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1. Abstract 28 

Where a translocation program is used to reinforce an existing population of an endangered species, 29 

the response of the introduced individuals to cues from conspecific residents will have an important 30 

impact on the success of the translocation. If those cues induce the translocated individuals to stay at 31 

the release site the translocation is more likely to succeed than if the cues cause individuals to move 32 

away. We used conspecific models of the endangered Australian pygmy bluetongue lizard to identify 33 

behavioural parameters relevant to translocation success, that change when the visual conspecific cues 34 

are presented. Pygmy bluetongue lizards typically remain in or at the entrance of their refuge burrows. 35 

In the presence of conspecific models, introduced lizards significantly increased, and nearly doubled, 36 

the number of movements out of their burrows (mean (SE) number of movements with models = 0.44 37 

(0.03); without models = 0.25 (0.03); P = 0.012) and more than doubled the number of movements 38 

away from the release area (mean (SE) number of movements with models = 0.28 (0.03); without 39 

models = 0.08 (0.02); P = 0.003), suggesting they would be less likely to remain within a resident 40 

population where they were released. We found that, by the end of the first day of experimental trials 41 

11 of 16 lizards in treatments with models present had occupied burrows that did not have a model 42 

nearby, and that number increased to 14 of 16 lizards by the fourth day. The results suggest that cues 43 

from conspecifics will not encourage translocated lizards to stay at a release site.  44 

Key words: Conspecific models, Behaviour, Lizards, Dispersal 45 

 46 

2. Introduction 47 

A range of behavioural responses to conspecific individuals, particularly responses associated with 48 

agonistic or mating behaviours, are mediated by unique cues, and  models that contain features of 49 

those cues can be used to manipulate animal behaviour in practical ways (Craven, 1984), including 50 

their use in conservation related translocations.  51 

For many endangered species, one potential management strategy is conservation translocation, the 52 

intentional movement and release of individuals primarily for conservation benefit (IUCN, 2013). 53 

Two important problems in any translocation attempt are the initial stress on release, and the tendency 54 
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to disperse from unfamiliar habitat (Mihoub et al., 2009). Examples of post-release movement in 55 

release habitats include translocated birds (Kemink and Kesler, 2013) and snakes (Reinert and Rupert, 56 

1999). The novel location and resource competition from conspecific residents may increase the stress 57 

level of translocated animals (Letty et al., 2000; Teixeira et al., 2007; Drake et al., 2012), but stress 58 

may be reduced if individuals recognise conspecific cues that allow them to rapidly identify refuge 59 

shelters or feeding locations (Lorenzo and Lazzari, 1996; Göth and Evans, 2004; Gautier et al., 2006; 60 

Kullmann et al., 2008). In those cases the provision of conspecific cues may reduce both stress and 61 

the tendency to disperse. For instance Ahlering et al. (2010) reported that, in 20 of 24 reviewed 62 

studies, songbirds were encouraged to settle in habitat where conspecific songs were played. Alberts 63 

(2007) suggested that captive reared individuals of the endangered Caribbean rock iguana, when 64 

released back into the wild, may be more likely to preferentially settle where there are familiar cues 65 

such as known conspecifics or their odours. On the other hand, in species that are aggressively 66 

territorial, the use of conspecific cues may have the opposite effect, and increase stress. The potential 67 

to use conspecific cues to promote translocation success needs to be examined carefully on a species 68 

by species basis. 69 

The endangered pygmy bluetongue lizard (T. adelaidensis) is now restricted to a few isolated 70 

fragments of its native grassland habitat in the mid-north region of the state of South Australia, 71 

Australia. Its current distribution is a small part of its previous range, most of which has been taken 72 

over by cereal cropping and grazing farmland. Its endangered status has resulted from the now 73 

restricted geographical range, and from the isolated nature of the few remaining small populations. 74 

Models that explore likely future climate change scenarios within the range of this lizard, show that 75 

reinforcement or reintroduction translocation will be a certain requirement for the future preservation 76 

of this species (Fordham et al., 2012). If we adopt that strategy, we need to know how best to prevent 77 

translocated lizards from dispersing away from release sites. Can we use cues from conspecifics, to 78 

encourage them to preferentially settle close to where they are released? 79 

The pygmy bluetongue lizard is normally solitary and lizards spend most of their time associated with 80 

single entrance burrows constructed by lycosid and mygalomorph spiders (Hutchinson et al., 1994; 81 
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Fenner and Bull, 2011b). Individuals usually occupy a single burrow for extended periods of time and 82 

most suitable burrows are taken by lizards (Hutchinson et al., 1994; Milne et al., 2003; Souter et al., 83 

2004; Fellows et al., 2009). This suggests there is competition between lizards for limited high quality 84 

burrows, and although occupied burrows can be as close as 1 m apart (Fenner and Bull, 2009) lizards 85 

actively defend a very small  area with a radius of less than 15 cm around their burrow entrance from 86 

approaching conspecifics (and from conspecific models) (Fenner and Bull, 2011a). This would 87 

suggest that conspecific cues might increase stress in newly introduced lizards. On the other hand, 88 

when in a novel environment, lizards recognise conspecific olfactory signals and prefer to choose 89 

unoccupied burrows that have previously held a conspecific (Fenner and Bull, 2011b); that is they 90 

select refuges where other lizards have been. In that case, conspecific cues that are not directly 91 

challenging might help lizards adjust to a novel environment. In the current study we asked whether 92 

the provision of conspecific models near some, but not all burrows in a novel habitat, might reduce or 93 

increase movements and dispersal among newly introduced pygmy bluetongue lizards. 94 

3. Methods 95 

3.1 Experimental trials 96 

We used eight male (average snout-to-vent length (SVL) 85.1 ± 0.2 mm) and eight female (average 97 

SVL 89.2 ± 0.2 mm) pygmy bluetongue lizards that had been captured from two natural populations 98 

near Burra, South Australia (33º42´S; 138º56´E). These lizards had been used in several other short 99 

behavioural experiments during the austral spring and summer of 2009/10 and 2010/11 (Ebrahimi and 100 

Bull, 2012; 2013a; b; c), and so had briefly experienced the experimental habitat of the current 101 

experiment (total of 60 days in the cages over a two year period). Before the current experiment the 102 

lizards were held in individual cages (52.5 x 38 x 31cm) in ambient conditions and fed every day with 103 

crickets and mealworms. 104 

The experimental cages have been described previously (Ebrahimi and Bull, 2013b) as four, 15 m 105 

diameter cages at Monarto Zoo, 70 km SE of Adelaide, South Australia (35°06′S; 139°09′E). Each 106 

cage had a 1 m high galvanized wall and a bird-proof wire roof. Each cage was divided into three 107 

areas; a 2 m radius central area where lizards were released, which was lightly vegetated with annual 108 
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grass cut to ground level before the experiment started, and where burrows were provided, a 5 m wide 109 

ring of marginal habitat, similarly vegetated but with no burrows, and a 0.5 m wide perimeter area 110 

around the inside cage wall, again similarly vegetated but with burrows. We considered the no-burrow 111 

habitat marginal because we assumed that lizards would perceive they were exposed and at risk where 112 

there were no burrows. We placed 41 artificial burrows into the central area, one in the centre and 40 113 

in three concentric rings, so that burrows were 65-75 cm apart. We also spaced 30 burrows evenly 114 

around the inside cage perimeter (Fig 1). Burrows were made from 30 cm lengths of 3 cm diameter 115 

wooden dowling with the central 2 cm diameter drilled out. These were hammered into 30 cm deep, 3 116 

cm diameter holes drilled into the soil surface. The burrows in the perimeter area allowed us to detect 117 

lizards that had dispersed from the central area. 118 

We made 40 polyurethane models from a previously produced mould of a male pygmy bluetongue 119 

lizard. To produce a model colour that resembled that of the lizards, we added 1 mg of oxide brown 120 

colour (Diggers oxide colouring, Recochem, Australia) to 500 mL polyurethane (Easy Flo 60 Casting 121 

Polyur-ethane, Polytek Development Corp., Solid Solutions, Australia). Fenner and Bull (2011a) have 122 

previously reported that pygmy bluetongue lizards attacked these models if they were placed 5 cm 123 

from their burrow entrances, and that they differentiated between these models (that they attack), and 124 

models of a similar sized sympatric skink species, or a similar sized inanimate stick (that they do not 125 

attack).  126 

Two replicate trials were conducted to test whether the behaviours of lizards differed in the presence 127 

or absence of the model lizards. At the start of each trial we placed 20 models in the central area of 128 

each of two cages. Models were located 5 cm from the entrance of alternate burrows. We considered 129 

the models were located at a position relative to the burrow entrance that a basking lizard might adopt. 130 

There were four models spaced around the inner concentric ring of eight burrows, and eight models 131 

spaced around the two outer rings, each of 16 burrows (Fig 1). The other two cages were left with no 132 

models. In the first trial, we released four lizards (two males and two females) into the central region 133 

of each cage at 07:00 h on 17 January 2011 and confined them for 24 h in the release area with a 134 

temporary, 20 cm high, black plastic wall. This allowed the lizards to become familiar with the release 135 



  

6 

 

environment (Ebrahimi and Bull, 2013b) and the models. Then we removed the wall and recorded 136 

lizard behaviour for the next 4 days. Thus day 1 of the trial was the day after the wall had been 137 

removed. Because filming was continuous while lizards were active we could follow the behaviours 138 

of each individual lizard over the four days of each trial. At the completion of the first trial, on the 139 

evening of 21 January 2011, we removed lizards from their burrows and kept them individually in 140 

their holding cages, with ambient temperature and light, and fed them for 3 days. Then, for the second 141 

replicate trial, we randomly chose new combinations of two male and two female lizards, and released 142 

them into the same four cages (two with and two without models). 143 

 4.2  Behavioural parameters 144 

In each trial, we observed lizard behaviour using four surveillance cameras suspended above each 145 

cage (CCD video camera, LICS23HF and lens 3.6 mm, Normal recording mode (continues), 30 fps,  146 

Longse, China). The cameras had a combined field of view covering the complete central area, and 147 

we used them to record continuously lizard behaviour from 07:00h to 17:00h during each day of each 148 

trial. We also confirmed the location of each lizard every day in the early morning and late afternoon 149 

by inspecting each burrow with a small torch. In the cages with models, we recorded, at the end of 150 

each day, how many lizards were in the 20 burrows with adjacent models, and how many were in the 151 

21 burrows without models.We did not add supplementary food during the experiment, but lizards 152 

could prey on naturally occurring invertebrates.  153 

We derived six behavioural parameters from the video recordings in each cage during each replicate 154 

trial; 1) Total activity time (h d-1) which was defined as the period from the first time the head of a 155 

lizard emerged from its burrow to the last time that lizard retreated completely into its burrow on that 156 

day; 2) Basking time (min h-1) which was defined as the period of time when the lizard was at least 157 

partially emerged (5 -98% of body outside of the burrow) and was located at the entrance of its 158 

burrow. We divided the total min spent basking each day by 11 (the total h of filming in a day) to 159 

calculate the basking time as min h-1; 3) Number of movements around burrow. In some cases lizards 160 

fully emerged from their burrow, moved about, usually for a very short distance, no more than 10 cm 161 

from the burrow entrance, and then returned to the same burrow. These movements included lizards 162 
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that just walked around the burrow entrance no more than 5 cm from it, lizards that basked while fully 163 

emerged, and lizards that moved 10 cm away from the burrow entrance for defecation or darted out to 164 

catch prey within 10 cm of the burrow entrance. We recorded the number of movements by each 165 

lizard on each day; 4) Number of burrow changes. In some cases, lizards fully emerged from their 166 

burrow, moved more than 10 cm from that burrow (distance of actual moves are given in the results), 167 

and entered another burrow in the central area. We recorded the number of burrow changes for each 168 

lizard on each day; 5) Distance moved. If a lizard had moved to one or more different burrows within 169 

the central area during a day we measured the distance moved as the direct line distance between the 170 

burrow the lizard was in at the start of the day to the burrow it was in at the end of the day; 6) Number 171 

of movements to the perimeter area, which was defined as the number of times a lizard left the central 172 

area, moved across the habitat matrix, and was subsequently discovered occupying a burrow in the 173 

perimeter region. In terms of the translocation simulation, we considered that these represented 174 

dispersal events away from the release site, because lizards normally move less than 1 m from their 175 

occupied burrows (Milne et al., 2003; Fenner and Bull, 2011a) and because lizards that ended in 176 

perimeter burrows had to leave the central area where burrow refuges were available and cross the 177 

burrow-less matrix. 178 

For each cage, on each day, we calculated a mean value per lizard of each parameter, and used that 179 

mean value for the cage in subsequent analyses. Normally this was a mean from four lizards, although 180 

in some cases, when a lizard had moved to the perimeter ring, and out of the field of view of the 181 

cameras, the mean for that day was derived from three or fewer lizards. On the first, second and fourth 182 

day, data from one cage had to be calculated from just three lizards and on the second and fourth day 183 

from one other cage  data had to be calculated from just two lizards. We observed no agonistic 184 

interactions among live lizards in any cages, but recorded the number of attacks that lizards made on 185 

the model lizards.  186 

We also recorded the overall number of behavioural activities by the lizards, including emerging to 187 

bask, movement around the burrow, burrow changes, movements to the perimeter area, and attacks on 188 

models. Although we used the same lizards, they were in different combinations in the second trial 189 
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and we considered that we had four independent replicates, two from each trial, of each treatment 190 

(with or without models). Thus data from the two sets of replicate trials were combined in the 191 

analyses to ask two questions. We first asked whether lizards in cages with models (four cages total; 192 

two cages in each of the two trials) showed any specific responses to those models, and if this 193 

response changed with experience over the 4-day trials. We then asked if lizards differed in their 194 

behaviours if they were in cages with (four cages) or without (four cages) conspecific models.  195 

 4.3 Statistical analyses 196 

In the cages with models we used contingency chi-squared analysis to determine if burrow choice was 197 

random or was influenced by the presence of the models. Then, after the first day of each trial, we 198 

compared by t-test the behavioural parameters of those lizards that were in burrows with models and 199 

those in burrows without models. We did not repeat these analyses for days 2 to 4 because of the low 200 

numbers of lizard that remained in burrows with models on those days. In the cages with models, we 201 

used repeated measures ANOVA (Hand and Taylor, 1987) to determine whether attack rate on models 202 

changed with day of the trial. To compare other behavioural parameters between those lizards that did 203 

or did not attack models at least once, we used a repeated measures ANOVA for each of the six 204 

behavioural parameters, with day of trial as a within subjects factor and lizard response to the model 205 

(attacked model/did not attack model) as a between subjects factor.  206 

We again used repeated measure ANOVA to examine whether the treatment of adding conspecific 207 

models to cages altered lizard behaviour, for each of the six behavioural parameters. We used the 208 

average behavioural parameter value per cage (eight cages in total, four cages in each of the two 209 

trials) per day as the dependent variable, day (1-4) as a within subjects factor and cage treatment 210 

(model/no model) as the between subjects factor. For all repeated measures ANOVA’s we applied the 211 

Greenhouse-Geisser correction when data were non- spherical. 212 

4. Results 213 

4.1. Do lizards respond to the models? 214 

From 16 lizards (in four replicate cages with models present), five occupied burrows with models 5 215 

cm from the burrow entrance at the end of the first day (two in the first and three in the second trial). 216 
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This was reduced to three lizards on the second day, and to two lizards on the third and fourth days 217 

(one in each trial) of the experiment. While chi squared tests showed no significant deviation from 218 

random choice on the first day (X2= 2.25, d.f. = 1, P = 0.13) lizards had a significant preference for 219 

burrows without models by the second day (X2= 6.25, d.f. = 1, P= 0.012), and the third and fourth 220 

days (X2 = 9.0, d.f. = 1, P= 0.002). In the cages with models, the mean number of lizards that stayed in 221 

burrows near models significantly reduced from the first to the fourth day of the trials (F3, 9 = 9.00, 222 

P<0.005; Fig. 2a). 223 

On the first day of each trial, in cages with conspecific models, lizards that had chosen burrows with 224 

models had significantly shorter overall activity time and spent significantly less time basking than 225 

lizards that had chosen burrows without models (Table 1). Additionally those lizards that ended the 226 

day in burrows with models had changed burrows significantly more often on that day, than lizards 227 

that ended the day in burrows without models (Table 1). Two different lizards (two females) that 228 

occupied burrows with  a conspecific model 5cm from the burrow entrance, attacked the models 229 

during days 1, 2 and 4 (a total of five times for both females and all days) and appeared to be trying to 230 

push the models further away. There was no significant effect of day on the mean number of attacks 231 

on models (F3, 9 = 0.60, P = 0.63). 232 

Repeated measure analyses showed significant effects of the response of lizards to models (whether 233 

they did or did not attack the models) on three behavioural parameters (Table 2). The lizards that 234 

attacked the models stayed active for longer (mean 3.71 ± SE 0.03 h d-1) than those that did not (2.98 235 

± 0.11 h d-1), and changed burrows more often (Fig. 2b; Table 2). The lizards that attacked the models 236 

were also significantly more likely to stay in the central release area (0.0 movements to the perimeter 237 

area per day) than those that did not (0.56 ± 0.11 movements to the perimeter area lizard-1 day-1) 238 

(Table 2). There was also a significant effect of day on total activity time, and a significant interaction 239 

effect between day and response to models, for the number of burrow changes (Table 2). 240 

Note that these results are derived from a small sample size (only two lizards attacked models), and an 241 

uneven distribution of lizards between the two categories attacked model (two lizards) or did not 242 

attack model (14 lizards). 243 
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4.2.  Do lizards behave differently with and without models present? 244 

We recorded 429 separate behavioural activities from 1280 hours of recordings. Emerging to bask 245 

was the most common lizard activity (234 basking events) followed by movement around the burrow 246 

(135 movement events). The experimental treatment (with or without models) did not affect total 247 

activity time, basking time, or distance moved when changing burrows (Table 3). There was a 248 

significant interaction of treatment x day for the number of lizard movements around the burrow 249 

(Table 3); lizards consistently made more movements around the burrow in the cages with models, 250 

although the difference between treatments was much smaller on the first day of the trials (Fig. 3). 251 

Also lizards changed burrows significantly more (Fig. 4a), and made significantly more movements to 252 

the perimeter area (Fig. 4b) in cages with models than in cages with no models (Table 3). 253 

5. Discussion 254 

First considering the lizards in the cages with models present, our results showed that lizards 255 

responded to the conspecific models. They tended to avoid burrows that were close to the models, 256 

and, rarely, they attacked the models. This is consistent with the report of Fenner and Bull (2011a) 257 

who suggested that pygmy bluetongue lizards defend a small area immediately around their burrow 258 

entrance (radius less than 15 cm)  and that they aggressively attacked conspecific models placed 5 cm 259 

from their burrows. We deduced from the current study, that lizards in a new habitat will reduce 260 

agonistic interactions with conspecifics by avoiding burrows they perceive to be occupied. Those 261 

lizards that occupied burrows close to models at the end of the first day, showed behaviours consistent 262 

with being negatively affected by the presence of a conspecific; they were active over a shorter time, 263 

and basked for shorter periods than lizards in the same cages but in burrows without models close by.  264 

Comparing lizards in cages with models and in cages without models, we found that the presence of 265 

models did not affect total time active or basking time. Perhaps this was because, after the first day, 266 

most of the lizards in cages with models had selected burrows that did not have a model 5 cm from 267 

the burrow entrance, and there was no immediate perceived threat from closely adjacent conspecifics. 268 

However the presence of models significantly altered movement behaviours. Lizards in cages with 269 

models moved around the burrow more, changed burrows more, and moved to the perimeter area 270 
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more. Thus, even with apparently unoccupied burrows available, the presence of an apparent 271 

conspecific in another burrow within 65 – 75 cm induced this extra activity. We have previously 272 

shown a similar result (Ebrahimi and Bull, 2013c), that lizards changed burrows more, and made 273 

more moves to the perimeter area if they released into burrows that were close together than if they 274 

were released into burrows that were further apart.  275 

We can draw three broad conclusions from our results about the use of conspecific models for the 276 

translocation of pygmy bluetongues, and the translocation of other species that have a similar solitary 277 

social organisation, and with defence of a central refuge. First, the lizards responded to visual cues 278 

from models as if they were real conspecifics. This confirms our earlier studies on this species 279 

(Fenner and Bull, 2011a), and the reports of many other behavioural ecologists since Tinbergen 280 

(1948). In any conservation program where increased conspecific presence is a management option to 281 

enhance retention of translocated individuals at the release site, models are adequate substitutes even 282 

if they contain less than the complete sensory signal range of real conspecifics. 283 

Second, in the case of pygmy bluetongue lizards, models induced more movements among lizards that 284 

had been introduced to a release site. There were more movements away from the burrow entrances 285 

when models were present than when models were absent, both for lizards that returned to the same 286 

burrow (movements around the burrow) and for lizards that changed burrows. And there were more 287 

movements to the perimeter area when models were present than when models were absent, out of the 288 

central release area and across a burrow free area. In terms of translocations, these movements would 289 

increase the exposure of the lizards to visual predators such as birds (Fenner et al., 2008), and increase 290 

their probability of leaving the release site. Although our experiments were conducted over a 291 

relatively brief period, we suggest that behaviours immediately after release are likely to be most 292 

significant in determining the success of a translocation. The likely drivers of this behavioural change 293 

(increased movement by lizards when models are present than when models are absent) are either a 294 

perceived increase in the threat to burrow security, a perceived increase in the likelihood of aggressive 295 

encounters, or a perceived increase in competition for invertebrate prey. Whatever the mechanism, the 296 

message for conservation management is that, for this species, a high density, or a perceived high 297 
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density at the release site is likely to lead to behaviours that will reduce the chance of a translocated 298 

individual staying and surviving. The broader implication for any translocation program is that it will 299 

be important to understand the local density that can be tolerated by a target species, and whether 300 

conspecific cues will negatively impact translocation success at those densities. This might be 301 

particularly important in reinforcement translocation programs designed to augment existing 302 

populations, where resident individuals may inhibit the settlement of introduced individuals. A novel, 303 

but as yet unexplored suggestion from the current study, is that the placement of conspecific models 304 

in locations surrounding a release site might inhibit dispersal away from that site if an initial aim is to 305 

retain released animals near to the release site. 306 

A third conclusion is that the presence of conspecific cues at the release site would be detrimental to 307 

any translocation program for pygmy bluetongue lizards. This contrasts with studies of other species 308 

such as Caribbean rock iguanas (Alberts, 2007; Ahlering et al., 2010) where conspecific cues have 309 

reduced the stress levels and allowed translocated animals to adjust more rapidly to their new habitat 310 

at the translocation site. Our third conclusion emphasises the need for detailed understanding of the 311 

social structure of the species before embarking on any translocation attempt. 312 

6. Conclusion 313 

In cages with conspecific models we found lizards responded to the models by avoiding occupancy of 314 

burrows with a model near the entrance. The visual cue from the model appeared to induce 315 

behavioural avoidance. In the presence of conspecific models, compared to the absence of models, 316 

introduced lizards significantly increased the number of movements around burrows, the number of 317 

burrow changes and the number of movements to the perimeter area of the experimental cages. These 318 

behavioural changes could decrease the success of a translocation by increasing exposure to predation 319 

and dispersal from the release site. The results suggest that cues from conspecifics will not encourage 320 

translocated lizards to stay at a release site. This contrasts with other studies where conspecific cues 321 

have increased translocation success, and our results suggest that a careful assessment of reactions to 322 

conspecific cues will be required before they are considered in any translocation program. 323 
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Table 1. Two sample t-tests, for lizards in cages with models, comparing, for each of six 406 

behavioural parameters, the five lizards, that , by the end of the first day of the trials, 407 

occupied burrows with models located 5 cm from the burrow entrance, with the 11 lizards 408 

that occupied burrows without adjacent models. Values in bold indicate significant effects (P 409 

< 0.05). 410 

 411 

Behavioural parameter Burrow 
occupied 

Mean SE df t P 

Total activity time (h d-1) No Model 4.19 0.16 14 2.402 0.031 
Model 0.76 0.20 

Basking time (min h-1) No Model 18.13 0.27 14 2.628 0.020 
Model 7.63 0.18 

No. movements around burrow No Model 1.82 0.15 14 0.745 0.469 
Model 0.88 0.19 

No. burrow changes No Model 0.75 0.09 14 -2.650 0.019 
Model 2.00 0.01 

Distance moved (cm) No Model 12.46 0.47 14 0.173 0.865 
Model 10.00 0.94 

No. movements to perimeter area No Model 0.28 0.05 14 -0.959 0.354 
Model 0.48 0.13 

 412 

 413 

 414 

 415 

 416 

 417 

 418 

 419 

 420 

 421 

 422 

 423 
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Table 2. Repeated-measure analyses of variance for behavioural parameters comparing the two lizards 424 

that attacked models and the 14lizards that did not attack models, in the cages with model lizards. Day 425 

(1-4) was the repeated measure, and response to model (did or did not attack) was the between 426 

subjects factor. Values of P in bold indicate significant effects (P < 0.05). 427 

 428 

 429 

 430 

 431 

 432 

 433 

 434 

 435 

 436 

 437 

 438 

 439 

 440 

 441 

 442 

 

 

Total 

activity 

time (h d-1) 

Basking time 

(min h-1) 

No. 

movements 

around 

burrow 

No. burrow 

changes 

Distance 

moved (cm) 

No. 

movements 

to perimeter 

area 

 df F P F P F P F P F P F P 

Response to 

model 
1, 14 6.57 0.022 0.05 0.824 1.30 0.272 21.06 0.001 0.06 0.809 6.95 0.020 

Day 3, 42 5.20 0.004 1.19 0.324 1.23 0.311 3.66 0.020 0.05 0.904 0.13 0.938 

Response to 

model x Day 
3, 42 1.85 0.153 1.34 0.272 0.29 0.827 4.17 0.006 1.29 0.287 0.29 0.826 
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Table 3. Repeated-measure analyses of variance for behavioural parameters comparing mean daily 443 

values for lizards in four cages with models and four cages without models. Day (1-4) was the 444 

repeated measure, and treatment (models present or models absent) was the between subjects factor. 445 

Values in bold indicate significant effects (P < 0.05). 446 

 447 

 448 

 449 

 450 

 451 

 452 

 453 

 454 

 455 

 456 

 457 

 458 

 459 

 460 

 461 

 462 

 463 

  

Total activity 

time (h d-1) 

Basking time 

(min h-1) 

No. 

movements 

around 

burrow 

No. burrow 

changes 

Distance 

moved (cm) 

No. 

movements to 

perimeter area 

 df F P F P F P F P F P F P 

Treatment 1, 6 2.103 0.197 0.001 0.988 7.199 0.036 51.76 0.012 0.150 0.710 22.04 0.003 

Day 3, 18 0.788 0.516 0.893 0.464 1.881 0.169 3.120 0.052 0.147 0.930 1.387 0.279 

Treatment x Day 3, 18 1.126 0.365 0.269 0.847 27.18 0.005 0.724 0.529 1.826 0.179 2.677 0.078 
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 464 

Fig. 1. The layout of each cage used in the experimental trials, showing burrows with models placed 5 465 

cm from the burrow entrance (in the model addition treatment; filled circles) and the burrows with no 466 

models (open circles) 467 

 468 

 469 

 470 

 471 

 472 
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 473 

Fig. 2. For cages with models: A) Mean number of lizards in burrows near to models on each day. B) 474 

Mean number of burrow changes of two lizards that attacked the model (open circles) and 14 lizards 475 

that did not attack the model (closed circles).  476 

 477 

 478 

 479 

 480 

 481 
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 485 

 486 

 487 

 488 
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 489 

Fig. 3. Mean number of movements around burrows per lizard on each trial day in cages with models 490 

(filled circles) and without models (open circles). 491 
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 502 
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 504 

Fig. 4. In cages with and without burrows: A) the mean number burrow changes per day; and B) the 505 

mean number of movements to the perimeter area per day. 506 
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