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ABSTRACT 

There are several microRNAs that have been consistently reported to be differentially expressed in 

esophageal squamous cell carcinoma vs. normal squamous tissue, with prognostic associations for 

miR-21 (invasion, positive nodes, decreased survival), miR-143 (disease recurrence, invasion 

depth), and miR-375 (inversely correlated with advanced stage, distant metastasis, poor overall 

survival, and disease-free survival). There is also evidence that miR-375 regulates gene expression 

associated with resistance to chemotherapy. Hence, microRNA expression assays have the potential 

to provide clinically relevant information about prognosis and potential response to chemotherapy 

in patients with esophageal squamous cell carcinoma. Results are inconsistent, however, for 

microRNAs across different studies for esophageal adenocarcinoma (EAC) vs. its precursor lesion 

Barrett’s esophagus. These inconsistencies may partly result from pathological and/or molecular 

heterogeneity in both Barrett’s esophagus and EAC, but may also result from differences in study 

designs or different choices of comparator tissues. Despite these inconsistencies, however, several 

mRNA/protein targets have been identified, the cancer related biology of some of these targets is 

well understood, and there are clinico-pathological associations for some of these mRNA targets. 

MicroRNAs also have potential for use in therapy for esophageal cancers. The development of new 

delivery methods, such as minicells and autologous microvesicles, and molecular modifications 

such as the addition of aromatic benzene pyridine analogs, have facilitated the exploration of the 

effects of therapeutic microRNAs in vivo. These approaches are producing encouraging results, 

with one technology in a phase I/IIa clinical trial.  
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TEXT 

 

Esophageal cancer continues to be a lethal disease, with the majority of patients presenting at an 

advanced stage relative to other cancers such as colon, melanoma and breast [1]. Late stage 

esophageal cancers are aggressive, and despite advances in both medical and surgical therapies, the 

five year survival rate is at best around 15-20% [1]. Furthermore, over the last 30 years the 

incidence of esophageal adenocarcinoma has increased more than that of any other cancer in the 

Western world [2], to become the fifth leading cause of cancer related death in men in the US [1]. 

The two main histological types of esophageal cancer, adenocarcinoma (EAC) and squamous cell 

carcinoma (ESCC), have different causes and patterns of incidence, very different tumor biology, 

are more common in different parts of the esophagus, and differ somewhat in their clinical 

management [3]. 

 

Esophageal adenocarcinoma 

The principal factor driving the development of EAC appears to be gastro-esophageal reflux, which 

is very common in the Western World. In some people, chronic reflux induces an adaptive response 

in the epithelium of the distal esophagus, whereby the squamous epithelium is replaced by 

metaplastic columnar epithelium, a condition known as Barrett's esophagus (BE) [4]. 

Approximately 10% of patients with chronic reflux have Barrett’s esophagus [5]. Barrett’s 

esophagus is the only identifiable precursor lesion for EAC, and progression to EAC occurs in 0.2 

to 2.1% of patients per year [6]. Although ESCC still represents 90% of esophageal cancer cases in 

many Eastern countries, the incidence of EAC has now surpassed that of ESCC in most Western 

countries [7]. Furthermore, the incidence of EAC in Europe [8], North America [9], and Australia 

[10] is increasing at a rate exceeding that of any other cancer, with a near 6 fold increase over the 

last 3 to 4 decades, predominantly in men. The prognosis for this cancer is poor and approximately 

90% of sufferers will die from this disease. This is because potentially curative treatment, usually 

esophagectomy, is only feasible in approximately 25-30% of individuals, and surgical treatment is 

associated with significant morbidity and mortality. The two main risk factors for EAC are gastro-

esophageal reflux and obesity [11].  

 

Esophageal squamous cell carcinoma (ESCC) 

Although EAC is increasingly common in Western countries, ESCC is still dominant in East Asia 

[12]. ESCC develops from the original squamous epithelium of the oesophagus, and this is strongly 

influenced by lifestyle factors. The two main risk factors for ESCC of the esophagus are tobacco 

smoking and high alcohol consumption, particularly in combination. Esophagitis and atrophy of 
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squamous epithelium may be clinically relevant precursor lesions [13, 14], while strong evidence 

suggests that varying grades of dysplasia and carcinoma in situ are relevant precursors to 

development of ESCC [13, 15]. ESCC is mostly diagnosed at late stages, and the prognoses of 

affected patients are poor despite advances in therapeutic options such as surgery, chemotherapy 

and radiotherapy. With the exception of a small number of patients with early cancers confined to 

the mucosa, attempted curative therapies for ESCC involve either neoadjuvant treatment 

(chemotherapy or chemoradiotherapy, CRT) followed by surgical resection [16], or CRT alone [17, 

18].  

 

Need for Biomarkers in Esophageal Cancer 

Although the tumor-node-metastasis (TNM) system provides classification of tumor stage, it 

provides little therapeutic and biological information, such as the metastatic potential, or the 

sensitivity or resistance of the tumor to radiotherapy and chemotherapy. There is therefore a need 

for better prognostic indicators to distinguish high-risk patients from other patients. Increasing 

evidence suggests that biomarkers such as microRNA’s might be able to be meet this requirement. 

 

microRNAs 
Aberrant expression and/or functions of miRNAs (microRNAs) are implicated in tumorigenesis 

[19]. MiRNA-expression profiling of human tumors has identified signatures associated with 

diagnosis, staging, progression, prognosis and response to treatment. In addition, profiling has been 

exploited to identify miRNA genes that might be downstream targets of activated oncogenic 

pathways, or that target protein-coding genes involved in cancer [19]. 

 

Methods 

We performed a PubMed search with the following search phrase, “(microRNA OR micro-RNA 

OR microRNA OR mir-*) AND (esophag* OR oesophag*)”, on the 4th Jan 2012. This returned 99 

publications. From those articles relevant publications dealing directly with micro-RNAs and 

esophageal cancer were obtained by screening the abstracts or, if necessary, the entire article. 

Further articles were extracted by screening the references within these papers. In case of non-

availability of the whole article the abstract was taken into consideration despite the limited data 

provided. This search was repeated weekly until the 29th May 2012 to capture recent publications. 

 

Identification of miRNAs with Diagnostic or Prognostic Relevance in Esophageal Cancer 

Several studies have been published investigating the differential expression of miRNAs in ESCC 

and EAC. The first investigation of miRNA expression profiles in ESCC and EAC was reported by 
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Feber et al (2008) and found differences between the two diseases. MiR-194, miR-192 and 

miR200c were observed to be up-regulated in EAC compared with normal squamous epithelium, 

but not in ESCC, whereas miR-342 was up-regulated in ESCC [20]. Mathe et al (2009) found that 

miR-194 and miR-375 were elevated in adenocarcinoma compared with ESCC [12]. Subsequent 

studies have reported associations between specific miRNAs and disease classification, clinical 

outcomes, and various target genes known to be involved in the development of cancer. 

 

MiRNAs in Esophageal Squamous Cell Carcinoma (ESCC) 

Pathology and Differentiation 

Guo et al (2008) were the first to report the expression of miRNA in esophageal cancer tissues 

using miRNA microarray techniques. They found that three miRNAs (miR-25, miR-424, and miR-

151) were up-regulated and four miRNAs (miR-100, miR-99a, miR-29c, and mmu-miR-140*) were 

reduced in ESCC versus normal squamous tissue. They also found that five miRNAs (miR-335, 

miR-181d, miR-25, miR-7 and miR-495) correlated with gross pathologic classification (fungating 

vs medullary), and two miRNAs (miR-25 and miR-130b) correlated with histopathological 

differentiation (well vs moderate vs poor) [21].   

 

Diagnosis, and Survival 

Guo et al (2008) reported that expression of miR-103/107 in ESCC correlated with poor survival 

[21]. Ogawa et al (2009) reported that high expression levels of 6 miRNAs correlated with 

significantly lower survival rates in patients with ESCC. Of these, the over-expression of miR-129 

was identified as a significant and independent prognostic factor (HR = 18.1; P = 0.031) in 49 

patients with surgically treated ESCC [22]. 

 

Hiyoshi et al (2009) observed that miR-21 levels were higher in ESCC tissues compared with 

normal squamous tissues [23], and Zhu et al (2011), using laser capture micro-dissection of normal 

basal, normal differentiated, and tumor tissues in 5 ESCC cases, found that miR-21, miR-25 and 

miR-106b were up-regulated in ESCC tumors compared with matched normal tissues [24]. Mathe 

et al (2009) found that elevated miR-21 expression in non-cancerous tissue from patients with 

ESCC was associated with worse prognosis, and that this association was independent of tumor 

stage, lymph node status, and chemoradiation therapy [12].  

 

Kurashige et al (2012) found that miR-223 expression was significantly higher in cancerous ESCC 

tissues than in the corresponding normal tissues, and that patients with high miR-223 expression 

had a significantly poorer prognosis than those with low expression [25]. In contrast, Li et al (2011) 
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reported that over-expression of miR-223 in an ESCC derived cell line decreased cell migration and 

invasion. These authors also reported that miR-223 targets ARTN in ESCC cells, a known tumor 

metastasis-related gene [26]. 

 

Lin et al (2012) reported that high miR-142-3p expression was associated with a poor prognosis in 

91 patients with ESCC, but more importantly, stratified analysis indicated that high miR-142-3p 

expression was correlated with a poor prognosis in a subset of patients within generally good-

prognosis groups; i.e. patients with a small ESCC, no lymph node metastases, and early stage [27]. 

Kong et al (2012) reported that miR-375 levels were inversely correlated with advanced stage, 

distant metastasis, poor overall survival, and disease-free survival in ESCC. Li et al (2011) reported 

that miR-375 is down-regulated by hyper-methylation of its promoter in ESCC [28], and Kong et al 

(2012) found that the miR-375 promoter was methylated in 58% of patients with ESCC [29]. 

Isozaki found that miR-375 was strongly up-regulated by treatment with a histone deacetylase 

inhibitor (HDAC) in an ESCC cell line [30]. 

 

Serum and plasma 

Zhang et al (2011) reported that miR-31 was up-regulated in ESCC tissue and in serum. Patients 

with high serum levels of miR-31 had a poorer prognosis, with early tumor recurrence and a higher 

risk of tumor-related death. MiR-31 has also been reported to be up-regulated in other squamous 

cell cancers such as lung [31], oral [32], and head and neck [33]. This is in contrast to EAC, in 

which miR-31 has been reported to be down-regulated relative to Barrett’s esophagus [34]. 

However, Lynam-Lennon et al (2012) reported that miR-31 was down-regulated in radioresistant 

ESCC cells, both basally and in response to radiation, in a an established isogenic model of 

radioresistance in oesophageal adenocarcinoma [35]. 

 

Komatsu et al (2011) reported that miR-21 levels were higher in patients with ESCC, that they 

reflected tumor levels, and correlated with disease recurrence. Plasma levels of miR-21 were also 

reduced in postoperative samples. MiR-375 plasma levels were observed to be lower in patients 

with ESCC [36].  

 

Zhang et al (2010), using solexa sequencing, observed upregulation of 25 serum miRNAs in ESCC 

patients compared with controls. Using real-time PCR and a panel of 7 serum miRNAs (miR-10a, 

miR-22, miR-100, miR-148b, miR-223, miR-133a and miR-127-3p) in 290 patients with ESCC and 

140 age- and sex-matched controls, they were able to achieve an approximate 70% sensitivity at 

100% specificity in diagnosing patients with histologically confirmed ESCC  [37].  

 6 



 

Invasion 

Ma et al (2009) reported that patients with ESCC invasion deep into the esophageal wall showed 

significantly higher expression of miR-21, and that protein expression of the miR-21 target PTEN 

(a tumor suppressor) was significantly lower in tumor, compared with normal tissues [38]. Mori et 

al (2009) reported that miR-21 expression levels were significantly higher in T3 or T4 tumors than 

in T1 or T2 tumors, and also that miR-21 expression was significantly higher in patients with more 

invasive infiltrative growth pattern tumors than in patients with less invasive tumors [39]. 

 

Lymph node involvement/metastases 

Chen et al (2011) found that up-regulation of miR-92a was significantly correlated with lymph node 

status, metastasis, and TNM stage in 107 patients with ESCC. Up-regulation of miR-92a was also 

associated with poorer survival of patients with ESCC, and the authors suggested that this miRNA 

had potential for use as an independent prognostic factor [40]. Akagi et al (2011) reported that 

expression levels of miR-21 were higher in ESCC tissues compared to normal epithelium, and that 

miR-21 and miR-205 levels were higher in ESCC patients who were node-positive [41]. Cai et al 

(2012) reported that miR-21 levels were associated with the presence of metastases in ESCC 

patients, but not with TNM staging [42]. 

 

Disease recurrence, and response to therapy 

Akagi et al (2011) reported that miR-143, miR-145 and miR-205 levels were higher in ESCC 

tissues from patients who had recurrent disease after surgery [41]. Komatsu et al (2011) found that 

patients with a high plasma level of miR-21 tended to have greater vascular invasion, and that 

plasma miR-21 correlated strongly with tumor recurrence. Importantly, the plasma level of miR-21 

was significantly reduced in postoperative samples [36]. Kurashige et al (2012) also observed a 

significant reduction in serum miR-21 levels postoperatively versus preoperatively, and found that 

miR-21 levels were significantly reduced in patients with ESCC who responded well to 

chemotherapy [43].  

 

Down-regulation of miR-27a in 2 ESCC cell lines via transfection with antagomirs reduced the IC50 

for effect on cell viability of both the drug effluxer P-glycoprotein-related (Vincristine, adriamycin) 

and P-glycoprotein-non-related (cisplatin, 5-flurouracil) drugs by an average of 68% [44]. 

However, in contrast to the observations in ESCC, down-regulation of miR-27a in leukaemic cell 

lines was associated with chemotherapy resistance, and miR-27a was inversely correlated with the 

expression of P-glycoprotein [45]. 
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Chemotherapy-sensitivity 

Hamano et al (2011) found that miR-200c expression was increased in ESCC tissues compared with 

matched normal squamous tissues, and that miR-200c was inversely correlated with response to 

chemotherapy. These authors also determined that miR-200c expression was increased in a 

cisplatin-resistant cell line compared with the parent cell line. In an anti-miR-200c-transfected 

ESCC-derived cell line, chemosensitivity to cisplatin was found to increase [46]. Sugimura et al 

(2012) reported that low expression of let-7b and let-7c in before-treatment biopsies from patients 

with ESCC correlated significantly with poor response to chemotherapy. Low expression of let-7c 

also correlated with poor prognosis. In cultured cells transfection of let-7c restored sensitivity to 

cisplatin and increased the rate of apoptosis after exposure to cisplatin [47]. 

 

Esophageal Adenocarcinoma (EAC) 

Survival 

Feber et al (2011) explored whether global miRNA expression in resected EAC tissues could 

predict patient survival and lymph node involvement, and found that a combined expression 

signature of increased expression of five miRNAs (miR-100, miR-143, miR-145, miR-199a_3p and 

miR-199a_5p) was associated with patient survival independent of lymph node involvement and 

overall stage (HR = 3.6, p = 0.005) [48]. Hamano et al (2011) also observed increased survival of 

patients with esophageal adenocarcinoma in those that had higher levels of miR-145 [46]. However, 

Feber et al (2011) observed reduced levels of miR-143 and miR-145 in EAC compared with normal 

tissue [48]. Wijnhoven et al (2010) also reported reduced levels of miR-143 and miR-145 in EAC 

compared with Barrett’s epithelium [49]. The incongruent observations for miR-145 are supported 

by studies with cell lines. Ectopic expression of miR-145 in a metastatic colon carcinoma cell line 

to levels similar to normal colonic epithelium resulted in increased proliferation and anchorage 

independent growth [50], whereas several studies have demonstrated that over-expression of miR-

145 has tumor suppressor effects in non-metastatic colorectal cancer cell lines [51]. These 

combined observations suggest that loss of expression may be required for neoplastic 

transformation, but either re-expression of miR-145, or at least higher levels, may be needed for the 

development of a more aggressive phenotype. 

 

Hu et al (2011) investigated the prognostic significance of 10 selected miRNAs in 99 patients with 

EAC. In univariate analysis miR30e, miR-195p and miR-200a were associated with shorter overall 
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survival in patients with EAC. In multivariate analysis only miR-195p was associated with shorter 

overall survival and disease free survival [52]. 

 

Hamano et al (2011) found that over-expression of miR-200c correlated significantly with 

shortened overall duration of survival of patients with esophageal cancer who had received 

preoperative chemotherapy followed by surgery [46]. Yang et al (2009) reported that miR-200a and 

miR-200b levels, measured by hybridization microarray, were higher in some patients with 

adenocarcinoma compared with normal squamous tissue, and that miR-200a* was up-regulated 13-

fold in high grade dysplasia compared with low grade dysplasia [53]. However, members of the 

miR-200 miRNA family are reported to be down-regulated in many human cancer cells, and appear 

to play a critical role in the suppression of epithelial-to-mesenchymal transition (EMT), tumor cell 

adhesion, migration, invasion and metastasis, by targeting and repressing the expression of key 

mRNAs that are involved in EMT [54]. In agreement with this, Smith et al (2011) reported that 

miR-200a, miR0-200b and miR-200c levels, measured using qRT-PCR, were lower in 

adenocarcinoma compared with non-dysplastic Barrett’s esophagus tissues, with corresponding 

higher mRNA levels of ZEB1 and ZEB2 , observations which are consistent with the induction of 

an epithelial to mesenchymal transition [55].  

 

Leidner et al (2012) reported that miR-31 expression is decreased in some patients with high grade 

dysplasia compared with Barrett’s esophagus, and that miR-375 expression is decreased in some 

patients with EAC compared with high grade dysplasia and Barrett’s esophagus [34]. Patients with 

EAC with decreased expression of both miR-31 and miR-375 had decreased survival (2.8 years vs. 

3.5 years). 

 

Lymph node involvement 

Feber et al (2011) reported that the expression of three miRNAs in EAC (miR-99b, miR-199a-3p 

and miR-199a-5p) was associated with the presence of lymph node metastasis, with a receiver 

operator characteristic (ROC) curve derived optimal sensitivity of 78% and specificity of 78% [48]. 

This suggests that a panel of miRNAs could potentially be effective predictors of lymph node 

metastases. This might be applicable where, for example, endoscopic therapy is being considered 

for use as the definitive treatment [56]. 

 

Disease progression 

Fassan et al (2011) investigated miRNA expression in tissues from 14 patients who had undergone 

esophagectomy for EAC. Microarray results were validated by quantitative real-time PCR and in 
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situ hybridization. This study identified increased expression of 6 miRNAs (miR-215, miR-560, 

miR-615-3p, miR-192, miR-326 and miR-147) and reduced expression of 7 miRNAs (miR-100, 

miR-23a, miR-605, miR-99a, miR-205, let-7c and miR-203) that correlated with cancer progression 

from normal squamous mucosa to adenocarcinoma. However, there were no indications that the 

expression of any of these miRNAs changed during the progression from Barrett’s esophagus to 

dysplasia to adenocarcinoma [57], so it is therefore possible that these miRNAs are only associated 

with differences between squamous epithelium and Barrett’s esophagus, and may not be directly 

associated with the development of adenocarcinoma. Other miRNAs identified in the hybridization 

micro-arrays in this study (miR-23a, miR-99a, miR-100, miR-605, miR-147, & miR-560) appear to 

be differentially expressed between Barrett’s esophagus and EAC, but are yet to be validated by 

real time PCR [57]. 

 

Maru et al (2009) reported that miR-196a is a potential marker of progression from Barrett’s 

metaplasia to dysplasia and invasive adenocarcinoma in the esophagus. Higher levels of miR-196a 

were observed in Barrett’s esophagus, dysplastic mucosa and EAC, compared with normal 

squamous mucosa, and in high grade dysplasia and EAC compared with Barrett’s esophagus and 

low grade dysplasia, but only in some patients [58]. Luzna et al (2011) used micro-dissection in 

combination with quantitative real–time PCR to investigate changes in miRNA expression in 

patients who progressed from Barrett’s esophagus to adenocarcinoma. These authors also observed 

up-regulation of miR-196a, and also of miR-192 and, down-regulation of miR-203. They also found 

a positive correlation between miR-196a and progression from Barrett’s esophagus to 

adenocarcinoma, although there is considerable overlap in the expression levels of miR-196a 

between these tissues [59]. However, Fassan et al (2011) did not find that miR-196a levels were 

increased in dysplastic and EAC tissues compared with Barrett’s esophagus from surgical resection 

specimens [57]. Furthermore, Bansal et al (2011) reported that miR-196a was not differentially 

expressed in biopsies containing Barrett’s esophagus and biopsies with adenocarcinoma or high 

grade dysplasia [60], but did observe that miR-15b, miR-21, and miR- 203 were up-regulated in 

biopsies containing adenocarcinoma compared with non-dysplastic intestinal metaplasia, and that 

miR-486-5p and let-7 were down-regulated [60]. 

 

Leidner et al (2012), using next generation sequencing as a discovery platform, followed by 

quantitative real-time PCR validation of micro-dissected tissues, and by adopting a stringent 

methodology to determine the timing of miRNA alterations in esophageal neoplasia, observed that 

miR-375 expression, relative to matched normal squamous tissue, is decreased in 60% of patients 

with EAC, compared with patients with high grade dysplasia or Barrett’s esophagus. These authors 
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also observed that miR-31 expression is decreased in 36% of patients with high grade dysplasia, 

and 45% of patients with EAC, compared with Barrett’s esophagus [34]. This is a low level of 

sensitivity, and indicates that there may be several different pathways to the development of these 

lesions, or that down-regulation of these miRNAs may not be required for the development of these 

lesions. 

 

Chemotherapy-sensitivity 

Hummel et al (2011) reported that miR-148a expression levels were inversely associated with EAC 

cancer cell differentiation [61]. In esophageal cancer cell lines, transient transfection with a miR-

148a mimic increased the sensitivity of chemotherapy-sensitive cells to cisplatin, but did not have 

this effect in chemotherapy-resistant cell lines [62]. 

 

Summary tables of diagnostic and prognostic miRNAs 

The published reports of observed differential miRNA expression, clinical associations, and 

mRNA/protein targets in ESCC and EAC are summarised in Table 1, in which the miRNAs are 

listed in ascending order. For the major studies, the study size and the main methods are 

summarised in Table 2. MiRNAs that have been reported in multiple  publications are summarised 

in for ESCC in Table 3, and for EAC in Table 4. For some of the miRNAs the reports have given 

qualitatively inconsistent results, and these are indicated in Tables 3 and 4, along with the number 

of studies reporting each type of result. 

 

Non-expression based miRNA markers 

Single nucleotide polymorphisms (SNPs) 

Ye et al (2008) investigated 41 SNPs within 26 miRNA-related genes in a case-control study of 346 

Caucasian patients with esophageal cancer versus 346 frequency-matched (age, gender, and 

ethnicity) controls. Seven SNPs were significantly associated with esophageal cancer risk. The most 

notable finding was that a SNP located in the pre-miR-423 region was associated with a per-allele 

odds ratio of 0.64. In a combined unfavorable genotype analysis, the high-risk group had a 3.14-

fold (95% CI, 2.03 - 4.85) increased risk of cancer [63]. 

 

Umar et al (2012) investigated 4 common SNPs within pre-miRNAs (mir-196a-2C>T, mir-

146aG>C, mir-499T>C, and mir-423C>A)  in 239 ESCCs and 309 control patients. Patients with 2-

4 pre-miRNA polymorphisms had 1.4-fold higher risk of ESCC compared to patients with pre-

miRNA polymorphisms. Patients with 2-4 pre-miRNA polymorphisms also had significantly lower 

median survival (11.60 vs. 30.2 months) [64]. Wang et al (2012) genotyped SNPs in the 3' UTRs of 
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seven genes in 537 ESCC cases and 608 normal controls and found that SNP rs6573 in the 3' UTR 

of RAP1A was significantly associated with the risk of developing ESCC, and was also associated 

with pathology stage. This SNP lies within the binding site for miR-196a, and in vitro assays 

confirmed that this SNP interfered with the binding of miR-196a. Importantly, these authors 

observed that observed that RAP1A was overexpressed in the majority of esophageal squmous cell 

carcinoma tissues, and that the RAP1A genotype correlated with lymph node metastasis [65]. 

 

Methylation of miRNAs  

Chen et al (2011) used bisulfite sequencing and methylation specific PCR to investigate previously 

reported dysregulated miRNAs (miR-34a, miR-203, miR-34b/c, miR-424 and miR-129-2) that are 

embedded in CpG islands. These authors reported that miR-34a, miR-34b/c and miR-129-2 had 

significantly higher levels of methylation than corresponding non-tumor tissues in  67%, 41%, and 

96% respectively of patients with ESCC [66]. Li et al (2011), using methylation specific-PCR, 

observed an association between promoter hyper-methylation of miR-375 and its down-regulation 

in esophageal cancer tissues compared with adjacent non-cancerous tissue [28]. Kong et al (2012) 

used bisulfite sequencing and methylation specific PCR, and reported that methylation of the 

promoter of miR-375 was detected in 58% of ESCC specimens [29]. 

 

MiRNA biogenesis defects 

RNASEN (ribonuclease 3) is a double-stranded RNA–specific endonuclease that converts pre-

cursor forms of miRNA into mature forms. Expression levels of RNASEN measured by 

immunohistochemistry in 73 patients with ESCC were found to be strongly associated with overall 

(P = 0.0003) and disease free (P = 0.0005) patient survival. Multivariate Cox regression analysis 

showed that this prognostic effect of RNASEN may be independent of disease stage. Knockdown 

of RNASEN in esophageal cancer cell lines resulted in a 46% to 85% reduction in cell number [67]. 

 

Yoo et al (2010) investigated the expression of RISC proteins in tissues from patients with ESCC 

and found that neither Ago2 (Argonaute2, an endonuclease responsible for the cleavage of targeted 

mRNA) nor TNRC6A (which silences the expression of bound mRNAs; recruited to miRNA 

targets through an interaction with an Argonaute protein) were expressed in normal squamous cells, 

while Ago2 and TNRC6A were expressed in 59% and 62% of ESCC patients, respectively [68]. 

 

Biological roles of identified miRNAs 

Preliminary work has been done investigating how miRNAs may be involved in the development of 

esophageal cancers, and in the differential therapeutic responses of esophageal cancers. A wide 
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range of potential messenger RNA (mRNA) and protein targets of miRNAs have been identified in 

esophageal cancers, and some of these targets have been validated in vitro. These are listed in Table 

1. Furthermore, cellular phenotype changes characteristic of neoplasia have also been associated 

with some miRNAs and their targets in vitro. Here we provide details of investigations into the 

targets of miR-21 and miR-375, as they have been consistently reported to be diagnostic for 

esophageal cancers, and have also been reported to be associated with prognostic features. 

  

Hiyoshi et al (2009) found that 18 of 20 micro-dissected cancer tissues over-expressed miR-21, in 

comparison with the normal esophageal epithelium. Furthermore, patients with lymph node 

metastasis or venous invasion showed significantly higher expression of miR-21. These authors 

also investigated the relationship between miR-21 and a previously identified target gene, the tumor 

suppressor programmed cell death 4 (PDCD4), in a panel of ESCC-derived cell lines, and observed 

an inverse correlation between PDCD4 protein levels and miR-21 expression. They also observed 

that anti-miR-21-transfected cells had increased PDCD4 protein expression, and increased 

luciferase-reporter activity from a construct containing the PDCD4-3' untranslated region, which 

suggests a direct effect of miR-21 on PDCD4 expression. These same anti-miR-21-transfected 

ESCC cell lines showed a reduction in cellular proliferation, and reduced invasion into matrigel 

[23]. Zhu et al (2011) subsequently reported that miR-21 was increased [24], and that PDCD4 

mRNA was down-regulated [69], in ESCC cancer tissues compared with matched normal 

squamous tissue, and Fassan et al (2011) reported that nuclear PDCD4 protein, measured by 

immuno-histochemistry, was decreased in ESCC resection tissues compared with unmatched 

normal squamous tissues [70]. 

 

Increased miR-21 has also been reported to be associated with a decrease in the mRNA [24] and 

protein [38] of the metastasis-suppressor PTEN (phosphatase and tensin homologue) in ESCC. Loss 

of function of PTEN contributes to the development of many cancers [71]. The loss of function of 

PTEN has also been associated with miR-21 over-expression in several cancers. Furthermore, miR-

21 has been shown to directly regulate PTEN [72], and miR-21 expression has been observed to be 

inversely correlated with PTEN protein, but not mRNA, in an ESCC cell line transfected with either 

miR-21 mimics or antagonists [38]. PTEN has also been reported to be associated with 

responsiveness to chemotherapy [73], radiotherapy [74], and hormone therapy [75]. The only study 

investigating PTEN in EAC (Kulke et al (2001)), did not find significant mutations or LOH of 

PTEN in 80 patients with EAC, and suggested that PTEN may be inactivated through other 

mechanisms [76]. However, evaluations of miR-21 expression in EAC have been inconsistent, and 

so far no associations with clinical outcomes have been reported.  
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Mathe et al (2009) reported that reduced levels of miR-375 in cancerous tissue of patients with 

EAC were associated with worse prognosis [12]. Leidner et al (2012) observed reduced miR-375 

levels in EAC, but not in high grade dysplasia or Barrett’s esophagus, suggesting that this miRNA 

may be associated with progression to invasive adenocarcinoma [34]. In patients with ESCC, 

plasma levels of miR-375 have been reported to be lower than in healthy patients [36]. miR-375 has 

also been reported to be correlated with advanced stage, distant metastasis, poor overall survival, 

and poor disease-free survival in ESCC [29]. Li et al (2011) observed hyper-methylation of the 

miR-375 promoter in 58% of  ESCC patients [28]. Promoter hyper-methylation usually results in 

silencing or reduced transcription, and could therefore account for the reduced levels of miR-375 

observed in ESCCs.  

 

Kong et al (2012) reported that miR-375 levels in ESCC tissues were negatively correlated with 

insulin like growth factor 1 receptor (IGF1R) expression [29]. IGF1R is frequently over-expressed 

in many malignancies, and plays a crucial role in promoting cell proliferation, survival, 

tumorigenesis, metastasis, and resistance to existing forms of cancer therapy. The observation that 

miR-375 may regulate IGF1R in ESCC is important as Phase III clinical trial results targeting 

IGFR1 with monoclonal antibodies in unselected patients have been disappointing [77]. 

 

Potential of miRNAs as therapeutic targets  

The inhibitory effects induced by miRNAs on a specific target may be mild, and may only lead to a 

subtle reduction of protein expression. However, the simultaneous down-regulation of a broad 

range of mRNA targets can determine the cellular phenotype. MiRNAs that regulate protein levels 

across multiple pathways can potentially cause a switch from one program of cellular behavior to a 

different program of behavior [78]. This implies that only small changes in miRNA expression may 

be required for therapeutic effects. For cancer therapy miRNA replacement aims at restoring the 

expression of tumor suppressive miRNAs. MiRNAs may also be involved in the self-renewal of 

tumor-initiating cancer cells (cancer stem cells) [79, 80]. This suggests that miRNAs might be able 

to be used to target cancer cells that are associated with chemotherapy-resistance, metastasis, and 

recurrence. 

 

To date few tumor suppressor miRNAs have been discovered that have been shown to be workable 

in animal models of cancer. The best characterized tumor suppressor miRNA is let-7, which was 

originally identified as a switch gene required for proper development in Caenorhabditis elegans. 

let-7 is now know to comprise a family of miRNAs that were the first group of oncomirs shown to 
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regulate the expression of an oncogene, specifically the Ras genes. Ras proteins are membrane-

associated GTPase signaling proteins that regulate cellular growth and differentiation, and 

activating mutations result in the increased expression of Ras and cause cellular transformation 

[81]. Studies using cultured lung cancer cells, as well as mouse models of lung cancer, have shown 

that the reintroduction of let-7, via the in vitro transfection of cell lines, blocks the proliferation of 

cancer cells and reduces the growth of both murine and human lung tumors in mice [82, 83]. 

Conversely, inhibition of let-7 augmented tumorigenesis in a KRAS-induced mouse model, further 

indicating that let-7 functions as a tumor suppressor. In the same study exogenous delivery of let-7 

to established tumors in a mouse model of non-small-cell lung cancer (NSCLC) significantly 

reduced the tumor burden [84], suggesting that therapeutic miRNA delivery may be possible in 

humans. 

 

 

Challenges that have become apparent from reported studies  

Molecular heterogeneity 

High throughput array techniques have been used to screen for potential miRNAs that are 

diagnostic or prognostic for ESCC and EAC. However, the various studies that have used 

hybridisation micro-arrays have not produced comparable results for associations of individual 

miRNAs, with the exception of miR-21 in ESCC. There has even been a report of qualitatively 

different results from different cohorts of patients within the one study [12]. Furthermore, within 

each study, irrespective of the method used to measure miRNA levels, there is often considerable 

overlap in the expression levels of each miRNA between normal healthy vs. diseased patients, thus 

making it difficult to obtain sufficient specificity and sensitivity. Both of these issues may be a 

consequence of the molecular heterogeneity which is apparent in lesions throughout the gastro-

intestinal tract [85-88].  

 

A potential solution to the problem of molecular heterogeneity is to find a panel of several miRNAs 

that are altered in different pathways of disease development, and in this way the sensitivity could 

potentially be increased. However, in studies where panels of miRNAs have been tested, disease 

classification overlap has still been observed [20, 53]. Feber et al (2008), using micro-arrays 

containing 328 human miRNA probes, and unsupervised hierarchical clustering of the data, 

generated four groups corresponding to normal squamous, ESCC, Barrett’s esophagus, and EAC. 

The first branch contained 7 samples of normal squamous mucosa and 1 ESCC, the second branch 

contained 7 ESCC and 1 normal squamous mucosa , the third branch contained 4 Barrett’s 

esophagus and 1 ESCC, and the fourth branch contained 10 EAC, 1 Barrett’s esophagus, 1 normal 

 15 



squamous mucosa, and 1 ESCC [20]. While it is possible that the patient with Barrett’s esophagus 

who was classified into the EAC group may have been at risk of developing EAC (and therefore 

appeared EAC-like), this seems unlikely for the patient with normal esophageal squamous mucosa. 

It is encouraging that this approach was able to correctly classify all of the EAC patients. This may 

not be possible for patients with dysplastic lesions, however, as Yang et al (2009), who also used 

unsupervised hierarchical clustering of miRNA micro-array data (470 human miRNA probes), 

misclassified 3 of 16 dysplastic or adenocarcinoma tissues as normal squamous mucosa, and 

misclassified 3 of 16 normal squamous tissues [53]. 

 

For EAC, miR-100 is the only miRNA that has been consistently reported to be down-regulated in 

EAC compared with normal squamous tissue [20, 53, 57], and to have potential prognostic 

significance. However, the prognostic association of miR-100 is the inverse of the diagnostic 

relationship, in that decreased levels of miR-100 in cancerous tissues are associated with better 

survival [48], and with cancer progression [57]. This is in contrast to observations in epithelial 

ovarian cancer [89], and potentially also in prostate cancer [90]. MiR-199a_3p has also been 

reported to be down-regulated in EAC [91], as well as hepatocellular carcinoma [92], and epithelial 

ovarian cancer [93]. As for miR-100, the prognostic association with survival is the inverse of the 

diagnostic relationship. Low expression levels of miR-199a_3p in cancerous tissues have been 

reported to be associated with dramatically increased survival in EAC [48]. Similar observations for 

diagnostic and prognostic associations have been made for miR-143 and miR-145 [48]. It is 

possible that these incongruent observations are the result of increased stromal involvement in 

tumor formation (as cells such as myofibroblasts express high levels of these miRNAs) [94], and/or 

are the result of transition of epithelial to mesenchymal cells in the tumors [95]. The latter 

explanation is supported by the association of the epithelial-mesenchymal-transition (EMT) with 

metastasis. 

 

Issues with blood based measurements 

While there has not been any work reported investigating the diagnostic or prognostic potential of 

miRNAs in serum or plasma for EAC, several groups have reported associations in ESCC. There 

are, however, potential problems with using serum or plasma for these types of studies. Red blood 

cells contain miRNAs, and hemolysis is difficult to prevent during blood collection. This can effect 

the levels of miR-16, which is commonly used as a normalization reference in these studies [96]. 

More recently it has been observed that plasma levels of miRNA biomarkers expressed by myeloid 

(e.g., miR-223, miR-197, miR-574-3p, and let-7a) and lymphoid (e.g., miR-150) blood cells were 

tightly correlated with corresponding white blood cell counts [97]. High levels of miRNAs of blood 
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cell origin could potentially mask changes in miRNAs secreted by cancer or associated stromal 

cells. 

 
Stability and delivery of miRNAs 

MiRNAs are relatively unstable and have anionic charge, and these characteristics present 

challenges to their application in gene silencing, particularly with respect to their effective delivery 

to target tissues . MiRNA therapy also faces several further potential challenges including lack of 

tissue specificity, poor cellular uptake, and risk of systemic toxicity. However, mouse studies that 

have evaluated the therapeutic delivery of tumor suppressor miRNAs have not observed problems 

associated with the miRNAs, and suggest that delivery of miRNA to normal tissues is well tolerated 

[98], [99]. Therapeutic miRNA mimics may be better tolerated by normal cells compared with 

cancer cells because the pathways regulated by the miRNA mimic are already regulated by 

endogenous miRNA. 

 

Transient expression systems that use viral or liposomal delivery have been trialed for 

administering large quantities of miRNAs. Although the use of similar methods to that used for 

siRNAs (small interfering RNAs) for cancer gene therapies has shown that the immune response 

can limit the effectiveness of RNA delivery [100, 101], Ibrahim et al (2011) recently reported the 

effective use of polyethylenimine (PEI)-mediated delivery of unmodified miRNAs in a mouse 

model of colon carcinoma. Low molecular weight PEI/miRNA complexes were delivered 

systemically or by local application into mouse xenograft tumors, where they caused profound 

antitumor effects and repression of oncogene expression [102]. Wu et al (2011) reported on the use 

of an optimized cationic lipid based miRNA delivery method. In this study mice treated with pre-

miR-133b containing lipoplexes had mature miR-133b expression in their lungs that were 52-fold 

higher than in untreated mice, and 50-fold higher than mice treated using an non-optimized 

commercial transfection reagent [103]. Kitade et al (2010) investigated improving the clinical 

delivery of miR-143 by adding aromatic benzene-pyridine (BP-type) analogs to the 3'-overhang 

region of the RNA-strand, and by changing the sequences of the passenger strand in the miR-143 

duplex (miR-143BPs), leading to greater activity and increased resistance to nuclease activity. The 

modified miR-143 showed a significant tumor-suppressive effect on xenografted tumors of human 

colorectal cancer cells in mice [104]. The self-assembly of MS2 bacteriophage capsids has been 

used to develop virus-like particles (VLPs) for RNA and drug delivery. Pan et al (2012) reported 

that MS2 VLPs conjugated with HIV-1 Tat peptide effectively transferred packaged pre-miR146a 

RNA into various cells and tissues, and suppressed expression of a target gene by 80% [105].  
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The Australian company EnGeneIC (Lane Cove, New South Wales, Australia) have recently 

adapted bacterially derived 400 nm particles, called minicells, for encapsulation and cancer cell 

targeting of various chemotherapeutics including miRNAs [106]. The size of the minicells (~400 

nm) ensures retention within the reticuloendothelial system and prevents them from penetrating into 

normal tissues, which is a problem for drug-conjugated monoclonal antibody therapeutics. The 

minicells have been targeted to tumor cells via bi-specific antibodies: antibodies to LPS on the 

bacterial minicells, and antibodies to receptors on cancer cell membranes. The antibodies are 

conjugated together at their Fc regions with protein A/G. This reduces complement-mediated in 

vivo toxicity, since the Fc part of each monoclonal antibody is blocked by protein A/G. Post-

intravenous administration, the bi-specific-antibody-targeted RNA-packaged minicells rapidly 

transfer out of the vascular circulation and into the tumor microenvironment, possibly due to the 

leaky vasculature associated with solid tumors. Xenograft studies in mice revealed that 

therapeutically significant concentrations of shRNA (small-hairpin-RNA) were expressed from 

plasmids in tumor xenografts, and this resulted in tumor stabilization and regression. In drug studies 

significant anti-tumor effects were observed with over 1000-fold lower concentrations delivered to 

xenografts via minicells compared with the respective free drugs [107]. This approach has also been 

used to reduce the expression of drug resistance proteins with shRNA encoding plasmids. This 

approach resulted in increased sensitivity to subsequent chemotherapeutic drug treatment, and 

survival of mice with otherwise drug resistant xenografts. These authors have generated data that 

suggests that the potent anti-tumor effects observed in mouse xenografts are unlikely to be due to 

interferon or inflammatory cytokine responses [108]. A phase I/ IIa multi-center clinical trial of this 

technology is currently in progress in cancer patients. 

 

Microvesicles and exosomes, which are shed from cells and appear to be involved in cell-to-cell 

communication, are also possible vehicles for targeting miRNA molecules to body tissues. 

Exosomes are formed in endosomes containing multivesicular bodies, which have been functionally 

linked to miRNA effector complexes [109,]. This indicates potential mechanisms for miRNA 

targeting to exosomes. Akao et al (2012) recently reported that miRNA molecules transfected into 

in vitro differentiated human macrophages were shed from these cells as contents in microvesicles 

during incubation in serum-free medium. The transfected cells also secreted microvesicles 

containing miRNAs when injected into xenografted nude mice [110]. These results suggest an 

approach similar to that being investigated for cancer immunotherapy using autologous dendritic 

cells as tumor-specific antigen presenting cells, where peripheral blood monocytes could be 

differentiated in vitro into macrophages and then transfected with therapeutic miRNA. The cells, or 

secreted microvesicles, could then be transferred back into the patient.  
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Summary  

There are 6 miRNAs (miR-21, miR-29c, ,miR-99a, miR-143, miR-203 & miR-375) that have been 

consistently reported to be differentially expressed in ESCC vs. normal squamous tissue, with 

prognostic associations for miR-21 (invasion, positive nodes, decreased survival) and miR-143 

(disease recurrence, invasion depth). Results are inconsistent for reported miRNAs across different 

studies for Barrett’s esophagus vs. EAC. Several studies have reported differences in miRNA 

expression between EAC and normal squamous esophageal mucosa, but in most cases it is not 

possible to determine whether the differential miRNA expression is just reflecting differences 

between Barrett’s esophagus and normal squamous mucosa. The most comprehensive EAC study is 

from Leidner et al (2012) as they used a careful study design combined with laser capture micro-

dissection to determine which miRNAs were differentially expressed between Barrett’s esophagus 

and EAC [34]. However, the results from this group have yet to be replicated.  

 

The inconsistencies in miRNA expression in EAC may be due to differences in study design 

involving the use of comparator tissues, for instance the use of apparently unaffected Barrett’s 

esophagus mucosa from cancer patients rather than the use of Barrett’s mucosa from cancer free 

patients. The inconsistencies could also be the result of pathological and/or molecular heterogeneity 

in both Barrett’s esophagus and EAC [86, 88, 111], and might therefore be an intrinsic aspect of 

this disease. However, in at least one clinical aspect (chemotherapy resistance), the more important 

and informative tissues are likely to be metastases [112]. Although there may also be within patient 

molecular heterogeneity in metastases [113], there is some evidence that metastases are 

homogenous for allelic losses of tumor suppressor loci in a proportion (58%) of patients [114]. 

Irrespective of these issues, intra- and/or inter-lesion biopsy sampling errors due to heterogeneity 

might be averted by assaying miRNA levels in serum, plasma, or secreted microvesicles in 

peripheral blood. This approach might improve the ability to detect miRNAs associated with 

chemotherapy response in EAC, and has the added advantage of being less invasive. 

 

Several mRNA targets have been identified, and the cancer related biology of some of these targets 

is well understood (e.g. PDCD4, PTEN, CDH1). Furthermore, there are clinico-pathological 

associations for some of these mRNA targets, which means that they may prove useful as 

biomarkers in combination with prognostic miRNAs. Identified target mRNAs may also be 

regulated by other miRNAs that have not yet been extensively investigated, thus providing an 

alternative to high throughput methods for identifying potentially differentially expressed miRNAs. 
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In assessment of the literature to date, it seems that miRNAs have the potential to become part of 

the clinical assessment of patients with esophageal cancer, to help determine prognosis, and to 

predict the likely response to therapy. Furthermore, the development of new delivery methods, such 

as minicells and autologous microvesicles, and molecular modifications such as the addition of 

aromatic benzene pyridine analogs, have facilitated the exploration of the effects of therapeutic 

miRNAs in vivo. These approaches are producing encouraging results, especially the work using 

minicells with mouse xenografts, and suggest that miRNA based treatments are possible.  
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Table 1. Summary of changes in microRNAs that have been reported between ESCC and normal squamous tissue, between EAC and normal squamous tissue, and between EAC 
and Barrett’s esophagus.     legend: “↑” = increased level, “↓” = decreased level, “-“ = no change 

miRNA 
 

ESCC 
vs NS  
↑↓ source 

EAC 
vs 
NS  
↑↓ 

EAC 
vs 
BE  
↑↓ source Association with clinical feature, mRNA, or protein. 

miR-1-1 ↓ [12]     
miR-1-2 ↓ [12]     
miR-7 ↑ [12]     

miR-7-2 ↑ [12]     
Let-7 ↓ [115]    Correlation between low expression of let-7 and lymph node metastasis in ESCC [115] 
Let-7a    ↓ [60]  
Let-7b      Correlation with poor response to chemotherapy [47] 
Let-7c ↓  ↓ ↑ [12, 57] Correlation with poor response to chemotherapy and poor prognosis [47] 

miR-10a ↓ [116]     
miR-10b ↑ [117]     
miR-15b    ↑ [60]  
miR-16-1 ↑ [12]     
miR-16-2 ↑ [12]    Associated with lymph node metastasis, & shorter overall and disease-free survival in EAC [52] 
miR-19a ↑ [118]    TNF-alpha confirmed target in ESCC [118] 
miR-19b       
miR-21 ↑ [12, 20, 21, 

23, 24, 38, 
41, 119, 

120] 

↑ 
- 
↑ 
 
↑ 
 
 

↑ 
- 
 
- 
- 

[12, 20, 
70] 
[53] 
[60] 
[49] 

Decreased survival in ESCC HR=4.7 [12], Association with deep invasion into esophageal serosa [38], 
Association with positive nodes [41], Decreased PTEN, PDCD4, SPRY1, IAM1, &LRRFIP1 mRNA [24], 
decreased PTEN protein [38], decreased PDCD4 protein [23], 
higher in ESCC if distant lymph node metastases were present [61], high plasma miR-21 levels reflected 
ESCC tumor levels, and high correlation with recurrence [36], high serum levels in patients with ESCC 
reduced in patients who responded to chemotherapy [43] 
Associated with the presence of metastases in ESCC patients, but not with TNM staging [42]. 
No association with survival in EAC [12] 

miR-23a   ↓ ↓ [57]  
miR-25 ↑ [21, 24] ↑  [53] Decreased KLR4 mRNA [24] 

miR-27b ↓ [20] ↓ ↓ [20, 53]  
miR-29   ↑  [53]  
miR-29c ↓ [12, 21, 

121] 
↑  [53] Suppresses cyclin E expression [121] 
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Table 1. Summary of changes in microRNAs that have been reported between ESCC and normal squamous tissue, between EAC and normal squamous tissue, and between EAC 
and Barrett’s esophagus.     legend: “↑” = increased level, “↓” = decreased level, “-“ = no change 

miRNA 
 

ESCC 
vs NS  
↑↓ source 

EAC 
vs 
NS  
↑↓ 

EAC 
vs 
BE  
↑↓ source Association with clinical feature, mRNA, or protein. 

miR-30a_5p   ↑  [53]  
miR-30b ↓ [12]     

miR-30c-1 ↓ [12]     
miR-30c-2 ↓ [12]     
miR-30e      Associated with shorter overall and disease-free survival in EAC [52] 
miR-31 ↑ [122]  ↓ [34] Serum miR-31 associated with poorer prognosis of ESCC. Validated targets EMP1, KSR2, RGS4 [122] 

miR-31 down-regulated in radioresistant ESCC cells, both basally and in response to radiation[35]. 
miR-31 & 
miR-375 

   ↓ [34] Decreased survival in EAC 

miR-92a ↑ [40]    Correlated with lymph node status, metastasis, TNM stage, and poor survival. Repressed CDH1 
expression. 

miR-93 ↑ [20] ↑  [20]  
miR-99a ↓ [12, 21] ↓ ↓ [53, 57]  
miR-99b      Associated with node status in EAC [48] 
miR-100 ↓ [21] ↓ ↓ [20, 53, 

57] 
Inversely associated with survival in EAC [48], inversely correlated with cancer progression [57] 

miR-
103/107 

     High expression of hsa-miR-103/107 correlated with poor survival [21] 

miR-103-1    ↑ [12]  
miR-106a      Lower in patients with SCC who developed recurrent disease or who died from tumor [61] 
miR-106b ↑ [24]     
miR-107    ↑ [12]  
miR-122a ↑ [12]     
miR-125a ↑ [12]     
miR-125b   ↓ ↓ [20]  

miR-125b-1 ↓ [12]     
miR-125b-2 ↓ [12]     

miR-126 ↓ [12]    Associated with tumor cell dedifferentiation and lymph node metastasis in EAC[52] 
miR-129 ↑ [22]    Significant and independent prognostic factor in surgically treated ESCC patients [22] 
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Table 1. Summary of changes in microRNAs that have been reported between ESCC and normal squamous tissue, between EAC and normal squamous tissue, and between EAC 
and Barrett’s esophagus.     legend: “↑” = increased level, “↓” = decreased level, “-“ = no change 

miRNA 
 

ESCC 
vs NS  
↑↓ source 

EAC 
vs 
NS  
↑↓ 

EAC 
vs 
BE  
↑↓ source Association with clinical feature, mRNA, or protein. 

miR-133a      Inhibits cell proliferation and cell invasion in ESCC cells [123] 
miR-133a-1 ↓ [12]     
miR-133a-2 ↓ [12]     
miR-133b      Inhibits cell proliferation and cell invasion in ESCC cells [123] 
miR-140    ↑ [53]  

Mmu-miR-
140* 

↓ [21]     

miR-141    ↓ [55] Ectopic expression reduced sensitivity of ESCC cell lines to cisplatin [124] 
miR-142-3p      Correlated with  poor prognosis in ESCC [27] 

miR-143 ↓ 
- 

[12, 41] 
[125] 
 [126] 

↓↑ ↓ [48, 49, 
53] 

Disease recurrence in ESCC [41], correlated with tumor invasion depth in ESCC [126], decreased level 
associated with survival in EAC [48] 

miR-145 ↓-↑ [12, 24, 41, 
125, 126] 

↓↑ ↓ [48, 49, 
53] 

 

Disease recurrence in ESCC [41], correlated with tumor invasion depth in ESCC [126], decreased level 
associated with survival in EAC [48], inhibits cell proliferation and cell invasion in ESCC cells [123] 
 

miR-146a ↑ [12] ↑  [12, 53] Correlation between rs2910164 C/G variant and TNM stage in ESCC[127] 
miR-146b ↑ [12] ↑  [12]  
miR-147   ↑ ↑ [57]  
miR-148a      Inversely associated with cancer differentiation in EAC, lower in patients with ESCC who developed 

recurrent disease or had a tumor-related death [61] 
miR-149   ↓  [53]  
miR-151 ↑ [21]     
miR-155 ↑ [12]     

miR-181-1 ↑ [12]     
miR-181a   ↑  [53]  

miR-181a-1   ↑  [12]  
miR-181a-2   ↑  [12]  
miR-181b   ↑  [53]  

miR-181b-1 ↑ [12]     
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Table 1. Summary of changes in microRNAs that have been reported between ESCC and normal squamous tissue, between EAC and normal squamous tissue, and between EAC 
and Barrett’s esophagus.     legend: “↑” = increased level, “↓” = decreased level, “-“ = no change 

miRNA 
 

ESCC 
vs NS  
↑↓ source 

EAC 
vs 
NS  
↑↓ 

EAC 
vs 
BE  
↑↓ source Association with clinical feature, mRNA, or protein. 

miR-181c ↑ [12]     
miR-181d ↑ [12]     
miR-181-2 ↑ [12]     
miR-192   ↑ 

↑ 
 

↑ [20]  
[12, 57, 

59] 

 

miR-194   ↑ ↑ [12, 20]  
miR-195   ↑  [53]  

miR-195p      Associated with higher pathologic disease stages in patients with EAC [52] 
miR-196a    ↑- [57-60, 

128] 
Inverse correlation with protein levels of KRT5, SPRR2C, and S100A9 [58]. 
Homozygous SNP in pre-miRNA-196a associated with increased risk of ESCC [129]. 
SNP in miR-196a target RAP1A associated with risk of ESCC, and pathology stage [65]. 

miR-199   ↑  [53]  
miR-199*   ↑  [53]  

miR-
199a_3p 

     Associated with survival in EAC [48], Associated with node status [48] 

miR-
199a_5p 

     Associated with survival in EAC [48], Associated with node status [48] 

niR-199b   ↑  [53]  
miR-200a    ↓ [55] Associated with approx. 10% less overall and disease-free survival at 6 months in EAC [52] (Note: not 

inversely correlated as expected) 
miR-200a*    ↑ [53]  
miR-200b ↓ [12]  ↓ [55]  
miR-200c ↑ [46] ↑ ↑↓ [20, 55] Associated with poor response to preoperative chemotherapy in ESCC [46] 
miR-202 ↓ [12]     
miR-203 ↓ [12, 20, 

24] 
↓ ↓↑ [12, 20, 

57] [53, 
60] 

inhibits cell proliferation by targeting DeltaNp63 in ESCC cell lines [130] 

miR-205 ↓-↑  [20] [41, 
116] 

↓ ↓ [12, 20, 
57] 

Associated with positive nodes in ESCC [41], and with cellular migration in ESCC cells [116] 
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Table 1. Summary of changes in microRNAs that have been reported between ESCC and normal squamous tissue, between EAC and normal squamous tissue, and between EAC 
and Barrett’s esophagus.     legend: “↑” = increased level, “↓” = decreased level, “-“ = no change 

miRNA 
 

ESCC 
vs NS  
↑↓ source 

EAC 
vs 
NS  
↑↓ 

EAC 
vs 
BE  
↑↓ source Association with clinical feature, mRNA, or protein. 

miR-210 ↓ [131]  
↓ 

↓ [12] 
[53] 

Inverse association with poorly differentiated carcinomas. FGFRL1 is a target in ESCC [131]. 

miR-215   ↑ ↓ [49, 57]  
miR-220 ↓ [12]     
miR-221    ↓ [53]  
miR-223 ↑ [25]    Inverse relationship with the expression levels of FBXW7 protein. Poorer prognosis in ESCC [25], over-

expression of miR-223 in ESCC cells decreased cell migration and invasion [26] 
miR-224 ↑ [12]     
miR-223 ↑ [12] ↑  [12]  
miR-296 ↑ [132]    Inversely associated with survival in ESCC [132] 
miR-320 ↓ [12]     
miR-326   ↑ ↑ [57]  
miR-342 ↑ [20]     
miR-373 ↑ [133]    Inversely correlated with LATS2 protein expression [133] 
miR-375 ↓ [12, 29]  ↓ [34] Associated with worse prognosis of EAC [12], and with progression to invasive [34]. 

Plasma level lower in ESCC [36], correlated with advanced stage, distant metastasis, poor overall survival, 
and disease-free survival in ESCC. Negatively correlated with IGF1R expression in ESCC [29], down-
regulated by hyper-methylation in ESCC [28]. 

miR-378 ↓ [12]     
miR-424 ↑ [21] ↑  [53]  
miR-429    ↓ [55]  

miR-486-5p    ↓ [60]  
miR-494   ↓  [53]  
miR-499 ↓ [12]     
miR-513   ↓  [53]  
miR-560   ↑ ↑ [57]  
miR-605   ↓ ↓ [57]  

miR-615-3p   ↑  [57]  
miR-617   ↓  [53]  
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Table 1. Summary of changes in microRNAs that have been reported between ESCC and normal squamous tissue, between EAC and normal squamous tissue, and between EAC 
and Barrett’s esophagus.     legend: “↑” = increased level, “↓” = decreased level, “-“ = no change 

miRNA 
 

ESCC 
vs NS  
↑↓ source 

EAC 
vs 
NS  
↑↓ 

EAC 
vs 
BE  
↑↓ source Association with clinical feature, mRNA, or protein. 

miR-1322 ↑ [134]    Diagnosis of ESCC, also higher in serum of ESCC patients [134] 
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Table 2. The number of patients, and methods, in each major study. 
 

Study 
Number of 

patients Methods used 
[41] 55 ESCC rt-PCR of precursor and mature microRNAs, and rt-PCR of 

microRNA-processing elements mRNA 
[20] 10 ESCC, 

10 EAC 
Hybridization microRNA micro-array 

[21] 55 ESCC Hybridization microRNA micro-array rt-PCR validation 
[12] 100 EAC, 

70 ESCC 
Hybridization microRNA micro-array, validation by rt-PCR 

[116] cell lines Hybridization microRNA micro-array, validation by rt-PCR ESCC 
patient biopsies – number not reported 

[53] 91 EAC Hybridization microRNA micro-array, validation by rt-PCR 
[24] 5 ESCC Laser capture micro-dissection followed by rt-PCR of microRNA and 

hybridization micro-array of mRNA 
[57] 14 EAC Hybridization microRNA micro-array, validation by rt-PCR and by in 

situ hybridization 
[55] 20 EAC Quantitative real-time PCR 
[12] 68 ESCC 

100 EAC 
Quantitative real-time PCR 
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Table 3. microRNAs that have been identified in several studies in ESCC and may therefore 
be good candidates as diagnostic and/or prognostic biomarkers  

miRNA 
Number of 

studies Implications 
miR-21 9 Diagnostic: high in ESCC, and in plasma and serum of patients with ESCC  

Prognostic: invasion, node positive, decreased survival 
miR-29c 3 Diagnostic: decreased in ESCC 

Prognostic: no associations to date 
miR-99a 2 Diagnostic: decreased in ESCC 

Prognostic: no associations to date 
miR-143 3 

1 
Diagnostic: decreased in ESCC 
Unchanged in ESCC 
Prognostic: recurrence, invasion depth  

miR-145 5 Diagnostic: conflicting evidence 
Prognostic:  recurrence, invasion depth 

miR-203 3 Diagnostic: decreased in ESCC 
Prognostic: no associations to date 

miR-205 3 Diagnostic: conflicting evidence 
Prognostic:  node positive 

miR-375 2 Diagnostic: decreased in ESCC and plasma 
Prognostic: correlated with advanced stage, distant metastasis, poor 
overall survival, and disease-free survival in ESCC 
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Table 4. microRNAs that have been identified in several studies in EAC and may therefore be 
good candidates as diagnostic and/or prognostic biomarkers  

miRNA 
Number of 

studies Implications 
miR-21 

2
3
3

Diagnostic:  
increased in EAC vs. Barrett’s esophagus,  
No change in EAC vs. Barrett’s esophagus 
Increased in EAC vs. normal squamous 
Prognostic: No association with survival in EAC, no associations to date 

miR-100 3
1

Diagnostic: decreased in EAC vs. normal squamous 
Decreased by 20% in EAC vs. Barrett’s esophagus 
Prognostic: survival , inversely correlated with cancer progression 

miR-143 4 Diagnostic: conflicting evidence, although potentially increased in EAC vs. 
normal squamous as Feber et al data inconsistent [20, 48] 
Prognostic: survival 

miR-145 4 Diagnostic: Conflicting evidence, although potentially increased in EAC vs. 
normal squamous as Feber et al data inconsistent [20, 48] 
Prognostic: survival 

miR-192 3
1

Diagnostic: increased in EAC vs. normal squamous 
Increased EAC vs. Barrett’s esophagus 
Prognostic: no associations to date 

miR-196a 4 Diagnostic: conflicting evidence 
Prognostic: no associations to date 

miR-200c 2 Diagnostic: conflicting evidence 
Prognostic: response to chemotherapy 

miR-203 4
3

Diagnostic: decreased in EAC vs. normal squamous 
EAC vs. Barrett’s esophagus, conflicting evidence,  
Prognostic: no associations to date 

miR-375 2 Diagnostic: decreased in EAC vs. Barrett’s esophagus (1 study) 
Prognostic: worse prognosis, suggested association with progression to 
invasive carcinoma (1 study). 
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