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Abstract. In this study a long-term volatile organic com-

pound (VOCs) concentration data set, measured at the

SMEAR II (Station for Measuring Ecosystem–Atmosphere

Relations) boreal forest site in Hyytiälä, Finland during the

years 2006–2011, was analyzed in order to identify source

areas and profiles of the observed VOCs. VOC mixing ra-

tios were measured using proton transfer reaction mass spec-

trometry. Four-day HYSPLIT 4 (Hybrid Single Particle La-

grangian Integrated Trajectory) backward trajectories and the

Unmix 6.0 receptor model were used for source area and

source composition analysis. Two major forest fire events in

Russia took place during the measurement period. The effect

of these fires was clearly visible in the trajectory analysis,

lending confidence to the method employed with this data

set. Elevated volume mixing ratios (VMRs) of non-biogenic

VOCs related to forest fires, e.g. acetonitrile and aromatic

VOCs, were observed. Ten major source areas for long-

lived VOCs (methanol, acetonitrile, acetaldehyde, acetone,

benzene, and toluene) observed at the SMEAR II site were

identified. The main source areas for all the targeted VOCs

were western Russia, northern Poland, Kaliningrad, and the

Baltic countries. Industrial areas in northern continental Eu-

rope were also found to be source areas for certain VOCs.

Both trajectory and receptor analysis showed that air masses

from northern Fennoscandia were less polluted with respect

to both the VOCs studied and other trace gases (CO, SO2 and

NOx), compared to areas of eastern and western continental

Europe, western Russia, and southern Fennoscandia.

1 Introduction

Volatile organic compounds (VOCs) in the atmosphere

have several sources, both biogenic and anthropogenic. On

a global scale the biogenic emissions are estimated to be

an order of magnitude higher than the anthropogenic ones

(Guenther et al., 1995). The main biogenic sources are forests

(Simpson et al., 1999), to a lesser degree, crops (Guen-

ther et al., 1995), and algae in aquatic ecosystems (Fink

et al., 2007). However, in many circumstances, including

winter in northern latitudes and air pollution events, anthro-

pogenic emissions can be dominant. The most important

non-biogenic VOC sources are traffic, biomass burning (es-

pecially forest fires), extraction and refining of fossil fuels,

and evaporation of solvents (Blake et al., 2009). Once emit-

ted, the VOCs are transported and oxidized in photochemical

processes during this transport. The main oxidants for VOCs

in the atmosphere are ozone (O3), and the hydroxyl (OH) and
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nitrate (NO3) radicals (Atkinson and Arey, 2003). Depend-

ing on their reactivity with these oxidants, some VOCs have

a relatively long lifetime, from a few days to a few months,

and can be transported over long distances. In order to study

this atmospheric transport and to identify the source areas

of the measured concentrations, trajectory analysis has been

widely used (Stohl, 1996; Stohl and Seibert, 1998).

The source areas which VOCs are emitted from may com-

prise of areas with well-defined industrial sources, of densely

populated urban areas with a mixture of various source ele-

ments such as industry, power plants, and vehicles (Baker

et al., 2008), or of areas with high biogenic emission rates.

Furthermore, areas with forest fires may show up as impor-

tant source areas during fire episodes (de Gouw et al., 2006).

Thus, the importance of different source areas may vary tem-

porally, due to seasonal variations in the biogenic activity

of plants, variations in anthropogenic activity or forest fire

episodes, and meteorological conditions.

The SMEAR II (Station for Measuring Ecosystem–

Atmosphere Relations) site, located in a rural environment

in a boreal forest in southern Finland, has been used for

2 decades to investigate atmospheric processes leading to

aerosol particle formation and growth. At this site winters

typically are characterized by stronger anthropogenic influ-

ence, e.g. from heating, whereas biogenic activity is more

pronounced in the summer. There is ample evidence that

biogenic VOCs contribute to these processes at this site

(e.g. Tunved et al., 2006; Ehn et al., 2014). However, there

is also evidence that emissions and atmospheric concentra-

tions of some VOCs generally labelled as biogenic, such as

monoterpenes, are occasionally affected by anthropogenic

processes (Liao et al., 2011; Haapanala et al., 2012). Fur-

thermore, many VOCs observed at the site, with a relatively

long lifetime, are known to have both biogenic and anthro-

pogenic sources. These VOCs include, e.g. methanol, ace-

tone and acetaldehyde. As these compounds can be trans-

ported over thousands of kilometres, their atmospheric con-

centrations observed at SMEAR II are likely to be influenced

by distant anthropogenic emissions in addition to more local

biogenic and anthropogenic sources. Previously, Ruuskanen

et al. (2009) have observed that there is indication of long-

range transport of VOCs from continental Europe to Fin-

land. Also Hellén et al. (2006) observed that most of the at-

mospheric benzene in urban site in Helsinki originated from

distant sources. During long-range transport, the VOCs in air

masses coming to the SMEAR II site are often at least partly

oxidized. Thus the observed VOCs may have also secondary

chemical sources in addition to direct emissions.

The volume mixing ratios (VMRs) of VOCs have been

studied at SMEAR II earlier, e.g. by Rinne et al. (2005); Ru-

uskanen et al. (2009); Hakola et al. (2009, 2012) and Hel-

lèn et al. (2004). These studies have only made use of short

data sets, with the exception of those by Hakola et al. (2009,

2012), thus not allowing for studies of variations from annual

to inter-annual scales. Of the two long-term studies, Hakola

et al. (2012) utilized continuous measurements by an in situ

gas chromatograph and Hakola et al. (2009) used noon-time

air samples and laboratory analysis. Both of these studies

measured only terpenoid compounds with short atmospheric

lifetimes. The analysis of source areas of oxygenated com-

pounds with longer atmospheric lifetimes has not been pre-

viously feasible, as long-term data sets on VMRs of several

compounds have not been available.

Thus our aim in this study is to investigate the source

profiles and source areas of relatively long-lived VOCs

(methanol, acetaldehyde, acetone, toluene, benzene) ob-

served at the SMEAR II site by using VOC VMR data cov-

ering several years (2006–2011). The specific aims of this

study are (1) to identify the main source areas of VOCs ob-

served at SMEAR II, (2) to investigate how these sources

coincide with, e.g. wildfires and biomass burning, and major

urban and industrial areas and to (3) to determine the bio-

genic vs. anthropogenic influence by determining the source

profiles of VOCs in relation to other trace gases.

The focus of the research conducted at SMEAR II station

is atmosphere–biosphere interactions and the aerosol forma-

tion and growth processes in the boreal climate zone. While

many studies have focused on the influence of local to re-

gional sources on the observed trace gases concentrations

(Patokoski et al., 2014; Liao et al., 2011; Eerdekens et al.,

2009; Hakola et al., 2009, 2012), this study aims at identify-

ing source areas in regional to continental scale and focuses

also on characterizing the effect of long range transport.

2 Methods

2.1 Measurements site

VOC VMRs were measured at the SMEAR II site in Finland

during the years 2006–2011. SMEAR II is a rural measure-

ment station located in a boreal forest in Hyytiälä, south-

ern Finland (61◦51′ N, 24◦17′ E, 180 ma.s.l.). A detailed

description of the site is given by, e.g. Hari and Kulmala

(2005). The site is located 220 km north-west of Helsinki

and 60 km north-east of Tampere, which, with a population

of about 200 000, is the largest city near the site. Continu-

ous long-term measurements of trace gases, aerosol particles

and gas exchange between the atmosphere and the biosphere

have been carried out at the SMEAR II since the mid-1990s

(Vesala et al., 1998). The forest at the station is dominated

by Scots pine (Pinus sylvestris), sown in 1962 (Bäck et al.,

2012). There is also some Norway spruce (Picea abies), as-

pen (Populus tremula), and birch (Betula sp.) at the site (Hari

and Kulmala, 2005). The canopy height is about 18 m. Within

a square of 40km× 40 km centred on the station 23 % of the

area is covered by pine forests, 26 % by spruce forest, and

21 % by mixed forest (Haapanala et al., 2007). Agriculture

and water bodies cover 10 and 13 %, respectively.

Atmos. Chem. Phys., 15, 13413–13432, 2015 www.atmos-chem-phys.net/15/13413/2015/



J. Patokoski et al.: Sources of long-lived atmospheric VOCs at the rural boreal forest site, SMEAR II 13415

Table 1. Detection limits (ppbv) for 1 h averages of the measured VOCs during the measurement periods. Percentages of values below

detection limit are presented in brackets.

VOC DL1 DL2 DL3 DL4

(12 Jun– (29 Nov 2006– (12 Jul 2007– (28 May 2010–

26 Sep 2006) 10 Jul 2007) 22 Jun 2009) 29 Dec 2011)

Methanol 0.07 (1 %) 0.06 (1 %) 0.07 (1 %) 0.1 (3 %)

Acetonitrile 0.004 (1 %) 0.005 (4 %)

Acetaldehyde 0.02 (2 %) 0.02 (1 %) 0.02 (1 %) 0.03 (1 %)

Acetone 0.02 (1 %) 0.01 (1 %) 0.02 (1 %) 0.03 (1 %)

Benzene 0.005 (3 %) 0.003 (1 %) 0.005 (3 %) 0.006 (2 %)

Toluene 0.02 (73 %) 0.01 (1 %) 0.02 (22 %) 0.02 (4 %)

Monoterpenes 0.01 (3 %) 0.01 (19 %) 0.01 (4 %) 0.02 (12 %)

2.2 Instrumentation and sampling

The VOC VMRs were measured with a quadrupole proton

transfer reaction mass spectrometer (PTR-MS, Ionicon An-

alytik GmbH, Austria, Lindinger et al., 1998a). PTR-MS

uses the hydronium ion (H3O+) as a primary reactant ion.

VOCs with a larger proton affinity than that of water will

readily react with H3O+ (Lindinger et al., 1998a, b). This

is a a soft ionization technique, and most compounds are

not fragmented by it (Tani et al., 2003). The reactant and

the product ions are mass filtered with a quadrupole mass

spectrometer and detected with a secondary electron mul-

tiplier (SEM). Product ions are protonated, and, therefore,

methanol, for example, is identified at mass to charge ratio

(m/z, later denoted m) m of 33. During the measurements

the PTR-MS was calibrated with a VOC calibration gas mix-

ture at regular weekly or biweekly intervals. During the pe-

riod 2006–2011 four different VOC mixtures, which all in-

cluded 16–18 VOCs and were all manufactured by Apel-

Riemer Environmental Inc., USA, were used. Calibration gas

mixtures included all the compounds studied here. A detailed

description of the calibration procedure and the VMR cal-

culation methodology is presented by Taipale et al. (2008).

The following settings were used during the measurements:

Udrift varied from 450 to 525 V (mean value 479 V), temper-

ature of drift tube was 50 ◦C, E/N range varied from 105 to

130 Td (mean value 110 Td) and normalized sensitivity for,

e.g. acetone varied from 18 to 40 ncpsppb−1
v (mean value

28 ncpsppb−1
v ). Detection limits for studied VOCs are pre-

sented in Table 1. The instrument was calibrated every time

when settings were changed, taking into account the changes

in the sensitivity and cancelling the effect of the changes in

E/N to the measured VMRs. Thus the fragmentation and

clustering was always taken into account when calculating

VMRs.

Six of the measured masses were analyzed in this study:

m 33, m 42, m 45, m 59, m 79, and m 93 a.m.u, which have

been identified as methanol, acetonitrile, acetaldehyde, ace-

tone, benzene, and toluene, respectively (de Gouw and

Warneke, 2007). In addition m 137, attributed to monoter-

penes, was used as ancillary data in the analysis.

PTR-MS and GC-MS (Gas chromatography mass spec-

trometer) concentration measurements conducted previously

in Hyytiälä have agreed well for monoterpenes (Rinne et

al., 2005., Ruuskanen et al., 2005), as well as for methanol,

acetaldehyde, acetone, benzene, and toluene (Kajos et al.,

2015). These VOCs, excluding monoterpenes, have rela-

tively long lifetimes, and their sources were investigated with

HYSPLIT 4 (Hybrid Single Particle Lagrangian Intergrated

Trajectory) trajectory analysis and the Unmix 6.0 receptor

model. One-hour median mixing ratios were calculated for

the analysis. All the data are presented in local standard time

(UTC +2 h). There are some gaps in the data due to mainte-

nance, some technical problems, and the usage of the PTR-

MS in other measurement campaigns (Fig. 1). Data quality

was checked, and data were filtered by removing values be-

low the detection limit. The detection limits for the measure-

ment periods are presented in Table 1.

During the years 2006–2009 the VMRs of the VOCs were

measured from a scaffolding tower at a height of 22 m above

the ground. From summer 2006 to spring 2007 the mea-

surement sequence consisted of 1 h of atmospheric VMR

measurements followed by 1 h of disjunct eddy covariance

measurements. Thus, VMR data were obtained every second

hour. The sampling protocol was changed in March 2007

when a branch chamber measuring emission from a Scots

pine shoot was included in the measurement cycle. There-

after the atmospheric VOC VMRs were measured every third

hour instead of every second hour. In May 2010 the sam-

pling protocol was changed again when the instrument was

transported to another measurement cabin. At the same time

the sampling inlet was moved about 50 m into another tower,

with the inlet at 33.6 m above ground. This sampling height

was used for measurements during years 2010–2011. Dur-

ing the years 2010–2011 the atmospheric VMRs used in this

work were measured every third hour. These measurement

heights were chosen for analysis because they are more rep-

resentative for atmospheric surface layer concentrations af-

fected by, e.g. long distance transport, than concentrations
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Figure 1. Time-series of the VMRs of the VOC studied during the measurement period. Summertime data used in source area analysis are

marked in green and winter data in light blue. Data from other seasons are marked in grey. The monthly medians of the summer months are

marked with black dots. The forest fire periods in the summers of 2006 and 2010 are marked with grey vertical lines.

inside the canopy which may be affected relatively more by

local emission and deposition processes.

Nitrogen oxides (NOx), carbon monoxide (CO), sulfur

dioxide (SO2) and ozone (O3) mixing ratio data were used

in the analysis as ancillary data. The mixing ratios of NOx

were measured with a chemiluminescence technique (TEI

42C TL, Thermo Environmental Instruments, MA, USA),

and CO was measured by an infrared light absorption ana-

lyzer (HORIBA APMA 360, Horiba, Japan). SO2 was mea-

sured with a fluorescence analyzer (TEI 43 BS, Thermo En-

vironmental Instruments, MA, USA) and O3 by an ultraviolet

light absorption technique (TEI 49, Thermo Environmental

Instruments, MA, USA). CO, NOx , O3, and SO2 were also

measured at a height of 33 m except in 2010, when CO was

measured at 16.8 m.

2.3 Trajectory analysis

HYSPLIT 4 was used to calculate the air mass trajectories

(Draxler and Hess, 1998). The arrival height of the calculated

trajectories used for the analysis was 100 ma.g.l., thus repre-

senting air masses arriving at SMEAR II in the surface layer,

in which the VOC VMR measurements were conducted in.

Backward trajectories of 96 h (4 days) were calculated for

every hour from 2006 to 2011. In order to be able to re-

move the seasonal cycle from VOC VMRs, the monthly me-

dian values were interpolated for each hour of each day. The

monthly median value was given to the day in the middle

of the month and interpolation done for the periods between

the mid-points of subsequent months using a Piecewise Cu-

bic Hermite Interpolating Polynomial (PCHIP) in order to

achieve a smooth curve.

Each time a measured VOC VMR data were available at

SMEAR II, they were associated with a trajectory arriving at

the site at the same time. The path of the back trajectories

was considered with a 1◦× 1◦ spatial resolution. The VMRs

were assumed to remain constant during the whole transport

time. The grid cells over which a trajectory traversed prior to

its arrival at SMEAR II were associated with simultaneously

measured VMR values. Finally, for each grid cell a single

value for each VMR was obtained by calculating a mean of

the VMRs from all the trajectories that have traversed it dur-

ing the time period concerned (Stohl et al., 1995; Stohl and

Seibert, 1998).

The differential source field was achieved by calculat-

ing first trajectory field using interpolated monthly median

VMRs and then subtracting this from the actual source field.

Thus, the trajectory maps indicate the typical VMR of a given
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compound when the air mass is arriving to the measurement

site from the grid cell in question. For example, if the colour

coding of a grid cell is 3 ppb for methanol, this indicates that

the VMR of methanol measured at SMEAR II, when the air

mass is arriving through this grid cell, is 3 ppb in average

(see Figs. 3–5). The trajectory analysis was limited to the

area between 50 and 75◦ N in latitude and 12 and 50◦ E in

longitude. For reasons of statistical significance, at least 25

trajectories had to cross a grid cell in order for that grid cell

to be accepted into the analysis, i.e. grid cells with less than

25 traverses were omitted from the analysis.

We selected 10 square shaped source areas for a further

comparative study. The selection of source areas for further

analysis was done subjectively, based on the trajectory maps

and demographic information and information on industry

and other possible sources in different geographical areas.

2.4 Forest fire locations from satellite observations

The forest fire location data were obtained from FIRMS (Fire

Information Resource Managements System, 2014), which

provides fire locations as observed globally by MODIS

(Moderate Resolution Imaging Spectroradiometer). Data

have been collected by NASA’s Earth observing system

(EOS) Terra and Aqua satellites. With these two satellites,

global data coverage is achieved every 1–2 days.

2.5 Unmix 6.0

Source compositions and contributions were investigated

with the multivariate receptor model EPA Unmix 6.0 (Nor-

ris et al., 2007), developed by Ronald Henry at the Univer-

sity of Southern California. A typical problem in multivari-

ate receptor models is how to determine the optimal num-

ber of sources, the source fingerprints, and their contribution

from the ambient air VOC measurement data alone. Nor-

mally, some additional constraints must be added in order

to obtain unique solutions. In Unmix, this is obtained by re-

quiring the composition and contribution of the sources to be

be non-negative. In addition to this, Unmix searches for pe-

riods when the data indicate that the contribution of one of

the sources is missing completely or its contribution is mi-

nor. The application of Unmix to VOC VMR data obtained

by gas chromatographic methods at an urban site in Helsinki

has been described by Hellén et al. (2003). According to the

recommendations for the model, the regression of each of

the species explained by the sources (R2) should be over

0.8, while the signal-to-noise ratio should be over 2. In this

study, Unmix was applied for inorganic trace gas and VOC

VMR data, except for monoterpenes that were excluded also

from the source area trajectory analysis (see Sect. 3.5). One-

hour median VMR values of inorganic trace gases and VOCs

were used as input data to the model. Data were filtered by

horizontal wind speed, excluding wind speeds below 1 ms−1

from the analysis. As a result 30 % of data were excluded

from the analysis. All of the results exceeded the recom-

mended R2 and signal-to-noise values, indicating that the re-

ceptor modelling results were applicable and valid.

For the Unmix analysis, VOC VMR and trace gas data

were divided into three sectors according to the wind direc-

tion measured at SMEAR II. The division was made based on

the findings of the VOC source fields as revealed by the tra-

jectory analysis and described in Sect. 3.4. The three sectors

were (1) north (0–5 and 300–360◦), (2) urbanized continental

(5–210◦), and (3) urban and sea (210–300◦).

3 Results and discussion

The VOC VMRs of most studied compounds have maxima

in summer and minima in winter (Fig. 1), indicating the

possible importance of biogenic and photochemical sources

as well as other seasonal sources such as forest fires. Ben-

zene, on the other hand, exhibited the opposite behaviour,

likely due to a lack of significant biogenic sources and its

shorter atmospheric lifetime in the summer. Of the other

studied VOCs, methanol, acetone, and acetaldehyde as well

as monoterpenes have biogenic sources in and around the

measurement site (Rinne et al., 2007). Acetonitrile is emit-

ted typically by biomass burning.

3.1 Lifetimes of the observed VOCs

To estimate the chemical lifetimes, defined as e-folding

times, of VOCs, OH and NO3 radical concentrations

were estimated based on the values presented by Hakola

et al. (2003). The summertime OH concentration presented

by Hakola et al. (2003) agreed well with the observations

by Rinne et al. (2012), but the summertime NO3 concentra-

tion was at least twice as high as the observations. Thus,

for this study, the annual cycle of NO3 as presented by

Hakola et al. (2003) was scaled by dividing it by 2. Summer-

and wintertime median O3 concentrations were calculated

from O3 measurements at SMEAR II. Photolysis values for

summer- and wintertime were calculated following Hellén

et al. (2004). Actinic flux values corresponding to the albedo

for snow-covered forest in winter (albedo= 0.8) were used

when photolysis values were calculated. The concentrations

of oxidants and reaction rate coefficients used in calculations

are presented in Tables 2 and 3.

The calculated atmospheric lifetimes of the VOCs studied

here (methanol, acetonitrile, acetaldehyde, acetone, benzene,

and toluene) for summer- and wintertime are presented in

Table 4. Compared to the lifetimes of monoterpenes (about 1

day in winter and 1 h in summer), these lifetimes were much

longer. For most compounds, the atmospheric lifetimes ex-

ceeded the duration of the back-trajectories used in this anal-

ysis. However, in summertime both toluene and acetaldehyde

had lifetimes shorter than 4 days. Thus, for these compounds

www.atmos-chem-phys.net/15/13413/2015/ Atmos. Chem. Phys., 15, 13413–13432, 2015
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Table 2. Concentrations of hydroxyl (OH), ozone (O3), and nitrate radicals (NO3) used in the lifetime calculations of the VOCs.

Oxidants winter [moleculescm−3] summer [moleculescm−3]

[OH] day 5.5× 104 a 1.5× 106 a

[O3] day/night 6.8× 1011/5.7× 1011 8.6× 1011/7.1× 1011

[NO3] night 1.2× 107 b 4.2× 107b

a Hakola et al. (2003). b rescaled based on Hakola et al. (2003).

Table 3. Reaction rate coefficients (kOH, kO3
, kNO3

) and photolysis rates for the measured VOCs.

kOH kO3
kNO3

kphotolysis kphotolysis

[cm3 molecules−1 s−1] [cm3 molecules−1 s−1] [cm3 molecules−1 s−1] in winter [s−1] in summer [s−1]

Methanol 9.00× 10−13a 2.42× 10−16d

Acetaldehyde 1.50× 10−12a 2.72× 10−15e 1.50× 10−6f 3.27× 10−6f

Acetone 1.80× 10−13a 3.00× 10−17e 2.32× 10−7f 4.85× 10−7f

Benzene 1.19× 10−12a 1.70× 10−22c 3.00× 10−17d

Toluene 5.60× 10−12a 4.10× 10−22c 6.79× 10−17d

Monoterpenes 7.50× 10−11b 1.4× 10−17b 7.06× 10−12b

Rate constants (kOH, kO3
, and kNO3

) used in calculations in Table 4: a iupac preferred, b Monoterpenes’ rate constants kOH, kO3
and kNO3

were calculated as weighted

averages of individual monoterpenes typical in SMEAR II (Hakola et al., 2003), individual k values (Atkinson, 1994), c Atkinson, 1994,
d http://kinetics.nist.gov/kinetics/Search.jsp, last access: 17 January 2013, e Rinne et al. (2007), f Calculated similar to Hellén et al. (2004).

the results of the 4-day backward trajectory analysis should

be interpreted with caution.

In the following first the trajectories from the two ma-

jor forest events are discussed. Second, the general features

of the trajectory fields over the whole measurement period

are presented. Third, the features and seasonal differences of

sources in a set of selected areas are discussed.

3.2 Forest fire episodes in Russia in the summers of

2006 and 2010

During the measurement periods two particularly active for-

est fire episodes with several fire hotspots occurred in Russia,

one in summer 2006 and the other in summer 2010. They also

influenced air quality in Finland (Leino et al., 2014). These

fires provide temporally and spatially well-defined sources

of trace gases that can be used to evaluate the ability of the

trajectory analysis to identify such source areas.

Biomass burning has previously been observed to be

a source of VOCs in several field and laboratory studies

(e.g. Crutzen and Andreae, 1990; Holzinger et al., 1999;

de Gouw et al., 2006; Virkkula et al., 2014). Acetonitrile

has commonly been used as a marker compound for emis-

sions from biomass burning (de Gouw et al., 2003, 2006;

Holzinger et al., 1999). The oxygenated VOCs (OVOCs)

and aromatic VOCs (benzene and toluene) have also been

linked to biomass burning in different studies (Koppmann

and Wildt, 2007; de Gouw et al., 2006).

Forest fires, which were observed during these measure-

ments, occurred in the year 2006 in the Vyborg area near

the Finnish–Russian border and in year 2010 in the Moscow

area (Fig. 2). The sum of all observed fires during the two

episodes are shown in Fig. 2. Any particular fire location

shown in the map has not necessarily been burning the whole

summer. During the summer of 2010 an unusually high tem-

perature anomaly was observed in eastern Europe (Twardosz

and Kossowska-Cezak, 2013). These circumstances can be

favourable for the ignition and development of major forest

fires.

In the summer of 2006 the largest fires occurred south of

Moscow and in Belarus. There were also fires in Karelia,

in Vyborg area near St. Petersburg and the Finnish–Russian

border. The first forest fire episode occurring within the time-

frame of this study was in the period of 4–31 August 2006.

The trajectory analysis showed the high VOC mixing ratios

observed at SMEAR II during this period to have originated

from the forest fire area (Fig. 3). Unfortunately, acetonitrile

was not measured during this period. Anttila et al. (2008) also

observed elevated amounts of particulate matter mass (PM10,

PM2.5) and higher polycyclic aromatic hydrocarbon (PAH)

concentrations during this period at Virolahti, located on the

Finnish southern coast near the Finnish–Russian border.

During the summer of 2010 a large number of forest fires

were located in north-western Russia. The second forest fire

episode within the time frame of this study occurred in 20

July–31 August 2010. During this period, acetonitrile data

were also measured at SMEAR II. By comparing the for-

est fire locations (Fig. 2) and acetonitrile’s mean VMR field

from trajectory analysis, one can see that acetonitrile orig-

inates from the general direction of the maximum burning
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Table 4. Total atmospheric lifetimes (e-folding times) of the VOCs studied, daytime and night-time in summer and winter. Daytime values

are the sums of lifetimes calculated towards O3, OH and photolysis. Night-time values were calculated towards O3 and NO3.

VOC Total lifetimes on Total lifetimes on total lifetimes on Total lifetimes on

a winter day a winter night a summer day a summer night

Methanol 230 day 1 yr 9 day 110 day

Acetonitrile 29 yr 5300 yr 1 yr 1500 yr

Acetaldehyde 5 day 1 yr 1 day 100 day

Acetone 48 day 88 yr 15 day 25 yr

Benzene 180 day 69 yr 6 day 27 yr

Toluene 38 day 29 yr 1 day 11 yr

Monoterpenes 1 day 3 h 1 h 0.9 h

Figure 2. Map of forest fire locations during the forest fire episodes of the summers of 2006 (left) and 2010 (right). In 2006, the forest fire

event occurred during 4–31 August and in 2010 during 20 July to 31 August. These maps depict the sum of all observed fire spots during the

burning periods, each being shown by a dot. Data of forest fire locations are taken from the Fire Information Resource Managements System

(FIRMS, 2014). The SMEAR II site is marked by a white triangle in the map.

area (Fig. 4). All the other VOCs and trace gases studied also

had similar source area distributions.

For a comparison of VOC VMRs during fires and without

fire, the mean VMR values of methanol, acetonitrile, ben-

zene, SO2 and CO were calculated for periods both before

and during the forest fire episodes in both years (Table 5). In

2006 the period from 1 to 31 July 2006 was selected to rep-

resent the situation before the forest fires. In, 2010 the period

from 25 June to 15 July 2010 was used for the same purpose.

In both cases concentrations were calculated using data cho-

sen by trajectories which had traversed the fire areas. In this

study, the forest fire areas were selected to be (58–62◦ N, 27–

36◦ E) (area 1) in 2006 and (56–61◦ N, 28–34◦ E) (area 2) in

2010.

Many of the VMRs of VOCs were 50–100 % higher when

the air mass was transported from active forest fire than be-

fore it. For example, before the forest fire episode in year

2010, the VMR of acetonitrile was 0.06 ppbv, while dur-

ing the episode it was 0.13 ppbv. Benzene also had elevated

VMR levels in air masses that had travelled over the forest

fires. In 2006, benzene’s VMR before the forest fires was

0.08 ppbv and during the episode 0.17 ppbv; in 2010 the val-

ues were 0.05 and 0.09 ppbv, respectively. These compounds

have earlier been observed to be emitted from biomass burn-

ing (Holzinger et al., 1999; Simpson et al., 2011; Virkkula

et al., 2014). Elevated CO concentrations were also observed

in air masses associated with forest fires while the difference

in NOx was not significant. The mean VMRs of methanol

did not increase during the fire episodes, which indicates that

methanol at SMEAR II has other dominant sources, such as

biogenic emissions from vegetation. SO2 is usually linked to

fossil fuel combustion processes rather than biomass burn-

ing (Seinfeld and Pandis, 1998). In this study the change in

SO2 concentration was to different directions for the 2 years,

indicating other processes besides forest fires affecting the

concentrations as well.

3.3 General features of source areas

The mean trajectory fields of the VOCs studied here

(methanol, acetonitrile, acetaldehyde, acetone, benzene, and

toluene), as well as those of CO, NOx and SO2 from the year

2006 to the year 2011 are presented in Fig. 5. These include
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Figure 3. Mean trajectory fields for selected VOCs and trace gases (ppbv) during the forest fires in summer 2006. VMR scales are presented

on the right, with the scale for each compound being multiplied in the case of each compound by the indicated factor 10, 100 or 1000 if

needed. Topmost row: methanol, acetone, and benzene (benzene multiplied by 10). Middle row: CO, NOx (NOx multiplied by 10), and SO2

(SO2 multiplied by 100). Bottom row: acetaldehyde and toluene (toluene multiplied by 10). The SMEAR II site is marked by a dot in the

map.

Figure 4. Mean trajectory fields for selected VOCs and trace gases (ppbv) during the forest fires in summer 2010. VMR scales are presented

on the right, with the scale for each compound being further multiplied in the case of each compound by the indicated factor 10, 100 or 1000

if needed. Topmost row: methanol, acetone, and benzene (benzene multiplied by 10). Middle row: acetaldehyde, NOx , and SO2. Bottom

row: acetonitrile (acetonitrile multiplied by 1000), toluene (toluene multiplied by 1000), and CO. The SMEAR II site is marked by a dot in

the map.
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Table 5. Mean VMRs of studied trace gases (ppbv) and standard deviations (SDs) before and during the forest fire episodes in 2006 and

2010. The VMRs of the compounds were calculated from VMR data which were selected using trajectories from the burning areas. Area 1

is 58–62◦ N, 27–36◦ E in 2006 and area 2 is 56–61◦ N, 28–34◦ E in 2010. Asterisk indicates when VMR of a trace gas differs significantly

from pre-fire VMR (two-sided t test).

Compounds In 2006 SD In 2006 SD In 2010 SD In 2010 SD

before during before during

episode episode episode episode

Methanol 4.9 0.78 3.2* 1.21 3.7 0.75 3.7 2.10

Acetonitrile 0.06 0.01 0.13* 0.07

Acetaldehyde 0.86 0.31 0.94 0.41 0.55 0.09 0.76* 0.40

Acetone 3.0 0.40 3.0 0.88 2.0 0.32 2.8* 1.44

Benzene 0.08 0.03 0.17* 0.13 0.05 0.03 0.09* 0.06

Toluene 0.05 0.03 0.09* 0.07 0.21 0.09 0.28* 0.11

Sulfur dioxide 0.23 0.14 0.16* 0.15 0.20 0.12 0.35* 0.42

Nitrogen oxides 1.3 0.56 1.3 0.51 0.60 0.47 0.47 0.28

Carbon monoxide 130 5 150* 49 110 9 150* 45

Figure 5. Mean trajectory fields (2006–2011) of selected VOCs and trace gases (ppbv). VMR scales are presented on the right, with the

scale for each compound being further multiplied in the case of each compound by the indicated factor 10, 100 or 1000 if needed. Topmost

row: methanol, toluene (multiplied by 10) and NOx . Middle row: acetonitrile (multiplied by 10), acetaldehyde, SO2. Bottom row: acetone

(multiplied by 100), benzene (multiplied by 1000) and CO. The SMEAR II site is marked by a dot in the maps.

the forest fire episodes described above, as well as other more

dispersed fires. From this figure it can be seen that methanol,

acetone, and acetaldehyde had very similar source areas.

There was very good correlation between methanol and ace-

tone (r = 0.86, p < 0.05). Methanol and acetaldehyde were

also correlated with each other (r = 0.66, p < 0.05). On the

other hand, the source areas of benzene, toluene, CO, and

NOx were similar to each other. Acetonitrile had similarities

with both methanol and benzene, correlating better with the

methanol group than with the benzene group. Both are re-

leased in incomplete burning processes (Sect. 3.1). The cor-

relation matrix, Pearson’s correlation coefficients and p val-

ues between all compounds are presented in Fig. A1 in the

appendix. All p values were below 0.05, except those for

the correlations between methanol and NOx and acetonitrile

and acetaldehyde, which were statistically insignificant. An-

thropogenically influenced source areas (benzene, toluene,

NOx , CO) were observed in the northern part of continen-

tal Europe and eastern Europe, Fennoscandia, western Rus-

sia, and marine and coastal areas (Baltic Sea, Barents Sea,

White Sea, Norwegian Sea and North Sea) (Fig. 5). North-

ern Fennoscandia seemed to be quite free of anthropogenic

www.atmos-chem-phys.net/15/13413/2015/ Atmos. Chem. Phys., 15, 13413–13432, 2015



13422 J. Patokoski et al.: Sources of long-lived atmospheric VOCs at the rural boreal forest site, SMEAR II

sources of VOCs. NOx , CO and SO2 concentrations were

also low in air masses arriving from the north. With the ex-

ception of methanol and acetonitrile, the VOCs did not have

source areas in the northern area. The occurrence of forest

fires in Russia is visible in the mean trajectory fields of all

compounds. In addition to biomass burning, some small local

emissions, e.g. from traffic, wood combustion and biogenic

emissions may also have had an effect on the results.

The source areas of SO2 were similar to those of NOx

and CO. The main source areas of SO2 were western Rus-

sia, northern Poland and Kaliningrad, while NOx and CO

had additional source areas in western Europe. Riuttanen

et al. (2013) found a similar sharp distinction in SO2 concen-

trations between air masses arriving from eastern and west-

ern Europe. The study also found that air masses coming

from central Europe were exposed to more rain, and thus

were subject to the wet removal of SO2. They speculated

that this may have been one reason why SO2 source areas

in central Europe were not separable in the trajectory fields.

However, in this study we found that the also water-soluble

methanol and NOx were not totally washed out during trans-

port from central Europe, as there were visible source areas

for methanol in the North Sea, Skagerrak and the northern

Germany areas, and for NOx in northern continental Europe

(Fig. 5). Thus we propose that wet deposition does not fully

explain the absence of SO2 in the air masses arriving from

western Europe, as interpreted by Riuttanen et al. (2013),

but that the observed difference in SO2 is probably due to

more rigorous emission regulations in the western part of Eu-

rope than the eastern part. This interpretation is supported by

Vestreng et al. (2007), who observed a significant difference

in the reduction of emissions of SO2 between western and

eastern Europe during years 1980–2004.

3.4 Source areas and their seasonal difference

In order to study the possible seasonal changes in the VOC

source areas, these were determined separately for the sum-

mer (June–August) and the winter (December–February) pe-

riods. Data during the short forest fire episodes during sum-

mers 2006 and 2010 were removed prior to this analysis so

that they would not mask the differences due to other season-

ally altering sources. Although there was some inter-annual

variation in the observed VMRs of VOCs, no clear trends of

VMRs were observed during the whole measurement period

(Fig. 1).

The climatic conditions in summers during the measure-

ment period were different from each other, which may have

led to differences in biogenic source strength, source area

distributions, and VOC VMRs. For example the median tem-

perature between summers in Finland at Hyytiälä were ob-

served to vary from 12.9 to 17 ◦C, which may have an effect

on the biogenic emissions of VOCs such as methanol, ace-

tone, and monoterpenes (Fig. 1).

The source areas of many/most VOCs are broadly simi-

lar in summer and winter-time (Supplement) even though in

winter the continental air masses are associated with colder

than average temperatures and in summer with warmer. This

indicates that the temperature is not the main driver of the

spatial patterns revealed by the source area analysis.

Detecting the interannual differences in source areas was

problematic because, e.g. in summer 2006 air masses arrived

from western Russia, but there were no arrivals from cen-

tral Europe. Summers 2006 and 2010 were both influenced

by continental climate, and air masses arrived from western

Russia (area 1) bringing warm air as well as elevated VOC

VMRs from the coinciding forest fires.

The fact that there is no significant trend in monoterpene

VMRs indicates that it is unlikely for local biogenic activity

to have a trend affecting the VOC VMRs. As the monoter-

penes have atmospheric lifetime in the range of hours to days

thus corresponding to the transport from local source areas,

they would be most sensitive to show such an effect.

Additionally, in the case of monoterpenes’ VMRs the

change of the sampling location may hinder an observation

of a trend over the whole measurement period, as monoter-

penes have a short life time (1 h; Table 4).

The source areas of the VOCs also varied slightly between

years due to variations in the VOC VMRs, deposition and

the prevailing paths of arriving air masses. Despite these dif-

ferences, all five summers (2006–2008, 2010–2011) and two

winters (2006–2007 and 2008–2009) were combined in this

study to get as good an areal trajectory data coverage as pos-

sible for summers and winters separately. Summer 2009 was

not included in the trajectory analysis because VOC VMR

data were only available for 18 days.

For the evaluation of the VOC source areas, 10 rectangular

areas were selected for separate analysis during both main

seasons (summer, winter) (Fig. 6). These areas differ from

each other in having, e.g. different industrial structures and

population densities.

The 10 selected areas were as follows.

1. Western Russia (54–61◦ N, 29–40◦ E) – In this area

there are two densely populated cities, Moscow and

St. Petersburg, and also harbours on the Baltic Sea. The

area includes many different industries as described in

detail in Table A1 in the appendix.

2. Northern Poland, Kaliningrad and Baltic countries (Es-

tonia, Latvia and Lithuania) (53–59◦ N, 18–28◦ E) –

This area includes the port of Gdańsk, which is one of

the important harbours in the Baltic Sea. Similarly to

the Western Russia there is also a lot of industry in this

area.

3. Karelia and the White Sea (63–66◦ N, 31–40◦ E) – This

area is a significant Russian industrial area, including

also large forests and the coastal areas of White Sea.
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Figure 6. Main source areas of VOCs: (1) western Russia, (2) north-

ern Poland, Kaliningrad and Baltic countries, (3) Karelia and the

White Sea, (4) Kola Peninsula and Barents Sea, (5) Bay of Bothnia,

(6) Coast of Norwegian Sea and northern Sweden, (7) Stockholm

area, (8) Skagerrak, (9) North Sea and coastal areas, (10) northern

Germany. Two forest fire source areas, limited in time, are marked

by pink boxes. These are treated separately for the episodes (see

Table 5). The SMEAR II site is marked by a dot in the map.

Compared to the Western Russian source area, the Kare-

lia and White Sea area is more sparsely populated.

4. The Kola Peninsula and Barents Sea (66–70◦ N, 29–

42◦ E) – This area is rich in minerals and is therefore

an important Russian industrial area. Around the Bar-

ents Sea there is an active petroleum industry (Austvik,

2007) with several oil drilling sites and oil tankers

present on the Norwegian and Russian coasts.

9. Europe’s important offshore oil and gas fields are sit-

uated in the North Sea and coastal areas (52–58◦ N,

−1–6◦ E) – Norway, Denmark, Germany, the Nether-

lands and the UK are involved in oil production in the

North Sea (EIA, International Energy Outlook, 2014).

The coastal areas of the North Sea are also very densely

populated.

10. Northern Germany (52–54◦ N, 8–15◦ E) – This is one of

Germany’s main industrial areas, with several important

harbours such as Hamburg, Lübeck and Rostock.

To evaluate the influence of the selected source areas for the

measured VMR VOCs, during summer and winter, trajectory

fields for the difference between the measured VMRs and

the median seasonal cycle, defined as linearly interpolated

values on monthly medians, were calculated for each com-

pound. This is called differential source field, with the sea-

sonal trend on VMRs removed from it. The average values of

the differential source field for the ten areas listed above are

presented in Fig. 7. Acetonitrile was included in the source

area analysis in summer only, when forest fires occurred.

In urban areas VOCs originate mostly from traffic, but are

also emitted from other combustion processes, evaporation of

fuels, and various industrial processes (Reimann and Lewis,

2007; Hellén et al., 2006). The 10 areas investigated here

were mainly located in heavily industrialized areas and/or

areas with high population density. The strongest source ar-

eas for all the VOCs studied were located in eastern Europe

including western Russia (1), northern Poland, Kaliningrad

and the Baltic countries (2), Karelia and the White Sea (3). In

these areas, the calculated differential source is clearly posi-

tive for nearly all compounds (Fig. 7). The negative differen-

tial source of many compounds in, e.g. area 6 indicates that

their VMRs are below the seasonal median in air masses ar-

riving from this area.In addition to these source areas, which

are common to most of the studied compounds, certain com-

pounds have specific source areas of their own. Methanol

is an abundant VOC in the atmosphere having many differ-

ent sources, both biogenic and anthropogenic (Jacob et al.,

2005). From Fig. 7 it can be seen that nearly all of the se-

lected areas are sources of methanol especially in the sum-

mer. eastern European source areas (1–3) were observed to

generally be large emitters of OVOCs (methanol, acetalde-

hyde, and acetone). This is in line with earlier observations

by Hellén et al. (2004), who reported eastern Europe to be an

important emitter of carbonyls. In addition to these source ar-

eas, acetone and acetaldehyde also arrived from the areas of

Stockholm, the Skagerrak, the North Sea and the coastal ar-

eas and northern Germany: all of these areas have emissions

from traffic and solvent use related, to various industrial ac-

tivities. The oxidation of hydrocarbons and the primary bio-

genic emission are known to be the major global source of

acetaldehyde (Singh et al., 2004); these sources have not,

however, been taken into account in this study. Acetaldehyde

also has a relatively short lifetime (1 day) during summer.

These factors can add some uncertainty to this analysis of

acetaldehyde. Benzene was also found to have sources in the

Kola Peninsula area, most likely connected with the petro-

chemical industry and mining. However, the North Sea area

with its active petrochemical industry did not appear as a dis-

tinguishable source area for aromatic VOCs in this study.

As seen earlier, when comparing the VMRs of VOCs

before and during the forest fires, the mixing ratios at

SMEAR II for benzene and acetonitrile were found to be

significantly elevated during these episodes (Table 5, Fig. 7).

The forest fires are a strong sources of most of the VOCs

studied here. In 2010 acetonitrile’s VMR difference from the

background values was 0.07 ppbv. In other source areas, ace-

tonitrile’s differential source was near zero (Fig. 7).

The areas with strongest differential source indicated an-

thropogenic sources. However, the vast boreal forest zone in

northern Europe is an important emitter of biogenic VOCs

(BVOCs). Most BVOCS emitted from boreal forests are

short-lived terpenoids, whose high atmospheric reactivity

keeps their concentrations relatively low compared to those

of, e.g. OVOCs, with longer atmospheric lifetimes (Hakola
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Figure 7. Differential source fields VMRmeasured-VMRinterpolated (ppbv) Hourly VMR values of source areas interpolated from monthly

medians were subtracted from directly measured hourly values of source areas during summer (upper panel) and during winter (lower panel)

for methanol (m 33), (acetonitrile (m 42), in summer only), acetaldehyde (m 45), acetone (m 59) and benzene (m 79). Forest fire data were

removed from summer data and analyzed separately. Asterisk indicates when differential VMR fields of a trace gases differ significantly

from zero (two-sided t test).

et al., 2003). In this study, the forest regions were not iden-

tifiable as well-defined source areas; however, they probably

did contribute to background levels. During summer there

were minor source areas in the Baltic Sea, where there should

be no anthropogenic sources. These interesting source areas

could be due to the production of VOCs by e.g. algae or

cyanobacteria. However, the VMR levels of VOCs originat-

ing from algae are low compared to anthropogenic sources

(Kansal et al., 2009). With the current data and analysis it is

not possible to identify the source of these marine emissions.

In the future their origin could be clarified by using shorter

trajectories and making measurements near the Baltic Sea, or

by collecting samples from over the Baltic Sea.

3.5 Low concentrations from the north, urban

influences from continents and seas

VOC source profiles were analyzed with the Unmix 6.0 re-

ceptor Model for different wind sectors. In all sectors three

distinctive sources were identified: (1) a source containing

mainly SO2, and thus this was named the SO2 source, (2) a

source containing toluene, benzene, NOx , and CO. These

compounds are typical of anthropogenic emissions, and thus

the source was named the anthropogenic source, (3) a source

containing oxygenated VOCs (OVOCs, methanol, acetone,

Figure 8. Pie charts of mean values of sources in each sector

during summer (June–August) (topmost row) and during winter

(December–February) (bottom row). The north sector includes data

from direction 0–5 and 300–360◦, urbanized continental from 5–

210◦ and urban and sea sector from 210–300◦.

and acetaldehyde), acetonitrile, and a portion of CO. This

source was related to biomass burning and other biogenic

emissions and was named as a biogenic/combustion source.
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Figure 9. Diurnal cycles of monoterpenes (left) and the diurnal cy-

cle of the anthropogenic source’s contribution (right) in summer

(top row) and in winter (bottom row) are presented as mean values

and 20 to 80 percentiles. Data in all figures are from the urbanized

continental sector.

The mean contributions of these sources to VMRs with

wind from different sectors were similar within the seasons

but there was a major difference between seasons. The con-

tribution of the anthropogenic source was dominant in winter

and the biogenic/combustion source in summer (Fig. 8). The

dominance of the biogenic/combustion source in summer can

be attributed to two processes. First, the biogenic/combustion

source included acetonitrile, and high mixing ratios of ace-

tonitrile were observed during forest fire episodes in sum-

mer. Second, this source included OVOCs which also have

biogenic sources and thus higher VMRs during summer

(Fig. 1). Biogenic emissions of the monoterpenes measured

at SMEAR II are dominant in the summer, and due to rela-

tively short lifetime their VMRs are dominated by the local

sources. However, from the time series of monoterpenes we

can see that there are occasionally notably high VMR peaks,

which are known to have an anthropogenic origin (Liao et al.,

2011) (Fig. 1).

In Fig. 9 median diurnal cycle of the anthropogenic VOC

source is compared to that of the monoterpenes. The data are

from the urbanized continental sector. Monoterpenes, repre-

senting local biogenic sources, had a considerable diurnal

variation during the summer, with higher mixing ratios at

night, and no variation in winter, as also observed in previ-

ous studies in similar ecosystems (Hakola et al., 2000; Rinne

et al., 2005). This is due to the diurnal cycle in the surface

layer mixing and the night-time emissions of monoterpenes

from coniferous trees. The aromatic VOCs have shorter sum-

mertime lifetimes as compared to winter, leading to lower an-

thropogenic source levels in summer. The contribution of the

anthropogenic source in winter was about three times higher

in all sectors than in summer. Both summertime and win-

tertime diurnal cycles of the anthropogenic source showed

a maximum at night, possibly due to lower night-time mix-

ing in the boundary layer. This diurnal cycle is similar to that

of monoterpenes and indicates that there is local influence on

the anthropogenic source.

Histograms of the source contributions, together with their

mean, median, and maximum values both in summer and in

winter, are presented in Figs. 10 and 11. Many of these distri-

butions are skewed, having a tail of high contribution values.

Thus the mean and median values of these source contribu-

tions may have large differences. The skewness of the source

distributions also indicates that the simplest statistical param-

eters, such as mean and median, may not adequately describe

the distribution of the sources or their contribution to the lo-

cal atmospheric mixing ratios of these compounds. There

were considerable differences between the source distribu-

tions from different wind direction sectors. Wind arrivals are

distributed in all directions (Lappalainen et al., 2009). Air

masses arriving from the northern sector had in general lower

mean source contributions than air masses from the urban-

ized continental and the urban and sea sectors. Particularly

in the summer there was a tail of high contributions in the ur-

banized continental and the urban and sea sectors for anthro-

pogenic source (maximum values were 17.2/4.7) and bio-

genic/combustion source (9.8/6.1), as compared to the north

sector whose maximum contributions were 1.6 and 4.9 for

the anthropogenic and biogenic/combustion sources, respec-

tively. However, the median values were much closer to each

other. This indicates that air masses from the north were had

fewer pollution events with high VOC VMRs as compared

to the two other sectors. These results combined with the

earlier observations in this paper support the conclusion that

air masses related to the highest VMRs of long-lived VOCs

observed at SMEAR II have their origin in Russia and the

eastern European countries, the northern part of continental

Europe and southern and central Fennoscandia.

4 Conclusions

This study has focused on identifying the source areas of the

long-lived VOCs (methanol, acetonitrile, acetaldehyde, ace-

tone, benzene, and toluene) measured at the SMEAR II site

in southern Finland, and to investigate the relative influences

of biogenic and anthropogenic sources to compounds arriv-

ing to southern Finland from areas outside of the country.

The analysis is based on a data set which consisted of several

years (2006–2011) of VMR measurements of VOC. The ori-

gin and sources of the observed VOCs were analyzed by the

trajectory model and a multivariate receptor model.

During the measurement period, two major forest fire

episodes occurred in Russia. Elevated VMR levels for sev-

eral VOCs and other trace gases were observed in air masses

arriving from areas in which abundant fire counts were
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Figure 10. Normalized distributions of different sources in three sectors during the summer. The first column is the north sector (N = 338),

the second column is the urbanized continental sector (N = 1817) and the third column is the urban and sea sector (N = 952). In the topmost

row all panels are distributions of the SO2 source, the middle row the anthropogenic source and the lowest row biogenic/combustion source.

Each sector has been normalized with the maximum value of the observations. Mean, median, and maximum values of source contributions

are shown for each sector.

Figure 11. Normalized distributions of different sources in three sectors during the winters. The first column is the north sector (N = 142), the

second column is the urbanized continental sector (N = 714) and the third column is the urban and sea sector (N = 391). In the topmost row

all panels are distributions of the SO2 source, the middle row the anthropogenic source and the lowest row the biogenic/combustion source.

Each sector has been normalized with the maximum value of the observations. Mean, median, and maximum values of source contributions

are shown for each sector.
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observed. This corroborates the applicability of the trajec-

tory analysis as a method for identifying the source areas of

these trace gases.

The trajectory analysis indicated the importance of es-

pecially eastern Europe and Russia for elevated VMRs of

long-lived VOCs in southern Finland, and lack of significant

sources in Scandinavia and North Sea.

Three sources (labelled SO2, biogenic/combustion and an-

thropogenic) were identified by receptor analysis both in

winter and summer. The biogenic/combustion source dom-

inated in summer and the anthropogenic source in winter.

Both the trajectory and Unmix analyses showed that air

masses coming from a northerly direction had fewer pollu-

tion events with the studied trace gases than the air-masses

arriving from easterly and westerly directions with higher an-

thropogenic influence.

The long-range transport from easterly directions may ex-

plain at least partly the lack of declining trend in the VOC

VMRs observed here and by Hellén et al. (2015) in northern

Finland, in spite of emission reductions in European Union.

The result stresses the importance of global emission reduc-

tions for cleaner air.

The 10 source areas selected for further analysis showed

enhanced emissions due to the anthropogenic activity: most

of the areas contained industrial activity. There were some

differences in the importance of these source areas between

summer and winter. western Russia, northern Poland, Kalin-

ingrad and the Baltic regions and Karelia turned out to be the

most significant source area for all the VOCs. Benzene came

mainly from areas related to the petrochemical industry, such

as the Kola Peninsula, while acetone and acetaldehyde were

related to areas where solvents are used in industry e.g. the

Skagerrak and northern Germany. Forest fire areas stood out

clearly as sources for all the studied VOCs and especially

for acetonitrile. This study showed that forest fires can cause

elevated levels of atmospheric VOCs hundreds of kilome-

tres downwind, and can pose a threat to the air quality. With

changing climate the frequency and strength of forest fires

are expected to increase. Thus any efforts to prevent forest

fires or develop early detection and extinguishing methods

would be beneficial for future air quality and health. Even

though boreal forests with their high OVOC emissions cover

large areas in the region, these forest areas were not specif-

ically indicated as source areas. However, they probably did

contribute to the regional background levels. The level of

SO2 concentration showed a clear difference between east-

ern and western European source areas, which was not seen

in water soluble VOCs. Thus, the difference in the SO2 can

be attributed to reduction of its emissions in western Europe.
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Appendix A

Table A1. Main industries of source areas.

Source area Main industries Mean population

density of area

[persons km−2]

1. Western Russia Oil and gas trade, shipbuilding yards, machine building, heavy 55

machinery, mining, ferrous and nonferrous metallurgy, chemical

industry and energy and paper production1

2. Northern Poland, Machinery and chemical industry: chemicals, petroleum and refining, 63

Kaliningrad and shipbuilding and coal mining2, forestry with wood and processed wood

Baltic countries products, chemical, pharmaceuticals, plastic and rubber industry, metal

and electronics industry3

3. Karelia and Forest industry, ferrous and non-ferrous metallurgy, coastal areas of 3

White Sea the White Sea: oil production and processing4

4. Kola Peninsula Mining, iron industry (iron-ore enterprises and separators), apatite 5

and Barents Sea production and other metal industry such as aluminum and nickel

plants and smelters5, petroleum industry6

5. Bay of Bothnia Metallurgy and wood and timber industry7 15

6. Coast of Machinery, metal industry and mining7,8 3

Norwegian Sea

and Northern

Sweden

7. Stockholm area Electronics and chemical industry, machinery7 48

8. Skagerrak Machinery, metallurgy and chemical industry7 117

9. North Sea Oil production9 358

and coastal areas

10. Northern Germany Chemicals, plastics, electronics and automotive industry10, dockyards 203

for shipbuilding, metal industry and machinery11

1 Ria Novosti (2010); World Factbook (2014a); 2 World Factbook (2014b); 3 Industries (2014c); 4 Artic Centre (2005); 5 Hansen and Tønnessen (1998);
6 Austvik (2007); 7 Internship to industry (2009); 8 Bothnian green logistics corridor (2012); 9 EIA (2014); 10 GTAI (2013); 11 GTAI (2011).
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Figure A1. The correlation matrix, Pearson’s correlation coefficients and p values between calculated trace gases (m 33 (methanol) m 42

(acetonitrile) m 45 (acetaldehyde) m 59 (acetone) m 79 (benzene) m 93 (toluene) NOx (nitrogen oxides) CO (carbon monoxide) and SO2

(sulfur dioxide)) correlations. Diagonal in the matrix is distribution of data.
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The Supplement related to this article is available online

at doi:10.5194/acp-15-13413-2015-supplement.
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