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SUMMARY 
Barrett’s esophagus is the major risk factor for esophageal adenocarcinoma. Endoscopic 

interventions which ablate Barrett’s esophagus mucosa lead to replacement with a new squamous 

(neosquamous) mucosa, but it can be difficult to achieve complete ablation. Knowing whether 

cancer is less likely to develop in neosquamous mucosa or residual Barrett’s esophagus after 

ablation is critical for determining the efficacy of treatment. This issue can be informed by 

assessing biomarkers that are associated with an increased risk of progression to adenocarcinoma. 

Although there are few post-ablation biomarker studies, evidence suggests that that neosquamous 

mucosa may have a reduced risk of adenocarcinoma in patients who have been treated for dysplasia 

or cancer, but some patients who do not have complete eradication of non-dysplastic Barrett’s 

esophagus may still be at risk. Biomarkers could be used to optimize endoscopic surveillance 

strategies following ablation, but this needs to be assessed by clinical studies and economic 

modeling. 
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INTRODUCTION 

 

It is well recognized that Barrett’s esophagus, a condition where the distal esophageal squamous 

epithelium is replaced by a metaplastic columnar epithelium, is a complication of chronic 

gastroesophageal reflux, and is the major risk factor for the development of esophageal 

adenocarcinoma [1,2]. Esophageal adenocarcinoma is associated with a high mortality rate, and its 

incidence in the Western world is rising faster than any other cancer, with a six fold increase 

reported over the last 30 years in both the USA [3,4] and Australia [5]. Conventional treatment for 

esophageal adenocarcinoma entails esophagectomy. This operation can only be applied selectively 

to fit patients with localized disease. It is also associated with significant morbidity. In-hospital 

mortality rates of 13% were reported in a meta-analysis from the 1990’s [6], and 8.8% in the 2000’s 

[7]. Undertaking surgery in high volume centers and careful patient selection can reduce mortality 

to 2-3%, although only 1/3 or less of patients that develop esophageal adenocarcinoma are treated 

with surgery. Furthermore, the 5-year survival rate following surgery for advanced disease is 

approximately 22%, and has not improved over the last 20 years [8]. This highlights the need for 

better approaches to the management or prevention of esophageal adenocarcinoma.  

 

It is generally accepted that Barrett’s esophagus progresses from non-dysplastic metaplastic 

columnar mucosa to low grade dysplasia (LGD), then to high grade dysplasia (HGD), and 

eventually to invasive adenocarcinoma [9]. It has been estimated that the risk of progression from 

non-dysplastic Barrett’s esophagus to adenocarcinoma for patients enrolled in surveillance 

programs is approximately 0.5% per patient year [10,11], and in a large North American 

multicentre study the incidence of esophageal adenocarcinoma was 0.27% per patient year, while 

the incidence of both esophageal adenocarcinoma and HGD was 0.63% per patient year [12]. In the 

general population the rate of progression from Barrett’s esophagus with intestinal metaplasia to 

high grade dysplasia and esophageal cancer has been estimated at 0.38% per year in Northern 

Ireland [13], and the progression rate to cancer for columnar lined esophagus (with or without 

intestinal metaplasia) at 0.12% per year in Denmark [14]. 

 

The recognizable stages of progression in Barrett’s esophagus provide opportunities for the use of 

endoscopy to identify patients at earlier and more curable disease stages; i.e. HGD or early (T1 

stage) adenocarcinoma. It also provides opportunities for preventative strategies which might 

reverse the steps towards cancer, or prevent cancer progression. These all have the potential to 
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greatly improve clinical outcomes. Five year survival rates following surgery for T1 stage cancer of 

approximately 80% highlight the potential for improvement if interventions can be undertaken 

early. 

 

To reverse the process of Barrett’s esophagus to a normal (neo-squamous) epithelium various 

interventions have been proposed. Initially some physicians advocated regular use of proton pump 

inhibitors (PPIs), whereas some surgeons advocated antireflux surgery [15-18]. However, whilst 

isolated case reports have suggested regression of Barrett’s esophagus following antireflux surgery, 

the rates of regression have been disappointing following both medical and surgical treatment of 

reflux [15,16]. Indeed, there are multiple reports of esophageal adenocarcinoma developing after 

antireflux surgery [17,19-21], and many patients presenting with advanced stage esophageal cancer 

report long periods of PPI use.  

 

Endoscopic ablation 

Newer interventions which destroy (ablate) the metaplastic columnar lining associated with 

Barrett’s esophagus are potentially more effective than PPIs or anti-reflux surgery. It appears that 

any method which removes the metaplastic mucosa, whether or not it is dysplastic, in the presence 

of an acid-free environment, will lead to replacement with a neosquamous mucosa. This mucosa is 

histopathologically similar to normal squamous epithelium, and it has therefore been assumed to 

have a reduced risk of cancer [22,23]. A variety of different ablation techniques have been 

developed, including argon plasma coagulation (APC) [24-27], photodynamic therapy (PDT) [28-

30], multipolar electrocoagulation (MPEC) [31,32], Nd:YAG (neodymium-doped yttrium 

aluminum garnet) laser therapy [33-35], and more recently radiofrequency ablation (RFA) [36,37]. 

The optimum technique has yet to be defined, but the use of these techniques, especially RFA, is 

becoming more widespread [38]. All ablation modalities, however, are associated with a risk of 

residual or recurrent Barrett's esophagus, with no single technique 100% reliable in this regard 

(Table 1) .  

 

In a randomized trial, Hage et al [39] compared PDT and APC and found a 33% rate of recurrence 

of Barrett’s esophagus following APC at 12 months. PDT was followed by recurrence in 18% when 

administered as a single dose, or 10% when delivered as a fractionated dose. Conversely, Kelty et al 

[40] in a randomized trial comparing PDT and APC found complete reversal of Barrett’s esophagus 

in 97% of APC patients but only 50% of PDT patients at median 12 months follow up. In a 

prospective study of APC ablation, Van Laethem et al re-evaluated 17 patients, who had complete 
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ablation of their Barrett’s esophagus, 12 months after ablation treatment, and found recurrent 

Barrett’s esophagus in 8 (47%) [24]. Studies investigating MPEC have been comparable. Sharma et 

al [32] compared MPEC with APC in a randomized trial and reviewed the outcomes at 2 years. 

Complete reversal of Barrett’s esophagus was seen in 75% (12/16) of the patients who received 

MPEC, and 63% (12/19) of the patients who received APC. In a prospective evaluation of 58 

patients with nondysplastic Barrett’s esophagus treated with MPEC, 22% had residual Barrett’s 

esophagus at 6 months follow up [33]. In a randomized trial of APC versus surveillance for non-

dysplastic Barrett esophagus after antireflux surgery, only 40% of patients had complete reversal of 

Barrett’s esophagus at 5 years [27]. In the only long term follow up study after PDT, Overholt et al 

(2007) reported that 48% of patients had complete reversal of HGD after 5 years, but no data was 

given for complete reversal of Barrett’s esophagus. Furthermore, at 5 years 15% of the PDT ablated 

patients had developed cancer, compared with 30% taking omeprazole [41]. 

 

Laser ablation of Barrett’s esophagus is also associated with a significant risk of residual Barrett’s 

esophagus. In a prospective study of Nd:YAG laser ablation of non-dysplastic Barrett’s esophagus 

[34] followed by treatment with PPIs or antireflux surgery, Bonavina et al (1999) achieved only 

partial ablation in 28% (5/18) of patients despite repeated treatments, and 11% (2/18) were defined 

as “non-responders”. In another prospective study Nd:YAG laser was used to ablate Barrett’s 

esophagus in 15 patients (11 non-dysplastic, 2 with LGD and 2 with HGD) [35]. Complete 

endoscopic and histopathological ablation was only achieved in 6 (40%) patients after a mean of 6.5 

laser treatment sessions.  

 

Fleischer et al (2010) reported outcomes for RFA of nondysplastic Barrett's esophagus after 5 years. 

Complete reversal of Barrett’s esophagus was demonstrated in 92 % (46/50) of patients, and focal 

RFA ablated the remaining Barrett’s esophagus in the remaining 8% of patients [42]. Despite these 

encouraging results, the rate of complete remission of Barrett’s esophagus following RFA for 

dysplasia or cancer appears to be an issue. Shaheen et al reported that at 3 years dysplasia remained 

eradicated in >85% of patients and intestinal metaplasia in >75% [43], but this data also revealed a 

persistent risk of cancer in some patients, although perhaps the overall risk of cancer was reduced 

across the whole cohort. Lyday et al (2010) also found complete remission of non-dysplastic 

Barrett’s esophagus in 77% of patients (n = 137) at 20 months follow up [36], and  Ganz et al 

(2008) found a 54% complete remission rate for non-dysplastic Barrett’s esophagus at median 12 

months follow up [37]. 
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Another concern relating to the use of ablative therapies is the incidence of residual columnar 

mucosa buried beneath post-ablation neosquamous mucosa (“buried glands”). This has been 

reported to occur in up to 40% following PDT ablation [29,30], and in 30% of patients treated with 

APC [24,27,44]. It might be less of an issue following RFA ablation, with only 2 case reports of 

buried glands published [45,46], although this technique is more recent and less outcome studies are 

available. Table 2 summarizes publications that have demonstrated buried glands following 

different ablation modalities. There are now multiple case reports of adenocarcinoma arising in 

buried glands beneath neosquamous mucosa following ablation[34,47-50], suggesting that this 

might be a significant problem. However, the overall risk profile of residual or recurrent Barrett’s 

esophagus and buried glands following ablation is uncertain, and it is also possible that buried 

mucosa, whilst still at risk of progression to cancer, could have a reduced risk of cancer. To address 

the issue of cancer risk in residual Barrett’s esophagus and neosquamous mucosa, long term clinical 

outcome studies involving large patient cohorts are required. These are unlikely to be reported in 

the next decade. Hence, molecular biology studies which evaluate gene function in esophageal 

mucosa following ablation therapy, i.e. biomarker studies, might provide insights into the likely 

behavior of post-ablation esophageal mucosa, and the risk of progression to cancer following 

ablation. Knowing whether cancer development in Barrett’s esophagus is less likely or even 

eliminated by ablation is important. In the absence of evidence that cancer risk is reduced to a very 

low level, ablation therapy might not be regarded as clinically effective or cost effective by health 

care decision makers.  

 

To evaluate the current biomarker studies pertinent to these questions, we performed a Medline 

search on 14 December 2012, and then updated this search on 15 February 2012. Relevant 

publications dealing directly with biomarkers, esophageal cancer, and ablative therapies were 

obtained by screening the abstracts or, if necessary, the entire article. Further articles were extracted 

by screening the references within these papers. In case of non-availability of the whole article the 

abstract was taken into consideration despite the limited data provided. No publications were found 

that investigated biomarkers in patients treated with endoscopic mucosal resection. 

 

Molecular biomarkers in Barrett’s esophagus  

A large number of molecular markers have been identified and proposed to be relevant to Barrett’s 

esophagus, but for most there is limited data which supports either relevance or a clinically useful 

role. For only a limited number of biomarkers does the data show relevance to the behavior and 
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cancer risk associated with Barrett’s esophagus. The most promising molecular biomarkers in 

Barrett’s esophagus are summarized.  

 

p53 

p53 is a tumor suppressor gene located on chromosome 17p. Its role is to prevent damaged cells 

from dividing and to ensure chromosomal integrity [51]. Its function is impaired either by 

inactivation (loss of function) mutations that prevents the protein from binding to DNA, by 

dominant negative mutations that result in the prevention of transcriptional activation [52,53], or by 

gain-of-function mutations that are involved in aberrant protein interactions or gene regulation [54]. 

p53 can also be inactivated through 17p loss of heterozygosity (LOH), and mis-sense mutations 

appear to often result in p53 protein over-expression [55]. Mutation of p53, 17p LOH and over-

expression of p53 protein are rarely detected in normal non-metaplastic esophageal mucosa, but are 

common in esophageal adenocarcinoma [56,57].  

 

Weston et al looked at p53 protein expression in Barrett’s esophagus [58] in 48 patients with LGD, 

followed for a mean 41 months. Five progressed to HGD and 3 of these had Barrett’s esophagus 

mucosa which over-expressed p53 protein. Twelve had persistent LGD and 3 over-expressed p53 

protein. Thirty one regressed to non-dysplastic Barrett’s esophagus, and in this group, 4 over-

expressed p53 protein. Kaplan-Meier survival curves were performed using progression to HGD or 

cancer as an endpoint vs. regression or persistence of LGD, and a significant difference (p < 0.002) 

was seen, leading to the conclusion that over-expression of p53 protein identified patients with 

LGD who were at higher risk of progressing to HGD. Unfortunately, however, although over-

expression of p53 protein is frequently considered to be a surrogate marker for p53 mutations, it has 

been shown to have a high false-negative and false-positive (>25%) rate in esophageal cancer, 

compared to DNA sequencing [59]. Furthermore, even though Murray et al (2006) showed 

immunohistochemical detection of p53 protein over-expression is associated with an increased risk 

of progression to cancer, the sensitivity of this marker was too low to be useful for informing 

endoscopic surveillance strategies [60]. 

 

Reid et al (2001) published the only large study looking at p53 and Barrett’s esophagus [61]. In this 

study 256 patients had baseline endoscopic biopsies from Barrett’s esophagus mucosa and one or 

more follow up endoscopies. Twenty out of 54 patients (37%) with p53 LOH progressed to cancer 

compared with 6 of 202 patients (3%) without (relative risk (RR) = 16; p < 0.001). The 3-yr 
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cumulative incidence of cancer in patients with 17p (p53) LOH was 38% (95% CI = 26 - 54) 

compared to 3.3% (95% CI = 1.4 - 8.0) for those with two 17p alleles. Patients without dysplasia 

had a p53 LOH prevalence of 6%, while this increased to 57% in patients with HGD. This study 

suggests that p53 LOH remains the most promising molecular biomarker for the prediction of 

progression of Barrett’s esophagus to cancer. 

 

In a follow-up study from the same group, Galipeau (2007) investigated 17p (p53) LOH, 9p (p16) 

LOH, aneuploidy, and tetraploidy in 253 patients with Barrett’s esophagus, and reported cumulative 

cancer incidences at up to 10 years. At 10 years 17p LOH gave a relative risk of 10.6 (95% CI 5.2 - 

21.3). The combined panel of abnormalities (17p LOH, DNA content tetraploidy and aneuploidy, 

and 9p LOH) was the best predictor of esophageal adenocarcinoma, with a relative risk of 38.7 

(95% CI 10.8 - 139) [62]. 

 

However, LOH genotyping is currently limited to the research setting. If an alternative method of 

assessing LOH, such as fluorescence in situ hybridization (FISH), could be shown to provide 

equivalent results, then translation to clinical practice might be feasible. However, LOH develops in 

Barrett’s esophagus by three mechanisms. In a study by Wongsurawat et al (2006), 32% of patients 

had DNA deletions, 32% had no copy number change, and 37% had FISH patterns consistent with a 

tetraploid intermediate followed by genetic loss. Thus, FISH and LOH are not equivalent [63]. 

 

DNA content (aneuploidy/tetraploidy) 

Both aneuploidy and tetraploidy are rare in normal tissue, but common in esophageal 

adenocarcinoma [64]. In the largest study to assess this in Barrett’s esophagus, the Seattle Barrett’s 

Esophagus Study group prospectively evaluated 327 patients over 15-years [65]. Median follow-up 

was 2.4 years. In patients with nondysplastic Barrett’s esophagus and LGD, those without 

aneuploidy or tetraploidy had a 0% 5 year cumulative cancer incidence, whereas in patients with 

aneuploidy or tetraploidy the 5-year cumulative cancer incidence was 28%. For all patients, either 

with and without HGD, aneuploidy and tetraploidy detected at baseline were associated with a 43% 

and 56% 5 year cancer incidence respectively. Of the 327 patients studied , 322 had baseline 

histopathology, flow cytometry dat,a and matched data from at least one follow up endoscopy. 241 

(75%) had neither aneuploidy nor tetraploidy at baseline, and only 12 (5%) of these progressed to 

cancer, whereas 48 had tetraploidy at baseline with 18 (38%) progressing to cancer. Tetraploidy 

was associated with a relative risk of cancer of 7.5 (95% CI = 4.0 - 14)(p < 0.001). Fifty three 
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patients had baseline aneuploidy and 17 (32%) developed cancer, which equated to a relative risk of 

5 (95% CI = 2.7 - 9.4; p < 0.001). The relative risk when looking at aneuploidy, tetraploidy or both 

was 11 (95% CI = 5.5 - 21; p < 0.001). The follow up paper from this group [66] reported receiver 

operating characteristic (ROC) curve analysis to better define the relevant cutoff points of DNA 

flow cytometry analysis. Patients whose biopsies contained 6% or more tetraploid cells had a 

relative risk of 11.7 of developing cancer. Aneuploidy greater than 2.7N was also predictive of 

cancer with a relative risk of 9.5. The presence of both tetraploidy greater than 6% and aneuploidy 

greater than 2.7N was associated with a relative risk of 23 and was highly predictive [65]. 

 

In another study looking at DNA content and Barrett’s esophagus [67], the Seattle Barrett’s 

Esophagus study group prospectively analyzed a different cohort of patients, and determined at 

baseline in 267 patients the approximate size of the clone (i.e. the number of cells that are 

genetically unstable) with aneuploidy and tetraploidy, rather than just the presence of ploidy 

abnormalities. The size of the clone was defined as a product of the length of Barrett’s esophagus 

(cm) and the fraction of cells in the biopsies that carried aneuploidy and tetraploidy. Esophageal 

adenocarcinoma was the end point. Patients were followed prospectively for a mean of 4.4 years. 

The size of a clone with ploidy abnormalities had a relative risk of 1.31(x)  (for an x cm clone; 95% 

CI, 1.07-1.60) in predicting progression to esophageal adenocarcinoma. Controlling for length of 

the Barrett's esophagus segment had little effect. This was a significantly better predictor of 

progression than just the presence of these clones. These studies confirm that DNA content remains 

a strong candidate as a marker of progression to esophageal adenocarcinoma. 

 

p16 

p16 is a tumor suppressor gene that plays a key role in regulating the cell cycle. In particular, it 

controls the transition from G1 to S phase [68]. p16 can be inactivated through mutation, LOH or 

methylation. Wong et al (2001) observed that the mucosa from more than 85% of Barrett’s 

esophagus segments contains tissue in which at least one p16 gene is inactivated [69], and at least 

one of the p16 lesions (p16+/- or p16-/-) demonstrated extensive clonal expansion. There was a 

significant association between the severity of the p16 lesion (p16+/+ vs. p16+/- vs. p16-/-) and the 

length of Barrett’s esophagus (median 1.5 to 6.0 to 8.0 cm). This led to the conclusion that p16 

lesions facilitate clonal expansion, which then provides an environment where further genetic 

abnormalities are more likely to arise. In addition, the grade of dysplasia did not influence the 

prevalence of the p16 lesions. This led the authors to also conclude that inactivation of p16 occurs 

early in the progression of Barrett’s esophagus, a finding that has been supported by Bian et al 
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(2002) [70]. Despite this early promise, however, there are no prospective studies which have 

demonstrated that p16 lesions can predict progression to cancer. In the largest prospective analysis, 

Maley et al (2004) showed that the ability of the size of a clone containing a p16 lesion to predict 

cancer was lost when it was corrected for the presence of p53 LOH [67]. 

 

Cyclin D1  

Cyclin D1 is a cell cycle protein that promotes the transition from G1 to S phase. Cyclin D1 acts as 

an antagonist to p16, and together they regulate the cell cycle. When p16 is present cyclin D1 is 

prevented from promoting cell division [71]. In a prospective endoscopic surveillance case-control 

study, Bani-Hani et al (2000) [72] demonstrated that patients with cyclin D1 over-expression in 

Barrett’s esophagus were more likely to develop esophageal adenocarcinoma, than those without 

(OR = 6.85; 95% CI, 1.57-29.9; P < 0.01). This study compared 12 patients who developed 

esophageal adenocarcinoma with 49 matched controls with Barrett’s esophagus. The results 

suggested that cyclin D1 over-expression was associated with a 6 to 7x increased risk of esophageal 

adenocarcinoma. However, this study did not find a link between p53 and increased risk (OR = 

2.99; 95% CI = 0.57-15.76). In contrast, another case control study compared 35 patients with 

Barrett’s esophagus who progressed to either esophageal adenocarcinoma or HGD [60] with 163 

controls matched for age, sex and date of diagnosis of Barrett’s esophagus. With mean follow up of 

3.7 years the authors were unable to establish a relationship between cyclin D1 over-expression and 

cancer risk.  

 

Proliferation abnormalities 

Barrett’s esophagus is known to be hyperproliferative [73]. Studies looking at proliferation suffer, 

however, because of the absence of a standardized assay and definition. Proliferation can be 

measured either on the luminal surface or across the width of the Barrett’s esophagus mucosa. One 

of the more common markers of cellular proliferation is the protein Ki-67. It is present during active 

phases of the cell cycle but absent during quiescence [74]. Chao et al (2008) [75] used Ki-67 and 

flow cytometry to measure total proliferation. They prospectively followed 276 patients with 

Barrett’s esophagus for a mean of 6.3 years. Twenty nine developed esophageal adenocarcinoma. 

Ki67 positivity (p = 0.13) and G1 fractions (p = 0.15) as measured by flow cytometry were not 

associated with progression to cancer. 
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Sirieix et al (2003) [76] used minichromosome maintenance protein 2 (Mcm2) as a luminal 

proliferation marker in a case control study. Minichromosome maintenance proteins are expressed 

during the cell cycle and are then degraded once cells become differentiated [77]. In this study 9 

cases of esophageal adenocarcinoma had greater Mcm2 expression before the diagnosis of 

dysplasia compared with matched controls (28.4% of total surface epithelial cells vs. 3.4% in the 

control group, p < 0.0001). No further work has been done on validating Mcm2 as a marker of 

esophageal adenocarcinoma risk. 

 

The Seattle Barrett’s Esophagus study group studies also assessed proliferation as a marker for 

cancer progression [66,77]. Rabinovitch et al (2001) [66] reported the use of flow cytometry to 

measure the S phase of the cell cycle as a marker of proliferation. ROC curve analysis suggested 

optimal cut-off points of greater than 5.5% and 9% at baseline endoscopy. Out of 307 patients, 137 

(45%) demonstrated an S-phase fraction greater than 5.5%, and 44 (14%) had an S-phase fraction 

greater than 9%. The incidence of cancer at 3 years in the first group was 17% (CI = 12-25) and at 5 

years was 21% (CI = 15-30). On univariate analysis there was a relative risk of 2.3 (CI = 1.2-4.4, p 

= 0.02) in patients with an elevated S phase fraction . The incidence of cancer at 3 years in the 

group with an S-phase fraction greater than 9% was 21% at 3 years (CI = 11-40) and 28% at 5 years 

(CI = 14-51). The relative risk for this group was 2.0 (CI = 0.94 – 4.1, p < 0.07). All these risks, 

however, lost significance in multivariate analysis when looking at patients with and without HGD. 

In both groups the relative risk of an S-phase fraction greater than 9% was 1.0. Based on these 

studies there is little evidence to support using proliferation as a marker for progression of Barrett’s 

esophagus to adenocarcinoma. 

 

Promoter methylation 

The epigenetic addition of methyl groups to DNA at CpG islands has been established as a common 

mechanism of gene inactivation in carcinogenesis [78,79]. It is well accepted that promoter hyper-

methylation is a mechanism of tumor suppressor gene silencing. Hyper-methylation has been 

observed in primary Barrett’s esophagus and esophageal adenocarcinoma tissues, and is the most 

frequent mechanism of APC and p16 inactivation in esophageal adenocarcinoma [80,81]. In a study 

in Barrett’s esophagus, Schulmann et al (2005) [82] investigated promoter methylation of 10 genes. 

Based on a dichotomized categorization, 3 genes (HPP1, RUNX3, and p16) were methylated more 

frequently in esophageal adenocarcinoma than in Barrett’s esophagus. In a longitudinal validation 

study, multivariate analyses suggested that hypermethylation of these 3 genes were independently 
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associated with an increased risk of progression: p16 (OR 1.74, 95% CI 1.33–2.20), RUNX3 (OR 

1.80, 95% CI 1.08–2.81), and HPP1 (OR 1.77, 95% CI 1.06–2.81). In combined analyses, risk was 

detectable up to, but not earlier than, 2 years before the development of cancer or HGD. In a study 

of tissues microdissected from formalin-fixed paraffin-embedded sections, APC, TIMP3, and 

TERT promoters were hypermethylated in 100%, 91%, and 92% respectively in 12 Barrett’s 

esophagus cases that progressed to adenocarcinoma, whereas methylation of these 3 genes was 

found in only 36%, 23%, and 17% in 16 patients with Barrett’s esophagus who did not progress 

[83].  

 

In a multicenter, double-blinded validation study Jin et al (2009) evaluated a linear combination of 

eight methylation biomarkers (p16, RUNX3, HPP1, NELL1, TAC1, SST, AKAP12, and CDH13) 

using coefficients from a multivariate logistic regression analysis, and developed a risk stratification 

strategy to predict neoplastic progression in Barrett’s esophagus, based on the eight markers. At 

high specificity levels, this model predicted approximately half of the HGDs and esophageal 

adenocarcinomas that would not have otherwise been predicted [84]. The eight-marker panel 

appeared to be more quantifiable, and possess higher predictive sensitivity and specificity than 

conventional clinical and demographic features. This work, including an additional 55 methylation 

markers, and a method for determining the risk of disease progression in the context of regular 

surveillance endoscopy, has been patented (patents WO 2009/105533 and PCT/US/2009/034508). 

 

Brock et al (2006) reported that positive methylation status for multiple genes in esophageal 

adenocarcinoma was a predictor of poor prognosis [85], and concluded that profiling by 

methylation status was a more powerful predictor of risk than clinicopathological features of stage 

and age. These authors also suggested that the frequency of DNA methylation events reflects 

disease progression, and that DNA methylation events accumulate as cancer advances with time. 

More recently Kaz et al (2011) [86] used methylation microarrays to measure global gene 

methylation status in biopsies from patients and found distinct global methylation signatures, as 

well as differential methylation of specific genes, that discriminated between squamous mucosa, 

Barrett’s esophagus, HGD, and esophageal adenocarcinoma. However, these authors concluded that 

additional validation of the methylation markers that distinguished non-dysplastic Barrett’s 

esophagus from HGD and cancer is needed before this approach can be applied clinically. 

 

Based on the results of current studies, p53 inactivation, the presence of aneuploidy/tetraploidy, and 

gene-specific promoter methylation remain the most promising molecular biomarkers for 
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identifying and predicting progression of Barrett’s esophagus to adenocarcinoma. The significant 

studies which support this conclusion are summarized in Table 3. 

 

 
Molecular biomarkers and ablative therapies 

The application of molecular biomarkers has potential to predict the response of Barrett’s 

esophagus to ablation therapy. In particular, these markers might be able to inform the risk of 

cancer arising in the 3 different types of epithelium that can be present following ablation: recurrent 

or residual Barrett’s esophagus, neo-squamous epithelium, and “buried Barrett’s glands”. A number 

of studies have investigated this area. Although the number of patients in each study has been 

relatively small, and some of the biomarkers that have been used have only shown limited evidence 

of association with the risk of disease progression (see Table 4), there is sufficient evidence to draw 

conclusions that can inform clinical practice. 

 

Recurrent or residual Barrett’s esophagus 

Histology vs Biomarkers – case evidence 

In the earliest study to investigate the effect of ablation on genetic abnormalities in Barrett’s 

esophagus mucosa, Krishnadath et al (2000) [87] looked at archived biopsies from 3 patients who 

initially responded to PDT but subsequently developed HGD. Proliferation, aneuploidy, p53 protein 

over-expression, p53 mutations and p16 methylation were evaluated. In all 3 patients 

histopathological improvement was initially demonstrated, before HGD developed later. All 3 

patients had at least 1 or more persistent abnormal biomarkers after PDT. This was the first study to 

demonstrate persistent genetic abnormalities, despite phenotypic improvement after ablation, 

suggesting that histopathological improvement may not be an appropriate measure of outcome.  

 

Evidence for complete ablation of Barrett’s esophagus 

In 2005 Hage et al (2005) [88] looked at the effect of APC and PDT ablation on p53 protein over-

expression, proliferation measured by Ki-67, and DNA ploidy status in residual or recurrent 

Barrett’s esophagus mucosa. They evaluated tissue from 29 patients, 16 with nondysplastic 

Barrett’s esophagus, 5 with LGD and 8 with HGD. Patients were followed using endoscopy and 

biopsy at 1 month, then 3 monthly intervals to 1 year, and 6 monthly thereafter. Mean follow up 

was 20 months. At 1 month 9 patients (32%) had a complete endoscopic and histopathological 

regression with significant improvement in both ploidy status and the degree of proliferation. 
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Patients with residual areas of Barrett’s esophagus at 1 month were retreated with APC, resulting in 

resolution of Barrett’s esophagus in 75%. This left 7 patients with persistent Barrett’s esophagus - 5 

nondysplastic, 1 LGD and 1 HGD. The patient with HGD had persistent p53 protein over-

expression and abnormal ploidy status. Persistent abnormal proliferation was seen in 2 of the 

patients with nondysplastic Barrett’s esophagus, and in the patient with LGD. The authors 

concluded that persistent Barrett’s esophagus is still at risk of progressing to esophageal 

adenocarcinoma. However, the inconsistency of evidence supporting proliferation as a marker of 

risk raises questions about this conclusion. In a subsequent study Hage et al (2006) [89] undertook 

LOH analysis on 9 polymorphic markers, including p16 and p53, before and at mean 20 months 

after ablation. In 5 patients with persistent Barrett’s esophagus, the frequency of LOH of p53 and 

p16 (as well as the APC, DCC and SMAD4 genes) in the residual or recurrent Barrett’s esophagus 

was not decreased after ablation. The authors concluded that the goal of ablation therapy must be 

complete ablation.  

 

In another study looking at molecular biomarkers in residual Barrett’s esophagus [90] Hornick et al 

(2008) evaluated non-buried Barrett’s esophagus mucosa before vs. after ablation in 12 patients 

with HGD or intramucosal adenocarcinoma, treated with PDT. All had residual or recurrent 

nondysplastic Barrett’s esophagus at follow up. The markers assessed included Ki67, p53, cyclin 

D1 and DNA ploidy status. Pre ablation biopsies revealed elevated Ki67 proliferation in 43%, p53 

positive staining in 8%, but only mild aneuploidy in 73% of cases. Cyclin D1 was absent in all 

preablation biopsies. The rate of Ki67 proliferation remained unchanged, but they observed a 

decrease in the number of patients with aneuploidy, to 11% of cases. Although a decrease in the 

number of patients with mild aneuploidy was observed after ablation, this study still suggests that 

some patients with residual Barrett’s esophagus may be at risk of cancerprogression.  

 

Biomarker evidence for negative effect of ablation on residual Barrett’s esophagus 

Dvorak et al (2006) [91] compared esophageal mucosal biopsies before and after ablation with 

MPEC and APC from 21 patients with non-dysplastic Barrett’s esophagus. Pre-ablation biopsies 

revealed normal staining patterns for p53, cyclooxygenase-2 (COX-2) in interstitial cells, and Ki67. 

Postablation biopsies, however, found increased staining for p53, COX-2 and Ki67 in columnar 

epithelium located at the junction of the neosquamous and residual Barrett’s esophagus in patients 

whose Barrett’s esophagus was not completely ablated. Thirteen of 21 (67%) had increased Ki67 

staining at this junction. Eight of 21 (38%) had increased expression of COX-2 and 8 of 21 (38%) 

had increased staining of p53. The authors concluded that ablation might actually be converting 
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nondysplastic Barrett’s esophagus to areas of dysplastic Barrett’s esophagus with more genetic 

abnormalities within the areas of residual columnar mucosa. They suggested close follow up of all 

patients following ablation. However, this conclusion was not supported by changes in 

histopathology. Nevertheless, it does provides some support for the hypothesis that areas of residual 

Barrett’s esophagus after ablation may be at risk of progression to cancer, and provides further 

evidence that incomplete ablation of Barrett’s esophagus may carry some risk of cancer 

development. 

 

Clinical evidence after Radiofrequency Ablation 

Although there have been no biomarker studies yet reported which evaluate residual areas of 

Barrett’s esophagus after radio frequency ablation (RFA), a recent report of 5 year follow up of a 

prospective multicenter US trial showed complete remission of Barrett’s esophagus in 92% (46/50) 

of patients [42]. Furthermore, Vaccaro et al (2011) investigated forty-seven patients who underwent 

RFA and had complete eradication of Barrett's esophagus epithelium, and the cumulative incidence 

of newly detected Barrett's esophagus at one year was 25.9%. Importantly, these authors detected 

dysplasia at the time of recurrence in four patients. Despite the lack of direct biomarker evidence, 

these studies suggest that RFA may not eliminate the risk of progression to cancer in all patients 

[92], an outcome consistent with clinical data from a randomized trial of RFA ablation vs. 

endoscopic surveillance which suggested a reduced short term risk of progression to cancer, but 

with a proportion of patients still progressing to cancer within 12 months of RFA ablation [93].  

 

Neo-squamous epithelium 

More evidence for complete ablation of Barrett’s esophagus 

The first study looking at molecular biomarkers in neosquamous epithelium was published by 

Garewal et al in 1999 [94]. This study involved 2 groups. The first group consisted of 11 patients 

with Barrett’s esophagus (7 nondysplastic and 4 LGD) in whom complete reversal of the Barrett’s 

esophagus had been achieved using a combination of PPIs and MPEC. The second group involved 

14 patients in whom ablation was not complete, and islands of squamous mucosa were seen in the 

Barrett’s esophagus mucosa. Control biopsies were taken from normal squamous epithelium in the 

proximal esophagus as well as from patients without Barrett’s esophagus who underwent 

endoscopy for other reasons. Ki67 proliferation, p53 protein over-expression and ornithine 

decarboxylase (ODC) activity were assessed in the mucosal biopsies. In the first group Ki67, p53 

and ODC measurements were indistinguishable in post-ablation neosquamous epithelium vs. 
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normal squamous epithelium from controls, suggesting that these patients may be at low risk of 

subsequently developing cancer following complete ablation. In the second group (squamous 

islands), however, in contrast to normal squamous epithelium where Ki-67 staining was detected in 

the basal layer only, multi-layer staining was observed in nine of the 14 cases (64%) of squamous 

islands, and positive p53 staining was present in 43% (6/14), again highlighting the importance of 

complete ablation 

 

Neosquamous epithelium may be at risk in some patients 

In a subsequent study, Lopes et al (2005) [95] evaluated p53 expression in Barrett’s esophagus, 

squamous epithelium contiguous with Barrett’s esophagus, and neo-squamous epithelium before 

and after APC ablation. Mucosa from 5 of 37 (13.5%) patients over-expressed p53 before ablation, 

and in each of these 5 patients the squamous mucosa contiguous with Barrett’s esophagus also over-

expressed p53. In the 32 patients that did not over-express p53, the contiguous squamous mucosa 

was also found to be negative. Following ablation, the neosquamous epithelium continued to over-

express p53 in the 5 cases where this was present beforehand, and in the other 32 cases p53 was not 

over-expressed in the neosquamous epithelium. This study suggested that despite adequate ablation, 

post-APC ablation neosquamous epithelium may still have neoplastic potential.  

 
Origin of neosquamous epithelium 

Paulson et al (2006) [96] attempted to analyze the origins of neosquamous epithelium developing in 

patients taking PPI medication, but not undergoing ablation. If neosquamous epithelium originates 

from the same multipotent progenitor cells that give rise to Barrett’s esophagus, then it should share 

the same genetic profile and subsequent cancer risk. Twenty patients with Barrett’s esophagus were 

identified in whom, either a p16 (9 patients) or p53 (11 patients) mutation within a clonal expansion 

of Barrett’s esophagus cells was evident. All of these patients had islands of neosquamous 

epithelium confirmed endoscopically and histopathologically. In only 1 patient did the  

neosquamous epithelium contain the identical p16 mutation that was found in the surrounding 

Barrett’s esophagus. This suggested that in most cases (95%) the neosquamous epithelium and 

Barrett’s esophagus remain genetically distinct, although a small proportion do share a progenitor 

cell, and maybe the associated cancer risk, a suggestion that is supported by the results of a recent 

investigation into stem cell organisation in esophageal squamous epithelium and in Barrett’s 

esophagus [97] 
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Need for appropriate comparison tissues 

In another study investigating p53 protein over-expression, 12 patients with HGD underwent PDT 

ablation [98]. There was significantly lower p53 immunostaining in the neosquamous epithelium 

from patients who had undergone ablation compared with 10 controls (HGD with no ablation). 

These authors concluded that the cancer risk of the neosquamous epithelium might be less than that 

of any HGD that remains after ablation. However, they did not compare neosquamous epithelium 

with matched proximal squamous tissue, or with normal squamous tissue from healthy patients, so 

normalization of the gene expression pattern was not adequately assessed. 

 

Evidence for normalization of neosquamous epithelium by Radiofrequency Ablation 

The first study looking at biomarkers in neosquamous epithelium following RFA was published by 

Pouw et al in 2009 [99]. Twenty-two patients with Barrett’s esophagus containing either HGD or 

intramucosal adenocarcinoma underwent RFA. An aggressive approach to ablation was applied 

with endoscopic mucosal resection undertaken to remove any areas of residual Barrett’s esophagus 

persisting after 5 RFA treatments. Untreated proximal esophageal squamous epithelium was used as 

a control. Baseline Barrett’s esophagus and postablation neosquamous epithelium were assessed for 

Ki67 and p53 protein expression. Numerical chromosomal abnormalities were evaluated using 

fluorescent in situ hybridization (FISH) with centromeric enumeration probes for chromosomes 1 

and 9, and locus specific identifier probes for regions of 9p21 (p16) and 17p13.1 (p53). All baseline 

Barrett’s esophagus mucosal specimens revealed immuno-histochemical staining and FISH 

abnormalities in the Barrett’s esophagus. All post RFA ablation neosquamous mucosal samples 

were reported to be normal [99].  

 

Recently Krishnan et al (2012) reported that RFA reduces ß-catenin activity of previously 

dysplastic mucosa within the regenerative basal epithelial layer to normal levels [100]. This is a 

potentially important observation as there are several studies implicating ß-catenin signaling in 

Barrett’s esophagus carcinogenesis [101-103], and nuclear ß-catenin appears to be a good marker of 

dysplasia and esophageal adenocarcinoma [104]. Given the results of Garewal et al (1999), and the 

fact that these post-RFA biomarker studies were undertaken at a time when all Barrett’s esophagus 

was eradicated, but presumably before the re-emergence or re-establishment of areas of recurrent 

Barrett’s esophagus (e.g. 9% IM at 5 years by Fleischer et al 2010), it appears that complete 

removal of all Barrett’s esophagus is probably required for molecular normalization of the entirety 

of the esophageal epithelium following ablation. 
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Buried glands 

After proton pump inhibitor therapy 

Only 2 studies have evaluated the molecular profile of buried glands, and only one of these was 

undertaken in the context of ablation. Hornick et al (2005) [22] evaluated 44 patients with Barrett’s 

esophagus and buried glands treated by PPIs. Immunostaining for Ki67, cyclin D1 and p53 

compared with adjacent areas of Barrett’s esophagus. Buried glands had a significantly reduced 

Ki67 proliferation rate (29% vs. 49%, P < 0.001). There was also a trend towards reduced cyclin D1 

(16% vs. 29%) and p53 (4% vs. 17%) protein expression in the buried glands. It was noted, 

however, that reduced proliferation rates were observed in buried glands with no opening to the 

luminal surface. It is unclear whether this means that decreased exposure to luminal contents in 

buried glands has an impact on proliferation. 

 

After PDT ablation 

In the only study looking at molecular biomarkers in buried glands following ablation, Hornick et al 

(2008) [90] evaluated tissue from 12 patients who had undergone PDT ablation for either HGD or 

intramucosal adenocarcinoma, and subsequently demonstrated buried glands. Biomarkers assessed 

included Ki67 proliferation, p53, cyclin D1 and DNA ploidy status. The Ki67 proliferation rate was 

less in the buried glands, compared to Barrett’s esophagus exposed to the esophageal lumen, both 

before (43%) and after ablation (44%). None of the buried glands demonstrated aneuploidy 

compared with mild levels of aneuploidy in 73% of pre-ablation Barrett’s esophagus specimens. 

Other biomarkers showed no difference between buried glands and pre and post ablation Barrett’s 

esophagus. The authors concluded that buried glands following PDT may have less neoplastic 

potential than pre-ablation Barrett’s esophagus. However, in a recent review, Gray et al (2001) 

pointed out that available reports have not provided sufficient information about biopsy protocols to 

allow assessment of their adequacy and, therefore, the frequency and importance of buried glands 

after endoscopic ablation remains unclear [105]. 

Biomarkers to predict response to ablative therapy 

There have been 2 attempts to investigate whether molecular biomarkers can predict the response to 

ablation. Krishnadath et al (2001) [106] published in abstract only a study that looked at the ability 

of p53 to predict response to PDT. Ten patients (8 with HGD, and 2 with LGD) were classified as 

“responders” in that they had complete reversal of their Barrett’s esophagus after one treatment. 

Nine patients (4 with HGD and 5 with LGD) who were defined as “poor responders” had persistent 

Barrett’s esophagus. Ki67, p53, p16 and DNA-ploidy status were assessed. In specimens collected 
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before ablation, the poor responders had a significantly higher rate of p53 mutations compared with 

the responders (5/9 vs. 0/10, P < 0.01). p53 mutations were present in the neosquamous epithelium 

in 2 patients. There was no significant difference between poor responders vs. responders for p16 

methylation, rate of proliferation, or ploidy status, although there was a trend towards more frequent 

p16 methylation in poor responders. The authors concluded that p53 mutation may play a role in 

predicting response to PDT. However, this study did not properly characterize the preexisting 

Barrett’s esophagus, and a full manuscript is yet to be published. 

 
Prasad et al (2008) [107] prospectively evaluated 126 patients with Barrett’s esophagus with either 

HGD or intramucosal cancer. Seventy one underwent PDT ablation. The remaining 55  remained in 

surveillance acted as controls. Fifty (70%) responded to treatment, with no evidence of dysplasia or 

intramucosal cancer 3 months after PDT. Biomarkers assessed by FISH included p16 and p53. On 

multivariate analysis p16 allelic loss was a significant predictor of clinical response to ablation (OR 

0.32; 95% CI, 0.10-0.96).  

 

Markers that may help in the detection of residual or recurrent Barrett’s esophagus. 

MicroRNAs  

MicroRNAs are short noncoding segments of RNA that regulate an increasing number of cellular 

functions [108]. A single microRNA can regulate hundreds of genes. Alterations in microRNA 

expression are associated with the development of certain cancers including breast, lung and gastric 

carcinoma [109]. MicroRNA-205 is commonly seen in esophageal squamous epithelium whilst 

microRNA-143 is found in columnar epithelium such as Barrett’s esophagus [110]. This tissue 

specific expression of microRNAs means that they can be used as biomarkers to distinguish 

between the two types of epithelium. 

 
There is only one published study that has looked at the microRNA  expression in the setting of 

Barrett’s esophagus and ablation [111]. In this study 9 patients with non-dysplastic Barrett’s 

esophagus had biopsies from their Barrett’s esophagus mucosa and proximal squamous epithelium 

before ablation with APC. MiRNA biomarkers were then compared with miRNA biomarkers from 

biopsies from neosquamous epithelium and normal squamous epithelium after ablation. Esophageal 

mucosa from 10 individuals who did not have gastro-esophageal reflux were controls. MiR-205 

expression was lower in Barrett’s esophagus mucosa compared to all types of squamous epithelium, 

and miR-143 expression was higher in Barrett’s esophagus mucosa compared to all types of 

squamous epithelium. However, miR-143 expression was elevated in neosquamous epithelium, and 
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in normal squamous epithelium proximal to Barrett’s esophagus epithelium, relative to expression 

in normal squamous epithelium in the control individuals who did not have Barrett’s esophagus . 

This raised the possibility that the squamous mucosa in some patients with Barrett’s esophagus may 

not be “normal” before the development of Barrett’s esophagus, although more work is required to 

confirm this hypothesis. 

 
Cytokeratins 

Cytokeratins are proteins found within the cytoskeleton of epithelial cells. Different cytokeratins are 

expressed by different types of epithelium. CK-14 is expressed in the basal cells of stratified 

squamous epithelium and CK-8 is expressed in simple columnar epithelium [112,113]. Hence, the 

expression of these cytokeratins can be used as markers of different types of esophageal epithelia. 

The study from Dijckmeester et al (2009) that investigated miRNAs, also compared the expression 

of CK-8 and CK-14 between Barrett’s esophagus and neosquamous epithelium [111], and found 

that CK-8 expression was significantly higher in Barrett’s esophagus compared to neosquamous 

epithelium and normal squamous epithelium before and after APC ablation. Also, CK-14 

expression was significantly lower in Barrett’s esophagus compared to all types of squamous 

mucosa, and CK-8 and CK-14 expression were similar between neo-squamous epithelium and 

normal squamous epithelium in individuals with Barrett’s esophagus. These findings were 

consistent with normalization of cytokeratin expression levels following conversion of metaplastic 

columnar epithelium to squamous epithelium. 

 

CDX2 

CDX2 is a transcription factor that plays a key role in the development and maintenance of 

intestinal epithelium. Normally it is expressed in the small bowel and large bowel mucosa, but not 

in the esophageal or gastric mucosa [114]. This makes it a useful biomarker for intestinal type 

differentiation. CDX2 is a highly sensitive marker for Barrett’s esophagus even in the absence of 

goblet cells [115,116]. These features make it another potentially useful biomarker to distinguish 

between Barrett’s esophagus and ablated neo-squamous tissue. However, there are no studies yet 

published investigating differences in CDX2 expression between Barrett’s esophagus and 

neosquamous epithelium or neosquamous epithelium and normal squamous epithelium. 

 

 

Expert Commentary 
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Knowing whether cancer development in Barrett’s esophagus is less likely after ablation is 

important, as in the absence of evidence that cancer risk is reduced to a low level, ablation therapy 

might be regarded by health care decision makers as neither clinically effective nor cost effective. 

The current biomarker evidence suggests that after ablation any residual or recurrent Barrett’s 

esophagus continues to carry a risk of neoplastic progression, although the lack of published 

evidence investigating the molecular profile of buried glands under neosquamous epithelium post 

ablation makes it difficult to draw any conclusions about the cancer risk associated with this 

particular mucosal subtype. Given that all ablation modalities seem to be associated with some risk 

of both residual and recurrent Barrett’s esophagus, and long term clinical outcomes remain 

unknown, it cannot be assumed that cancer risk has been eliminated or reduced to a low enough 

level to allow patients to be treated and then discharged from clinical care. Hence, ongoing 

endoscopic surveillance continues to be required in all patients following ablation of dysplastic 

Barrett’s esophagus.  

 

Furthermore, the current evidence suggests that molecular biomarkers might only be normalized in 

neosquamous epithelia, so it is possible that only therapies that ablate all Barrett’s esophagus will 

be clinically effective, highlighting the importance of either achieving complete ablation or of being 

able to identify patients in whom complete ablation might be achievable. There is currently only 

limited evidence, however, about the extent to which molecular biomarkers influence and predict an 

individual patient’s response to ablative therapies, and with existing markers such as p16-allelic-

loss we would not be able to identify patients who might have a complete response with high 

sensitivity and specificity.  

 

Clinically, biomarkers have the potential to identify individuals who have undergone ablation and 

remain at high risk of progression to cancer, and these patients could be offered a range of options. 

Patients with a complete response, but with residual abnormal biomarkers within their neosquamous 

mucosa, could have their surveillance interval shortened to 6 months, as is currently done in some 

centers for patients with LGD. Patients with residual or recurrent Barrett’s esophagus with 

abnormal biomarkers could have endoscopic resection and/or further ablation, and then regular or 

intensified surveillance. 

 

However, the biggest challenge facing ablation therapies and biomarkers is that in order to detect 

lesions early so that they can be treated endoscopically, patients need to undergo regular 

surveillance, and evidence to date suggests that surveillance may not be cost effective in some of 
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the jurisdictions where it has been assessed [117]. Potentially, this might be overcome by offering 

intensified surveillance, or ablation, to patients with positive biomarkers but no dysplasia on 

histopathology, with discontinuation of endoscopy surveillance or lengthened surveillance intervals 

for biomarker negative patients. However, this approach will be constrained by the cost of 

biomarker testing, and needs to be assessed in cost-effectiveness models which include current 

treatment and outcome data from well studied surveillance programs. 
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5 YEAR VIEW 

 

Molecular biomarker evidence suggests that complete ablation of both dysplasia and intestinal 

metaplasia is required to reduce the risk of esophageal adenocarcinoma. However, with all of the 

currently available ablation techniques, it is technically difficult to achieve complete eradication of 

all areas of intestinal metaplasia, and most studies report approximately 25-50% of patients have 

residual Barrett’s esophagus or develop recurrence. In the future biomarkers might be useful for 

identifying patients that are still at high risk of progression to cancer after ablation, and these 

patients might be considered for intensified surveillance, or preferentially considered for 

endoscopic mucosal resection and/or further ablation. Ongoing research is needed to determine 

whether molecular biomarkers can be used to improve selection of patients for surveillance of 

Barrett’s esophagus, as well as the timing of surveillance intervals. Cost-effectiveness studies are 

also required to evaluate the impact of clinical practice changes. 

 

 

 

 

KEY ISSUES 

• Several molecular biomarkers are associated with an increased risk of progression from 

Barrett’s esophagus to adenocarcinoma.  

• Molecular biomarker studies suggest that residual or recurrent areas of intestinal metaplasia 

after ablation of Barrett’s esophagus are probably at risk of progression to cancer, and that 

only complete ablation is capable of normalizing the levels of these biomarkers.  

• There is insufficient evidence from molecular biomarker studies to ascertain whether buried 

areas of intestinal metaplasia under post-ablation neosquamous epithelium has a reduced 

risk of disease progression.  

• Molecular biomarkers do not currently have sufficient sensitivity and specificity to 

determine which patients will not respond well to endoscopic ablation.  

• Whilst endoscopic surveillance of Barrett’s esophagus may not be cost-effective in some of 

the jurisdictions where this has been assessed, using ablation and then biomarker assessment 

of risk to modify surveillance practice has the potential to improve the cost-effectiveness of 

surveillance.  
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TABLES 
 

Table 1  Summary of Studies that have reported the Prevalence of recurrent or residual 
Barrett’s esophagus following ablation  
 

Study Year 

Number of 
Patients 
ablated Ablative Modality 

Number of Cases 
Complete 

Remission of BE 
(%) 

Average 
Follow Up 
(months) 

[43] 2011 106 RFA 51 (75% by Kaplan 
Meier) 

36 

[42] 2010 50 RFA 46 (92) 60 
[36] 2010 137 RFA 106 (77) 20 
[37] 2008 142 RFA 77 (54) 12 
[31] 2001 58 APC 45 (78) 6 
[24] 1998 17 APC 9 (53) 12 
[32] 2005 19 

16 
APC 

MPEC 
12 (63) 
12 (75) 

24 

[39] 2004 12 
11 
10 

APC 
Single dose PDT 

Fractionated dose PDT 

8 (67) 
9 (82) 
9 (90) 

12 

[40] 2004 34 
34 

APC 
PDT 

33 (97) 
17 (50) 

12 

[41] 2007 138 PDT Not reported 60 
[35] 2004 15 Nd:YAG laser 6 (40) 28 
[34] 1999 18 Nd:YAG laser 11 (61) 14 

 
 
Abbreviations: BE, Barrett’s esophagus; RFA, radiofrequency ablation; APC, argon plasma 
coagulation; MPEC, multipolar electrocoagulation; Nd:YAG, neodymium-doped yttrium aluminum 
garnet; PDT, photodynamic therapy 
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Table 2  Studies that reported the incidence of buried glands following ablation of 
Barrett’s esophagus. 
 

Study Year Number of Patients 
Ablative 
Modality 

Number of 
Cases with 

Buried 
Glands (%) 

Average 
Follow Up 
(months) 

[46] 2009 Single case report RFA Single case 9 
[45] 2008 10 RFA 1 (10) 12 
[27] 2007 20 APC 3 (15) 68 
[39] 2004 14 

12 
APC 

Fractionated PDT 
5 (36) 
1 (8) 

12 

[24] 1999 25 APC 6 (25) 12 
[44] 1999 27 APC 8 (30) 9 
[29] 1996 5 PDT 2 (40) 26-44 
 
 
Abbreviations: RFA, radiofrequency ablation; APC, argon plasma coagulation; PDT, 
photodynamic therapy
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Table 3 Larger studies that have investigated the effectiveness of molecular 
biomarkers in assessing the relative risk of progression of Barrett’s esophagus to 
cancer. 
 

Study Year 
Number of 

Patients 
Molecular 

Biomarkers 
Mean 

Follow Up 
Relative 

Risk (95% CI) 
[61] 2001 256 P53 LOH 34 months 16 (6.2-39) 
[65] 2000 322 aneuploidy 

tetraploidy 
3.9  

years 
5 (2.7-9.4) 
7.5 (4.0-14) 

[67] 2004 267 aneuploidy or  
tetraploidy  
(size of clone) 

2.9  
years 

3.9 (1.4-10.5) 
(for a 5 cm clone) 

[67] 2004 146 P16 lesion  
(LOH, mutation, 
methylation) 

4.9 
years 

1.3 (0.44-3.9) 
(for a 5 cm clone) 

[66] 2001 307 Proliferation 
(flow cytometry to 
measure S phase) 

56  
months 

1.5 (0.79-3.0) 
(corrected for HGD) 

[75] 2008 276 Proliferation (Ki67, 
flow cytometry) 

6.3  
years 

1.02 (0.99-1.05) 
(Hazard ratio) 

[84] 2009 195 Gene-specific 
promoter 
methylation 

Not stated Depends on cut-off 

 
 
Abbreviations: LOH, loss of heterozygosity; HGD, high grade dysplasia 
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Table 4.  Studies that have investigated the presence of cancer development biomarkers in various tissues after ablation of 
Barrett’s esophagus. 
 
 

Study Year 

Number 
of 
Patients 

Ablative 
Modality  

Type of 
Epithelium Molecular Biomarkers Measured Outcome 

Case control        
[98] 2008 22 PDT NeoSE P53 over-expression Significantly reduced p53 expression in NeoSE (p < 0.0  
[22] 2005 44 PPIs Buried glands Cell proliferation (Ki67) 

Cyclin D1 and p53 over-expression 
Buried glands showed significantly lower proliferation r     

[94] 1999 25 MPEC NeoSE and 
squamous islands 

Cell proliferation (Ki67), P53 over-
expression, ODC activity 

Elevated cell proliferation and p53 over-expression in sq   

Longitudinal 
cohort 

      

[99] 2009 22 RFA NeoSE Cell proliferation (Ki67), P53 over-
expression, P16 and p53 mutation 

Genetically normal 

[96] 2006 20 PPIs NeoSE P16 mutation, P53 mutation 95% patients (19/20) NeoSE without mutations 
[89] 2006 21 PDT and 

APC 
Recurrent or 
residual BE 

LOH analysis on APC, p16, p53, DCC, 
SMAD4 

Persistent genetic abnormalities in recurrent or residual  

[95] 2005 37 APC NeoSE P53 over-expression Persistent p53  over-expression in NeoSE if present prea  
[88] 2005 29 APC and 

PDT 
Recurrent or 
residual BE 

Cell proliferation (Ki67), P53 over-
expression, DNA ploidy status 

Significant reduction in DNA content abnormalities (p =    
over-expression (p = 0.002) but not cell proliferation. 

[87] 2000 3 PDT Recurrent or 
residual BE 

Cell proliferation (Ki67), DNA ploidy 
status, P53 mutation, P53 over-expression, 
P16 promoter hypermethylation 

All 3 cases had 1 or more genetic markers remain positi    

Selected 
cases 

      

[90] 2008 12 PDT Buried glands 
Recurrent or 
residual BE  

Cell proliferation (Ki67), DNA ploidy 
status, P53, cyclin D1, bcl-2, TGF-α, 
EGFR, AMACR over-expression 

Buried glands decreased proliferation and normal ploidy  
Residual or recurrent BE persistently elevated proliferat   
significantly reduced ploidy abnormalities (p < 0.05) 

[91] 2006 21 MPEC 
and APC 

Recurrent or 
residual BE 

Cell proliferation (Ki67), COX-2 over-
expression, P53 over-expression 

Increased Ki67 staining, COX-2 and p53 expression in r   
residual BE 
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Abbreviations: RFA, radiofrequency ablation; NeoSE, neosquamous epithelium; PDT, photodynamic therapy; BE, Barrett’s esophagus; Bcl, B-
cell lymphoma; TGF, transforming growth factor; EGFR, epidermal growth factor receptor; AMACR, alpha-methylacyl-CoA racemase; MPEC, 
multipolar electrocoagulation; APC, argon plasma coagulation; COX, cyclo-oxygenase; PPI, proton pump inhibitors; LOH, loss of 
heterozygosity; APC, adenomatous polyposis coli; DCC, deleted in colorectal cancer; SMAD4, mothers against decapentaplegic; ODC, 
ornithine decarboxylase 
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