a gradient via diffusion alone, one or both
of these parameters must be changed by several orders of magnitude (e.g., red and
green lines in Figure 6). This is true even in simulations with cytokinin biosynthesis
localized to specific cells and cytokinin movement inhibited by cell membranes, since
diffusion in the apoplast quickly evens out the cytokinin distribution (unless the
diffusion coefficient is significantly lower in the apoplast). The challenge becomes
yet more extreme in the developing embryo, since the distances involved are even
smaller. Our analysis demonstrates that diffusion alone is not sufficient to form a
patterned distribution on these scales; it must be supplemented by other dynamics,
such as directed transport or a source-sink mechanism.

\ — decay similar to auxin
— decay 60,000 faster
decay 240,000x faster

200 300 400 500
Distance (um)

Figure 6: The steady-state concentration of cytokinin at a distance from a source in a diffusion-
decay model. The lower box is zoomed in 50x, with root sections drawn to scale for comparison
with the gradients. The dotted lines indicates the ‘characteristic length’, at which the concentration
is about 35% of the source. Modified from el-Showk et al. (2015).

These findings directly conflict with a recent study of the same network which
argued that local cytokinin biosynthesis forms a gradient essential for correct vascular
patterning (De Rybel et al., 2014). However, the simulations by De Rybel et al. used
a cytokinin degradation rate ten times greater than that of auxin and an extremely
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low membrane permeability (equivalent to the lowest value we tested) coupled with
the biologically implausible assumption of little or no cytokinin movement in the
apoplast. Careful examination of the assumptions embedded in their simulations
therefore reinforces our argument that it is challenging to form an informative
cytokinin gradient on these scales via diffusion alone.

Nevertheless, spatially specific patterns of cytokinin signalling have been ob-
served across the Arabidopsis stele; there appears to be a gradient between high
cytokinin signalling in the procambium and lower signalling in the xylem axis.
These observations may reflect an underlying cytokinin gradient which could be
formed by directed cytokinin transport or spatially specific expression of cytokinin
degradation genes; alternately, there may not be a cytokinin gradient underlying
these observations, which might instead result from spatially specific expression of
cytokinin perception genes on top of a homogeneous cytokinin distribution.

A directed cytokinin transport process might be self-patterning, as seems to be
the case with auxin and the PINs. By contrast, patterned cytokinin perception or de-
gradation seem likely to only push the pattern-formation question to another level. It
may be that these patterns result from auxin regulation of genes involved in cytokinin
perception (e.g., ARRs) or degradation (e.g., CKXs); another intriguing possibility
is the notion that auxin might even regulate cytokinin transporters, if they exist.
Regardless of the preferred scenario, our analysis raises questions and challenges re-
garding the mechanics and dynamics of cytokinin transport which must be addressed
by experiments, thus guiding and constraining future work. Furthermore, these
results highlight how proposals about local patterning mechanisms may have implic-
ations at the scale of the whole organism, stressing the importance of considering
what constraints may be introduced by conflicting requirements at different scales.

A role for auxin import

wildtype importer mutant

Our simulations predicted no auxin max-
imum in the xylem axis (and therefore
protoxylem defects) in pin! but not in
pin7, consistent with empirical data. Fur-
thermore, plotting the amount of auxin
accumulated in the xylem axis in various
simulations revealed that roots lacking act-
ive auxin import had lower auxin levels
(Figure 7), suggesting that plants with
mutations in one or more of the auxin in-
flux transporters would have a protoxylem
phenotype similar to pin! or perhaps even
more severe. We therefore investigated
the protoxylem phenotype of single and
multiple mutants of AUX1, LAX1, and Figure 7: The auxin distribution in simulations
LAX2, the auxin importers expressed in of (A, C) wildtype and (B, D) importer mutant
the root meristem. While none of the (9™ e 4 soncenaion s shown in b
single mutants showed a protoxylem phen- response curve similar to that of the auxin
otype, the auxl laxl lax2 triple mutant reporter DR5.

showed a severe phenotype with defective protoxylem formation in more than 80%
of the plants examined. We also found that protoxylem formation in the auzl

0 max “eopm
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mutant is hypersensitive to inhibition by cytokinin, indicating that this mutation
disrupts the stability of the auxin-cytokinin feedback loop. Previous work has shown
that LAXS acts alongside AUXI in lateral root initiation (Péret et al., 2012) while
LAX1 and LAX2 act with AUX1 in regulating phyllotaxis (Bainbridge et al., 2008).
Together with our findings and recent work showing that the LAX proteins are
not correctly targeted to the membrane in the AUX1 expression domain (Péret
et al., 2012), this suggests that specific LAX genes may act in concert with AUX1
to amplify or stabilize the auxin pattern in different developmental contexts.

A transverse auxin flux circuit

Our experimental data suggest that the lateral localization of PIN1 is polar in stele
cells, but we cannot rule out the possibility of apolar localization. Fortunately,
simulations enable us to evaluate the implications of these different scenarios despite
the challenge of addressing them experimentally; we may therefore be able to
generate hypotheses which may allow us to indirectly test the scenarios.

Apolar localization of PIN1 in the procambium resulted in lower auxin accumula-
tion in the xylem axis, although a clear maximum remained. However, examination
of the auxin flux patterns revealed a striking difference between simulations with
polar and apolar PIN1. Polar auxin eflux within the procambium organized the
auxin flux into a circuit towards the xylem axis and out through the protoxylem
poles, while apolar localization resulted in disorganized auxin flux within the stele
(Figure 8). The disorganized flux in simulations with apolar roots appears to be
sensitive to the geometry of the root cross-section, although we did not test this
rigorously.

polar PIN1

apolar PIN1

Direction of flux

Figure 8: A heatmap of the auxin flux in the stele of simulated geometric cross sections with polar
or apolar PIN1 localization; the overall flux pattern is depicted by the white arrows. Modified
from el-Showk et al. (2015).

We investigated whether the auxin circuit stabilizes the auxin maximum in
the xylem axis or otherwise affects the auxin pattern in the developing stele. In
simulations with polar or apolar PIN1 & PIN7 in the procambium, we transiently
activated AUX1 expression in a single pericycle cell and observed whether this cell
would destabilize the auxin maximum in the xylem axis and become a new auxin
sink. In geometric cross-sections with apolar localization of the PINs, a 120 second
activation of AUX1 in any pericycle cell consistently led to auxin accumulation
in a specific pericycle cell, suggesting that this cell was somehow favoured by the
geometry of the cross-section. When PIN localization was polar, only the xylem-pole
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pericycle cells could compete with the xylem axis and accumulate auxin; an AUX1
pulse in other pericycle cells did not disrupt the auxin maximum in the xylem.
In realistic cross-sections with apolar PINs, an AUXI pulse only led to auxin
accumulation if it occurred in a subset of the xylem-pole pericycle cells, while polar
localization enabled all of the xylem-pole pericycle cells to accumulate auxin. The
auxin flux circuit generated by polar PIN localization therefore seems to stabilize
the ability of the xylem-pole pericycle cells to compete with the xylem axis, while
other factors (perhaps related to tissue geometry) seem to dominate in the absence
of the circuit.

The potential developmental implications of auxin accumulation in xylem-pole
pericycle cells are particularly intriguing since AUX1 activation in these cells is one of
the earliest steps in lateral root initiation (Laskowski et al., 2006). Given that lateral
roots in Arabidopsis alternate between opposite xylem poles, we next conducted
simulations testing the effect of PIN polarity when AUX! was simultaneously
activated in opposing xylem-pole pericycle cells for 120 seconds. In these simulations,
auxin always accumulated in only a single pericycle cell, following the same pattern
as when AUX1 was only activated in one pericycle cell (i.e., the same cell always
accumulated auxin in apolar geometric simulations, but not in other conditions).
We next introduced a delay between the AUXI pulse in the two pericycle cells in
simulations with polar PINs in an effort to decide which xylem-pole pericycle cell
would accumulate auxin. A short delay (5s) was sufficient to ensure that the first
cell receiving AUX1 accumulated auxin in realistic cross-sections, while a longer
delay (100s) was necessary in geometric cross-sections.

Our simulations demonstrate that polar PIN localization in the procambium
generates a preference for xylem-pole pericycle cells to accumulate auxin, offering
the intriguing possibility that this regulatory network may be connected to lateral
root initiation. This system is also bistable, ensuring that only one of the two poles
can accumulate auxin. In addition to the implications for lateral root initiation,
privileging the xylem-pole pericycle may have a wider-reaching impact on plant
development. Passage cells, endodermal cells which do not form suberin lamellae, are
also always positioned at the xylem poles (Geldner, 2013), and xylem-pole pericycle
cells appear to be more pluripotent than other pericycle cells, since in vitro shoot
regeneration is possible from xylem-pole but not phloem-pole pericycle cells (Atta
et al., 2009). Furthermore, the pluripotent tissue callus seems to result from ectopic
activation of the lateral root developmental program; callus expresses a xylem-
pole pericycle marker and its formation requires ABERRANT LATERAL ROOT
FORMATION / (Sugimoto et al., 2010), a gene which acts downstream of auxin
during lateral root initiation (Celenza et al., 1995). The auxin flux circuit identified
here may thus serve to link patterning at several levels, connecting subcellular
polarity to tissue-level organization.

Concluding Remarks

In this work we have described a novel mechanism regulating vascular patterning
in the Arabidopsis root. Based on experimental data, we proposed a model in
which mutual inhibition between auxin and cytokinin mediated by the regulation of
signalling and transport establishes complementary signalling domains in the stele,
providing the positional information needed to maintain the continuity of vascular
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strands. Our experiments show that the hormone signalling domains are remarkably
robust, showing only minor responses to a wide range of manipulations; major
disruptions to either auxin or cytokinin signalling were required to significantly
alter the pattern.

We then used computational simulations to confirm that the proposed network
is sufficient to maintain the vascular pattern. Our simulations show that PIN
patterning alone is not always sufficient to account for the observed auxin distribu-
tion; in several cases, hormonal regulation of PIN expression levels is also required.
Furthermore, we identified a role for active auxin import in stabilizing the auxin
pattern generated by the experimentally-derived model. Finally, we observed that
polar PIN localization in the procambium results in an auxin flux circuit through the
xylem axis which generated a preference for auxin accumulation in the xylem-pole
pericycle cells, potentially linking this mechanism to later developmental events.

Our simulations also demonstrate the difficulty of forming an informative cy-
tokinin gradient on the scale of the Arabidopsis root via diffusion. While a cytokinin
gradient does not appear to be required in this patterning process, cytokinin is
a central hormone in plant development, and a cytokinin gradient has been sug-
gested to play an important role in process such as shoot meristem patterning
(Chickarmane et al., 2012) and root gravitropism (Aloni et al., 2004). Despite
the difficulty of forming a cytokinin gradient, observations of cytokinin signalling
response show a clear pattern in many contexts, raising the question of how the
patterns are formed. The basis of the observed patterns—whether they result
from local, directed cytokinin transport or patterning of the cytokinin perception
machinery—is therefore a pressing, open question.

Our model also highlights the importance of including the apoplast when con-
sidering hormone transport and patterning. In our ‘static’ simulations, the apoplast
formed a conduit for auxin to reach the outer layers of the root after it was pumped
out of stele cells by over-active exporters. Likewise, the formation of a cytokinin
gradient via diffusion alone is limited by movement through the apoplast, which
evens out the cytokinin distribution; similar dynamics constrain auxin gradients,
which become more shallow when auxin moves freely in the apoplast in the absence
of importers (Swarup et al., 2005). These findings underscore the importance of
the apoplast and the potential pitfalls of overlooking it in our models, whether
computational or pen-and-paper.

An understanding of de novo patterning is an important precursor to evaluating
the applicability of our model to other plants. Ideally, the model would be able to
account for the variation in vascular patterns found in different species, although
this assumes that a common biological mechanism underlies these various patterns.
How true this is remains to be seen; it is certainly plausible that vascular patterning
is regulated differently in monocots than dicots. Modelling approaches will be
invaluable in extending the model to other species, since it would be trivial to
implement the network (or a modified version) in roots of different sizes and
geometries and evaluate the resulting patterns. In addition, such an approach
would directly test the utility of the underlying patterning mechanism rather than a
specific implementation, thus allowing for the possibility of a similar network based
on a different set of components. A combination of experimental and computational
approaches thus informs our understanding of development in Arabidopsis and will
help generalize these findings to other species.
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