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Abstract 13 

Studies have revealed an unsuspected complexity in social systems within a few lizard 14 

species, including group living, long-term monogamy and individual recognition of partners 15 

or offspring. Comparisons among these species and their relatives could provide valuable 16 

insights, allowing us to investigate traits that are shared across social systems and identify 17 

general principles relating to the evolution of sociality. The endangered pygmy bluetongue 18 

lizard, Tiliqua adelaidensis, is a member species in the Egernia group, but is thought to show 19 

a more solitary social structure than other members in this group. Within this study we used 20 

microsatellite markers to determine the mating system of T. adelaidensis. Unlike many other 21 

species in the Egernia group, we found a predominately promiscuous mating system in T. 22 

adelaidensis. We detected multiple paternity in 75% of litters. Of the 70 males identified as 23 

having fathered juveniles, only five were identified as mating with the same female in more 24 

than one year and only three were identified as the father of juveniles with the same female in 25 



consecutive years. The genetic evidence suggested that partners were chosen randomly with 26 

respect to the level of relatedness among neighbouring lizards. However, mated lizards were 27 

geographically closer to each other than expected by random chance. Multiple paternities rely 28 

on the opportunity for males to encounter multiple females during the period when they are 29 

receptive to mating, and this may depend on population densities. Drivers for the polygamous 30 

mating system may be the single occupancy burrow and the central place territorial defence 31 

of those burrows in T. adelaidensis. We propose a fourth mating system for the Egernia 32 

group: polygyny within stable non-social colonies. 33 
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Introduction: 38 

Species within many taxonomic groups display a range of social behaviours from those that 39 

live in highly social groups, often providing some level of parental care to their young, to 40 

species where individuals are normally isolated, contacting only for reproduction, and 41 

providing little or no parental care. The mating system of a species is defined by the number 42 

and frequency of mating partners, and is often linked to the form of social organization. The 43 

mating system can also influence mating success, gene flow within and between populations, 44 

and the ability to recolonize newly available habitat and avoid inbreeding (Greenwood 1980). 45 

Many species have evolved social mechanisms and mating systems in large, continuous 46 

habitats, but now occupy isolated fragments of habitat, with consequential impacts on their 47 

dispersal and mating systems (Stow et al. 2001, Levy et al. 2010). Knowledge of the mating 48 

system and how it has changed with restricted dispersal is an important component in the 49 

sustained management of these species. 50 

How have different mating systems and levels of sociality evolved among related species? 51 

Studies of variation among the members of a single clade can provide insights into the 52 

relevant selective factors (Oliver and Sachser 2011). Over two decades of field studies have 53 

revealed that one Australian lizard clade, the Egernia group of skinks, includes species with a 54 

variety of social systems (Bull 2000, Gardner et al. 2002, O'Connor and Shine 2003, Stow 55 

and Sunnucks 2004; Chapple 2003). The Egernia group is a monophyletic lineage that 56 

includes six primarily Australian genera Egernia, Liopholis, Bellatorias, Lissolepis, Tiliqua, 57 

and Cyclodomorphus, and one Melanesian genus Corucia (Gardner et al. 2008). 58 

A large proportion of species in the Egernia group live in mixed sex social aggregations, 59 

often comprising related individuals, with shared refuges or home sites (Chapple 2003). 60 

Monogamy appears to be the most common mating strategy in the social, sedentary species, 61 

such as those that live in social groups on isolated rocky outcrops (e.g. Egernia stokesii 62 



(Gardner et al 2002), E. saxatilis (O'Connor and Shine 2003), E. cunninghami (Stow et al 63 

2004), and Liopholis whitii (Chapple and Keogh 2005), those that have large multi 64 

generational groups co-occurring in extended burrow systems (e.g. Liopholis kintorei 65 

(McAlpin et al.2011)), or those that have limited movement (e.g. Tiliqua rugosa (Bull 2000)). 66 

Uller and Olsson (2008) predicted that females of species with low population densities 67 

during the reproductive season and of species with strong pair-bonding, should have fewer 68 

encounters with alternative mating partners during the female receptive phase, and thus have 69 

lower levels of mutiple paternity. In several well studied social species in the Egernia group, 70 

monogamous mate fidelity is high among years, and multiple paternity is low within years 71 

(Chapple 2003, Uller and Olsson 2008).  72 

The genus Tiliqua, embedded within the Egernia clade, does not appear to share the high 73 

levels of social grouping of its sister taxa. Field work on T. rugosa has shown monogamous 74 

parings during breeding seasons that can persist for over 20 yrs (Bull 2000), but no evidence 75 

of more extended kin group associations (Bull and Baghurst 1998). The more mobile T. 76 

scincoides appears to be primarily asocial, with males occupying individual territories and 77 

mating polygamously with overlapping females (Cogger 2000, Koenig et al. 2001).  78 

The pygmy bluetongue lizard (Tiliqua adelaidensis) is a cryptic species found in native 79 

grasslands in the geographical region referred to as the mid north of the state of South 80 

Australia. Individual lizards live up to 9 yrs (Milne 1999) and spend the majority of their time 81 

alone, refuging in abandoned spider burrows, or basking, and at the burrow entrance from 82 

where they ambush passing invertebrate prey (Hutchinson et al. 1994, Milne et al. 2003). 83 

Each burrow is occupied by one individual and in both males and females their range of 84 

normal activity extends no more than 5cm from their burrow entrance (Fenner and Bull 85 

2011). Mating occurs in the spring months in October and November (Milne 1999, Milne et 86 

al. 2003, Fenner and Bull 2009). Adult males move away from their burrows, seeking 87 



females to mate with during this period (Schofield et al 2012). Video recorded matings have 88 

been brief encounters between a burrow resident and another lizard moving up to the burrow, 89 

apparently in search of a mate (Milne et al. 2003, Fenner and Bull 2009, Ebrahimi 90 

pers.comm.). Females produce one litter of up to four live young per year and can breed in 91 

consecutive years (Milne et al. 2002). Some neonates begin dispersing from the natal burrow 92 

within a week after birth and by 5 weeks most of the juveniles have left the natal burrow, 93 

leading to early separation of the mother and her offspring (Milne et al. 2002). Alternatively, 94 

some females move to a new burrow soon after the birth, leaving the juvenile to inhabit the 95 

natal burrow (Milne et al. 2002). Apart from the brief contacts during mating, and the short 96 

shared occupancy of natal burrows, there are no records of social aggregations in this species. 97 

Smith et al. (2009) reported restricted gene flow even between closely adjacent populations, 98 

and moderate levels of genetic differentiation among sites with FST varying from 0.021 – 99 

0.091.  They found no evidence of population genetic bottlenecks and little evidence of 100 

inbreeding due to consanguineous mating. Individual populations had observed 101 

heterozygosities ranging  from 0.75 to 0.82 (Smith et al 2009). 102 

 103 

However, the secretive lifestyle of this species makes it difficult to observe whether there are 104 

any social associations among neighbouring lizards, or whether the mating system is 105 

polygamous as may be predicted if this is a more asocial species. We used genetic analysis to 106 

identify the parents of juvenile pygmy bluetongue lizards in populations from two locations, 107 

and to determine the mating system used by this species. We had two aims. The first was to 108 

provide an additional comparative case within the Egernia clade to allow new insights into 109 

the evolution of sociality within that group. The second was to provide vital information for 110 

modeling population genetics and demography, and determing conservation strategies, within 111 

isolated populations of this endangered species. 112 



 113 

Methods 114 

Field sampling 115 

Lizards were sampled from two localities in native grassland, 11kms apart, and both within 116 

20 km east of Burra, South Australia (33o 42’S; 138o 56’E). In the spring and summer of 117 

2005/2006 we searched 11 – 12 ha at each locality and captured 160 lizards from locality 1 118 

and 63 lizards from locality 2. In a second sampling period which included the two spring 119 

and summer seasons of 2008/2009 and 2009/2010, we captured 353 individual lizards within 120 

three 1.2 ha enclosures. One enclosure site was at locality 1 and two enclosure sites, 1 km 121 

apart, were at locality 2. Each enclosure site had four 110 m long trap lines set in a square 122 

(and thus enclosing an area of 1.2 ha) (Fig1). Each trap line had a 15 cm high black-plastic 123 

drift fence and 16 bucket traps (20 litre, 38 cm deep, 28.5 cm diameter), placed immediately 124 

under the drift fence, and spaced at 7 m intervals along its length (Figure 1). We attempted to 125 

capture most of the resident lizards in each site first by setting the pitfall traplines and 126 

trapping for 43,000 trap days over the entire sampling period (Schofield et al. 2012). We also 127 

searched the inside of each enclosure each month for any occupied burrows that we could 128 

detect, and attempted to lure individuals to the surface with mealworms following the method 129 

of Milne et al. (1999). We sampled blood from those resident lizards that we were able to 130 

capture. 131 

Each captured lizard, was individually marked by toe clip and its sex, mass, snout-to-vent 132 

length (SVL), and GPS location were recorded. Lizards were classified into neonates up to 6 133 

months old (SVL <50mm), sub adults up to 18 months old (SVL51-80mm) or adults (SVL> 134 

80mm), following Milne (1999). Among adults, sex was determined by the larger head size 135 

and shorter body of males (Hutchinson et al 1994). Between late Jan and early March, 136 



females produce a live litter of up to four offspring which remain in the maternal burrow with 137 

their mother for periods varying from a few days to several weeks (Milne et al. 2002). We 138 

recorded each case where neonates were found in the same burrow as an adult female, and, 139 

where possible, we also sampled blood or toe clips from these individuals. Sub-adults within 140 

enclosures could have moved there before the enclosure walls were erected, and their parents 141 

may not necessarily have been within the sampling area. 142 

 143 

DNA extraction and PCR amplification 144 

A blood sample from a clipped toe was stored on FTA paper (Whatman, Maidstone), and 145 

DNA was extracted following the procedure for nucleated erythrocytes (Smith and Burgoyne 146 

2004). Individual genotypes for 561 lizards were determined at 15 previously described 147 

polymorphic microsatellite loci: Est12 (Gardner, et al. 1999), TrL9, TrL12, TrL14, TrL15, 148 

TrL16, TrL19, TrL21, TrL27, TrL28, TrL29, TrL32, TrL34,TrL35 and TrL37 (Gardner et al. 149 

2008). Multiplex PCR conditions followed Gardner et al. (2008) with amplicons genotyped 150 

on an ABI 3730 capillary electrophoresis DNA analyser (Applied Biosystems, Foster City, 151 

CA). A fluorescently labelled size standard (GS500 (-250) LIZ) was run with the samples and 152 

alleles were scored using GeneMapper software version 3.7 (Applied Biosystems) with 153 

manual checking.  154 

 155 

Hardy-Weinberg disequilibrium and linkage  156 

We tested whether any individual locus had null alleles or deviated from Hardy-Weinberg 157 

equilibrium (HWE), and whether there was any linkage disequilibrium (LD) between pairs of 158 

loci, using GENEPOP 4.0.10 (Raymond and Rousset 1995, Rousset 2008). We obtained a 159 



larger sample for these tests by combining our data from this study with genotypes for 34 160 

additional lizards reported by Smith et al. (2009) from a separate but nearby locality (locality 161 

6 of Smith et al. (2009) 1 km from locality 1, and 6km from locality 2). We ran the HWE and 162 

LD tests separately on adults from each locality to determine if there were consistent patterns. 163 

P-values were adjusted for multiple testing by the sequential Bonferroni method (Holm 1979) 164 

when appropriate. 165 

Parentage analysis 166 

For each juvenile, whether it was captured in the first or second sampling period, we searched 167 

for potential parents from among all of the adults sampled from the same location over both 168 

sampling periods. We used adult genotypes at the 15 microsatellite loci in the program 169 

CERVUS 3.03 to assign parents to genotyped juveniles. The following simulation parameters 170 

were used: 100,000 cycles, 70% of the candidate parents sampled, 88% of loci typed and a 171 

genotyping error rate of 1%. We accepted that we had sampled the true parents when the 172 

confidence level exceeded 95%. Adults that were assigned as parents but that mismatched 173 

their presumed offspring at > 2 loci were disregarded as inferred parents. Juveniles were 174 

assumed to be siblings from the same litter if they were allocated the same mother and were 175 

born in the same year. The simulations were also performed using an input parameter of 50% 176 

of candidate parents sampled but as there was no difference we only present the results for 177 

70%. 178 

To assess the levels of monogamy and polygamy among adult lizards, we used CERVUS 179 

3.03 and COLONY 2.0 to determine sib-groups and to predict the number of unsampled 180 

parents. We assumed a polygamous mating system with no inbreeding as the populations 181 

were in HWE. The marker type, allelic dropout rate and other error rates that were used can 182 

be found in Online Resource 1. The probability that a parent was in the sample was tested at 183 



50% and 70%. The results were the same for both, therefore probabilities were set at 70%. A 184 

probability of 70% was chosen because the cryptic nature of the lizards made it unlikely we 185 

had sampled of all the adults. Paternal and maternal relationships derived from the CERVUS 186 

results were entered as Known Paternal and Known Maternal data sets. We then used 187 

COLONY to simultaneously infer sibship and parentage using a full-pedigree likelihood 188 

method (Jones and Wang 2009). Not all potential parents were sampled during our studies 189 

and our estimates may not be an accurate reflection of all of the matings that had taken place. 190 

However as we had good discrimination with our loci (Smith et al 2009) any potential bias 191 

would be minimal.  The mean heterozygosities of litters fathered by single or mutiple fathers 192 

were compared using a paired sample t-test. Allelic richness could not  be estimated with 193 

confidence  due to the small sample size. 194 

Where we identified both parents and knew their actual locations when sampled, we 195 

investigated whether individual parents showed any evidence for a preference for less related 196 

individuals as mating partners. To do this we compared the relatedness of the partners to their 197 

relatedness to other geographically close alternative partners. The only sample set that was 198 

large enough for this analysis was in enclosure site 2 (locality 2) in the second sampling 199 

period. Relatedness (r) was estimated, using the program Coancestry 1.0 (Wang 2011), with a 200 

moment estimator which assumes no inbreeding (Wang 2002). We compared relatedness of 201 

the two parents with the relatedness of opposite sex individuals located closest to them. For 202 

each parent we considered either its relatedness to the nearest, or its mean relatedness to the 203 

four nearest, non-partner individuals of the opposite sex. We then compared the relatedness 204 

of partners and non-partners by paired t-test, separately for each sex.  205 

Results 206 

Hardy-Weinberg and linkage disequilibrium 207 



Genotype frequencies deviated significantly from HWE at five of the 15 loci, but in each case 208 

the deviations were only detected at single localities, one (TrL32) at locality 1, three (TrL12, 209 

TrL15 and TrL37) at locality 2, and one (TrL32) at locality 6. No locus showed significant 210 

deviation from HWE at more than one of the three localities (locality 1, sample size N=142; 211 

locality 2, N=220; locality 6, N =34). Similarly, only two pairs of loci were significantly 212 

linked in locality 1 (TrL 15/ TrL 16 and TrL 15/ TrL 21), three were linked in locality 2 (TrL 213 

16/ TrL 19, TrL 19/ TrL 37, and Est12/ TrL 21) and none were linked in locality 6. Null 214 

alleles were detected at five loci, but again no locus showed null alleles consistently over all 215 

localities: locality1 (TrL16) locality 2 ( TrL15, 21, 28 and Est12) and locality 6 (TrL 16). All 216 

15 loci were used in subsequent analyses as patterns of disequilibrium and null alleles were 217 

not consistent across localities and deviations may have been due to population level 218 

processes (e.g. birth and death rates; different founding individuals).  219 

Parentage analysis 220 

We derived genotypes from 561 of 576 captured lizards (360 adults and 201 juveniles) (Table 221 

1). Among the adults there were 189 males (52.5%) and 171 females (47.5%). Among the 222 

201 juveniles (130 neonates, 71 sub adults), 140 (69 neonates, 71 sub adults) were captured 223 

alone either in burrows or in pitfall traps, and 13, all neonates, were found as the only 224 

juvenile in a burrow with an adult female. Juveniles found in groups of two to four 225 

individuals were all from burrows and were all neonates. There were 11 groups of two, six 226 

groups of three, and two groups of four individual juveniles together, with or without an 227 

accompanying adult female (Table 2). A total of 39 neonate juveniles were found in burrows 228 

with an adult female (Table 2). No juveniles were found in a burrow with an adult male 229 

lizard. 230 



Using CERVUS, 113 (56.2%) of the juveniles could be assigned to one (80 juveniles) or both 231 

(33 juveniles) parents. Parentage was assigned to 51% of the neonates, and to 64% of the 232 

subadults. Despite an intensive survey regime at each site, only 35% (location 1) and 69% 233 

(location 2) of the parents of captured juveniles were sampled. Where only one parent was 234 

identified, it was the mother in 47 cases and the father in 33 cases.  235 

Relatedness of lizards in the same burrow 236 

We were able to obtain a sample for DNA analysis from 17 of the 23 females located with 237 

neonates in the same burrows. In 15 cases (88.2%) CERVUS inferred the co-located female 238 

as the mother of all of the accompanying neonates. We deduced these were mothers with 239 

their litters, and found a mean relatedness of 0.468 (range 0.221- 0.677) between these 240 

females and their neonates. 241 

In the two other cases, females were not assigned as the parent of a neonate located in the 242 

same burrow, and relatedness values were low (r = -0.17 and r = -0.06). Both neonates were 243 

sampled during the period of birth and neonate dispersal (26 Jan and 24 Feb). The first was a 244 

single neonate and female. The second was a female with two neonates, one related and one 245 

unrelated.  246 

No sub adults were found sharing a burrow, either with juvenile or with adult lizards. In 18 of 247 

the 19 groups of two or more neonates located together (Table 2), CERVUS assigned group 248 

members to the same mother, and relatedness values among the group members suggested 249 

they were siblings or half siblings (mean r = 0.412; range = 0.121 - 0.785). The other group 250 

of two neonates found in the same burrow with an adult female, has been discussed above. In 251 

that group the two neonates appeared to be unrelated to each other (r = -0.0004).  252 

Paternal contribution 253 



CERVUS identified from among the 201 sampled juveniles 56 sets of 2 – 4 siblings born in 254 

the same year with the same mother (described as a family in this paper). For some of those 255 

groups the mother was not identified from among the adults that were sampled. In 37 of those 256 

sets the siblings were sampled occupying separate burrows. In 24 of these 56 families, both 257 

the mother of all of the sibs, and the father of at least one sib could be identified from among 258 

the adults sampled. In 18 (75%) of those 24 litters, COLONY suggested that an additional 259 

male fathered one or more of the other juveniles (Table 3). For 17 litters there were at least 260 

two fathers, while one litter of four sibs had at least three fathers. For the remaining 32 261 

maternal families we used COLONY to deduce the possible male parent contributions to the 262 

litters and inferred that at least 22 (69%) of those families had multiple fathers.  There was no 263 

significant difference between the mean heterozygosities of litters with single paternity (7.4) 264 

and litters with multiple paternity (6.6) (Table 4) 265 

We identified 43 female individuals that produced litters, and deduced that 18 of those 266 

(41.9%) had produced more than one litter over the duration of this study, 11 of them in 267 

consecutive years. During the second sampling period of two years, sub adult juveniles 268 

sampled in the first year (2008) were assumed to have come from matings in 2007, thus we 269 

had data for matings in four different consecutive years, even though sampling took place in 270 

three. Most females that produced multiple litters had two litters over consecutive years, 271 

while two females were detected to have produced litters in 3 and 4 consecutive years 272 

respectively.  273 

CERVUS identified 70 (37%) of the 189 adult males sampled in the study as fathers of 274 

sampled juveniles. Seven (10%) of those males fathered juveniles with two different females 275 

in the same season. This may under-represent the rate of polygyny since both males and 276 

litters in the sampled populations would have been incompletely sampled. Five males were 277 

identified as fathering juveniles with the same female in multiple years in the second 278 



sampling period, with three of those cases (60%) being in consecutive years. Those five 279 

males were also among the seven polygynous males, mating with more than one female in at 280 

least one season.  281 

Relatedness among mating partners 282 

Within individuals sampled at enclosure site 2, CERVUS identified 20 juveniles for which 283 

both the mother and the father could be identified. The 20 juveniles came from 17 maternal 284 

litters, and were fathered by 17 males. Three of the males fathered juveniles from two of the 285 

females, one female had offspring fathered by two of the males, and another female had 286 

offspring fathered by three of the males. Each male-female parent combination was only 287 

responsible for one juvenile, so that none of the juveniles from the 20 sampled had an 288 

identical mother and father.  289 

The mean relatedness between the male and female parents for each of the 20 juveniles (r = 290 

0.063; Table 5) did not differ significantly from the mean relatedness of all male-female 291 

combinations among the sampled adults in site 2 (Mann Whitney U =34560.5, z = -1.64, sig 292 

0.101). There was no evidence that lizards were choosing mating partners that were less 293 

related than random. Furthermore for both males and females, relatedness to their mating 294 

partner was not significantly different from relatedness to the nearest other individual of the 295 

opposite sex, or from the average relatedness of the four nearest other individuals of the 296 

opposite sex (Table 6). That is, there was no evidence that partners were chosen non-297 

randomly from among neighbouring lizards with respect to relatedness. 298 

Further evidence that relatives were not discriminated against as mating partners, came from 299 

three offspring resulting from matings between partners with relatedness values of 0.500, 300 

0.365 and 0.297 (Table 5). In each case other less related individuals were available as 301 

partners from among neighbouring lizards (Table 5). Genotypes and lizard locations were 302 



derived from samples collected when the lizard was first captured, and this may have been 303 

before or after the October/ November period when mating occurs. The mean distance 304 

between burrows occupied by males and females that had produced young was 27.24m (N = 305 

20; SE = 6.04; range = 3 – 107m) (Table 5). The mean distance between all possible male 306 

and female pairs within enclosure site 2 was 64.7m (N = 4028; SE = 0.51; range = 1 – 160). 307 

Mated males and females were found closer to each other than if males and females within 308 

the enclosure had mated at random with respect to geographic distance (Mann Whitney U = 309 

13226.50 ,z = -5.189, P < 0.001). 310 

DISCUSSION. 311 

Compared with other lizards in the Egernia group our genetic results suggest a high level of 312 

multiple mating within the sampled localities of pygmy bluetongue lizards. Within a season it 313 

was common for females to be mated by two or more males, and males could mate with more 314 

than one female in this period. Mating appeared to be indiscriminate with regard to degree of 315 

genetic relatedness, and male and female mating partners could be located in burrows over 316 

100 m apart. The distribution of the number of matings per male could not be estimated 317 

because some litters, and thus some matings, were unsampled. Even in the sampled litters, a 318 

male that had mated with the female may not have contributed to the progeny. 319 

 320 

Chapple and Keogh (2005) proposed three distinct mating systems for the Egernia group (i) a 321 

combination of polygyny and within season monogamy (ii) long-term genetically 322 

monogamous pairings during the breeding season and (iii) long term genetic monogamy 323 

within temporally stable social aggregations. Unlike other members of the group, pygmy 324 

bluetongue lizards appear to be promiscuous and to display a polygamous mating system.  325 



 326 

Several previous observations support our interpretation of the genetic analysis. Video 327 

recordings of female occupied burrows (Milne et al. 2003, Fenner and Bull 2009), suggest 328 

that males move across the population to seek out females in their burrows, and that 329 

individual females are visited by multiple males (Ebrahimi  unpubl. data 2013).  330 

 331 

In our study, males were recorded as far as 100 m away from the females they mated with. 332 

Records of mating have all been in the spring (October) (Milne et al. 2003, Fenner and Bull 333 

2009). This is the time when other observations have suggested that males of this normally 334 

sedentary lizard are actively moving around (and exposed to predation). It is the time of year 335 

when a male lizard was found inside a brown snake stomach in 1992 when the species was 336 

re-discovered (Armstrong and Reid 1992), and also the time of year when Schofield et al. 337 

(2012) reported maximum capture rates of adult lizards (86% males) in pit-fall traps.  338 

Combining those observations with the genetic data from the current study suggests that, 339 

during a short mating period in spring, males move around the population seeking females in 340 

burrows, and can mate with multiple partners. And at the same time, females in their burrows 341 

accept matings from several different males. During this period the males will be exposed to 342 

enhanced predation risk (Fenner and Bull 2009), and this increased predation may explain the 343 

absence of some of the fathers of the juveniles from the genetic sample in this study. It would 344 

also explain the disappearance of more males than females from lizard populations over a 345 

spring-summer period (Fellows 2008). 346 

One explanation for why females accept multiple matings may be the high risk of inbreeding. 347 

Previous genetic analyses (Smith et al 2009) have shown clustering of related individuals 348 



within populations, indicative of low dispersal rates. Furthermore, Fenner and Bull (2010) 349 

failed to find evidence that individual pygmy bluetongue lizards discriminated among scent 350 

cues from related and non-related individuals. Thus there is a high chance of a related male 351 

and female coming together and of the partners not being inhibited by that relatedness in their 352 

mating behaviour. Results from the current study confirm that some juveniles were produced 353 

from matings between highly related males and females. In these circumstances, females that 354 

mate with more than one male increase the chance that some of their offspring will be more 355 

outbred. 356 

One aim of our study was to contribute to understanding how mating systems evolved within 357 

the Egernia group of Australian lizards. The promiscuous and indiscriminate mating system 358 

of pygmy bluetongue lizards differs substantially from related species which have stable, 359 

long-term monogamous partnerships (Bull 2000; Gardner et al. 2002), which show a highly 360 

developed olfactory discrimination among related and non-related individuals (Bull et al. 361 

2001) and which tend to choose single, unrelated mating partners (Bull and Cooper 1999; 362 

Gardner et al. 2002). 363 

One ecological factor that might drive this difference is that pygmy bluetongue lizards do not 364 

dig their own refuge burrows, but instead rely on burrows dug by spiders. These are usually 365 

too small for persistent sharing of burrows by more than one lizard, and the short supply of 366 

burrows of optimal depth (Fellows et al. 2009) has led to a system of single occupancy 367 

burrows and central place territorial defence (Fenner and Bull 2011). Specifically there is no 368 

opportunity for the social aggregations commonly reported in other Egernia group species, 369 

and for the development of within group interactions that might favour less polygamous 370 

mating systems.  371 



There are at least two conservation implications of our results for this endangered lizard. 372 

First, the indiscriminate partner choice and close spatial proximity of relatives in existing 373 

populations, suggest that individual lizards will not actively avoid mating with highly related 374 

partners. This means there may be a greater risk of inbreeding as populations decline, and as 375 

the genotypic range of potential partners is reduced. Continued monitoring of genetic 376 

diversity in populations, particularly those with low population density, will be important. 377 

Our result contrasts with the earlier studies on another Egernia group member, E. 378 

cunninghamii. Stow and Sunnucks (2004) reported a reduction in mating between relatives in 379 

highly fragmented areas where potential partners were limited. Second, and conversely, that a 380 

promiscuous mating system may prove advantageous during any translocations or 381 

reintroductions. This is because it could ensure the rapid mixing of genotypes among founder 382 

individuals at unoccupied sites, or the rapid integration of new genetic material into existing 383 

populations.  384 

 385 

The success of translocations could be measured by a high reproductive output with the 386 

maintenance of genetic diversity over time (Griffith et. al 1989, Gregory et al 2012). In 387 

polygnous mating systems females are the limiting factor. The introduction of more females 388 

than males could reduce the male search time for a mate and thus reduce predation risk to 389 

males especially in species that mate indiscriminately. However when considering 390 

reproductive potential in monogamous or pair bonding species equal numbers of each sex 391 

would result in maximal reproduction (Sigg et al. 2005). To ensure breeding compatibility in 392 

these species the translocation of previously mated individuals would be ideal. In species 393 

with kin recognition and mating avoidance or long term genetic monogamy within temporally 394 

stable social aggregation a selection of less related individuals would benefit reproduction 395 

and genetic diversity in translocations (Gregory et. al 2012). The success of captive breeding 396 



and translocation efforts for any species may hinge upon understanding both the baseline 397 

genetic diversity of source and translocated populations and the mating systems they display 398 

(Haig 1998; Sigg et al. 2005; Grueber and Jamieson 2008 Gregory et. al 2012). 399 

 400 
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 519 

 520 

 521 

Figure 1. Sampling grid used at  the 3 study sites, where black circles represent pitfall traps 522 
and the lines denote plastic drift fence. 523 

 524 

 525 

Table 1. Capture summary of the individuals from which successful genotypes were derived 526 
over the two sampling periods  527 

Sampling period Juveniles Males Females Total 

1 (2005 - 2006) 27 83 91 201 

2 (2008 – 2010) 174 106 80 360 

 528 

Table 2. The number of groups containing juvenile lizards, and the total numbers of juvenile 529 
lizards in each group size category that were detected with or without a female present in the 530 
same burrow.  531 



Number of juveniles 
per group 

1 2 3 4 

Number of groups with 
female present 

13 5 4 1 

Number of groups with 
no female present 

140 6 2 1 

Total number of groups 153 11 6 2 

Total juvenile lizards 153 22 18 8 

 532 

 533 

Table 3. Number of litters with multiple fathers as identified by CERVUS and inferred 534 
multiple father litters by COLONY in brackets 535 

 

Full sibs 
groups  

Range 
of litter 
size 

 half sib 
groups 

Range of 
litter size 

Total 
number of 
families 

Sampled 
families  6 2-3  18 2-4 24 

Inferred 
families  10 2  22 2-4 32 

 536 

Table.4  Levels of heterozygosity found in litters with multiple and single paternities 537 

 Number of 
individuals 

Number of 
litters 

Observed 
Heterozygosity 

Single paternity 11 5 7.38 

Multiple 
paternity 

9 4 6.57 

 538 

 539 

Table 5. Comparison of distance to partner and relatedness between the mated pairs and the 4 540 
nearest individuals of the opposite sex. 541 

Female 
partner 

Male 
partner Relatedness 

Relatedness 
of female to 
nearest 
male non 

Average 
relatedness 
of female 4 
nearest 

Relatedness 
of male to 
nearest 
female 

Average 
relatedness 
of male to 4 
nearest 

Distance 
between 
mated pairs 



partner males females 
2325 2707 -0.0451 -0.160 -0.006 -0.115 -0.133 13.345 
2351 2403 -0.0748 -0.036 -0.051 0.002 0.140 5.099 
2352 2713 0.3614 0.059 0.116 -0.106 -0.086 30.806 
2400 2706 0.1707 0.288 0.069 -0.087 0.053 64.899 
2401 2431 -0.1018 -0.092 0.016 0.026 0.052 11.705 
2410 2616 -0.1817 -0.026 -0.042 0.059 -0.078 10.630 
2413 2355 0.2933 -0.085 -0.006 0.288 0.086 11.705 
2413 2335 -0.0081 -0.085 0.178 -0.028 -0.044 107.331 
2413 2632 0.4858 -0.074 -0.005 0.451 0.069 21.213 
2453 2709 -0.1315 0.573 0.175 -0.077 -0.086 19.2094 
2453 2707 -0.1128 0.573 0.175 -0.007 -0.118 22.3607 
2500 2761 0.2117 -0.106 -0.038 -0.132 0.027 82.0549 
2524 2626 0.171 -0.178 -0.005 0.064 0.040 8.5440 
2533 2340 -0.127 0.025 -0.042 0.140 0.106 22.361 
2540 2761 0.1311 0.093 0.005 0.037 0.104 17.117 
2559 2431 -0.111 -0.205 -0.118 0.026 0.007 10.198 
2619 2639 0.0259 -0.047 -0.072 0.138 0.018 31.6228 
2651 2330 0.1096 0.003 0.057 -0.034 0.053 31.064 
2683 2627 0.1291 -0.103 -0.075 -0.062 0.060 3 
2744 2694 0.0597 -0.141 -0.065 0.197 0.259 20.615 
Mean  0.06258 0.014 0.013 0.039 0.027 27.244 

 542 

 543 

Table 6. Paired t-test comparing the relatedness among breeding individuals and the 4 nearest 544 
of the opposite sex. 545 

Relatedness of mate pairs to: df t sig (2-
tailed) 

Mated male and average of 4 
nearest females 

19 0.95 0.353 

Mated female and average of 4 
nearest males 

19 1.17 0.257 

Mated male and nearest females 19 0.522 0.608 
Nearest males 19 0.746 0.465 

 546 

 547 

 548 
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