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Contrasting responses of water use 
efficiency to drought across global 
terrestrial ecosystems
Yuting Yang1,2, Huade Guan1,3, Okke Batelaan1,3, Tim R. McVicar2,4,   Di Long5, Shilong Piao6, 
Wei Liang7, Bing Liu8, Zhao Jin7 & Craig T. Simmons1,3

Drought is an intermittent disturbance of the water cycle that profoundly affects the terrestrial carbon 
cycle. However, the response of the coupled water and carbon cycles to drought and the underlying 
mechanisms remain unclear. Here we provide the first global synthesis of the drought effect on 
ecosystem water use efficiency (WUE = gross primary production (GPP)/evapotranspiration (ET)). 
Using two observational WUE datasets (i.e., eddy-covariance measurements at 95 sites (526 site-
years) and global gridded diagnostic modelling based on existing observation and a data-adaptive 
machine learning approach), we find a contrasting response of WUE to drought between arid (WUE 
increases with drought) and semi-arid/sub-humid ecosystems (WUE decreases with drought), which 
is attributed to different sensitivities of ecosystem processes to changes in hydro-climatic conditions. 
WUE variability in arid ecosystems is primarily controlled by physical processes (i.e., evaporation), 
whereas WUE variability in semi-arid/sub-humid regions is mostly regulated by biological processes 
(i.e., assimilation). We also find that shifts in hydro-climatic conditions over years would intensify the 
drought effect on WUE. Our findings suggest that future drought events, when coupled with an increase 
in climate variability, will bring further threats to semi-arid/sub-humid ecosystems and potentially 
result in biome reorganization, starting with low-productivity and high water-sensitivity grassland.

Ecosystem water use efficiency (WUE), herein defined as the ratio of carbon gain (i.e., Gross Primary Production, 
GPP) to water consumption (i.e., Evapotranspiration, ET), links the coupled carbon and water cycles and is a 
key variable to understand the response of ecosystem productivity to water availability1,2. Additionally, it also 
highlights the linkage between biological processes (i.e., photosynthesis and transpiration) and physical process 
(i.e., evaporation) that govern the Earth’s carbon and water budgets. On the other hand, the strong coupling of 
the carbon and water cycles implies that any environmental disturbance on one component of WUE (i.e., GPP 
or ET) simultaneously impacts the other. For example, drought is an intermittent disturbance of the water cycle 
that also heavily affects the terrestrial carbon cycle3–5. Historical records and model predictions suggest that there 
is an increasing trend of drought events, in terms of both frequency and intensity, which will have a profound 
impact on the coupled carbon and water cycles5–7. Hence, a better insight into the relationship between WUE and 
drought would greatly benefit our understanding of ecosystem processes, services and feedbacks to the climate 
system in the context of global change.

Numerous evidence has shown that, in most cases, drought suppresses both ecosystem productivity and ET 
simultaneously3–5,7–10. However, their magnitudes (or relative magnitudes), representing the sensitivity of differ-
ent biological and/or physical processes to drought, depend on biome types and other confounding environmen-
tal factors, and varies considerably among studies8–10. As a result, a consensus of drought impacts on WUE has 
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not yet been reached across all main global ecosystems. Here, we present the first global synthesis of the impact of 
drought on WUE by assessing the biome and ecosystem WUE responses to drought using two observation-based 
WUE datasets. First, observations of GPP and ET from 95 eddy covariance (EC) sites (526 site-years) were com-
piled to calculate WUE and examine the drought effect at the site level11. The observations cover a broad range of 
bio-climates and each site has at least three-years continuous measurements. Second, global monthly 0.5° gridded 
WUE estimates for 1982–2011 were determined from monthly GPP and ET estimates based on a data-adaptive 
machine learning approach (i.e., model tree ensembles, MTE) trained with FLUXNET data collected globally12. 
Compared to process-oriented ecosystem models, results of MTE are much less contingent on theoretical-model 
assumptions and are considered an independent data benchmark for numerous ecosystem models9,10,12. In addi-
tion, two drought indicators were used in this analysis, including the wetness index (WI =  precipitation/potential 
ET) that quantifies the meteorological drought13 and the Palmer Drought Severity Index (PDSI)14 which quanti-
fies hydrological drought by accounting for soil water storage dynamics (see Methods).

Results and Discussion
Global mean annual WUE exhibits a remarkable spatial heterogeneity (see Supplementary Fig. S1), spanning a 
range from less than 0.5 g C/kg H2O in arid regions (i.e., North Africa, Central Euro-Asia and the western coast 
of South America) to higher than 4.0 g C/kg H2O in more humid areas (i.e., Western Europe). WUE and vegeta-
tion cover (as indicated by satellite-based Normalized Difference Vegetation Index, NDVI) is highly consistent, 
with higher NDVIs generally correspond to higher WUEs (R2 =  0.411, P <  0.001) (see Supplementary Fig. S1), 
supporting the results from previous studies in Europe15, North America16 and China17. At the biome level, forest 
ecosystems show higher WUEs than non-forest ecosystems, whereas the WUE spatial variability is lower in high 
WUE regions than that in low WUE regions (see Supplementary Fig. S2).

To examine the drought-WUE relationship, all quantities are firstly detrended (by subtracting the linear trend 
derived from the least-square regression from the original data series– see Methods for more details) to focus 
the correlation analysis on interannual variability. Both WUE datasets reveal a contrasting response of WUE to 
drought across global ecosystems (Fig. 1), which corresponds well with global climatic zones (Fig. 2a). At the EC 
site level, nine of eleven (i.e., ~82%) arid sites show a negative relationship between WUE and WI, with p <  0.1 at 
five of them (F-test). In contrast, among the 65 examined EC sites in the semi-arid/sub-humid region, 50 of them 
(i.e., ~77%) show a positive relationship between WUE and WI (p <  0.1 at 14 sites). For the remaining 19 EC sites 

Figure 1. Effect of current year drought on ecosystem WUE at the site and grid-box levels. (a) Pearson’s 
coefficient between annual WUE and wetness index for each flux site. (*) indicates the regression is significant 
at the significance level of 90% (not at 95% due to a limited number of years at each site), and (b) Spatial 
distribution of Pearson’s coefficient (r) between detrended annual MTE-WUE and detrended annual PDSI 
series. Dashed grey lines are separated by 30° latitude or longitude from the equator and 0° E (as in all maps). 
Map was created using ArcMap 10.2 (http://www.esri.com/software/arcgis/arcgis-for-desktop).

http://www.esri.com/software/arcgis/arcgis-for-desktop
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located in the humid zone, the WUE-WI relationship is positive in 11 sites and negative in 8 sites (p >  0.1 at all 
19 humid sites).

Similar results were obtained from the correlation analysis between MTE-WUE and PDSI (Fig. 1b). Significant 
negative correlations (i.e., p <  0.05) between WUE and PDSI are observed in arid areas, including central and 
western Asia, southern Africa and the majority of central and western Australia. In contrast, positive relationships 
between WUE and PDSI occur in semi-arid and sub-humid regions, i.e., the Great Plain of North America, a 
large portion of central Euro-Asia, the south-eastern Amazon Basin, the western part of the Pampas Steppe (also 
in South America) and areas surrounding the Congo Basin in Africa. For humid regions, no significant relation-
ship between WUE and PDSI is observed (p <  0.05), suggesting that drought has limited effects on ecosystem 
WUE in non-water limited regions.

The distinct response of WUE to drought between arid and semi-arid/sub-humid regions is reinforced when 
averaging the Pearson’s coefficient between WUE and WI (or PDSI) by biome types (Fig. 3c) and/or climate 
zones (Fig. 3a,b). The good agreement between climate zone and vegetation functional type demonstrates a pre-
dominant role of climate in shaping ecosystems18. Consistent with the results shown in Fig. 1, arid zone WUE 
(i.e., desert vegetation and shrubland) responds negatively with an increase in WI (or PDSI), with the negative 
correlation becoming more significant for areas of a drier climate (Fig. 3). In contrast, the WUE and WI (or PDSI) 
relationship is completely reversed to a positive relationship for biomes in semi-arid and sub-humid regions 
(i.e., grassland, croplands and savanna, Fig. 3). Interestingly, this positive relationship becomes weaker for areas 
of increased climate wetness and disappears in humid zones except for evergreen broad leaved forest located in 
the eastern Amazon Basin (Figs 1 and 3). Similar results are observed when the analyses are performed based on 
non-detrended and/or using WI instead of PDSI in the MTE-WUE data (see Supplementary Figs S3–S5). The fact 
that using the non-detrended time series results in the same conclusion (as using detrended variables) suggests 
that the long-term trends in both WUE and drought has not broken the interannual correlations between the two 
variables.

As an integrated measure of the coupled water and carbon cycles, ecosystem WUE is determined by multiple, 
and often interacting physical and biological processes. The contrasting response of WUE to drought between 
arid and semi-arid/sub-humid biomes suggests a different sensitivity of ecosystem processes to drought among 
those biomes. Vegetation in arid areas are likely to have already adapted to the dry climate and hence possesses a 
generally greater tolerance to drought19,20. Consequently, plants would still perform relatively well when drought 
persists, implying a relatively low sensitivity of GPP to drought in arid ecosystems (Fig. 4a,c and Supplementary 

Figure 2. Global distribution of (a) mean annual wetness index zones for 1982–2011 and (b) biome 
types. The wetness index is calculated as the ratio of annual precipitation over annual Penman potential 
evapotranspiration, and the global wetness index zones are determined according to UNEP aridity 
classification13. Biome types include desert, shrubland, grassland, cropland, savanna, deciduous broadleaf 
forest (DBF), deciduous needle-leaf forest (DEF), mixed forest(MF), evergreen needle-lead forest (NEF) 
and evergreen broadleaf forest (DBF) are determined based on MODIS UMD 1-km land cover product 
(MOD12Q1). Maps were drawn using ArcMap 10.2 (http://www.esri.com/software/arcgis/arcgis-for-desktop).

http://www.esri.com/software/arcgis/arcgis-for-desktop
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Figs S6 and S7). On the other hand, additional water input in wet years cannot be effectively used by plants 
due to low vegetation coverage, resulting in higher percentage of non-biological water consumption (i.e., soil 
evaporation) in arid regions21. Therefore, the higher ET sensitivity to changes in hydro-climatic conditions is 
the primary reason for the negative correlation between WUE and WI (or PDSI) in arid ecosystems (although 
the overall sensitivity of GPP and ET to drought is low in arid ecosystems). In contrast, ecosystems in semi-arid 
and sub-humid regions are dominated by herbaceous plants (i.e., grassland, cropland and savanna) whose func-
tions and activities depend largely on water availability22–24. Studies have shown that ecosystem productivity 
in grassland responds most rapidly to precipitation variability22,24, suggesting a high GPP sensitivity to water 
availability in these climate zones. In semi-arid and sub-humid regions, deeper rooted perennial vegetation also 
responds to precipitation variability, albeit on a longer time-scale than grasses, as has been observed using satellite 
remote sensing25,26 and in numerous field studies27–31. In these semi-arid and sub-humid ecosystems, although ET 
decreases simultaneously during drought, its response is smaller than the GPP response, leading to a lower WUE 
in drier years and vice versa (Fig. 4b,c and Supplementary Figs S6 and S7). The above analyses are supported by 
comparing the relative sensitivities of GPP and ET to WI (and/or PDSI) in both datasets (Fig. 4), which shows 
that ET dominates WUE variability in arid ecosystems, whereas GPP dominates WUE variability in semi-arid 
and sub-humid regions.

Our analysis also reveals an ET-dominated WUE variability in tropical humid regions (i.e., Amazon, Congo 
and southeast Asia) (Fig. 4c), where variation of ecosystem functions are largely driven by energy supply rather 
than water availability32,33. Drought is often caused by less precipitation (and thus less cloud cover), which results 
in more incoming solar radiation and therefore accelerates ecosystem processes (e.g., GPP and ET)33–35. On 
the other hand, studies have shown that nutrient availability plays an important role in determining vegetation 
growth in the absence of water and temperature stresses25, but nutrient availability is less likely to directly affect 
the physical processes of ET (i.e., soil evaporation and evaporation from canopy interception). This may explain 
the overall lower sensitivity of GPP to drought than the sensitivity of ET to drought in these tropical rainforest 
regions.

Many studies have suggested that drought legacy affects ecosystem productivity and water consumption36–39: 
known as “the memory effect”. Here we show that the memory effect of previous-year drought on current-year 
WUE is higher in three regions, i.e., the Great Plain, the Amazon Basin and the part of Australia experienc-
ing a Mediterranean climate, but generally low in other areas (Fig. 5a, by conducting the hierarchical partition-
ing analysis40). Further support is given by the Akaike Information Criterion analysis41 on the WUE model by 
current-year PDSI and by two-year PDSIs (see Supplementary Fig. S8). Although the effect of hydro-climatic 
disturbance on WUE varies greatly among bio-climates, the memory effect shows a pattern where the impact 
of previous-year drought consistently shows an opposite sign than that of the current-year drought on WUE for 
all biomes (Fig. 5b). This result suggests that the memory effect enhances (weakens) the impact of current-year 
hydro-climatic disturbance on WUE if there is (not) a transition in the disturbance between the two consecutive 
years. Transitions in hydro-climatic conditions bring further disturbance into the ecosystem, which will lead to 
greater variability in ecosystem functions and activities. In contrast, a stable hydro-climatic condition between 
years allows an ecosystem to better adapt to the environment and thus they are less responsive to the current 

Figure 3. Effect of current-year drought on ecosystem WUE at the climate zone and biome levels. Boxplot 
of Pearson’s coefficient between (a) detrended annual Flux site-WUE and WI for each climate zone, (b) 
detrended annual MTE-WUE and PDSI for each climate zone, and (c) detrended annual MTE-WUE and PDSI 
for each vegetation type. The background colours in (c) indicate different climate zones (red: arid zone; yellow: 
semi-arid/sub-humid zone; green: humid zone and the five vegetation types for the humid zone are expanded 
in Fig. 2). Each box represents the inter-quartile range of the data (25%~75% quantile), the dark horizontal line 
within the box indicates the median and the whiskers (i.e., highest and lowest horizontal lines connected to the 
box by dashed lines) are the maximum and minimum data values, respectively. Note that the boxplot analysis 
was not undertaken for Pearson’s coefficient between Flux site-WUE and WI at the biome level due to limited 
flux sites within each biome. Images were drawn by using R 3.1.2 (https://www.r-project.org/).

https://www.r-project.org/
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hydro-climatic condition. This finding also provides evidence of ecosystem acclimation at a relatively short time 
scale (i.e., annual).

Our findings have important implications for studying the effect of climate change on ecosystem behaviour. 
The contrasting response of ecosystem WUE to drought, which results from different sensitivity of ecosystem 
processes to changes in hydro-climatic conditions, implies that biological (i.e., GPP) controlled ecosystems (i.e., 
semi-arid/sub-humid ecosystems) may be more vulnerable to drought than physical (i.e., evaporation) controlled 
ecosystems (i.e., arid ecosystems), confirming previous findings22–24. On the other hand, climate change is pre-
dicted to increase both the frequency and intensity of drought6, and when coupled with continued and substantial 
warming, a new hydro-climatological regime will likely form in many areas6. This is especially important for 
semi-arid/sub-humid ecosystems, as more severe droughts could result in a larger reduction in their WUE by 
reducing ecosystem productivity or considerable vegetation mortality5. If drought continues, breakdown in eco-
system resilience may occur as ecosystem WUE reduces to a certain threshold, which, when crossed, can result in 
biome reorganization24. This phenomenon has already been observed during large-scale shrub encroachment in 
North America42 and grassland desertification in Central Euro-Asia43. Moreover, such processes may be further 
accelerated by the memory effect of drought on ecosystem processes if climate variability increases concurrently 
with droughts.

Methods
Data sets. Our analyses are based on two WUE data sets that are both ultimately derived from EC measure-
ments. Firstly, GPP and ET observations at 95 flux sites (526 site-years) were obtained (Supplementary Table S1). 

Figure 4. Relative sensitivity of GPP and ET to drought. (a) linear regression lines between normalized GPP 
(or ET) and normalized WI for each flux site and across sites within the arid zone and (b) within the semi-arid 
and sub-humid zones; (c) spatial distribution of the dominant controlling factor (i.e., GPP or ET) of annual 
1982–2011 WUE variability in response to drought using the MTE data. In (a,b), only sites with the correlation 
between WUE and WI being significant (p <  0.1) are shown. Fine lines indicate the best linear regression at 
each flux site and bold lines represent the linear regression pooled across all significant sites. Slope and p-value 
are reported for bold lines. In (c), only pixels with correlations in Fig. 1b being significant (p <  0.05) are shown. 
Map was created using ArcMap 10.2 (http://www.esri.com/software/arcgis/arcgis-for-desktop).

http://www.esri.com/software/arcgis/arcgis-for-desktop
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At each site, H2O flux, CO2 flux and meteorological variables were measured at 30-minute intervals using the EC 
technique. Half-hourly GPP was calculated during daylight hours as net ecosystem exchange minus ecosystem 
respiration using the standard FLUXNET on-line flux partitioning tool44. Half-hourly data were accumulated to 
obtain GPP and ET daily, monthly and annually. All sites have at least three years continuous measurements and 
years with the average EC data quantity score larger than 0.8 (on a scale of 0–1)11. These sites cover a broad range 
of vegetation types and climate zones, representing a “global context”.

The second global GPP and ET dataset were produced by upscaling FLUXNET observations of CO2 and H2O 
fluxes to the global scale using a data-adaptive machine learning technique (i.e., model tree ensembles (MTE))12. 
The MTE model was first trained at site level and then applied to generate monthly global flux fields at a 0.5° 
spatial resolution from 1982 to 2011. A ten-fold cross validation was performed to evaluate the MTE models, and 
the results show a high accuracy of predicated GPP and ET by the MTE models, with R2 between observed and 
estimated measures being 0.85 (n =  4209) for GPP9 and 0.91 (n =  4678) for ET10.

Drought was also quantified by two different drought indicators, i.e., WI and PDSI. Monthly global PDSI at a 
0.5° spatial resolution from 1979 to 2011 was calculated following the method in ref. 3, except that the potential 
evapotranspiration (PET) is calculated using the fully-physically based Penman Equation45. PDSI from 1982 to 
2011 was used to quantify drought (i.e., the lower the PDSI value the more severe the drought is). However, due 
to relative short observation period, PDSI was not calculated at the site level. Instead, WI was used to quantify 
drought for each EC site. Globally, WI was calculated using monthly meteorological data (0.5° spatial resolu-
tion) obtained from the Climate Research Unit (CRU TS 3.2)46, and at the site level using meteorological data 
observed directly by the flux tower. The global aridity zones were defined based on WI following the UNEP 
aridity classification13.

Land cover types include desert, shrubland, grassland, cropland, savanna, deciduous broadleaf forest (DBF), 
deciduous needle-leaf forest (DNF), mixed forest (MF), evergreen needle-leaf forest (ENF) and evergreen 
broadleaf forest (EBF) were classified based on the MODIS UMD 1-km land cover product (MOD12Q1)47.

Analysis. To focus the analysis on interannual variability, all variables (both WUE datasets and the two 
drought indexes) were detrended by subtracting the linear trend derived from the least-square regression from 
the original data series. Such treatment also minimizes the effects of other monotonic environmental factors on 
long-term WUE trend (e.g., elevation in atmospheric CO2 concentration48). Then, a liner correlation analysis 
was performed between the detrended annual WUE and drought indexes to investigate the drought effect on 

Figure 5. Memory effect of previous-year drought on WUE. (a) The independent effect of previous-year 
drought on the goodness of fit between annual detrended MTE-WUE and PDSI and (b) WUE sensitivity to the 
current-year PDSI and previous-years PDSI. This analysis was only performed on the annual gridded 1982–
2011 MTE data due to the relative short length of the EC flux site data. Map was created using ArcMap 10.2 
(http://www.esri.com/software/arcgis/arcgis-for-desktop).

http://www.esri.com/software/arcgis/arcgis-for-desktop
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interannual variability in WUE. The same analyses were performed with non-detrended data, resulting in similar 
conclusions (see Supplementary Figs S5–S7).

To determine the dominant factor (i.e., GPP or ET) that controls the interannual variability of WUE in 
response to drought, the relative sensitivity of GPP (or ET) to drought were quantified as the slope of the linear 
regression function between normalized GPP (or ET) and normalized drought index (each normalized by the 
mean value through the time series). If the relative sensitivity (i.e., the slope of the linear regression) of GPP to 
drought is higher than that of ET to drought, variability in WUE at the corresponding site (or pixel) is considered 
to be GPP-controlled, otherwise it is ET-controlled.

To examine the memory effect of previous year drought on current-year WUE, we built a dualistic linear 
regression models between current-year WUE (i.e., WUEcurrent =  a ×  PDSIcurrent +  b) and previous-year and 
current-year PDSI (i.e., WUEcurrent =  a ×  PDSIcurrent +  b ×  PDSIprevious +  c). Due to the short data length at the 
EC flux sites, analysis of the memory effect was only performed annually using the gridded MTE-WUE data 
from 1982 to 2011. The hierarchical partitioning algorithm40 was used to determine the independent effects of 
current-year and previous-year PDSI on WUE as a percentage contribution to the goodness of fit of the dualistic 
linear regression model. The Akaike Information Criterion (AIC) analysis41 was also performed to evaluate the 
benefit of adding the previous-year PDSI to the regression model between PDSI and WUE (see Supplementary 
Fig. S10). The new model (using two years PDSI) is considered as an improvement over the old one (using one 
year PDSI) if the AIC value reduced by more than 2.0.
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