brought to you by 4.

View metadata, citation and similar papers at core.ac.uk

provided by Flinders Academic Commons

Hindawi Publishing Corporation
Computational Biology Journal

Volume 2015, Article ID 601504, 6 pages
http://dx.doi.org/10.1155/2015/601504

Hindawi

Research Article

Simplified Algorithms for Determining Cycle Shift between
qPCR Fluorescence Curves

Michael E. Jones,' George C. Mayne,” Tingting Wang,”
David I. Watson,> and Damian J. Hussey2

' Department of Ancesthesia and Pain Management and Department of Anatomy, Flinders University, Bedford Park, SA 5042, Australia
Department of Surgery, Flinders University, Bedford Park, SA 5042, Australia

Correspondence should be addressed to Michael E. Jones; michael.e.jones@flinders.edu.au
Received 16 September 2014; Revised 31 December 2014; Accepted 13 January 2015
Academic Editor: Andre Fujita

Copyright © 2015 Michael E. Jones et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

The polymerase chain reaction is a central component of current molecular biology. It is a cyclic process, in each early cycle of which
the template DNA approximately doubles. An indicator which fluoresces when bound to DNA quantifies the DNA present at the
end of each cycle, giving rise to a fluorescence curve which is characteristically sigmoid in shape. The fluorescence curve quantifies
the amount of DNA initially present; the more the initial DNA, the earlier the rise in the fluorescence. Accordingly the amount of
DNA initially present in two samples can be compared: the sample with the less DNA gives rise to a relatively delayed fluorescence
curve and the ratio of the DNAs can be deduced from the separation of the curves. There is, however, a second determinant of
this separation, the fold increase in DNA per cycle: ideally a twofold increase but frequently less. Current guidelines recommend
that this be determined experimentally by carrying out PCR on a series of dilutions. If the value of the fold increase is known,
then the algorithm for determining the separation can be reduced to a relatively simple computation, rather than employing a
multidimensional nonlinear optimization such as the Marquardt-Levenberg as currently employed.

1. Introduction implying
The polymerase chain reaction (PCR) introduced by Mullis N, C-Ca) AC
etal. [1] is a cyclic process, each cycle of which involves three ﬁh =(1+p) =(l+p) ", 3)

stages: denaturation, annealing (to a primer, possibly also to
some forms of fluorescent probe), and extension. Optimally

where AC = C, - C,..
each strand of template DNA gives rise to its complement

In practice this simple “exponential” model for the growth

in each cycle: the amount of DNA doubles each cycle. In
reality each strand is copied with probability p < 1. If p were
constant, then the DNA present after C cycles would be

N, =N, (1+p), o

where N, is the amount initially present. If two samples, A
and B which initially comprise N, and N, strands, have the
same value of the probability p and if they exhibit the same
fluorescence after C, and C, cycles, respectively, then

N, (1+p)“ =N, (1+p)7, @)

in fluorescence is complicated by three factors. As resources
are depleted and as template DNA strands bind to their
complement rather than to primer, the value of (1 + p)
in (1) diminishes: the fluorescence curve is sigmoid rather
than exponential. There is a background fluorescence present
initially and not indicative of DNA, and this background
varies between replicates. There is also, between replicates,
a variation in the scale, in that the plateau level that the
fluorescence approaches also varies. These considerations
give rise to a collection of models for the fluorescence
curve seen in PCR. The open-source facility “qpcR” [2]
offers ten nonlinear sigmoidal models (and nine others) that
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can be fitted to the fluorescence data using the Marquardt-
Levenberg [3-5] algorithm.

Notwithstanding the utility of the Marquardt-Levenberg
algorithm and of open-source utilities such as qpcR which
implement it, many scientists prefer to write and understand
their own analytic software. To this end we develop, in the
following sections, justification for a four-parameter model.
When, as recommended by MIQE guidelines [6], the ampli-
fication efficiency is known, this reduces to a three-parameter
model in which two of the parameters are linear; there is only
one nonlinear parameter. The calculations are then greatly
simplified and the multidimensional Marquardt-Levenberg
algorithm becomes unnecessary; nonlinear optimization in
a single dimension is trivial, as the problem reduces to
maximizing a correlation. Finding a zero of a function is,
however, even more elementary than finding a maximum,
and we derive the function, the zero of which defines the value
of the required parameter.

Regardless of whether the adopted approach is finding
the maximum correlation or the zero of a function, the
linear parameters are obtained algebraically by simple linear
regression. The nonlinear search, whether for a maximum or
a zero, is in a single dimension and its convergence can be
guaranteed.

2. Theoretical Development

In the following we review briefly the exponential model
for amplification and the justification of a more realistic
sigmoid model. We note that finding the single nonlinear
parameter is a “partially linear” problem and this gives rise
to several approaches to its estimation: an approximate alge-
braic method (without iteration) and more exact methods
involving iteration. A modicum of algebra then simplifies the
problem to one of finding a zero rather than a maximum.
We will then apply the methods to the estimation of the
nonlinear parameter using real data in order to establish
three things. First is that the maximum method and the zero
method arrive at the same parameter value and that this is the
same value returned by the more usual Marquardt-Levenberg
approach. Second is to establish the extent to which iteration
improves the algebraic approximate estimator: how much
gained by the extra computation required? Finally we deter-
mine computational times: our algorithm is easier to code,
but can it compete with the established Marquardt-Levenberg
algorithm?

2.1. The Exponential Model. If, as envisaged during early
cycles, the amount of DNA increases geometrically, the
increase is proportional to the amount present, and the corre-
sponding continuous function, y(c), satisfies the differential
equation

9y
= =Py (4)
=P

for some constant f. Then it is elementary that a solution is

y(c) = y,eP°, where y, is the amount initially present and e
is the fold increase per cycle.
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2.2. Resource-Limited Growth: A Sigmoid Model. If limiting
resources, or other factors, limit growth such that fluo-
rescence asymptotically approaches some limit, then the
differential equation,

dy B
= =P (-y), ()

is perhaps the simplest to describe such a situation; for small
y, growth per cycle corresponds to (4) above, but growth then
diminishes as y approaches an asymptote (here, an asymptote
of one). Equation (5) has the solution (Bernoulli’s method, see
Appendix A):

1
Y= (©)

for some A. Looking at (6), A is the value of ¢ for which
y(c) = 0.5. For early cycles (A > c¢) the fold increase per
cycle is e as before. If we add to this a baseline fluorescence,
F,, which may vary between replicates and a scale F,,,, which
may also vary between replicates (both of which are therefore
essentially nuisance parameters), we have been describing the
fluorescence curve which is a four-parameter sigmoid curve
of the form
F,

max (7)

)’(C)ZFb‘FW,

which is one of the more widely used models of PCR fluo-
rescence, corresponding to model b4 of the qpcR package. As

before, e is the fold increase per cycle when y(c) is small, and

if this is known from a dilution series, then e” or equivalently
B is known and there are only three unknown parameters.

2.3. The Partially Linear Problem. Prior knowledge of f3
radically alters our approach, because there is then only one
parameter entering the problem nonlinearly. This situation
arises not only following the prior determination of 3 by
dilution series, as in MIQE guidelines, but also during the
analysis of a dilution series where f is determined by fixed-
point convergence [7]. Note that we can write (7) in the form

y(¢) = By + Fa X 1(4,0), 8)
where I(A, ¢) denotes the logistic curve

1

Z(A«)C) = 1+ eﬁ(/‘_d,

)
so that, for any given value of A, the value of (A, c) at any cycle
¢ is known, and fitting the model values y(c) to the observed
fluorescence values y(c) is only a problem of simple linear
regression. The optimal value of A is then the value for which
the residual sum of squares is minimized.

Regardless of the algorithm used in the computation,
all the iterative procedures used here converge on the least-
squares estimates of F,, F,,., and A. That the least-squares
estimate of A also maximizes the Pearson product-moment
correlation coefficient which follows from a well-known
identity. Briefly, if the data are pairs (x;, y;) and we regress
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the dependent variate y; on the independent x;, then the
coeficient of determinism is denoted and defined by

Rl Residual sum of squares

1
Total sum of squares (10)

and the Pearson correlation coeflicient is denoted and defined
by

Y (x; —%) ()’f‘?))

5,S

Tyy =

(1)

y

where X, y, s,, and s, are means and standard deviations,
respectively. Then the identity states that the coefficient of
determinisms is, under these circumstances, equal to the
square of the correlation coefficient. That is,

2 Residual sum of squares 2
R=1- =[ry] -

Total sum of squares 12
It is immediate that where the residual sum of squares
depends also on a parameter A, the value which minimizes
the residual sum of squares must maximize the correlation
coeflicient. An elementary proof of the identity appears in our
Github repository [8].

But having determined A, what is its experimental signifi-
cance? Looking at (9), note that when ¢ = A, we have [(A, A) =
0.5; that is, A is the fractional cycle at which the growth of
fluorescence is half of its maximum. We can also show that
it is the point of maximum slope of the fluorescence curve.
Two samples being compared have the same template DNA
and the same value of f3; they differ only in their values of A
(and in the nuisance parameters F, and F,,, which do not
influence A). For two samples A and B having values A, and
Ay, the shift of one curve relative to the otheris AC = A, - A,,.

2.4. The Approximate Estimator of A. Reducing the problem
to finding the optimal value of a single nonlinear parameter
does not avoid the necessity of finding an approximate
starting value. Given that A is the value at which slope of the
curve I(A,c) is greatest, we conjecture that the appropriate
starting value for a curve such as that in Figurel, from
the publicly available batschl data set, would be at about
A = 29. Figure 2 shows the correlation between observed
fluorescence and I(A, ¢) for values of A between 1 and 45. As
expected, the maximum correlation is around the expected
value of 29. More precisely, if we take the curve near its
maximum to be quadratic, we can interpolate between the
maximum cycle and the two adjacent ones to derive an
interpolated fractional cycle at which the correlation would
be greatest. This interpolated value is A = 28.9207.

In the following analysis we will refer to this approach,
seeking an approximate value of the maximum correlation
by quadratic interpolation, as the CorQuad algorithm: it
is algebraic rather than iterative and will give only an
approximation to the least-squares estimate to which all other
(iterative) algorithms will converge.

2.5. The Optimal A by Iterated Maximum. Finding the max-
imum (or minimum) of a nonlinear function by iteration

12
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FIGURE 1: The typical sigmoid-shaped fluorescence curve obtained
during qPCR. Baseline and scale vary between replicates.
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FIGURE 2: Correlation between observed fluorescence and a logistic
curve. The value of A maximizing the correlation is the same as the
least-squares estimate obtained by other methods.

is routine once a good first approximation is known. In
Figure 2, for instance, iteration arrives at a maximum correla-
tionat A = 28.9164. The nonlinear optimization here is in one
dimension, for which we have used the R function optimize()
(a mixture of golden section and quadratic interpolation) and
we refer to this algorithm as CorOpt. Once the least-squares
estimate of A is known, the least-squares estimates of F, and
F,ax are found algebraically by simple linear regression.

2.6. The Optimal A as the Root of a Function. Even simpler
than finding the maximum of a function is finding the
zero of a function. The optimal value of A is that which,
in maximizing the correlation, equivalently minimizes the
residual sum of squares between the expected fluorescence
and that found experimentally. Denoting by r; the error or
residual by which the ith observation differs from the model
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FIGURE 3: The function, the root of which defines optimal value of
A, is nearly linear in the vicinity of the optimum. Its shape, however,
precludes the use of Newton’s method to find the root unless the
initial value is close to the root. The root here is found at A = 28.9165.

value ¥;, the outcome of Appendix B is that if we define the
function

ghi)=g; ="M, (13)

where I(A, ¢) is the logistic as defined in (9), then the optimal
value of A satisfies

Zgi”i =0, (14)

which is to say that the vector g is orthogonal to the residuals
r.

Figure 3 is a plot of the dot product Y; g;r; for values of A
from 1 to 45, demonstrating its zero at the appropriate value
of A. Two algorithms using this approach, but with minor
coding differences to illustrate variations in computational
time, are hereafter referred to as SlowZ and FastZ.

3. Materials and Methods

Analysis was carried out using the R programming envi-
ronment [9] under GNU/Linux Ubuntu 14.04 LTS together
with the R graphics packages ggplot2 [10] and analysis
package qpcR [2]. The Marquardt-Levenberg algorithm used
for comparison uses the function nis.Im() which is to be
found in the minpack.Im package [11] and computational
time calculations implemented the Rprof() function in the
R.utils package [12]. Computational time depends heavily
upon coding technique, particularly in high-level languages
like R. We take the liberty of coding the zero-approach in two
ways. One (SlowZ) uses the notoriously slow mean() and Im()
functions in R for calculating mean and performing simple
linear regression. The other (FastZ) codes these using the
traditional ) x;/n for mean and the usual formula for simple
linear regression, avoiding the computational overhead of
the various checks carried out by the above R functions.
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The other three approaches are Marquardt-Levenberg (ML)
and the maximum correlation developed above, either with
a quadratic estimate for the maximum (CorQuad) or with an
iterative approach (CorOpt) to maximum using the optimize()
function in R; both use the cor() function of R, known to be
very slow.

We use as data thirteen files from the publicly available
data sets distributed with the qpcR package (batsch 1-5,
boggy, guescinil, lievensl, reps, reps2, reps3, rutledge, and
sistil) together with ten from our own laboratory available
through our online repository at Github [8].

In all there are 836 fluorescence curves. For each we have
five ways of determining A, given a known .

We aim to address three issues.

(i) We must confirm that the four iterative approaches all
converge towards the same least-squares estimates of
the parameters A, F,, and F,

max*

(i) We must then determine the extent to which the
approximate approach CorQuad, which involves no
iteration, differs from the more precise approach of
the iterative methods.

(iii) We should compare computational times for the five
algorithms.

We ran all five methods for each fluorescence curve in
each of the data sets. For determining computational time
using Rprof() we cycled through 2000 iterations of each data
set. Times quoted are from an Intel core2 Duo 3.0 GHz
machine.

4. Results and Discussion

As expected, the mean difference between the A values
estimated by the iteration approaches was very small; for a
median difference of 1.7 x 10~ cycles and for the 836 curves
analysed the biggest difference was 4.4 x 107 cycles. As
expected theoretically, the iterative approaches all converge
on the same least-squares parameter estimates. The only dif-
ferences in the algorithms are ease of understanding, ease of
coding, and computational time or rapidity of convergence.

We were surprised to find very little difference between
the algebraic approximation and the iterative methods. The
median difference in the estimation of A was 1.4x 10™* cycles,
and the biggest difference in the 836 comparisons was only
0.036 cycles.

We would emphasize, however, that the data analysed
here are data of the quality that researchers are happy to
make publicly available. The day-to-day results from a work-
ing laboratory may well uncover data sets exhibiting more
pathological behaviour. Of course, the algebraic approach
could be refined by taking smaller steps than a whole cycle
in calculating the correlation curve, but even with whole-
cycle steps the method is more than acceptably accurate. It
is trivially easy to implement on a spread-sheet.

As expected, finding a zero of a function in one dimen-
sion is computationally faster than finding the maximum
of a function in three dimensions; our algorithm, with
elementary coding, is faster than the Marquardt-Levenberg.
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FIGURE 4: Computational times relative to that for the FastZ
algorithm. Times were calculated individually for each of the 23 data
sets.

The average times per analysed curve were 14.65 msec for
SlowZ, 4126 msec for CorrOpt, 2.448 msec for CorrQuad,
0.4280 msec for Marquardt-Levenberg, and 0.3344 msec for
FastZ; the Marquardt-Levenberg took 28% more time than
FastZ.

These times will vary, depending among other things on
the shape of the experimental curves being analysed. We
have therefore made comparisons individually for each of the
23 data sets; Figure 4 shows a boxplot of the computational
times for the algorithms relative to that of the fastest, the
FastZ algorithm. The interquartile ranges are 19.5 to 20.64
for CorOpt, 10.62 to 11.52 for CorQuad, 1.21 to 1.37 for ML,
and 43.6 to 46.6 for SlowZ. Of course, one can generate any
relative difference in computational time by modifying the
tolerance at which iteration terminates. Here, Marquardt-
Levenberg tolerance was such that its mean residual was
greater than that for FastZ. That is to say, even after, on
average, 28% more time, it was still further from the optimum
than was FastZ.

5. Conclusions

Although the proof of the root-finding iterative method
(Appendix B) is more demanding, it is much less so than
is the logic underlying the Marquardt-Levenberg algorithm.
The extra programming needed to calculate the vector g
is, for many high-level languages like R, a single line of
code. The logic behind Brent’s method [13] for root-finding
is outlined in three pages of Press et al. [5]. We suggest that
the algorithms developed here allow groups with a modicum
of programming ability to analyse their gPCR data with less
recourse to proprietary “black-box” software. Although our
approach is faster than the Marquardt-Levenberg commonly
used, we do not see speed as being its principal advantage. If
speed is important, the solution should be a faster computer,

the use of compiled code, or programming in a faster
language such as C++.

Appendices
A. Bernoulli’s Method for (5)

The differential equation

dy
. By(1-y) (A1)
is a Bernoulli equation. Making the substitutions
1 du 1 2
u=-, = =-U (A2)
yooody
gives
()0
dc dy u u
(A3)
du
Z - Bu-1
dc plu=1)
Separating variables and integrating, we have
! du = —fdc
u-1_ ’
In(u-1)=-fc+k,
(A4)
u—1= e—ﬁc+k’
o1+ e—ﬁc+k

Recasting the constant of integration k as A3 for some A
yields

1
y= T3 of0 (A.5)
B. Derivation of the SlowZ and
FastZ Algorithms

We seek A that minimizes the sum of squares of residuals r'r =
D riz and have asserted that the required A satisfies Y r;g;(A) =
0, where

PO

. A = —------—-—--,
%) (1 + efA-0)?

(B.1)

Let g denote the vector (g, (), g,(A), ..., gn(/\))'.
By construction the linear regression has resolved the
observed vector of fluorescences, y, into components

y=¥+r=Xb+r, (B.2)
where ¥ = Xb lies in the solution space spanned by the
columns of X and r is orthogonal to X. The vector of
parameters is b = (F,,F,,)', the first column of X is



(1,1,1,...,1), and the second is 1 = LA, L(A), .. .,ln(/\))',
where

1

The vector of residuals r can be expressed as r = y — Xb.

Then
i(r'r) = (ir')r+r (—r)
dA dA dA
(B.4)
—2r'<ir>
- ar )’
So
d N rd
ﬁ(rr)—0=>rd)Lr—0
=>r'i[ -Xb] =0 (B.5)
aty - '
/dY ydX / db_
rd)u rd)tb er/\_O'

But the first term above is zero because y is the vector of
observations, and in the third term, ¥'X = 0 because by
construction r’ is orthogonal to X. Considering the middle
term, the first column of X is independent of A, so

dX ,dl

—b-= . B.6
Ea P T et oy (B6)
But
dl
ﬁ = [))g. (B.7)
Hence
d ! !
ﬁ(rr):Ozrg:O. (B.8)
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