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Abstract

Recently, controversy in the care of severely-profoundly deaf children has centred

on whether they should be provided with bilateral cochlear implants (two implants,

one in each ear) rather than a unilateral cochlear implant (one implant in one

ear). Potentially, implanting both ears rather than one could improve children’s

spatial listening skills, meaning the ability to localise sources of sound (by comparing

the intensity and timing of sounds arriving at the two ears) and to perceive

speech in noise (by attending to whichever ear gives the better signal-to-noise

ratio). The overall aim of the studies reported in this thesis was to assess whether

bilateral implantation for children is more effective than unilateral implantation in

improving spatial listening skills and quality of life. The first study measured the

relationship between spatial listening skills and age in normally-hearing children.

The second study compared the spatial listening skills of unilaterally- and bilaterally-

implanted children. Whilst controlling for confounds, the bilateral group performed

significantly better than the unilateral group on tests of sound-source localisation.

Moreover, the bilateral group, but not the unilateral group, displayed improved

speech perception when the source of a masking noise was moved from the front

to either side of the head. Neither group of implanted children performed as well

as normally-hearing children on tests of the ability to localise sources of sound and

to perceive speech in noise. The third study measured the spatial listening skills

of normally-hearing adults when listening to simulations of unilateral or bilateral

implants. The differences in performance between simulations were similar to the

differences in performance between groups of implanted children, which provides

further evidence that the children’s performance was primarily influenced by the

number of implants they used rather than by confounds. The fourth study found that

there was no significant difference between bilaterally- and unilaterally-implanted

children in parental estimates of quality of life. The fifth study presented informants,

who were not the parents of hearing-impaired children, with descriptions of a

hypothetical child with unilateral or bilateral implants. The informants judged that

the bilaterally-implanted child had a higher quality of life than the unilaterally-

implanted child. These studies indicate that bilateral implantation for children is

more effective than unilateral implantation in enabling spatial listening skills, but the

extent of any gain in quality of life remains uncertain.
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Chapter 1

Overview of Thesis

This chapter provides a brief introduction to the thesis and an overview of the

subsequent chapters.

1.1 Introduction

A cochlear implant is an electronic device which is implanted surgically into the

inner ear of patients who are severely-profoundly deaf (Ramsden, 2002). Cochlear

implantation for severely-profoundly deaf children became widespread in the early

1990s (Summerfield & Marshall, 1995), and for over 20 years the policy in the UK and

elsewhere was to offer a single cochlear implant in one ear (unilateral implantation).

Compared to amplification using acoustic hearing aids, unilateral implantation is

effective in improving children’s speech perception, language skills, and quality

of life (Boothroyd & Eran, 1994; Stacey, Fortnum, Barton, & Summerfield, 2006;

Svirsky, Robbins, Kirk, Pisoni, & Miyamoto, 2000). Although paediatric unilateral

implantation is costly (£60,000 per child at 2007 cost levels), the average gain

in quality of life is large enough to justify the cost (Barton, Stacey, Fortnum, &

Summerfield, 2006b; Bond et al., 2007).

The issue of whether deaf children should be provided with bilateral implants (two

cochlear implants, one in each ear) rather than a unilateral implant has generated

considerable debate (Balkany et al., 2008; National Institute for Health and Clinical

Excellence, 2007, 2008a, 2009). It has been argued that the provision of two implants

creates the potential for binaural hearing, which could improve children’s ability to

localise sources of sound (by comparing the intensity and timing of sounds arriving

at the two ears; B. C. J. Moore, 2003) and to perceive speech in noise (by attending

to whichever ear gives the better signal-to-noise ratio; Litovsky, 2005). These spatial

listening skills may help children to avoid hazards outdoors and to understand speech

better in noisy environments at home and at school. Evidence that children realise the

potential benefits of bilateral implantation is needed to justify the additional surgery

and extra cost of a second implant (£27,000 per child at 2007 cost levels; Bond et al.,
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Chapter 1 Overview of Thesis

2007).

The overall aim of the studies reported in this thesis was to assess whether

bilateral implantation for children is more effective than unilateral implantation in

improving spatial listening skills and quality of life. The first study measured the

spatial listening skills of normally-hearing children, in order to confirm that the test

battery was appropriate for young children and to measure the relationship between

spatial listening skills and age. The second study compared the spatial listening

skills of unilaterally- and bilaterally-implanted children. In order to minimise

bias, statistical techniques were used to impute missing data and to control for

confounding differences between the groups. The third study measured the spatial

listening skills of normally-hearing adults who listened to simulations of unilateral

or bilateral implants. The aim was to assess whether the differences in listening

skill that had been observed between unilaterally- and bilaterally-implanted children

would be replicated in a simulation study. Such a pattern of results would provide

further evidence that the children’s performance was primarily influenced by the

number of implants they used, rather than by confounds. The fourth study used

questionnaires to obtain parental estimates of the quality of life of unilaterally- and

bilaterally-implanted children. In the fifth study, informants who were not the parents

of hearing-impaired children read descriptions of a hypothetical profoundly-deaf

child with no implant, a unilateral implant, or bilateral implants. The informants

estimated the quality of life of the child in each scenario.

1.2 Overview of the following chapters

Chapter 2: Hearing and Deafness

This chapter describes the structure and function of the normal ear, and provides an

overview of the prevalence and aetiology of impaired hearing. A section on binaural

hearing describes the differences in the level and timing of signals at the two ears

that arise from the location of sources of sound in space. The sensitivity of normally-

hearing adults to these interaural differences is summarised. The main benefits

of binaural hearing are an improved ability to understand speech in noise and to

localise sources of sound (collectively known as spatial listening skills). The chapter

concludes with a review of the spatial listening skills of normally-hearing adults and

children.

Chapter 3: Cochlear Implants

This chapter provides an overview of how a cochlear implant works and the

benefits of unilateral implantation for children. The main part of the chapter

reviews the evidence regarding the effectiveness of bilateral implantation for children
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in improving spatial listening skills, language skills, and quality of life. The

chapter includes a critical assessment of the risk of bias in published studies. The

chapter concludes with a summary of the variables that predict performance with

either bilateral implants or bimodal devices (meaning a unilateral implant and a

contralateral acoustic hearing aid).

Chapter 4: Spatial Listening Skills of Children and Adults with

Normal Hearing

This chapter reports an experiment that measured the performance of normally-

hearing children and adults on a battery of tests of spatial listening. The tests

measured the ability to: 1) discriminate a source of sound on the left from a source

of sound on the right; 2) identify the location of a source of sound when presented

with an array of three or more possible locations; 3) track moving sources of sound;

4) perceive speech in noise; and 5) benefit from the spatial separation of a source of

target speech and a source of masking noise (spatial release from masking). The test-

retest reliability was assessed.

Chapter 5: Spatial Listening Skills of Children with Unilateral or

Bilateral Cochlear Implants

This chapter reports a study that compared the spatial listening skills of children

with unilateral or bilateral cochlear implants. Variables which predict success with a

unilateral implant were measured and confounding differences between the bilateral

and unilateral groups were controlled statistically. The study also compared the

spatial listening skills of children who received bilateral implants in a single surgery

and children who received bilateral implants in sequential surgeries.

Chapter 6: Spatial Listening with Simulated Unilateral or Bilateral

Cochlear Implants

This chapter reports a study in which normally-hearing adults attempted tests of

spatial listening whilst listening to simulations of cochlear implants presented over

headphones. Five conditions simulated bilateral implants, a unilateral implant with

no contralateral acoustic hearing, and bimodal devices with an increasing bandwidth

of contralateral acoustic hearing. The first aim was to assess whether the differences

in performance between conditions were similar to the differences in performance

between the groups of implanted children in Chapter 5. The second aim was

to measure whether simulations of bimodal devices resulted in higher levels of

performance than a simulation of bilateral implants. The third aim was to compare
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absolute levels of performance between adults listening to simulations of implant(s)

and children who used implant(s).

Chapter 7: Quality of Life of Children with Unilateral or Bilateral

Cochlear Implants

Measurements of quality of life contribute to the effectiveness component of cost-

effectiveness analysis, which is used by policy-makers in the UK and elsewhere to

prioritise spending within the healthcare system. This chapter reports two studies

that assessed the quality of life of children with unilateral or bilateral cochlear

implants. In the first study, the parents of unilaterally- and bilaterally-implanted

children used questionnaires to estimate their child’s general quality of life, health-

related quality of life, and listening skills. In the second study, informants who were

not the parents of hearing-impaired children read descriptions of a hypothetical

profoundly-deaf child with no implant, a unilateral implant, a unilateral implant and

an acoustic hearing aid, or bilateral implants. The informants used a visual-analogue

scale and the time trade-off technique to estimate the general and health-related

quality of life of the child in each scenario.

Chapter 8: Summary and General Discussion

This chapter summarises the results of the studies reported in this thesis and

discusses the implications of those results. Ideas for further research are suggested.
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Chapter 2

Hearing and Deafness

The aim of this chapter is to provide a context for the remainder of the thesis, which

examines the consequences of providing deaf children with either one or two cochlear

implants. The chapter begins with a summary of the structure and function of the

normal ear. The prevalence and aetiology of impaired hearing are summarised, along

with the consequences of deafness for an individual and for society. A section on

binaural hearing describes the differences in the level and timing of signals at the

two ears that arise from the location of sources of sound in space. The sensitivity

of normally-hearing adults to interaural differences is reviewed. The main benefits

of binaural hearing are an improved ability to localise sources of sound and to

understand speech in noise. Collectively, these are known as spatial listening skills.

The chapter concludes with a review of the spatial listening skills of normally-hearing

adults and children.

2.1 Normal hearing

The peripheral auditory system converts changes in air pressure into neural impulses

that represent the frequency, amplitude, and timing of sounds in the environment.

The first stage of this process takes place in the outer ear, which is composed of the

pinna, concha, and auditory canal (Figure 2.1). The pinna filters sound and funnels

it towards the auditory canal (Yost, 2000). The concha and the auditory canal have

resonant frequencies of approximately 2.5 and 5 kHz, respectively. Consequently,

these parts of the outer ear amplify sounds that are between 1.5 and 7 kHz by 10 to

15 dB (Shaw, 1974). This range of frequencies is important for speech perception

(ANSI, 1997). The tympanic membrane, located at the end of the auditory canal,

vibrates in response to changes in air pressure. This movement is transmitted by the

ossicles in the middle ear (the malleus, incus, and stapes) to the oval window, which

is a membrane-covered opening in the outer wall of the fluid-filled cochlea.

The cochlea is a bony structure that can be thought of as a cylinder curved into the

shape of a snail’s shell. If it could be unwound, the ‘cylinder’ would be approximately
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Figure 2.1. A schematic diagram of the peripheral auditory system. Image adapted
from Brockmann (2009).

35 mm long and wider at the base (where it connects to the stapes) than at the apex

(the top of the spiral). Three channels run for most of the length of the cochlea: scala

vestibuli, scala tympani, and scala media (Figure 2.2). At the basal end of the cochlea,

the oval window leads to scala vestibuli and the round window (another membrane-

covered opening in the outer wall) leads to scala tympani. Scala vestibuli and scala

tympani join at the apex. Scala media forms a sealed chamber that contains the organ

of corti, which is attached to the basilar membrane. The tectorial membrane runs

roughly parallel to the basilar membrane.

Figure 2.2. A schematic cross-section of the cochlea. Image from Ropshkow (2009).

When the stapes depresses the oval window, the fluid within the cochlea is
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displaced towards the round window. This displacement sets up a travelling wave

moving apically along the basilar membrane (Pickles, 1988). The basilar membrane

is narrower and stiffer at the basal end of the cochlea than at the apical end (Gummer,

Johnstone, & Armstrong, 1981), meaning that the resonant frequency changes along

its length. Consequently, the basal end of the basilar membrane oscillates maximally

in response to high-frequency sounds and the apical end oscillates maximally in

response to low-frequency sounds. For any location on the basilar membrane,

the frequency that causes maximum displacement is known as the characteristic

frequency. If a signal is complex (meaning it contains several frequencies) there will

be multiple peaks in the displacement of the basilar membrane. This means that the

cochlea acts as a frequency analyser by decomposing signals into their constituent

frequencies. The amount of displacement of the basilar membrane increases with

the level of the stimulus (B. C. J. Moore, 2003).

The conversion of movement into neural impulses is achieved in the organ of

corti by the inner hair cells, each of which contains approximately 40 stereocilia (tiny

hairs, see Figure 2.2). Displacement of the basilar membrane relative to the tectorial

membrane creates a shearing force, which moves the stereocilia, causing ‘channels’ in

the membrane of the hair cell to open or close. Subsequently, the flow of ions into the

cell is altered, changing the electrical potential between the inside and outside of the

hair cell (B. C. J. Moore, 2003; Yost, 2000). The change in potential causes the release of

neurotransmitters into the synapse, leading to activation of the spiral ganglion cells in

the auditory nerve (also known as the cochlear nerve). The organ of corti also contains

outer hair cells, which are connected to the tectorial membrane. The outer hair cells

expand and contract in response to vibration within the cochlea (Brownell, Bader,

Bertrand, & Ribaupierre, 1985). This movement amplifies the signal and enhances

frequency selectivity, meaning that locations on the basilar membrane are sharply

tuned to displace more in response to sounds at their characteristic frequency than

in response to sounds at other frequencies (Ashmore, 2008).

Different spiral ganglion cells are innervated by different locations on the organ of

corti, so the location of active fibres conveys information about the frequency of the

sound (Yost, 2000). In mammals, responses of the auditory nerve to signals below 4 to

5 kHz are ‘phase locked,’ meaning that the nerve is more likely to fire at a particular

phase of the signal (B. C. J. Moore, 2003; Rose, Hind, Anderson, & Brugge, 1971).

Thus, the interval between neural responses is approximately an integer multiple of

the period of the signal. Consequently, information about the frequency of sound

is conveyed by both the location and the timing of neural firing. The overall rate

of neural firing, which increases in a nonlinear way with increasing stimulus level,

conveys information about the level of sound.

The frequency tuning of the basilar membrane means that the normal cochlea

acts like an array of overlapping bandpass filters. When presented with a broadband
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sound, such as speech, the output of each filter can be thought of as a slowly-varying

amplitude envelope superimposed onto a rapidly-varying carrier (the temporal fine

structure) whose frequency is close to the centre frequency of the filter (Hopkins,

Moore, & Stone, 2008; B. C. J. Moore, 2008). For normally-hearing individuals, the rate

of pulses in the auditory nerve represents the amplitude envelope while the timing

of pulses represents the temporal fine structure (although the representation of fine

structure depends on phase locking, which breaks down for high-frequency signals).

Interim Summary

The peripheral auditory system converts changes in air pressure into movement

within the middle ear and cochlea, and then transforms movement into neural

impulses. The signals in the auditory nerve are transmitted to several structures in

the brainstem and thence to the auditory cortex. The frequency and level of sound

are represented by the location, timing, and rate of neural firing.

2.2 Hearing impairment

Hearing impairment can be divided into two categories: conductive impairment,

caused by a malfunctioning outer or middle ear, and sensorineural impairment,

caused by a malfunctioning cochlea or cochlear nerve (Pickles, 1988). Conductive

impairment is often caused by an obstruction within the middle ear, such as

fluid or bone growth. The effects of conductive impairment can be ameliorated

by using acoustic hearing aids, and the impairment can sometimes be remedied

using antibiotics or surgery. Sensorineural impairment can be caused by a tumour

surrounding the auditory nerve, or damage to the stereocilia or other parts of

the organ of corti. Sensorineural impairment generally cannot be remedied by

medication or surgery, but the effects can be ameliorated using acoustic hearing aids

or cochlear implants (see the following chapter for further details).

The degree of hearing impairment can be quantified using pure-tone audiometry,

the results of which are expressed as a hearing level (HL): the lowest level at which a

person can detect a tone on at least 50% of presentations (British Society of Audiology,

1981). HLs are measured across a range of frequencies and are calibrated relative

to normally-hearing young adults, who have an average HL of zero. Greater HLs

indicate greater hearing impairment. The five-frequency average is the mean of HLs

measured at octave frequencies between 0.25 and 4 kHz. A five-frequency average

greater than 95 dB is referred to as a profound impairment, 71–95 dB a severe

impairment, 41–70 dB a moderate impairment, and 20–40 dB a mild impairment

(British Society of Audiology, 1988). The results of pure-tone audiometry reflect

difficulties in detecting sound. In addition, people with hearing impairment of
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cochlear origin display difficulties in frequency resolution and in encoding temporal

fine structure (B. C. J. Moore, 2008; Pickles, 1988).

2.2.1 Consequences of hearing impairment

Severe to profound hearing impairment limits people’s ability to communicate using

spoken language. Consequently, adult-onset severe-profound hearing impairment

is associated with isolation, restricted career options, and impaired quality of life

(Barton, Bankart, & Davis, 2005; Chorost, 2005; Heath, 1991; Mohr et al., 2000).

Moreover, in childhood, severe-profound hearing impairment can significantly

impair the acquisition of spoken, signed, and written language (Svirsky et al.,

2000). Prior to the widespread provision of cochlear implants, it was reported that

profoundly-deaf 16-year-olds had language skills similar to those of normally-hearing

9-year-olds, on average (Moeller, Osberger, & Eccarius, 1986; Osberger, Moeller,

Eccarius, Robbins, & Johnson, 1986). The cost to society of caring for a congenitally

severely-profoundly deaf child, including provision of special education and lost

productivity due to poor vocational prospects, may exceed $1 million (Mohr et al.,

2000).

2.2.2 Prevalence and aetiology of hearing impairment in children

The most common cause of mild to moderate hearing impairment in children is

otitis media with effusion (‘glue ear’), which generates fluid in the middle ear. The

condition affects between 10 and 30% of children under the age of 3 years, and the

impairment is usually temporary (Lous et al., 2005). Permanent childhood hearing

impairment is comparatively rare, and is predominantly sensorineural rather than

conductive (Fortnum & Davis, 1997). For every 1000 live births in the UK, on average,

one child is diagnosed with a permanent impairment (>40 dB HL in the better-

hearing ear) by the age of 3 years, and an additional one child is diagnosed by the age

of 10 years (Fortnum, Summerfield, Marshall, Davis, & Bamford, 2001). About half

of these children have a moderate impairment, a quarter a severe impairment, and a

quarter a profound impairment. Hearing impairment is, however, more common in

older adults than in children: 18% of adults over the age of 70 have at least a moderate

impairment (A. C. Davis, 1989).

Over 50% of all cases of congenital hearing impairment have a genetic aetiology

(Tranebaerg, 2008). Other cases may be caused by ototoxic medication, infections

such as cytomegalovirus and rubella, and complications during birth (Cristobal &

Oghalai, 2008; Fortnum & Davis, 1997). Hearing impairment that is diagnosed after

birth can be caused by many of the same factors and, additionally, by meningitis or

head trauma (Hutt, 2008). The cause of hearing impairment is unknown for a large

number of children (Fortnum and Davis).
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Interim Summary

Conductive hearing impairment caused by fluid in the middle ear is common in early

childhood, and the impairment is usually temporary. Permanent hearing impairment

is comparatively rare, is often sensorineural in nature, and has a range of causes.

Permanent severe-profound hearing impairment affects one child in a thousand, and

impairs the acquisition of language, educational achievements, and quality of life.

2.3 Binaural hearing

The following paragraphs describe the differences between sounds at the two ears

that arise from the location of sources of sound in space, and the acuity with which

normally-hearing adults can detect those differences. The perception of interaural

differences underlies spatial listening, meaning the ability to use both ears together

to perceive speech in noise and to localise sources of sound on the horizontal

plane. The importance of binaural hearing is illustrated by studies of unilaterally-

deaf individuals, who show impaired performance on these tasks relative to normally-

hearing listeners (Bess, Tharpe, & Gibler, 1986; Humes, Allen, & Bess, 1980).

It is useful to define a method for specifying the location of sound sources, relative

to the centre of the listener’s head. Azimuth is the angle by which a source is displaced

from straight ahead of the listener, on a horizontal plane passing through the top of

both ear canals (B. C. J. Moore, 2003). The convention of positive angles denoting

sounds to the right of the listener will be used throughout this thesis, and angular

locations will refer to positions on the horizontal plane unless specified otherwise.

2.3.1 Interaural differences in timing and level

Consider a sound source to the right of a listener’s head: the signal arrives sooner, and

is more intense, at the right ear than the left ear. Interaural time difference (ITD) is the

disparity in the time of arrival of a sound at the two ears, and it arises when there is

a shorter distance between the source of sound and one ear than between the source

and the other ear. Measurements using microphones placed in the auditory canals

of participants show that ITD is zero for a source at 0◦. ITD increases systematically

up to 700 microseconds (µs) for a source at 90◦, then decreases to almost zero for

sources at 180◦ (directly behind the listener; Fedderson, Sandel, Teas, & Jeffress, 1957;

Grantham, 1995). The rate of change in ITD with increasing azimuth slows at around

80–100◦, meaning that a 10◦ change in location at the side results in a smaller ITD

change than a 10◦ change in location straight ahead of the listener. An increase in

the rate of firing of the spiral ganglion cells in each auditory nerve reflects the arrival

of the signal at that ear, which provides a basis for sensitivity to ITD. In addition to

the difference in time of arrival at the ears, a sound located to one side can cause
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an ongoing difference in phase at the two ears. For example, a 1000 Hz tone has

a wavelength of 1000 µs. An ITD of 500 µs would therefore result in an interaural

phase difference of 180◦. Phase locking in the auditory nerve provides the basis for

sensitivity to interaural phase differences. For stimuli above about 700 Hz, interaural

phase difference can be an ambiguous cue to source location because it may be

difficult to determine which waveform peak at the left ear corresponds to a certain

waveform peak at the right ear (B. C. J. Moore, 2003). For example, the maximum ITD

for an average human head, 700 µs, is equivalent to the wavelength of a 1.4 kHz tone.

At this frequency, a sound from straight ahead and a sound from +90◦ (giving an ITD

of 700 µs) both result in an interaural phase difference of zero.

When sound sources are located to the side of the listener, sounds with a short

wavelength (relative to the size of the head) reflect off the head rather than diffracting

around it. Thus, the head casts an acoustic shadow and less high-frequency energy

arrives at the far ear, creating an interaural level difference (ILD). Measured values

of ILD vary with frequency: for a source located at +90◦, ILD ranges from under

5 dB (for frequencies lower than 500 Hz) to 35 dB (for a 10 kHz tone; Fedderson

et al., 1957; Middlebrooks, Makous, & Green, 1989). The rate of change in ILD

with increasing azimuth is slower between 70◦ and 110◦ than at locations directly in

front of, or behind, the listener. For narrowband stimuli, ILD is a simple difference

in level between the two ears. For broadband stimuli, there is also a difference

in spectrum at the two ears, with the ear further from the source containing less

high-frequency energy. The firing rate of cells in the auditory nerve increases with

amplitude: combined with frequency selectivity, this forms the basis of sensitivity to

ILDs.

The first structure in the ascending auditory pathway after the cochlea is the

cochlear nucleus. Above this level, brainstem structures and the cortex receive signals

from both ears (Yost, 2000). The mechanisms by which the brain detects interaural

differences in timing, phase, and level are the subject of ongoing research and are

beyond the scope of this review (for further details, see Colburn, Shinn-Cunningham,

Kidd, & Durlach, 2006 or McAlpine, 2005).

2.3.2 The sensitivity of normally-hearing listeners to interaural

differences

The ability to discriminate differences in ITD and ILD can be measured by presenting

stimuli over headphones. For pure-tone stimuli, listeners are most sensitive to ITDs at

frequencies between 0.5 and 1.3 kHz (Klumpp & Eady, 1956). The smallest ITD which

listeners can discriminate from an ITD of zero (referred to as the just-noticeable

difference or JND) is just 11 µs for a 1 kHz tone (Klumpp and Eady). Listeners cannot

detect ITDs of pure tones whose frequency is greater than 1.5 kHz, perhaps because
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of ambiguous interaural phase differences. In contrast, listeners can detect ITDs

of noise stimuli that only contain energy above 2.4 kHz (Klumpp and Eady), and

of high-frequency pure tones whose amplitude is modulated at a lower frequency

(Henning, 1974). Listeners’ sensitivity to ITDs in complex high-frequency stimuli is

probably based on a comparison of the amplitude envelope at each ear, rather than a

comparison of the temporal fine structure (Colburn et al., 2006).

Listeners can discriminate ILDs across a range of frequencies: the JND is 0.5 to

1 dB for pure tones between 0.2 and 10 kHz (Mills, 1960). However, low-frequency

ILDs are not likely to be useful for localising sources of sound, because ILDs that vary

systematically with azimuth are only generated by sounds whose frequency is above

about 500 Hz (Fedderson et al., 1957; B. C. J. Moore, 2003).

2.4 Spatial listening skills of normally-hearing adults

2.4.1 Identifying the location of sources of sound

The ability to localise sources of sound can be assessed using the minimum audible

angle (MAA): the smallest angular separation between two sources on the horizontal

plane that a participant can reliably discriminate (Figure 2.3). The task for the listener

can be thought of as left-right discrimination. Using pure-tone stimuli, the MAA for

75% correct is lowest for tones whose frequency is under 1 kHz, and is only 1◦ when

the reference location is straight ahead (Mills, 1958). The change in ITD resulting from

a 1◦ change in location directly in front of a listener is approximately 10 µs, so Mills’

sound-field measurements correspond well with studies of sensitivity to ITD when

stimuli are presented over headphones (B. C. J. Moore, 2003).

Figure 2.3. The standard technique for measuring minimum audible angle (MAA).
A stimulus is presented from a reference location (R) followed by a stimulus from a
‘test’ location to the left (TL) or the right (TR) of the reference. The angle between the
reference and test locations, θ, is varied. The participant’s MAA is the smallest value
of θ at which they can report whether the test stimulus came from the left or right of
the reference with a certain accuracy (such as 75% correct). Figure adapted from Mills
(1958).
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An alternative to measuring the MAA is to assess participants’ accuracy in

identifying the location of a source of sound when they are presented with several

possible locations (henceforth, these will be referred to as localisation tasks).

Accuracy can be measured as the percentage of correct responses or as the root

mean square (RMS) error (calculated by taking the angular distance between the

participant’s response and the source location, squaring it, and taking the square

root of the average for all trials). An experiment by Stevens and Newman (1936)

measured localisation in an anechoic environment created by seating the listener on

top of a ventilator shaft. Localisation errors were highest for pure tones between 2

and 4 kHz. Other studies have used broadband stimuli, which means that listeners

could potentially use ITDs, ILDs, and unambiguous interaural phase differences. The

performance of normally-hearing adults on localisation tasks with broadband stimuli

depends on the number of loudspeakers and the separation between loudspeakers

(Bess et al., 1986; Van Deun et al., 2009). With nine loudspeakers separated by 13◦, for

example, the median RMS error is zero (Van Deun et al., 2009).

The Duplex theory of sound-source localisation was based on measurements of

the ability to detect ITDs and ILDs, and to localise sources of sound, using pure-

tone stimuli (Rayleigh, 1907). It was proposed that ITDs were used to localise

stimuli below approximately 1.5 kHz and ILDs were used to localise higher-frequency

stimuli. Demonstrations that listeners are sensitive to ITDs in the envelope of

complex high-frequency stimuli (see section 2.3.2) indicate that the Duplex theory is

an oversimplification. Studies using contradictory ITDs and ILDs indicate that ITDs

dominate the localisation of stimuli containing low frequencies and ILDs dominate

the localisation of stimuli containing only high frequencies (Wightman & Kistler,

1992), but listeners can use either cue in challenging listening situations (Akeroyd,

2006; Lorenzi, Gatehouse, & Lever, 1999).

It should be noted that some cues to source location are available to a monaural

listener (i.e. a listener with only one ear). The filtering effect of the pinna creates

cues to the elevation of a sound source. Consequently, the localisation of sources

of sound on the median plane (a vertical plane going through the nose and dividing

the body in half) is almost as accurate when listening monaurally as when listening

binaurally (Middlebrooks & Green, 1991; Oldfield & Parker, 1986). Pinna cues also

help to resolve front-back confusions. Regarding localisation on the frontal horizontal

plane, monaural listeners can learn the level and spectral cues associated with a

certain location if the same stimulus is presented repeatedly (Van Wanrooij & Van

Opstal, 2004). In addition, with sounds of long duration, monaural listeners may be

able to move their head and use the resulting level and spectral changes to localise

the source (Perrott, Ambarsoom, & Tucker, 1987). Nonetheless, on the horizontal

plane, binaural hearing gives more accurate sound-source localisation than monaural

hearing, particularly for stimuli that are unfamiliar, changeable, or of short duration
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(Oldfield & Parker, 1986; Van Wanrooij & Van Opstal, 2004).

2.4.1.1 Movement tracking

A further potential benefit of binaural hearing is the ability to track moving sources of

sound (Middlebrooks & Green, 1991). Perrott and Musicant (1977) used loudspeakers

on rotating booms. The speed of rotation was fixed and the duration of the stimulus

was varied to estimate the minimum audible movement angle: the minimum arc of

movement required for a participant to detect that the source was moving rather than

stationary. The minimum audible movement angle was 8.3◦ at a rotation speed of 90

degrees per second, and larger for higher rotation speeds.

2.4.2 Speech perception in noise

People are often faced with a situation in which they are trying to understand

one voice in the presence of several competing voices—the ‘cocktail-party problem’

(Cherry, 1953). The benefit of binaural rather than monaural listening in such

situations can be demonstrated using four effects that are described in the following

paragraphs. To measure the first three effects in normally-hearing listeners, stimuli

are recorded using microphones placed in the auditory canals of a manikin. The

stimuli are then presented to participants via headphones. This protocol simulates

the experience of listening to speech and noise in the sound field, whilst allowing the

experimenter to temporarily deprive normally-hearing listeners of one ear.

Several of the following studies used variations of an experimental design in

which target speech was presented in the presence of noise. Participants were

asked to repeat the target speech and the signal-to-noise ratio was varied adaptively

(Levitt, 1971). The results are reported as a speech-reception threshold (SRT): the

minimum signal-to-noise ratio at which the participant could correctly report a

certain proportion of the target words (such as 50% or 70.9%). Lower SRTs reflect

an ability to tolerate more noise.

Binaural summation When listeners are presented with speech and noise from the

same location, their SRTs are 1 to 3 dB lower when listening binaurally than when

listening monaurally (see Figure 2.4; Bronkhorst & Plomp, 1988; Ching, van Wanrooy,

Hill, & Dillon, 2005; Hawley, Litovsky, & Culling, 2004). This effect is known as binaural

summation. It probably arises because the auditory system receives two versions of

the signal and, by comparing the two versions, can minimise the internal noise (noise

introduced by the auditory system itself).

Binaural squelch If speech and noise are presented from spatially-separated sources,

the ITD and ILD of the speech differ from the ITD and ILD of the noise. Binaural
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Figure 2.4. Measuring binaural summation in normally-hearing listeners. The orange
figures depict a manikin with a microphone in each auditory canal. Stimuli are
recorded from the microphones whilst speech and noise are presented from a single
loudspeaker. A) Monaural condition: the recording from one microphone is presented
to one ear using headphones. B) Binaural condition: the recording from each
microphone is presented to each ear using headphones. SRTs are normally lower in
the binaural condition, an effect known as binaural summation.

listeners can use these differences to aid their perception of speech. One measure

of binaural benefit is binaural squelch (Figure 2.5). Normally-hearing adults show

1 to 6 dB of binaural squelch (Bronkhorst & Plomp, 1988, 1992; Hawley et al., 2004).

Durlach (1963) proposed an Equalization-Cancellation model to explain how the

auditory system uses a difference between the ITD of a tone and a noise to improve

the perception of the tone. He suggested that the auditory system equalises the level

and timing of the signal at each ear, and then subtracts the signal at one ear from

the signal at the other ear. If there is a difference in ITD between the tone and the

noise, this process should cancel much of the noise and improve the tone-to-noise

ratio. Culling and Summerfield (1995) presented an updated model based on the

perception of speech, in which the Equalization-Cancellation process was applied

within, rather than across, frequency channels.

Head-shadow effect A further measure of binaural benefit is the head-shadow effect

(Figure 2.6). SRTs are usually 10 to 13 dB lower in the binaural condition than in

the monaural condition (Bronkhorst & Plomp, 1988, 1992). This difference arises

because, in the binaural condition, the listener can attend to the ear that is shielded

from the noise and therefore has a beneficial signal-to-noise ratio at frequencies

above 0.5 to 1 kHz (i.e. the frequencies at which the head casts an acoustic shadow—

see section 2.3.1). Furthermore, the speech and noise have different ITDs so listeners

can potentially ‘cancel’ some of the noise.
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Figure 2.5. Measuring binaural squelch in normally-hearing listeners. The orange
figures depict a manikin with a microphone in each auditory canal. Stimuli are
recorded from the microphones whilst speech is presented from the front and noise
from 90◦ to one side. A) Monaural condition: the recording from the microphone
furthest from the noise is presented to one ear using headphones. B) Binaural
condition: the recording from each microphone is presented to each ear using
headphones. SRTs are normally lower in the binaural condition, an effect known as
binaural squelch.

Figure 2.6. Measuring the head-shadow effect in normally-hearing listeners. The
orange figures depict a manikin with a microphone in each auditory canal. Stimuli are
recorded from the microphones whilst speech is presented from the front and noise
from 90◦ to one side. A) Monaural condition: the recording from the microphone
closest to the noise is presented to one ear using headphones. B) Binaural condition:
the recording from each microphone is presented to each ear using headphones. SRTs
are normally lower in the binaural condition—this improvement in performance is
known as the head-shadow effect.

16



Chapter 2 Hearing and Deafness

Spatial release from masking An alternative measure of the binaural benefit for

speech perception is spatial release from masking (SRM), which is assessed by

comparing binaural listening in two conditions (Figure 2.7). SRTs are typically lower

in the condition with noise from the side than in the condition with noise from the

front. This difference arises because, with noise from the side, one ear is shielded from

the noise and therefore has a beneficial signal-to-noise ratio at frequencies above

0.5 to 1 kHz. Also, in the condition with noise from the side, the speech and noise

have different ITDs so listeners can potentially ‘cancel’ some of the noise. SRM is

typically between 5 and 11 dB and varies according to the number and type of maskers

(Bronkhorst & Plomp, 1988, 1992; Hawley et al., 2004). Spatial release from masking is

a useful measure when working with children because the stimuli are presented from

loudspeakers rather than headphones—often, young children are reluctant to wear

headphones.

Figure 2.7. Listening conditions used to measure SRM in normally-hearing listeners.
The yellow figures depict a listener sat in a testing booth containing two loudspeakers
(shown in blue). A) Speech and noise are presented from the front. B) Speech is
presented from the front and noise is presented from 90◦ to one side (illustrated here
on the listener’s right). SRM is calculated as the SRT in condition A minus the SRT in
condition B. Positive values of SRM indicate that SRTs are lower in condition B.

Interim summary

The normal auditory system is remarkably sensitive to differences in the level and

timing of sounds at the two ears. Listeners derive two main benefits from binaural

hearing: the ability to localise the spatial position of a source of sound on the

horizontal plane, and an enhanced ability to understand speech in the presence

of noise. When listening binaurally, adults can distinguish two sound sources

separated by as little as 1◦. The benefits of binaural hearing for speech perception

are demonstrated by binaural summation, binaural squelch, the head-shadow effect,

and SRM.
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2.5 Spatial listening skills of normally-hearing children

2.5.1 Identifying the location of sources of sound

2.5.1.1 Left-right discrimination tasks

To measure the MAA of preschool children, an observer judges whether the child

made a head turn in response to the auditory stimulus and, if so, in what direction.

With older children, the participant is asked to respond verbally or to point towards

the location of the source of sound. The following summary refers to the MAA

for 70.7% correct, unless stated otherwise. On average, the MAA for 4-month-old

children is 20◦ (Ashmead, Davis, Whalen, & Odom, 1991), and performance improves

to around 6◦ by the age of 18 months (Litovsky, 1997; Morrongiello, 1988). The

MAA decreases further between 18 months and adulthood, but the trajectory of

this improvement is not clear. Litovsky (1997) found that 5-year-olds had a mean

MAA of 1.6◦, which was not significantly different to the adult mean of 0.8◦. In

contrast, Ashmead et al. (1998) found that 12- to 15-year-olds had a mean MAA of

3.0◦, significantly larger than the adult mean of 1.7◦. It is likely that the difference

in the results of Litovsky (1997) and Ashmead et al. (1998) is due to a difference in

methods. Although both studies used noise-burst stimuli that were presented at a

fixed level, the participants were blindfolded in the study by Ashmead et al. (to allow

for comparison with visually-impaired children). Possibly, the removal of a visual

referent for ‘straight ahead’ made the task more challenging, revealing differences in

listening skill between children and adults. It is also possible that the estimates of

MAA would be greater for both children and adults if the stimuli were roved in level.

Grieco-Calub, Litovsky, and Werner (2008) used stimuli that were roved in level in

order to reduce monaural cues to source location, and found that the mean MAA for

80.0% correct was 14◦ for children aged 26 to 36 months. This MAA is larger than

the estimate of 6◦ for 18-month-olds using a fixed stimulus level (Litovsky, 1997).

However, the two estimates are not directly comparable because Litovsky (1997)

measured the MAA for 70.7% correct whereas Grieco-Calub et al. (2008) measured

the MAA for 80.0% correct.

2.5.1.2 Localisation tasks

A handful of studies have assessed children’s ability to identify the location of a source

of sound when they are presented with an array of possible locations. Van Deun et al.

(2009) used a test with nine possible source locations ranging from−60◦ to+60◦. They

found that 4-year-olds had larger error scores than adults, whereas 5- and 6-year-olds

performed at a similar level to adults. Bess et al. (1986) measured the performance

of children aged 6 to 13 years, using a test with 13 possible source locations ranging

from −90◦ to +90◦. The children’s average error score was not significantly different
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to that of adults. Thus, performance on localisation tests appears to be adult-like by

the age of 5 or 6 years, at least for tests with up to 13 alternative locations.

2.5.1.2.1 Tracking moving sounds A search of the literature did not reveal any

studies that assessed the ability of normally-hearing children to track moving sources

of sound. However, one relevant study used a procedure in which two loudspeakers

(located at −45◦ and +45◦) presented pairs of click stimuli (Cranford, Morgan,

Scudder, & Moore, 1993). When the stimuli were presented concurrently, adults and

children reported that the sound came from a source located straight ahead. When

one of the clicks was delayed, the sound appeared to come from a source on the side

of the leading loudspeaker: this is known as the precedence effect (Litovsky, 1997).

Cranford et al. presented a series of pairs of clicks and varied the delay systematically,

to create an illusion of a moving source of sound. Normally-hearing children used a

laser pointer to track the apparent source. The responses of a group of children aged

10 or 11 years correlated with the delay between clicks to a greater degree than did the

responses of children aged 6 to 9 years. Thus, those aged 10 or 11 years were better

able to track the apparently-moving source. This oldest group of children performed

similarly to a group of adults tested in a previous study (C. A. Moore, Cranford, & Rahn,

1990).

2.5.2 Speech perception in noise

2.5.2.1 Binaural summation, binaural squelch, and the head-shadow effect

Ching, van Wanrooy, et al. (2005) found that children aged between 7 and 16 years

showed 1 dB of binaural summation; the same value was shown by adults. A search

of the literature did not reveal any studies that measured binaural squelch or the

head-shadow effect in normally-hearing children. However, Ching, van Wanrooy, et

al. (2005) did assess whether children could use ITDs to aid the perception of speech

in noise, using a paradigm called the binaural intelligibility level difference. The task

was to report the words in sentences in steady-state noise. In the delayed condition,

the speech was presented at the same time to both ears and the noise had an ITD of

700 µs. Children’s SRTs in the delayed condition were 2.7 dB lower than in a condition

where both speech and noise had an ITD of zero. The adults showed a difference of

3.7 dB between conditions. These results suggest that children are able to use ITDs to

aid the perception of speech in noise. It follows that children may also benefit from

binaural squelch, but this has not been demonstrated.

2.5.2.2 Spatial release from masking

The results of three studies that measured SRM in normally-hearing children are

shown in Table 2.1; all of the studies used the Children’s Realistic Index of Speech
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Perception (CRISP; Garadat & Litovsky, 2007; Johnstone & Litovsky, 2006; Litovsky,

2005). CRISP is a closed-set single-word perception test in which the target voice

is male. Different maskers can be used—Table 2.1 displays conditions in which the

masker was a female voice reading sentences. The level of the target was varied

adaptively, to estimate the signal-to-noise ratio at which the child performed at a level

of 79.4% correct. Table 2.1 indicates that children as young as 3 years show SRM. The

estimates of SRM are variable across studies and also within studies (the standard

deviation was often as large as the observed SRM). A further relevant study tested

10 children aged between 7 and 12 years on a speech-detection task (rather than

a speech-identification task). The average amount of SRM was 6 dB (Mok, Galvin,

Dowell, & McKay, 2007).

It is not clear if the benefit from SRM increases as children get older. Garadat and

Litovsky (2007) reported that 5-year-old children showed more SRM with a speech

masker than 3-year-old children, but the difference was not significant. Two of

the studies in Table 2.1 compared the performance of children with that of adults.

Litovsky (2005) found that children and adults showed a similar amount of SRM with

a noise masker. Conversely, Johnstone and Litovsky (2006) found that 5- to 7-year-old

children showed less SRM than adults with a noise masker, and more SRM than adults

with a reversed-speech masker. In the latter study, adults completed a 25-alternative

task without feedback whereas children completed a 4-alternative task with feedback.

Different results may be obtained if adults and children complete the same task.

Table 2.1. SRM in normally-hearing children. The age range of participants (in years),
the number of participants (N), the set size, and the amount of SRM (in dB with
standard deviation in parentheses) are listed. Set size refers to the number of different
target words that were used. Only one target word was presented per trial.

Age range N Set size SRM (SD) Study

3.3 to 3.8 10 16 7.7 (7.2) Garadat & Litovsky, 2007
4.2 to 5.5 10 16 11.0 (7.1) Garadat & Litovsky, 2007
4.2 to 5.5 10 25 9.0a Garadat & Litovsky, 2007
4.5 to 7.5 9 25 5.2 (4.0) Litovsky, 2005
5.0 to 6.9 10 25 5.0 (8.0) Johnstone & Litovsky, 2006

a Standard deviation was not reported.

2.6 Conclusion

Binaural hearing allows normally-hearing adults and children to localise sources of

sound and improves the ability to perceive speech in noise. Some details regarding

the development of skills in spatial listening are unclear because only a few studies

have used a single set of tests to compare the listening skills of normally-hearing

children of different ages.
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2.7 Summary

• In the normal ear, changes in air pressure are converted into movement within

the middle ear and cochlea, and then transformed into neural impulses by the

inner hair cells.

• In the normal auditory nerve, the frequency of sound is represented by the

location and timing of neural firing. The level of sound is represented by the

rate of neural firing.

• Permanent severe-profound hearing impairment affects one child in a thou-

sand, and can impair the acquisition of language, educational achievements,

and quality of life.

• Sound sources located to the side of a listener create differences in the timing

and level of sounds on arrival at each ear.

• Normally-hearing adults can detect ITDs of 11 µs and ILDs of 1 dB.

• Normally-hearing adults have a MAA of 1◦. Adults typically show 1–3 dB of

binaural summation, 1–6 dB of binaural squelch, a head-shadow effect of 10–

13 dB, and 5–11 dB of SRM.

• The MAA of normally-hearing children decreases with age, from approximately

20◦ at 4 months to approximately 2◦ at 5 years.

• The performance of normally-hearing children on localisation tasks improves

between the ages of 4 and 6 years, at which point performance is similar to that

of adults.

• Children over 7 years old show adult levels of binaural summation, and can use

ITDs to improve their perception of speech in noise.

• Children as young as 3 years show SRM, but it is not clear if SRM increases with

age.
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Chapter 3

Cochlear Implants

Worldwide, approximately 188,000 individuals with severe-profound deafness use a

cochlear implant to help them to hear (National Institute on Deafness and Other

Communication Disorders, 2010). This chapter provides an overview of how a

cochlear implant works and the benefits of unilateral implantation (a single cochlear

implant in one ear) for adults and children. Recently, controversy in the care

of deaf children has centred on whether they should be provided with bilateral

implants (two cochlear implants, one in each ear) rather than a unilateral implant.

In this chapter, the evidence regarding the effectiveness of bilateral implantation for

children is reviewed. Evidence from studies using similar research designs is grouped

together to form three main sections: between-subjects comparisons, within-

subjects comparisons, and longitudinal studies. For the most part, measurements of

listening skill have been used as the measure of outcome, with only a couple of studies

assessing language skills or quality of life. The review of the evidence concludes with

a discussion of the ways in which these studies may be biased. At the end of the

chapter there is an overview of the emerging evidence regarding variables that predict

performance with either bilateral implants or bimodal devices (meaning a unilateral

implant and a contralateral acoustic hearing aid).

3.1 Introduction to cochlear implantation

A cochlear implant is an electronic device which is implanted surgically into the

inner ear of patients who are severely-profoundly deaf (Ramsden, 2002). Typically,

individuals with sensorineural hearing impairment have damaged or missing hair

cells but at least some surviving spiral ganglion cells (Wilson, 2004). Cochlear

implants work by electrically stimulating the spiral ganglion cells.1

The internal parts of a cochlear implant consist of a receiver-stimulator coil,

1There are other implantable electronic devices that help people to hear, such as an auditory
brainstem implant (Rauschecker & Shannon, 2002). However, in this thesis, the term ‘implant’ is used
to refer to a cochlear implant.
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placed in a depression drilled into the mastoid bone behind the ear, and an electrode

array, placed in scala tympani in the first one, or one and a half, turns of the cochlea

(Figure 3.1). Externally, there is a transmitter coil, placed over the skin next to the

receiver-stimulator coil, and a sound processor and microphone that are usually worn

behind the ear. Sounds in the environment are detected via the microphone, then

processed and converted to a digital signal by the sound processor. The transmitter

coil sends the signal through the skin to the receiver-stimulator, which decodes the

signal and converts it to electrical pulses. The electrode array delivers the pulses,

which stimulate nearby spiral ganglion cells.

Figure 3.1. A schematic diagram of a cochlear implant. Image adapted from Seslami
(2008).

The signal-processing strategy converts the signal from the microphone into

a signal that can be delivered by the electrode array. Although strategies vary

between cochlear-implant systems, many share the characteristics of continuous

interleaved sampling (Figure 3.2; Wilson et al., 2005). Briefly, the signal is filtered

into several frequency channels and then, within each channel, the amplitude

envelope is extracted, compressed, and used to modulate a train of electrical pulses.2

Consequently, the amplitude of the pulses represents the amplitude envelope of that

channel. The signal from each channel is delivered to a single electrode: signals

derived from high-frequency bandpass filters are delivered to electrodes near the

base of the cochlea, signals derived from low-frequency bandpass filters are delivered

to electrodes nearer the apex. Thus, the frequency-to-place mapping in the normal

cochlea is approximated by a cochlear implant. However, because electrodes are not

inserted all the way to the apex, the frequency-to-place mapping is not a replica of

2In this thesis, ‘channel’ is used to refer to a frequency band that is extracted by a cochlear-implant
processor. The term does not imply that the listener is able to distinguish each channel from adjacent
channels (Friesen, Shannon, Baskent, & Wang, 2001; Shannon, 1995).
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the normal auditory system. Signals derived from low-frequency sounds are often

delivered to places in the cochlea that would normally be stimulated by higher-

frequency sounds (Skinner et al., 2002).

Figure 3.2. The continuous interleaved sampling sound-processing strategy for
a cochlear implant with n electrodes. There are n channels of processing (only
two channels are shown). The input from the microphone is pre-emphasised to
boost medium- and high-frequency sounds (over 1.2 kHz), and then processed by
n contiguous bandpass filters. The amplitude envelope is extracted using half-wave
rectification and low-pass filtering (Rect. & LPF). The signal is compressed, to reduce
the wide dynamic range of acoustical speech to the limited dynamic range of electrical
hearing, and then used to modulate a pulse train. The pulse trains in different channels
are interleaved so that the electrodes are not stimulated simultaneously. Image adapted
from Wilson et al. (2005).

3.1.1 Outcomes following cochlear implantation

Approximately 400 adults and 270 children receive a cochlear implant every year in

England and Wales (Bond et al., 2007). Although cochlear implantation does not

restore normal hearing, it does lead to substantial improvements in the ability to

detect sounds and to understand speech (Rauschecker & Shannon, 2002). There

is considerable variation in outcomes following implantation, but the majority of

adult patients understand more than 50% of the words in sentences presented in

quiet, compared to fewer than 20% prior to implantation (UK Cochlear Implant Study

Group, 2004c). Unilateral implantation in adults improves health-related quality

of life (UK Cochlear Implant Study Group, 2004c) and may improve people’s career

prospects (Harris, Anderson, & Novak, 1995; Hogan, Stewart, & Giles, 2002).

Compared to amplification using acoustic hearing aids, unilateral implantation

in severely-profoundly deaf children is associated with improved skills in speech

perception, a faster acquisition of language, an increased likelihood of attending

mainstream school, and higher health-related quality of life (Barton, Stacey, Fortnum,

& Summerfield, 2006a; Boothroyd & Eran, 1994; Cheng et al., 2000; Stacey et al.,

2006; Svirsky et al., 2000). Indeed, for children who are born deaf and who receive

an implant before the age of two years, the average rate of language acquisition is

similar to that of normally-hearing children (Holt & Svirsky, 2008). Children with an
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implant show higher educational achievements than children with a similar hearing

impairment who do not use an implant, yet the cost to society of special education is

reduced (Barton et al., 2006a). Although paediatric unilateral cochlear implantation

is costly (the incremental discounted lifetime cost is £60,000 per child at 2007 cost

levels), the average gain in quality of life is large enough to justify the cost (Barton

et al., 2006b; Bond et al., 2007). Consequently, this is viewed as a cost-effective

intervention (National Institute for Health and Clinical Excellence, 2009).

As a group, hearing-impaired children consistently benefit from unilateral im-

plantation, yet the outcomes vary widely from child to child. Some of the variability

can be explained by factors to do with the implant, the child, the family, and the

educational setting (Geers, Brenner, & Davidson, 2003). Better speech perception

following implantation is associated with a fully-implanted and fully-functioning

electrode array, a younger age at implantation, a longer time since implantation,

higher nonverbal intelligence, fewer additional disabilities, a smaller family, and an

educational setting that is focussed on oral (rather than signed) language (Geers et al.,

2003; O’Donoghue, Nikolopoulos, & Archbold, 2000; Stacey et al., 2006). In addition,

better performance on more advanced measures of outcome, such as language and

reading skills, is associated with female gender, higher socioeconomic status, better

pre-operative hearing, and later onset of deafness (Moog & Geers, 2003; Nicholas &

Geers, 2006).

3.1.2 Bilateral cochlear implantation

Until 2009, the policy of the National Health Service in the UK was to provide severely-

profoundly deaf children with a unilateral cochlear implant (CI-only), with the option

of an acoustic hearing aid in the nonimplanted ear (CI-HA, also referred to as bimodal

stimulation). A few children received bilateral cochlear implants (CI-CI) because

they had private funding, or because the child had additional sensory disabilities

such as impaired vision. There were calls from parents, clinicians, and scientists

for more widespread provision of bilateral implants for children (British Cochlear

Implant Group, 2007; Broekhuizen & Byrne, 2009; Mueller, Schoen, & Helms, 2000;

Vermeire, Brokx, Heyning, Cochet, & Carpentier, 2003; Wilson, Lawson, Muller, Tyler,

& Kiefer, 2003).

There are three main arguments for bilateral implantation. First, the provision

of two implants may give children the potential to develop binaural hearing, which

could improve their ability to localise sources of sound and to perceive speech in noise

(see section 2.3). These spatial listening skills may help children to avoid hazards

outdoors and to understand speech better in noisy environments at home and at

school. Second, bilateral implantation provides children with a back-up device in

case they have low batteries, a faulty sound processor, or a malfunctioning electrode
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array. Third, implanting both ears ensures that the physiologically more-responsive

ear will be stimulated (Papsin & Gordon, 2008).3 On the other hand, bilateral

implantation requires additional surgery, which entails additional risk. Furthermore,

the ensuing damage to the cochlea may mean that the child cannot benefit from

future interventions to improve hearing (Papsin and Gordon). The additional cost is

considerable: compared to unilateral implantation, bilateral implantation in a single

surgical session incurs an incremental discounted lifetime cost of £27,000 per child

at 2007 cost levels (Bond et al., 2007). Evidence that children realise the potential

benefits of bilateral implantation (in other words, evidence of clinical effectiveness)

is needed to justify the additional surgery and extra cost. The evidence regarding

clinical effectiveness is reviewed in section 3.1.3.

3.1.2.1 Cues to spatial listening from bilateral implants

There are limitations to the accuracy with which ITDs and ILDs are represented in

the signals delivered by bilateral implants. Normally-hearing listeners are able to

encode the temporal fine structure of signals below about 5 kHz, which provides a

cue to ITD. Current cochlear-implant systems use a fixed pulse rate (van Hoesel et al.,

2008), so the original temporal fine structure is not conveyed to the listener. Moreover,

patients with bilateral implants use two independent sound processors, meaning

that the timing of the moments at which pulses are generated is independent at the

two ears. Consequently, the stimulation from bilateral implants does not precisely

represent ITDs (Tyler, Dunn, Witt, & Preece, 2003). More positively, the signals

delivered by cochlear-implant systems do represent ITDs in the amplitude envelope.

Nonetheless, the ability of bilaterally-implanted adults to detect ITDs is poorer than

that of normally-hearing listeners. Grantham, Ashmead, Ricketts, Haynes, and

Labadie (2008) presented stimuli using headphones that were placed over patients’

sound processors, and reported that only 4 out of 11 bilaterally-implanted adults

could detect ITDs smaller than 700 µs. Thus, the majority of participants could not

detect the largest ITD that occurs for humans. The ability of implanted adults to

detect ITDs is typically better when stimuli are presented directly to electrodes rather

than via their sound processors (Poon, Eddington, Noel, & Colburn, 2009), which

suggests that future improvements in sound processors could lead to an improved

perception of ITDs.

Bilateral implants provide listeners with a relatively accurate cue to ILDs, because

the amplitude of the electrical pulses represents the amplitude envelope of the

3There are two reasons why, with a policy of unilateral implantation for children, the more-
responsive ear is not always implanted. 1) Identifying the more-responsive ear prior to surgery is not
always straightforward, particularly in young children. 2) In the UK, many surgeons choose to implant
the poorer-hearing ear in children, to increase the chance of benefit from a contralateral acoustic
hearing aid. However, in adults, better hearing in the to-be-implanted ear is associated with better
outcomes (Rubinstein, Parkinson, Tyler, & Gantz, 1999; UK Cochlear Implant Study Group, 2004b).
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signal. Bilaterally-implanted listeners appear to rely more on ILDs than ITDs to

localise sources of sound (Grantham et al., 2008; van Hoesel et al., 2008), and some

implanted listeners can detect ILDs as small as 1–2 dB (Grantham et al.). However,

the independence of the two processors may limit the accuracy with which ILDs

are represented. Cochlear-implant processors apply automatic gain control (AGC)

so that, above a certain sound pressure level, the signal is compressed more than

at lower levels. This system prevents high-level sounds causing uncomfortably high

levels of stimulation. If the signal at one ear is below the AGC activation threshold

and the signal at the other ear is above the AGC activation threshold, the ILD could be

reduced. Indeed, Grantham et al. demonstrated that the ILD thresholds of bilaterally-

implanted adults were poorer when the AGC circuitry was active (mean 3.8 dB)

than when the AGC was switched off (mean 1.9 dB). On the other hand, Noel and

Eddington (2007) showed that patients’ sound-source localisation performance was

similar when the AGC circuitry was active and when the AGC was disabled. The

patients’ ability to localise despite the AGC was attributed to ILD cues that were

present at the beginning of the stimulus, before the gain was fully reduced.

In summary, the accuracy with which ITDs and ILDs are represented in the signals

delivered by bilateral implants is limited by the signal-processing strategy and the

independence of the two sound processors. Moreover, even if interaural differences in

timing and level are represented in the signals, patients may have an impaired ability

to detect those differences. Individuals who use cochlear implants may have uneven

neural survival across the two ears, or abnormal pathways in the auditory brainstem

and cortex (Tyler et al., 2003). Interaural differences in the depth to which electrode

arrays are inserted may mean that ITDs and ILDs in a certain frequency channel are

delivered to noncorresponding places in the two cochleae (Long, Eddington, Colburn,

& Rabinowitz, 2003). This may impair the ability to detect interaural differences—

data from normally-hearing listeners indicate that the detection of ITDs and ILDs

is impaired when the signals at each ear differ in frequency (Colburn et al., 2006;

Francart & Wouters, 2007; Nuetzel & Hafter, 1981). Long-term experience with

bilateral implants could overcome some of these limitations, particularly in young

children whose brains are highly plastic (Tyler et al.).

3.1.2.2 Cues to spatial listening from bimodal stimulation

Three of the factors that affect the cues to spatial listening delivered by bilateral

implants also affect the cues delivered by bimodal devices. First, the signal from the

implant does not convey temporal fine structure, which will impair the accuracy with

which ITDs are represented. Second, the devices at each ear apply independent AGC,

which may impair the accuracy with which ILDs are represented. Third, interaural

differences in timing and level will be delivered to noncorresponding places in the two

cochleae, which may limit listeners’ ability to detect those differences. There are also
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limitations that are specific to bimodal stimulation. At the implanted ear, signals are

processed by the external parts of the implant and then transmitted to the electrode

array. At the nonimplanted ear, signals are processed by the acoustic hearing aid

and propagated through the outer and middle ear before reaching the cochlea. The

latter process is slower, which means that ITDs are distorted by bimodal devices

(Francart, Brokx, & Wouters, 2009). The majority of bimodally-aided patients have

severe-profound hearing impairment in the nonimplanted ear, often with a greater

impairment at high frequencies than at low frequencies. Consequently, patients may

be limited in their ability to use ILD as a cue to sound-source location because ILDs

are small for low frequencies (less than 5 dB for signals below 500 Hz; Fedderson et

al., 1957; Middlebrooks et al., 1989).

A search of the literature did not reveal assessments of the sensitivity of bimodally-

aided patients to ITDs and ILDs when listening with their usual devices. Francart,

Brokx, and Wouters (2009) presented stimuli directly to one electrode in the im-

planted ear and an insert earphone in the nonimplanted ear, and found that four

bimodal listeners had a JND for ITD smaller than 700 µs. An additional four patients

were unable to perform the task, even after training. An earlier study by Francart

(2008) also presented stimuli directly to an electrode and an insert earphone, and

reported that 10 bimodally-aided patients had a median JND for ILD of 1.7 dB

(range 1–3 dB). Thus, under optimal conditions, a subset of bimodally-aided patients

displayed sensitivity to ITDs and all patients displayed sensitivity to ILDs.

Some authors have argued that the signals delivered by cochlear implants and

acoustic hearing aids complement each other successfully precisely because they

are different (Ching et al., 2009; Mok, Galvin, Dowell, & McKay, 2009). Potentially,

listeners could perceive medium- to high-frequency signals via their implant and

low-frequency signals via their hearing aid. Furthermore, the hearing aid delivers a

relatively accurate representation of temporal fine structure, which could improve the

ability of implanted listeners to perceive pitch. Pitch is important for the enjoyment

of music and can be used as a cue to segregate concurrent talkers (Assmann &

Summerfield, 1990). In support of this theory, adults perform better on tests of music

perception and speech perception in noise when they use an implant and an hearing

aid rather than an implant alone (Kong, Stickney, & Zeng, 2005). The acoustic and

phonetic cues that may underlie this benefit are discussed in section 6.1.2.2.2.

3.1.3 Assessing the effectiveness of bilateral implantation:

research design

To assess clinical effectiveness, it is necessary to compare outcomes between patients

who received the intervention of interest and patients who received the standard

intervention: in this case, bilateral and unilateral implantation, respectively. The
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most rigorous assessment of the effectiveness of bilateral implantation would be a

randomised controlled trial in which children were randomly allocated to receive

either unilateral or bilateral implantation. Randomisation is the only method by

which all confounding variables (including those that are not yet known to affect

outcome) are controlled, allowing one to be confident that any observed effects of

the intervention were not due to pre-existing differences between the groups (Kunz &

Oxman, 1998). No randomised trials of bilateral implantation for children have been

reported. The original intention was to report such a trial in this thesis. However,

before the trial began, the healthcare policy in the UK was changed to recommend

bilateral implantation (National Institute for Health and Clinical Excellence, 2007,

2009), thus making a trial unethical and impractical.

Nonrandomised research designs can nonetheless provide evidence about the

effectiveness of bilateral implantation. Studies in which outcomes are compared be-

tween a group of bilaterally-implanted children and a separate group of unilaterally-

implanted children (between-subjects comparisons) are valuable. However, the

results can be biased if the groups differ on variables other than the number of

implants, especially if those variables are known to affect outcome. Most attempts

to assess the effectiveness of bilateral implantation for children have compared the

listening skills of bilaterally-implanted patients in two conditions: 1) when using

both implants; and 2) when only one implant was switched on. A similar within-

subjects design has been used to assess the benefits of a contralateral acoustic hearing

aid for unilaterally-implanted children. Each participant acts as their own control,

which increases statistical power and avoids the problem of confounding differences

between groups. On the other hand, within-subjects designs may overestimate the

benefit of a second device because the unilateral condition is unfamiliar to the child.

A single study has used a longitudinal design with no control group, meaning that

unilaterally-implanted children were assessed before and after receiving a second

implant (Zeitler et al., 2008). The disadvantage is that the bilateral condition is

confounded with maturation and experience of performance tests.

The following sections review evidence from between-subjects studies, within-

subjects studies, and a longitudinal study. Within each section, the evidence

regarding skills in sound-source localisation and speech perception will be consid-

ered in turn. Bilateral implantation can be provided in a single surgical session,

known as simultaneous implantation, or in successive surgeries, known as sequential

implantation. Studies of these two groups of children are reported together. Studies

were identified using searches of PubMed (http://www.ncbi.nlm.nih.gov/pubmed)

and PsycINFO (http://www.apa.org/psycinfo/). The searches were carried out in

October 2007 and repeated in November 2009, using the terms in Table 3.1. In

addition, the reference lists of published articles were checked and searches were

carried out for articles that cited key papers.
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Tables are used to summarise the methods and results of published studies. For

most studies, it was necessary to estimate the results from a graph. Every table lists a

number for each study, to make it easier to compare the tables and the accompanying

text. Where studies appear in multiple tables, their number may not be consistent.

Outcomes following unilateral implantation are influenced by numerous variables

(see section 3.1.1), and it is likely that outcomes following bilateral implantation are

influenced by at least some of the same variables. Nonetheless, few studies describe

participants in terms of these variables. The tables show the two biographical

variables that are reported most frequently: the participants’ age and the amount

of time for which they have used their device(s). Further relevant biographical

information is stated in the text.

Table 3.1. Search terms used to identify relevant studies. The listed words were
searched for in any part of a citation. An asterisk denotes the wildcard operator.

Search term

bilateral cochlear implant* AND child*
cochlear implant* AND hearing aid* AND child*
bilateral cochlear implant* AND quality of life
bilateral cochlear implant* AND utility
sound localization child*
spatial release from masking child*
spatial release from masking cochlear implant*

3.2 Between-subjects comparisons of unilaterally- and

bilaterally-implanted children

3.2.1 Identifying the location of sources of sound

The four studies that used a left-right discrimination test (see section 2.4.1) to

compare unilaterally- and bilaterally-implanted children are summarised in Table 3.2.

Accurate performance is represented by a high proportion of correct responses or

a low MAA. Study 1 in Table 3.2 found that CI-CI children performed significantly

better than CI-only children. Study 2 in Table 3.2 attempted to measure the MAA

for 80% correct, but none of the CI-only children could perform with this accuracy

at the widest loudspeaker separation of 70◦, so data were not reported for CI-only

children. Study 3 in Table 3.2 found that CI-CI children had significantly lower MAAs

than CI-HA children. Four CI-CI children and one CI-HA child were excluded from

this analysis, on the basis that they found the task difficult and had MAAs greater

than 60◦. However, three of these CI-CI children did have a measurable MAA when

both implants were switched on, and arguably their data should have been included.
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To assess the effect of the exclusion of these children on the statistical analysis, data

for all children with a measurable MAA were extracted from published graphs. The

difference in MAA between the CI-HA children (N = 5) and CI-CI children (N = 12)

was not statistically significant (CI-HA group mean 44◦, CI-CI group mean 30◦, 95%

confidence interval for the difference −44 to +16).

Study 4 in Table 3.2 used the same methods as study 3, and included some of

the same children, and did not find a significant difference between the groups. The

discrepancy between the published results of studies 3 and 4 does not appear to be

due to the exclusion of children in study 3, as the published level of performance

of the CI-CI group was similar in both studies. The discrepancy may have arisen

because the CI-HA group in study 3 performed worse than the CI-HA group in study

4: the mean MAAs were 44◦ and 27◦, respectively. It is not clear why this difference

in performance arose, as the CI-HA children in both studies were of a similar age

with comparable levels of residual hearing and experience of using their devices.

A simple explanation is that observing small samples of a population that shows

variable outcomes leads to inconsistent results.

To summarise, two studies that analysed results from a total of 24 partici-

pants found that bilaterally-implanted children performed significantly better than

unilaterally-implanted children on a test of left-right discrimination. One of these

studies excluded data from some children. An analysis of the complete set of

data, estimated from published graphs, indicated there was no significant difference

between the groups. Two further studies, with results from a total of 32 participants,

either found no significant difference between unilaterally- and bilaterally-implanted

children or did not report statistical tests. A search of the literature did not

reveal any studies that used a localisation test (meaning a test with at least three

possible source locations—see section 2.4.1) to compare unilaterally- and bilaterally-

implanted children.
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Table 3.2. Between-subjects comparisons of unilaterally- and bilaterally-implanted children using a left-right discrimination task. Ages and durations are
in years. DV refers to the dependent variable. 5FA refers to the average of HLs in the nonimplanted ear, measured at octave frequencies between 0.25 and
4 kHz.

Study Unilaterally-implanted

participants

Bilaterally-implanted

participants

Task Results Reference

1 N = 5. Mean age 5.3. Mean

experience of CI-only 3.9.

Did not report HL.

N = 5. Mean age 3.6. Mean

experience of CI-CI 1.8. All

but one simultaneous.

Loudspeakers at

±90◦ and ±30◦. DV:

% correct head

turns.

Loudspeakers at ±90◦: CI-only

group mean 37%, CI-CI group

mean 96%.a Loudspeakers at

±30◦: CI-only group mean 41%,

CI-CI group mean 92%.a

Beijen, Snik, &

Mylanus, 2007

2 N = 8. Mean age 2.8. Mean

experience of CI-only 1.5.

Did not report HL.

N = 10. Mean age 2.5.

Mean experience of CI-CI

0.8. All but one sequential.

MAA for 80%

correct.

None of the CI-only children,

and 5 of the CI-CI children,

performed with an accuracy

>80% correct at the widest

loudspeaker separation.c

Grieco-Calub et

al., 2008

3 N = 6. Mean age 8.6. Mean

experience of CI-HA 3.1.

Aided 5FA of 47 dB.d

N = 13. Mean age 7.8.

Mean experience of CI-CI

0.6. All sequential.

MAA for 70.9%

correct.

CI-HA group mean 44◦ (N = 5),

CI-CI group mean 16◦ (N = 9).a

Litovsky,

Johnstone,

Godar, Agrawal,

et al., 2006
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Table 3.2. (Continued). Between-subjects comparisons of unilaterally- and bilaterally-implanted children using a left-right discrimination task. Ages and
durations are in years. DV refers to the dependent variable. 5FA refers to the average of HLs in the nonimplanted ear, measured at octave frequencies
between 0.25 and 4 kHz.

Study Unilaterally-implanted

participants

Bilaterally-implanted

participants

Task Results Reference

4 N = 10. Mean age 9.0.

Mean experience of CI-HA

3.6. Aided 5FA of 55 dB.d

N = 10. Mean age 7.4.

Mean experience of CI-CI

1.2. All sequential.

MAA for 70.9%

correct.

CI-HA group mean 27◦ (N = 8),

CI-CI group mean 20◦ (N = 6).b
Litovsky,

Johnstone, &

Godar, 2006

a Significant difference between groups, p < .05. b No significant difference between groups. c No statistical test was reported.
d Exact HLs were not reported for all children.
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3.2.2 Speech perception in noise

Between-subjects studies have compared the speech-perception skills of unilaterally-

and bilaterally-implanted children in three ways. First, one can compare the

SRTs (or percentage of words reported correctly at a fixed signal-to-noise ratio) of

unilaterally- and bilaterally-implanted children, when listening with the device(s)

they use everyday. Second, one can compare the extent to which the two groups show

SRM, when listening with the device(s) they use everyday. Third, one can compare the

extent to which the two groups show binaural summation, binaural squelch, and the

head-shadow effect. The third comparison involves testing children whilst using both

devices and whilst using only one device. For the remainder of this thesis, the ‘first’

implant refers to a child’s only implant (for unilaterally-implanted children) or the

implant that was provided earlier in life (for bilaterally-implanted children).

3.2.2.1 Speech-reception thresholds

A search of the literature did not reveal any study that showed a significant

difference between the speech-perception skills of unilaterally- and bilaterally-

implanted children when listening with the device(s) they use everyday. Litovsky,

Johnstone, and Godar (2006) used the CRISP test (see section 2.5.2.2) with two

competing talkers, to estimate the signal-to-noise ratio at which the child could report

single words with an accuracy of 79.4% correct. The target speech was presented from

0◦ and the masker was presented from either −90◦, 0◦, or +90◦. In all conditions, the

average SRTs of 10 CI-CI children did not differ significantly from those of 10 CI-HA

children. Mok et al. (2009) measured the accuracy with which children could report

open-set words presented with four competing talkers at a signal-to-noise ratio of

+10 dB. The target speech was presented from the front, with the masker either

from the front or from 90◦ on the side of the first implant. In both conditions, the

average scores of four CI-CI children were similar to those of nine CI-HA children; a

statistical test was not reported. Schafer and Thibodeau (2006) used a test in which

the target speech instructed the child to carry out an action on a doll (e.g. ‘wipe

his mouth’). The speech was presented from 0◦ and classroom noise was presented

from 135◦ and 225◦. The SRT was estimated as the signal-to-noise ratio at which

the child carried out the correct action on 50% of trials. There was no significant

difference between the average SRTs of 12 CI-CI children and 10 CI-HA children.

In summary, three studies with a total of 55 participants found that unilaterally-

and bilaterally-implanted children show a similar ability to perceive speech in noise,

despite the potential for the latter group to use both ears and to benefit from electrical

stimulation to the physiologically more-responsive ear.
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3.2.2.2 Spatial release from masking

The conditions used to measure SRM in implanted listeners are shown in Figure 3.3.

One would expect children with a unilateral implant to show SRM with noise

contralateral to their implant, because the implant is shielded from the noise in the

condition with noise from the side. An important question is whether providing a

second device enables children to benefit from SRM with noise ipsilateral to their first

implant.

Figure 3.3. Measuring SRM in implanted listeners. The yellow figures depict a
participant sat in a testing booth containing loudspeakers (shown in blue). SRM
is measured by comparing SRTs in three conditions. In one, speech and noise are
presented from the front (Panel A). In the others, speech is presented from the front
and noise is presented from the side (Panels B and C). The difference in performance
between conditions A and B is the amount of SRM with noise contralateral to the first
implant (illustrated in the left ear). The difference in performance between conditions
A and C is the amount of SRM with noise ipsilateral to the first implant. The device
labelled 2nd is either the implant that was received later in life, an acoustic hearing aid,
or no device.

Three studies have compared the amount of SRM shown by unilaterally- and

bilaterally-implanted children (Table 3.3). Positive SRM indicates that children could

tolerate a less favourable signal-to-noise ratio when noise was presented from the side

than when noise was presented from the front (this is the pattern shown by normally-

hearing listeners—see section 2.5.2.2). Negative SRM indicates that children required

a more favourable signal-to-noise ratio when noise was presented from the side than

when noise was presented from the front. The tests used by studies 1 and 3 in Table 3.3

were described in section 3.2.2.1. Study 2 in Table 3.3 used a test in which children

were asked to detect a speech token (“baba”) in the presence of broadband noise

with the same long-term spectrum as speech. The signal-to-noise ratio was varied

to estimate the “detection signal-to-noise ratio”. It is not clear what percentage of

correct responses were made at this threshold. Studies 2 and 3 in Table 3.3 reported

results from the same group of children, tested at the same age.

Study 1 in Table 3.3 reported a nonsignificant tendency for CI-CI children to show

more SRM than CI-HA children, in both noise configurations. Study 2 in Table 3.3

reported that CI-CI children showed significantly more SRM than CI-HA children,

with noise ipsilateral to the first implant. However, the difference was small, and it
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was measured using a test in which children reported the presence, rather than the

content, of target speech. The same study reported a nonsignificant tendency for

CI-CI children to show more SRM than CI-HA children, with noise contralateral to

the first implant. Study 3 in Table 3.3 reported that both CI-HA and CI-CI children

showed somewhat poorer performance with noise ipsilateral to the first implant than

with noise from the front; a statistical test was not reported. Study 3 in Table 3.3 did

not measure SRM with noise contralateral to the first implant.

To summarise, one study of 13 participants reported that bilaterally-implanted

children showed significantly greater SRM than unilaterally-implanted children, with

noise ipsilateral to the first implant. Two further studies, with results from a total of

33 children, did not report a significant difference between the groups in SRM. The

groups of children in the studies by Mok et al. were not well matched: the average age

at first implantation was 4 years older for the CI-HA group than for the CI-CI group,

and the CI-HA group had 4 years’ more experience of using both devices than the

CI-CI group.
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Table 3.3. Between-subjects comparisons of the SRM shown by unilaterally- and bilaterally-implanted children. Ages and durations are in years. 5FA
refers to the average of HLs in the nonimplanted ear, measured at octave frequencies between 0.25 and 4 kHz.

Study Unilaterally-implanted

participants

Bilaterally-implanted

participants

Task Results Reference

1 N = 10. Mean age 9.0.

Mean experience of CI-HA

3.6. Mean aided 5FA of

55 dB.d

N = 10. Mean age 7.4.

Mean experience of CI-CI

1.2. All sequential.

CRISP. DV:

minimum

signal-to-noise

ratio for 79.4%

correct.

With noise ipsilateral to the first

implant: CI-HA group mean

−1 dB of SRM, CI-CI group mean

+1 dB of SRM.b With noise

contralateral to the first implant:

CI-HA group mean +2 dB of

SRM, CI-CI group mean +5 dB of

SRM.b

Litovsky,

Johnstone, &

Godar, 2006

2 N = 9 CI-HA. Mean age

12.1. Mean experience of

CI-HA 5.3. Mean aided 5FA

of 57 dB.

N = 4 CI-CI. Mean age 10.2.

Mean experience of CI-CI

1.3. All sequential.

Speech-detection

task. DV: minimum

signal-to-noise

ratio for detection.

With noise ipsilateral to the first

implant: CI-HA group mean

−0.4 dB of SRM, CI-CI group

mean +0.4 dB of SRM.a With

noise contralateral to the first

implant: CI-HA group mean

+3.8 dB of SRM, CI-CI group

mean +4.5 dB of SRM.b

Mok et al.,

2007
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Table 3.3. (Continued). Between-subjects comparisons of the SRM shown by unilaterally- and bilaterally-implanted children. Ages and durations are in
years. 5FA refers to the average of HLs in the nonimplanted ear, measured at octave frequencies between 0.25 and 4 kHz.

Study Unilaterally-implanted

participants

Bilaterally-implanted

participants

Task Results Reference

3 N = 9 CI-HA. Mean age

12.1. Mean experience of

CI-HA 5.3. Mean aided 5FA

of 57 dB.

N = 4 CI-CI. Mean age 10.2.

Mean experience of CI-CI

1.3. All sequential.

Report open-set

words presented at

a signal-to-noise

ratio of +10 dB. DV:

% correct.

For CI-HA group, mean accuracy

was 6% lower with noise

ipsilateral than with noise front.

For CI-CI group, mean accuracy

was 5% lower with noise

ipsilateral than with noise front.c

Mok et al.,

2009

a Significant difference between groups, p < .05. b No significant difference between groups. c No statistical test was reported.
d Exact HLs were not reported for all children.
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3.2.2.3 Binaural summation

For implanted listeners, binaural summation is measured by presenting speech

and noise from straight ahead and comparing SRTs in two conditions: using both

devices and using only one device. The device used for the monaural condition

is the one that gives the best monaural performance (typically, the first implant).

Litovsky, Johnstone, and Godar (2006) found that, on average, CI-CI children showed

significantly more binaural summation than CI-HA children. Two studies of a single

sample of children found the opposite result: CI-HA children showed significantly

more binaural summation than CI-CI children (Mok et al., 2007, 2009). Schafer

and Thibodeau (2006) found that neither CI-HA children nor CI-CI children showed

significant binaural summation with speech from 0◦ and noise from 135◦ and 225◦

(this configuration creates an approximately equal signal-to-noise ratio at both ears,

and can therefore be used to measure binaural summation).

3.2.2.4 Binaural squelch

The conditions used to measure binaural squelch in implanted listeners are shown in

Figure 3.4. Only two studies have compared the amount of binaural squelch shown by

CI-HA and CI-CI children; both used a configuration with noise contralateral to the

first implant. Litovsky, Johnstone, and Godar (2006) found that CI-CI children showed

significantly more binaural squelch than CI-HA children; Mok et al. (2007) found no

significant difference between the groups.

3.2.2.5 The head-shadow effect

The conditions used to measure the head-shadow effect in implanted listeners are

shown in Figure 3.5. Three studies have compared the head-shadow effect shown by

CI-HA and CI-CI children; all three used a configuration with noise ipsilateral to the

first implant. Two studies found that CI-CI children showed a significantly greater

head-shadow effect than CI-HA children (Litovsky, Johnstone, & Godar, 2006; Mok et

al., 2007). In contrast, Mok et al. (2009) found no significant difference between the

groups.
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Figure 3.4. Measuring binaural squelch in implanted listeners. The yellow figures
depict a participant sat in a testing booth containing loudspeakers (shown in blue).
A red cross indicates that a device is turned off. Speech is presented from the front
and noise from the side either contralateral (panels A and B) or ipsilateral (panels C
and D) to the first implant (illustrated in the left ear). With noise contralateral to
the first implant, binaural squelch is the difference in SRTs between the monaural
(panel A) and binaural conditions (panel B). With noise ipsilateral to the first implant,
binaural squelch is the difference in SRTs between the monaural (panel C) and binaural
conditions (panel D).

Figure 3.5. Measuring the head-shadow effect in implanted listeners. The yellow
figures depict a participant sat in a testing booth containing loudspeakers (shown in
blue). A red cross indicates that a device is turned off. Speech is presented from the
front and noise from the side either contralateral (panels A and B) or ipsilateral (panels
C and D) to the first implant (illustrated in the left ear). With noise contralateral to the
first implant, the head-shadow effect is the difference in SRTs between the monaural
(panel A) and binaural conditions (panel B). With noise ipsilateral to the first implant,
the head-shadow effect is the difference in SRTs between the monaural (panel C) and
binaural conditions (panel D).
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3.2.3 Language skills and quality of life

One of the motivations for providing implanted children with a second device is to

improve their perception of speech, particularly in noisy situations. Potentially, an

improved perception of speech could help children to acquire spoken language more

rapidly and/or more extensively. A search of the literature revealed only one study

that compared the spoken language skills of unilaterally- and bilaterally-implanted

children (Nittrouer & Chapman, 2009). Three groups were assessed at the age of 42

months: 1) 15 CI-only children; 2) 17 CI-HA children; and 3) 26 CI-CI children. The

groups did not differ significantly on measures of receptive or expressive language.

Thus, at the age of 42 months, there was no significant difference between the

language skills of unilaterally- and bilaterally-implanted children. The same study

reported a separate analysis, for which all of the children were split into two groups: 1)

those who had, at some point, used bimodal stimulation; and 2) those who had never

used bimodal stimulation. The group with experience of bimodal stimulation had

significantly better expressive language skills than the group with no experience of

bimodal stimulation. The authors suggested that the acoustic information provided

by a hearing aid, specifically an accurate representation of fundamental frequency

and voiced formants, helped children to parse running speech into smaller segments

and thus aided the acquisition of language. The three groups of children in the

main analysis were well-matched on a range of biographical and clinical variables,

but corresponding data were not presented for the two groups of children in the

subsequent analysis. Thus, it is difficult to assess whether the relationship between

bimodal stimulation and language was caused by a confound such as hearing level.

A further study analysed video recordings of 27 CI-only and 26 CI-CI children

(Tait et al., 2010). The recordings showed the child interacting with a parent, and

they were made prior to implantation (at an average age of 12 months) and one

year after implantation. The children’s preverbal communication skills were assessed

using a video-analysis technique described by Tait, Lutman, and Nikolopoulos (2001).

Unilaterally-implanted children who show more vocal than gestural communication,

as assessed by this technique, show better skills in speech perception later in life (Tait

et al., 2001). One year after implantation, the bilateral group were significantly more

likely to show vocal communication than the unilateral group, and the unilateral

group were significantly more likely to show gestural communication than the

bilateral group. These results suggest that the bilateral group may develop better

speech perception skills than the unilateral group. However, the groups were not

comparable in their communication style prior to implantation: the unilateral group

were significantly more likely to show gestural communication than the bilateral

group at the first assessment. Thus, the difference in communication style at the

second assessment may not be due to the difference in intervention between the

groups. Nine of the bilateral group were implanted sequentially, and it is not clear
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if the video recording was made one year after the first or second implantation—the

latter time period may overestimate the benefits of bilateral implantation.

If bilateral implantation improves listening skills, it could potentially trigger a

cascade of benefits including easier social interaction, lower levels of fatigue (because

listening is less effortful), and improved acquisition of language (notwithstanding

the results of Nittrouer & Chapman, 2009). Having a back-up device could also

reduce children’s anxiety about device failure. These benefits have been reported by

the parents of some bilaterally-implanted children (Scherf et al., 2009a). If bilateral

implantation does indeed lead to these benefits, it may improve children’s quality

of life. Measurements of quality of life contribute to the effectiveness component

of the cost-effectiveness calculations that are used by policy-makers in the UK and

elsewhere to decide which healthcare interventions to fund. Thus, the question of

whether bilateral implantation improves quality of life has implications for healthcare

policy. This issue is discussed further in Chapter 7. To date, only one study has

compared the quality of life of bilaterally- and unilaterally-implanted children. Beijen

et al. (2007) asked the parents of 10 children to complete the parent-proxy version

of the Pediatric Quality of Life Inventory, a questionnaire that assesses physical,

emotional, and social functioning. There was no significant difference between the

groups (bilateral mean 90.2%, unilateral mean 89.4%, 95% confidence interval for the

difference −11.0 to +12.6).

Summary of between-subjects comparisons

Seven studies have compared the spatial listening skills of unilaterally- and bilaterally-

implanted children. Typically, these studies reported a tendency for bilaterally-

implanted children to show better performance than unilaterally-implanted children

on tests of left-right discrimination, SRM, binaural squelch, and the head-shadow

effect. Approximately half of the comparisons showed a significant difference

between the groups. The evidence regarding binaural summation is mixed: one study

showed significantly more binaural summation in bilaterally-implanted children than

bimodally-aided children, whereas two papers reporting data from a single sample

of children showed the opposite effect. The latter finding is unique—no other

study has reported significantly better listening skills in bimodally-aided children

than bilaterally-implanted children. There is no evidence that bilaterally-implanted

children have better language skills, or a higher quality of life, than unilaterally-

implanted children.

The studies of listening skill compared small, heterogeneous, samples of children,

which may explain the inconsistent pattern of results. With the exception of Grieco-

Calub et al. (2008) and Schafer and Thibodeau (2006), the studies of listening skill

tested a group of unilaterally-implanted children whose duration of deafness prior
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to implantation was longer than that for the group of bilaterally-implanted children,

sometimes by as much as 4 years. A long duration of deafness is associated with

poorer outcomes following unilateral implantation, so this confound could lead to an

overestimation of the benefits of bilateral implantation. On the other hand, several

of the studies tested a group of bimodally-aided children who had more experience

of using both devices than the bilaterally-implanted children, which could lead to an

underestimation of the benefits of bilateral implantation. The sources of bias that

may affect these studies are discussed in more detail in section 3.5.

3.3 Within-subjects comparisons that assessed the

benefit of a second device

The following section of the review is structured by outcome measure: for each

measure, evaluations of the benefit of a second cochlear implant will be considered

first, followed by evaluations of the benefit of a contralateral acoustic hearing aid.

Some of the studies that were discussed in the previous section also carried out

within-subjects comparisons, and are therefore included here.

3.3.1 Identifying the location of sources of sound

3.3.1.1 Left-right discrimination tasks

The benefit of a second cochlear implant Six studies have compared CI-CI and CI-

only performance using a left-right discrimination task (Table 3.4). Three studies

found that children performed significantly better using both implants than when

using only one implant (studies 1, 4, and 5 in Table 3.4). Study 2 in Table 3.4

found that, for seven out of nine children, performance was significantly above

chance in the binaural condition but not in the monaural condition; a statistical

comparison of the two conditions was not reported. Study 6 in Table 3.4 reported

statistical tests only for a group that contained both children and adults. Study 3 in

Table 3.4 found no significant difference between conditions, possibly because the

three participants had used bilateral implants for only 3 months. Repeated testing of

two of these children up to 2 years after the second implantation showed a tendency

for performance in the binaural condition to improve with time (Litovsky, Johnstone,

Godar, Agrawal, et al., 2006).

Even when both implants are switched on, bilaterally-implanted children do not

perform as well as normally-hearing children on tests of left-right discrimination. For

example, studies using a similar protocol reported mean binaural MAAs of 16◦ for

bilaterally-implanted children and 1.5◦ for normally-hearing children (Litovsky, 1997;

Litovsky, Johnstone, Godar, Agrawal, et al., 2006).
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The benefit of a contralateral hearing aid Three studies have compared CI-HA and

CI-only performance using a left-right discrimination task (Table 3.5). Study 1 in

Table 3.5 varied the type of stimuli and found that performance was significantly

better in the binaural than the monaural condition, but only for the most challenging

task in which the level and spectral content of the stimuli varied from trial to trial.

Two smaller studies found a tendency for better performance in the binaural than the

monaural condition, but either did not report statistical tests (study 2 in Table 3.5) or

found that the difference was not statistically significant (study 3 in Table 3.5).

The performance of bimodally-aided children on tests of left-right discrimination

is variable, but generally poorer than that of normally-hearing children. Studies 2 and

3 in Table 3.5 used a similar protocol and reported mean binaural MAAs of 44◦ and

28◦, respectively, whereas the average MAA for normally-hearing children was 1.5◦

(Litovsky, 1997).

Interim summary Three studies, which reported results from a total of 20 bilaterally-

implanted children, reported significantly better left-right discrimination skills when

children used both implants than when they used only one. A further three studies,

with results from a total of 14 bilaterally-implanted children, did not report a

significant benefit of using both devices. One study of 20 bimodally-aided children

reported significantly better left-right discrimination skills when using an implant

and a hearing aid than when using just an implant. An additional two studies, with

results from a total of 13 bimodally-aided children, did not report a significant benefit

of using both devices.
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Table 3.4. Within-subjects comparisons of bilateral and unilateral performance on left-right discrimination tasks. DV refers to the dependent variable.

Study Participants Mean age Mean time

with both

devices

Task Results Reference

1 N = 5, all but one

simultaneous.

3.6 1.8 Loudspeakers at ±90◦.

DV: % correct head turns.

CI-CI mean 96%, mean with

first-CI-only or second-CI-only

36%.a

Beijen et al., 2007

2 N = 9, sequential. 3.3 0.7 Loudspeakers at ±90◦.

DV: % correct head turns.

CI-CI mean 81%, first-CI-only

mean 48%.c
Galvin, Mok,

Dowell, & Briggs,

2008

3 N = 3, sequential. 9.3 0.3 15 loudspeakers between

±70◦. DV: % correct head

turns.

CI-CI mean 53%, first-CI-only

mean 40%.b
Litovsky et al., 2004

4 N = 13, sequential. 7.8 0.6 MAA for 70.9% correct. 9 children provided data. CI-CI

mean 16◦, first-CI-only mean

38◦.d

Litovsky, Johnstone,

Godar, Agrawal, et

al., 2006

5 N = 10, sequential. 7.4 1.2 MAA for 70.9% correct. 6 children provided data. CI-CI

mean 20◦, first-CI-only mean

50◦.a

Litovsky, Johnstone,

& Godar, 2006
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Table 3.4. (Continued). Within-subjects comparisons of bilateral and unilateral performance on left-right discrimination tasks. DV refers to the dependent
variable.

Study Participants Mean age Mean time

with both

devices

Task Results Reference

6 N = 2, sequential. 14.0 2.0 MAA for 80% correct. CI-CI mean 6◦, first-CI-only

mean 15◦.c
Senn, Kompis,

Vischer, & Haeusler,

2005

a Significant difference between conditions, p < .05. b No significant difference between conditions. c No statistical test was reported.
d The difference was significant (p < .05) for a subgroup of 5 children with less than 13 months’ experience with both devices.
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Table 3.5. Within-subjects comparisons of bimodal and unilateral performance on left-right discrimination tasks. Ages and durations are in years. DV
refers to the dependent variable. 3FA refers to the average of HLs measured at 0.5, 1 and 2 kHz; 5FA to the average of HLs measured at octave frequencies
between 0.25 and 4 kHz. Both 3FA and 5FA refer to the nonimplanted ear.

Study Participants Mean age Mean time

with both

devices

Task Results Reference

1 N = 20. Mean aided

3FA of 51 dB.

11.8 3.5 MAA for 84% correct. CI-HA mean 76◦, CI-only

mean 88◦.a

Beijen, Snik,

Straatman, Mylanus, &

Mens, 2009

2 N = 6. Mean aided

5FA of 47 dB.d
8.6 3.1 MAA for 70.9% correct. 5 children provided data.

CI-HA mean 44◦, CI-only

mean 58◦.c

Litovsky, Johnstone,

Godar, Agrawal, et al.,

2006

3 N = 10. Mean aided

5FA of 55 dB.d
9.0 3.6 MAA for 70.9% correct. 8 children provided data.

CI-HA mean 27◦, CI-only

mean 38◦.b

Litovsky, Johnstone, &

Godar, 2006

aSignificant difference between conditions, p < .05. b No significant difference between conditions. c No statistical test was reported.
d Exact HLs were not reported for all children.
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3.3.1.2 Localisation tasks

The benefit of a second cochlear implant Four studies have compared CI-CI and

CI-only performance using a localisation task (Table 3.6). Accurate performance is

represented by a high proportion of correct responses or a low RMS error. Study 4

in Table 3.6 found a significant benefit of using both implants rather than just one.

The lack of a significant binaural benefit in studies 1, 2, and 3 in Table 3.6 could

be due to limited statistical power caused by the small sample sizes, or it could be

due to characteristics of the participating children. Steffens et al. (2007) reported

that better performance on a localisation task was correlated with a younger age at

second implantation and a longer time using both devices. Possibly, the participants

of studies 1, 2, and 3 were implanted too late in life, or had insufficient experience of

listening with both devices, to show a benefit of using the second implant. It should

be noted that study 3 was a follow-up report containing a subset of the participants

in study 2.

On average, bilaterally-implanted children cannot localise sources of sound as

accurately as normally-hearing children, although a few children perform within the

normal range. For example, the mean RMS error of bilaterally-implanted children is

38◦ when using both devices, compared to under 10◦ for normally-hearing children

tested using the same nine-alternative task (Van Deun et al., 2009, 2010).

The benefit of a contralateral hearing aid Three studies have compared CI-HA and

CI-only performance on a localisation task (Table 3.7). All of the studies balanced

the loudness and frequency response of the two devices for each child, and found

that performance using both devices was significantly better than performance using

only the implant. Study 2 in Table 3.7 reported that performance after the two devices

were adjusted to complement each other was significantly better than performance

prior to adjustment. The participants in study 1 in Table 3.7 were a subset of the

participants in study 2. A strength of these three studies is that participants listened

monaurally for a week before testing in the monaural condition, which gives a more

accurate measure of binaural benefit than studies in which children had around five

minutes to adapt to a new listening condition (e.g. Beijen et al., 2007; Litovsky,

Johnstone, Godar, Agrawal, et al., 2006; Mok et al., 2007).

Study 2 in Table 3.7 recruited 16 children but only reported results from 11

children. Two children dropped out because the test sessions were inconvenient,

and three because they had stopped using their hearing aid. Consequently, study

2 demonstrates that children who choose to use a contralateral hearing aid show a

benefit of using that aid in laboratory tests. The benefit of using bimodal devices

may be smaller if outcome data are gathered from a more representative sample of

unilaterally-implanted children.

A search of the literature did not reveal any studies that compared the per-
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formance of bimodally-aided and normally-hearing children using a localisation

task. However, the performance of bimodally-aided children on a five-alternative

localisation task (median RMS error 49◦; study 3 in Table 3.7) was poorer than that of

normally-hearing children on a more challenging nine-alternative task (median RMS

error 4–10◦; Van Deun et al., 2009).

Interim summary One study with results from 16 participants demonstrated that

bilaterally-implanted children are significantly better at sound-source localisation

when they listen using both implants than when they listen using only one implant.

Three other studies, with results from a total of 17 children, did not report a significant

benefit. Three studies, with results from a total of 34 unilaterally-implanted children,

reported a significant benefit of using a contralateral acoustic hearing aid for sound-

source localisation. However, not all children showed this benefit, and it may require

the use of expert techniques to fit the hearing aid.

49



C
h

ap
ter

3
C

o
ch

lear
Im

p
lan

ts

Table 3.6. Within-subjects comparisons of bilateral and unilateral performance on localisation tasks. Ages and durations are in years. DV refers to the
dependent variable. nAFC refers to an n-alternative forced-choice task.

Study Participants Mean age Mean time

with both

devices

Task Results Reference

1 N = 3, sequential. 9.3 0.3 15AFC, loudspeakers

between ±70◦ at 10◦

intervals. DV: RMS error.

CI-CI mean 57◦, first-CI-only

mean 53◦.b
Litovsky et al., 2004

2 N = 10, sequential. 8.9 0.7 8AFC, loudspeakers

between ±90◦ at 25.7◦

intervals. DV: RMS error.

8 children provided data. CI-CI

mean 70◦, first-CI-only mean

68◦.b

Galvin, Mok, &

Dowell, 2007

3 N = 6, sequential. 10.3 1.0 8AFC, loudspeakers

between ±90◦ at 25.7◦

intervals. DV: RMS error.

Mean RMS error was similar in

both CI-CI and first-CI-only

conditions. Exact results were

not reported.c

Galvin, Mok,

Dowell, & Briggs,

2007

4 N = 20, sequential. 7.0 1.4 3AFC, loudspeakers at

−90◦, 0◦, and +90◦. DV: %

correct.

16 children provided data. CI-CI

mean 75%, first-CI only mean

58%.a

Steffens et al., 2007

a Significant difference between conditions, p < .05. b No significant difference between conditions. c No statistical test was reported.
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Table 3.7. Within-subjects comparisons of bimodal and unilateral performance on localisation tasks. Ages and durations are years:months. DV refers to
the dependent variable. 5FA refers to the average of HLs in the nonimplanted ear, measured at octave frequencies between 0.25 and 4 kHz. nAFC refers to
an n-alternative forced-choice task.

Study Participants Mean age Mean time

with both

devices

Task Results Reference

1 N = 5. Mean unaided

5FA of 105 dB.

13.0 1.0 11AFC, loudspeakers

between ±90◦ at 18◦

intervals. DV: number of

errors.

CI-HA mean 32 errors,

CI-only mean 39 errors.a

Ching, Psarros, &

Hill, 2000

2 N = 16. Mean unaided

5FA of 102 dB.

11.4 >6 monthsb 11AFC, loudspeakers

between ±90◦ at 18◦

intervals. DV: RMS error.

11 children provided data.

CI-HA mean 31◦, CI-only

mean 37◦.a

Ching, Psarros,

Hill, Dillon, &

Incerti, 2001

3 N = 18. Mean unaided

5FA of 104 dB.

10.1 c 5AFC, loudspeakers

between ±60◦ at 30◦

intervals. DV: RMS error.

CI-HA median 49◦, CI-only

median 57◦.a

Ching, Hill, et al.,

2005

a Significant difference between conditions, p < .05. b Mean was not stated.
c 10 children had used CI-HA for 8 weeks, 8 children for a mean of 3.3 years.
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3.3.2 Speech perception in noise

3.3.2.1 Spatial release from masking

Assessments of SRM do not require testing using only one device (Figure 3.3), but they

do require a within-subjects comparison and are therefore reviewed in this section.

SRM is statistically significant if SRTs (or the proportion of correct responses) differ

significantly between the condition with noise from the side and the condition with

noise from the front.

The benefit of a second cochlear implant Four studies have assessed SRM in

bilaterally-implanted children (Table 3.8), none of which reported significant SRM

with noise ipsilateral to the first implant. With noise contralateral to the first implant,

study 2 in Table 3.8 reported significant SRM of +4.5 dB, on average. Using the same

protocol, normally-hearing children showed significant SRM of +5.6 dB, on average

(Mok et al., 2007). Studies 1 and 4 in Table 3.8 appeared to show SRM with noise

contralateral to the first implant, but did not report tests of statistical significance.

The benefit of a contralateral hearing aid Three studies have assessed SRM in

bimodally-aided children (Table 3.9). In all three studies, children showed a small

negative amount of SRM with noise ipsilateral to the implant; the negative SRM was

significant in study 2 in Table 3.9. With noise contralateral to the implant, study 2

in Table 3.9 reported significant positive SRM that was 2 dB smaller than the SRM

shown by normally-hearing children. With noise contralateral to the implant, study 1

in Table 3.9 showed a tendency for positive SRM but did not report a test of statistical

significance.

Interim summary No study has demonstrated that implanted children show signif-

icant positive SRM with noise ipsilateral to the first implant. This means that children

did not perceive speech more accurately when their second implant or hearing aid

was shielded from the noise, compared to the condition with noise from the front.

With noise contralateral to the first implant, one study of four bilaterally-implanted

children demonstrated significant SRM. Two additional studies, with results from 33

bilaterally-implanted children, did not report statistical tests. With noise contralateral

to the first implant, one study of nine unilaterally-implanted children demonstrated

significant SRM. An additional study of 10 unilaterally-implanted children did not

report a statistical test.
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Table 3.8. Estimates of the amount of SRM shown by bilaterally-implanted children. ‘Ipsilateral’ and ‘contralateral’ refer to locations ipsilateral and
contralateral to the first implant. Ages and durations are in years. DV refers to the dependent variable.

Study Participants Mean age Mean time

with both

devices

Task Results Reference

1 N = 10, sequential. 7.4 1.2 CRISP. DV: minimum

signal-to-noise ratio for

79.4% correct.

Mean +1 dB of SRM with noise

ipsilateral.c Mean +5 dB of SRM with

noise contralateral.c

Litovsky,

Johnstone, &

Godar, 2006

2 N = 4, sequential. 10.2 1.3 Speech-detection task.

DV: minimum

signal-to-noise ratio for

detection.

Mean +0.4 dB of SRM with noise

ipsilateral.b Mean +4.5 dB of SRM

with noise contralateral.a

Mok et al.,

2007

3 N = 4, sequential. 10.2 1.3 Report open-set words

presented at a

signal-to-noise ratio of

+10 dB. DV: % correct.

Mean accuracy was 5% lower with

noise ipsilateral than with noise

front.c

Mok et al.,

2009
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Table 3.8. (Continued). Estimates of the amount of SRM shown by bilaterally-implanted children. ‘Ipsilateral’ and ‘contralateral’ refer to locations
ipsilateral and contralateral to the first implant. Ages and durations are in years. DV refers to the dependent variable.

Study Participants Mean age Mean time

with both

devices

Task Results Reference

4 N = 30, sequential. Not stated.

Age range

3–13 years.

0.8 CRISP. Signal-to-noise

ratio was varied between

children, but fixed for

each child. DV: % correct.

23 children provided data. Mean

accuracy was 1% lower with noise

ipsilateral than with noise front.c

Mean accuracy was 9% higher with

noise contralateral than with noise

front.c

Peters,

Litovsky,

Parkinson, &

Lake, 2007

a Significant difference between conditions, p < .05. b No significant difference between conditions. c No statistical test was reported.
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Table 3.9. Estimates of the amount of SRM shown by bimodally-aided children. Ipsilateral’ and ‘contralateral’ refer to locations ipsilateral and contralateral
to the implant. Ages and durations are in years. DV refers to the dependent variable. 5FA refers to the average of HLs in the nonimplanted ear, measured
at octave frequencies between 0.25 and 4 kHz.

Study Participants Mean age Mean time

with both

devices

Task Results Reference

1 N = 10. Mean aided

5FA of 55 dB.d
9.0 3.6 CRISP. DV: minimum

signal-to-noise ratio for

79.4% correct.

Mean −1 dB of SRM with

noise ipsilateral.c Mean

+2 dB of SRM with noise

contralateral.c

Litovsky,

Johnstone, &

Godar, 2006

2 N = 9. Mean aided 5FA

of 57 dB.

12.1 5.3 Speech-detection task.

DV: minimum

signal-to-noise ratio for

detection.

Mean −0.4 dB of SRM with

noise ipsilateral.a Mean

+3.8 dB of SRM with noise

contralateral.a

Mok et al., 2007

3 N = 9. Mean aided 5FA

of 57 dB.

12.1 5.3 Report open-set words

presented at a

signal-to-noise ratio of

+10 dB. DV: % correct.

Mean accuracy was 6%

lower with noise ipsilateral

than with noise front.c

Mok et al., 2009

a Significant difference between conditions, p < .05. b No significant difference between conditions. c No statistical test was reported.
d Exact HLs were not reported for all children.
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3.3.2.2 Binaural summation

The benefit of a second cochlear implant Twelve studies have assessed whether

bilaterally-implanted children show binaural summation, of which six studies re-

ported significant summation (Gordon & Papsin, 2009; Kim et al., 2009; Kühn-Inacker,

Shehata-Dieler, Müller, & Helms, 2004; Peters et al., 2007; Scherf et al., 2009b; Wolfe

et al., 2007). Five of these studies measured the proportion of correct responses at a

fixed signal-to-noise ratio, which makes it difficult to compare the results with the

published study of binaural summation in normally-hearing children (Ching, van

Wanrooy, et al., 2005). Wolfe et al. measured SRTs and reported 6 dB of summation

on average, which is greater than the 1 dB of summation shown by normally-hearing

children (Ching, van Wanrooy, et al.). However, Wolfe and colleagues presented

stimuli using live voice, which may not produce results that are as reliable as those

from Ching, van Wanrooy, et al., who used recorded stimuli. Three studies found

no statistically-significant binaural summation (Mok et al., 2007, 2009; Schafer &

Thibodeau, 2006). Two studies showed a tendency for binaural summation but did

not report statistical tests (Litovsky, Johnstone, & Godar, 2006; Mueller et al., 2000).

A further study reported that one out of three children showed binaural summation,

but did not report a statistical test (Litovsky et al., 2004).

The benefit of a contralateral hearing aid Twelve studies have assessed whether

bimodally-aided children show binaural summation. Seven studies reported sig-

nificant binaural summation (Ching et al., 2000, 2001; Ching, Hill, et al., 2005;

Holt, Kirk, Eisenberg, Martinez, & Campbell, 2005; Mok et al., 2007, 2009; Yuen et

al., 2009). Again, the majority of studies used a fixed signal-to-noise ratio rather

than an adaptive routine. The single study that used an adaptive routine reported

1.3 dB of summation (Mok et al., 2007), which is similar to the amount shown by

normally-hearing children (Ching, van Wanrooy, et al., 2005). Two studies found

no significant binaural summation (Ching, van Wanrooy, et al., 2005; Schafer &

Thibodeau, 2006). Three additional studies either grouped together children and

adults (Luntz et al., 2003; Luntz, Shpak, & Weiss, 2005) or did not report statistical

tests (Litovsky, Johnstone, & Godar, 2006).

Interim summary Six studies, with results from a total of 148 bilaterally-implanted

children, reported significant binaural summation. A further six studies, with results

from a total of 35 bilaterally-implanted children, did not report significant binaural

summation. Seven studies, with results from a total of 52 bimodally-aided children,

reported significant binaural summation. A further five studies, with results from a

total of 42 bimodally-aided children, did not report significant binaural summation.
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3.3.2.3 Binaural squelch

The benefit of a second cochlear implant Eight studies have assessed whether

bilaterally-implanted children show binaural squelch with noise contralateral to the

first implant. Peters et al. (2007) found significant binaural squelch, whereas Galvin,

Mok, and Dowell (2007) did not. Five studies did not report statistical tests (Galvin,

Mok, Dowell, & Briggs, 2007; Galvin et al., 2008; Litovsky et al., 2004; Litovsky,

Johnstone, & Godar, 2006; Senn et al., 2005). One study found that children performed

significantly worse when using both devices than when using only the first implant

(Mok et al., 2007). Two studies have assessed whether bilaterally-implanted children

show binaural squelch with noise ipsilateral to the first implant. Both showed a very

small benefit of binaural squelch and did not report statistical tests (Galvin et al., 2008;

Senn et al., 2005).

The benefit of a contralateral hearing aid Two studies have assessed whether

bimodally-aided children show binaural squelch with noise contralateral to the first

implant. One study found no significant binaural squelch (Mok et al., 2007). The

other study reported a tendency for children to perform 1 dB worse when using

both devices than when using only the implant, but did not report a statistical test

(Litovsky, Johnstone, & Godar, 2006).

An important cue to binaural squelch is the difference in ITD between the speech

and the noise. Ching, van Wanrooy, et al. (2005) assessed bimodally-aided children’s

ability to use this cue, by presenting stimuli via the auxiliary input to their devices. In

the delayed condition, the speech was delivered at the same time to both devices and

the noise was delayed by 700 µs at one ear (see section 2.5.2.1 for further details).

Children’s SRTs in the delayed condition were similar to their performance in a

condition where both speech and noise had an ITD of zero. Thus, these five children

were apparently unable to use ITDs to aid the perception of speech in noise.

Interim summary One study of 24 bilaterally-implanted children reported signif-

icant binaural squelch with noise contralateral to the first implant, whereas seven

studies with data from a total of 36 children did not. Two studies, with results from a

total of 19 bimodally-aided children, did not report significant binaural squelch with

noise contralateral to the implant.

3.3.2.4 The head-shadow effect

The benefit of a second cochlear implant Ten studies have assessed whether

bilaterally-implanted children show the head-shadow effect with noise ipsilateral

to the first implant, of which five studies reported a statistically-significant effect

(Galvin, Mok, & Dowell, 2007; Mok et al., 2007, 2009; Peters et al., 2007; Steffens et
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al., 2007). Two studies did not publish analyses of the group as a whole, but reported

that a significant head-shadow effect was shown by three out of six children (Galvin,

Mok, Dowell, & Briggs, 2007) and five out of six children (Galvin et al., 2008). The

size of the head-shadow effect was 3–4 dB, on average (Galvin, Mok, & Dowell, 2007;

Galvin et al., 2008; Mok et al., 2007). A search of the literature did not reveal any

comparable studies of normally-hearing children, but normally-hearing adults show

a head-shadow effect of 10–13 dB (Bronkhorst & Plomp, 1988, 1992). An additional

three studies reported a tendency for bilaterally-implanted children to show the head-

shadow effect, but did not report statistical tests (Litovsky et al., 2004; Litovsky,

Johnstone, & Godar, 2006; Senn et al., 2005).

Only three studies have assessed whether bilaterally-implanted children show the

head-shadow effect with noise contralateral to the first implant. Steffens et al. (2007)

used an atypical task with speech presented from 45◦ on the side of the first implant

and noise from 45◦ on the side of the second implant. On average, children correctly

reported a higher proportion of target words when using both implants than when

using just the second implant. Two further studies showed a head-shadow effect

using the conventional loudspeaker arrangement (Figure 3.5), but did not report

statistical tests (Galvin et al., 2008; Senn et al., 2005). The average head-shadow

effect with noise contralateral to the first implant was 9 dB in the study by Galvin

and colleagues, larger than the head-shadow effect of 4 dB with noise ipsilateral to

the first implant.

The benefit of a contralateral hearing aid Six studies have assessed whether

bimodally-aided children show the head-shadow effect with noise ipsilateral to

the implant, of which five studies reported a statistically-significant effect (Beijen,

Mylanus, Leeuw, & Snik, 2008; Ching, Hill, et al., 2005; Mok et al., 2007, 2009; Yuen

et al., 2009). The size of the head-shadow effect was 2.2 dB in the earlier study by Mok

and colleagues. The data from Litovsky, Johnstone, and Godar (2006) do not indicate

a head-shadow effect; statistical tests were not reported.

Interim summary Five studies, with results from a total of 59 bilaterally-implanted

children, reported a significant head-shadow effect with noise ipsilateral to the first

implant. A further five studies, with results from a total of 27 bilaterally-implanted

children, did not report a significant head-shadow effect. Five studies, with results

from a total of 69 bimodally-aided children, reported a significant head-shadow effect

with noise ipsilateral to the first implant. A further study of 10 bimodally-aided

children did not report a significant head-shadow effect. Typically, children perform

better when using their first implant than when using their second implant or hearing

aid. Thus, if children can benefit from the head-shadow effect with noise ipsilateral

to the first implant, they are also likely to show a benefit with noise contralateral
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to the first implant. This argument is supported by Galvin et al. (2008), who found

that the head-shadow effect in bilaterally-implanted children was larger with noise

contralateral than with noise ipsilateral to the first implant.

Summary of within-subjects comparisons

Several studies of bilaterally-implanted or bimodally-aided children have reported

within-subjects comparisons—typically, a comparison of performance using both

devices with performance using only the first implant. A substantial proportion

of studies reported null results or failed to report statistical tests. Nonetheless,

the evidence indicates that, on average, children who use two devices (either two

implants or an implant and an acoustic hearing aid) localise sources of sound

more accurately when using both devices than when using only the first implant.

Despite the benefit of using a second device, the majority of implanted children show

impaired sound-source localisation skills relative to normally-hearing children. A few

studies reported a tendency for bilaterally-implanted and bimodally-aided children

to show SRM with noise contralateral to the first implant, sometimes showing a

similar amount of SRM as normally-hearing children. No study has demonstrated

that implanted children benefit from SRM with noise ipsilateral to the first implant.

The lack of evidence regarding SRM casts doubt on the degree to which a second

implant or a contralateral hearing aid will help children to perceive speech in noisy

situations at home and at school.

Both bilaterally-implanted and bimodally-aided children have been shown to

benefit from binaural summation and the head-shadow effect with noise ipsilateral

to the first implant. It is not clear whether bilaterally-implanted children benefit from

binaural squelch: although seven out of eight studies reported null results, the largest

study found significant binaural squelch (Peters et al., 2007), suggesting that the null

results may be due to a lack of statistical power caused by a small sample size. There

is no evidence that bimodally-aided children benefit from binaural squelch. The

range of outcome measures makes it difficult to compare these studies to establish

whether the provision of bilateral implants, or the provision of a unilateral implant

and a contralateral acoustic hearing aid, is likely to result in better spatial listening

skills for the majority of children.

Within-subjects comparisons may overestimate the benefit of a second device,

because the monaural listening condition was unfamiliar to the child (this criticism

does not apply to the estimates of SRM, which compared binaural listening in two

conditions). The confound of unfamiliarity may be a particular problem for tests of

sound-source localisation, because chronic monaural listeners can learn monaural

cues to source location (such as changes in level and spectral content that occur as

the participant turns their head, Luntz et al., 2002).
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3.4 Longitudinal study of implanted children

A search of the literature revealed only one longitudinal study of children who

received sequential bilateral implants. Zeitler et al. (2008) assessed the speech-

perception skills of 43 unilaterally-implanted children prior to, and three months

after, the second implantation. In quiet and in noise, children’s performance was

significantly better after the second implantation (when they were tested using both

implants) than prior to the second implantation (when they were tested using an

implant and a hearing aid). The improvements were modest: on average, fewer

than 10 percentage points on a test of sentence perception at a signal-to-noise ratio

of +10 dB and fewer than 5 percentage points on the same test in quiet. The two

assessments were only 5 months apart, so the authors state that the improvement

was not likely to be due to maturation. In support of this, performance using only the

first implant did not improve between the two testing sessions.

3.5 Sources of bias in nonrandomised studies

Before summarising the results of the literature review, it is important to consider

the issue of bias. A study is said to be biased if there is a systematic error in the

results. Such an error can lead to an over- or under-estimation of the effectiveness

of an intervention (Higgins & Green, 2009). It is difficult to assess whether a study is

biased—instead, the design of the study can be examined to determine whether the

results are at risk of bias. This section provides an overview of the potential sources of

bias that are relevant to this literature review; the following section assesses the risk

of bias in the studies included in the review.

Nonrandomised studies can be affected by selection bias, meaning there are

systematic differences between the experimental groups in addition to the difference

in the intervention they received (Higgins & Green, 2009). Confounding occurs when

selection bias creates groups that differ on a variable that is known to affect outcome,

and it can lead to a shift in the observed effect as well as an increase in the variability

of the observed effect across studies (Deeks et al., 2003). A different type of selection

bias refers to the way in which participants are selected for inclusion in a study. If

the participants are not representative of the wider population, the results may not

generalise to the population (i.e. the external validity is threatened; Deeks et al.). A

further potential source of bias is incomplete outcome data, which can be caused by

exclusion (data were available but omitted from analyses) or attrition (data were not

available). There is evidence that analyses of data after exclusion yield estimates of

greater effectiveness than analyses of data from all participants (Tierney & Stewart,

2005). Statistical techniques are available to deal with data that are missing because

of attrition; the results may be biased if these techniques are not used (Donders,
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Heijden, Stijnen, & Moons, 2006). Studies may also be affected by detection bias,

meaning that the assessment of outcome was not unbiased and correct, and reporting

bias, meaning that the reporting of results was selective both within and across

studies.

3.5.1 Risk of bias in studies of implanted children

Several of the between-subjects studies reviewed in this chapter appear to be at risk

of selection bias, because the groups of participants differed on variables other than

the number of implants. Indeed, there is evidence of confounding in the majority of

the between-subjects studies of listening skill: the groups differed on variables that

predict outcome (such as age, age at first implantation, or experience of using both

devices) in the studies of Beijen et al. (2007), Litovsky, Johnstone, Godar, Agrawal, et

al. (2006), Litovsky, Johnstone, and Godar (2006), and Mok et al. (2007, 2009). None of

the studies attempted to exercise statistical control over confounds.

The remaining sources of bias can affect between-subjects, within-subjects, and

longitudinal designs. Several studies did not report their inclusion and exclusion

criteria, or how participants were contacted (e.g. Grieco-Calub et al., 2008; Litovsky,

Johnstone, Godar, Agrawal, et al., 2006; Litovsky, Johnstone, & Godar, 2006; Mok et

al., 2007, 2009). The lack of reported inclusion and exclusion criteria leaves open

the possibility that experimenters (perhaps unknowingly) selected those participants

who were likely to reinforce their hypotheses.

Some studies that did report inclusion and exclusion criteria may have limited

external validity because they are at risk of selection bias. For example, Galvin,

Mok, and Dowell (2007) recruited children who, prior to receiving a second implant,

were successful users of the first implant, had no additional disabilities, and had

normal cochlear anatomy. Peters et al. (2007) recruited children who, prior to

receiving a second implant, could complete the outcome measures, attended an

educational setting focussed on oral language, and had normal cochlear anatomy.

These criteria probably excluded children who showed poor outcomes with the first

implant. It is possible that children with poor outcomes after unilateral implantation

will show an above-average benefit from bilateral implantation. For example, if

the first electrode array could not be fully inserted into the cochlea, a child may

show a great benefit from the second implant. On the other hand, children with

poor outcomes after unilateral implantation may show a below-average benefit from

bilateral implantation, perhaps because they have abnormal cochlear anatomy or

additional disabilities. Thus, the benefits of bilateral implantation demonstrated by

Galvin, Mok, and Dowell (2007) and Peters et al. (2007) may be smaller or larger than

the benefits to the wider population.

One study was at risk of bias due to excluded outcome data (Litovsky, Johnstone,
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Godar, Agrawal, et al., 2006). Several studies were at risk of bias due to attrition,

either because some children stopped using the second device (Ching et al., 2001;

Galvin et al., 2008; Zeitler et al., 2008) or because some children did not complete

the outcome measures (Beijen et al., 2009; Galvin, Mok, & Dowell, 2007; Peters et

al., 2007; Steffens et al., 2007). A study of unilaterally-implanted adults found that

participants with missing data tended to be poorer performers (UK Cochlear Implant

Study Group, 2004c). Thus, ignoring data that are missing because of attrition may

lead to an overestimation of the benefit of a second device. The studies reviewed in

this chapter did not use statistical techniques to deal with missing data.

None of the studies used an assessment of outcome in which the experimenter

was blind to the intervention the child had received (or, for within-subject designs,

whether the child had one or both devices switched on). Consequently, the studies

are at risk of detection bias. Although several papers reported null results, which is

evidence against reporting bias within studies, it is difficult to assess whether this area

of literature is at particular risk of reporting bias across studies. In general, however,

studies that find a statistically-significant effect are more likely to be published

than those that do not, particularly for nonrandomised designs (Easterbrook, Berlin,

Gopalan, & Matthews, 1991).

Many studies reported results from the same participants (for example, Ching

et al., 2000 and Ching et al., 2001; Galvin, Mok, & Dowell, 2007 and Galvin, Mok,

Dowell, & Briggs, 2007; Litovsky, Johnstone, & Godar, 2006 and Litovsky, Johnstone,

Godar, Agrawal, et al., 2006; Mok et al., 2007 and Mok et al., 2009). Although this

is not a source of bias listed by the Cochrane Handbook for Systematic Reviews of

Interventions (Higgins & Green, 2009), using the same participants in multiple studies

means that the results from one child may be counted twice when trying to assess the

strength of evidence.

3.6 Summary of literature review

It would be difficult to conduct a meta-analysis of the studies reviewed in this

chapter, because of the range of outcome measures and inconsistency in the way

that results have been reported (a similar conclusion was reached by Bond et al.,

2007 and Johnston, Durieux-Smith, Angus, O’Connor, & Fitzpatrick, 2009). As

an alternative to meta-analysis, the results of the studies of listening skill are

summarised in Figure 3.6 by plotting the reported p values. The left panel of

Figure 3.6 shows the results of between-subjects comparisons of unilaterally- and

bilaterally-implanted children. Of those comparisons for which statistical tests were

reported, half found a significant difference between the groups. Seven of the

nine significant results indicated that bilaterally-implanted children performed better

than unilaterally-implanted children, whereas two significant results indicated the
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opposite pattern. The centre and right panels of Figure 3.6 show the results of

within-subjects comparisons of bilaterally-implanted and bimodally-aided children,

respectively. Regarding bilaterally-implanted children, of those comparisons for

which statistical tests were reported, two-thirds found a significant benefit of using

both implants rather than just one. Regarding bimodally-aided children, of those

comparisons for which statistical tests were reported, a little over two-thirds found

a significant benefit of using bimodal devices rather than just the implant.

Figure 3.6 shows several null results and some contradictory results. A number of

factors may have contributed to this inconsistency. First, several studies used small

sample sizes. Second, there was heterogeneity both within samples and between

samples: the children in these studies differed in age, age at onset of deafness, age

at implantation, hearing levels in the nonimplanted ear, and experience using both

devices. Third, several studies were at risk of bias, which can increase the variability

in results. Fourth, studies used disparate outcome measures and, even when outcome

measures were similar, the comparisons that were subjected to statistical tests often

differed between studies.

3.6.1 Evaluation of the evidence

On balance, there is evidence that children who use two devices (either bilateral

implants or an implant and an acoustic hearing aid) show better listening skills when

using both devices than when using only one device. The benefits that have been

demonstrated most often are an improved ability to localise sources of sound and to

perceive speech in noise (as measured by binaural summation and the head-shadow

effect). These demonstrations constitute evidence of the efficacy of a second implant

or an acoustic hearing aid, meaning that both interventions can provide benefit for

some children (Gartlehner, Hansen, Nissman, Lohr, & Carey, 2006). However, the

studies were at risk of bias and used a design in which the unilateral condition was

unfamiliar to the child. Consequently, there is uncertainty regarding the effectiveness

of a second implant or a contralateral acoustic hearing aid: it is not clear whether

either intervention would benefit the majority of children if it were provided routinely

(Gartlehner et al., 2006). Moreover, there is uncertainty regarding whether bilateral

implantation or unilateral implantation (with the provision of a contralateral acoustic

hearing aid) is more effective in enabling spatial listening skills. The evidence from

between-subjects studies is compatible with the idea that bilateral implantation for

children is associated with better spatial listening skills than unilateral implantation,

but the data are inconclusive and at risk of bias. The evidence suggests that bilaterally-

and unilaterally-implanted children have similar language skills and quality of life.
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Figure 3.6. Summary of literature review. Left panel: between-subjects comparisons of bilaterally- and unilaterally-implanted children. Centre panel:
within-subjects comparisons of CI-CI and CI-only. Right panel: within-subjects comparisons of CI-HA and CI-only. The vertical axis denotes the outcome
measure. Data points plot a study’s published p value and are labelled with a number to identify the study (see key). N.R. indicates that a statistical test
was not reported. All points to the left of the dashed line indicate a statistically-significant result. In the left panel, orange triangles represent studies that
reported significantly better performance for CI-HA than CI-CI children; all other significant results in the left panel indicate better performance for CI-CI
than CI-HA or CI-only children.
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3.7 Variables affecting performance with bilateral

implants

This section provides an overview of the variables that predict outcomes for chil-

dren following bilateral implantation. Correlational analyses have identified three

variables that are associated with a better ability to localise sources of sound, and

to perceive speech in noise, when using both implants:

• A shorter duration of deafness in both the first- and second-implanted ear

(Zeitler et al., 2008).

• A younger age at the first implantation (Scherf et al., 2009b; Van Deun et al.,

2010) and the second implantation (Steffens et al., 2007).

• Greater experience with bilateral implants (Litovsky, Johnstone, Godar, Agrawal,

et al., 2006; Steffens et al., 2007).

Nonetheless, an older age at second implantation does not preclude benefit from

the second implant: Scherf et al. (2009b) found that, on average, children who were

over 6 years old when they received their second implant showed significant binaural

summation. Potentially, several other variables that influence outcomes following

unilateral implantation (see section 3.1.1) will also influence outcomes following

bilateral implantation. As yet, the majority of these relationships have not been

assessed.

Gordon and Papsin (2009) reported a multiple regression analysis that attempted

to measure the effect of several predictors on the speech-perception performance of

bilaterally-implanted children. It is difficult to determine the details of the analysis.

The paper appears to indicate that the outcome measure was the difference between

a child’s performance when listening with their first implant in quiet, and their

performance in four other conditions. If this interpretation is correct, each child

contributed four outcome data points to the regression model, which violates the

assumption that the values of the outcome measure are independent (Field, 2005).

Also, some of the predictors in the model correlated highly with each other, which

violates a further assumption of multiple regression. Thus, although the analysis

showed a relationship between a longer time interval between implantations and a

poorer outcome, the statistical methods cast doubt over this conclusion.

The relationship between a younger age at unilateral implantation and better

listening skills is well established (Geers et al., 2003; O’Donoghue et al., 2000; Stacey

et al., 2006). One explanation for this relationship is that there is a sensitive period

during which the auditory system is maximally plastic (Sharma, Dorman, & Spahr,

2002). Evidence comes from electrophysiological recordings of neural responses to

speech, which reveal a waveform known as P1 that is assumed to be caused by activity
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in the auditory regions of the thalamus and cortex. The latency of P1 decreases with

age in normally-hearing children (Gilley, Sharma, Dorman, & Martin, 2005). Sharma

et al. (2002) demonstrated that 57 children who received an implant before the age of

3.5 years, who were tested 3 years after the implant was activated, showed a P1 latency

similar to that of age-matched normally-hearing children. Thus, early-implanted

children showed a marker of normal auditory development. Twenty-one children

who received an implant after the age of 7 years, who were tested 3 years after the

implant was activated, showed a P1 component with a longer latency and a different

waveform morphology than that of age-matched normally-hearing children, which

may indicate abnormal development of the auditory thalamus and cortex (Sharma et

al., 2002).

The concept of a sensitive period can also be applied to neural development

following bilateral implantation. Sharma, Dorman, and Kral (2005) measured the

P1 response in a child who received the first implant at the age of 2 years and

the second implant at the age of 10 years. The measurements took place up to

9 months after the activation of the second implant. The child showed a delayed

P1 when the second implant was stimulated and an age-appropriate P1 when the

first implant was stimulated (Sharma et al., 2005). In contrast, four children who

received both implants under the age of 2 years showed age-appropriate P1 responses

following stimulation of either implant, within 7 months of the activation of the

second implant (Bauer, Sharma, Martin, & Dorman, 2006). The authors concluded

that early stimulation of one ear may not preserve the plasticity of the ipsilateral

auditory cortex, and suggested that bilateral implantation may be more effective if

it is provided at a young age. This proposal is supported by behavioural evidence that

a younger age at second implantation is associated with better skills in sound-source

localisation (Steffens et al., 2007).

There may also be a sensitive period for the development of the auditory

brainstem. Gordon, Valero, and Papsin (2007) measured wave eV, which is thought

to be caused by activity in the auditory brainstem, in 13 bilaterally-implanted

children. Immediately after the second implantation, children who had received their

two implants sequentially showed a wave eV that was of longer latency following

stimulation of the second implant than following stimulation of the first implant.

Children with a gap shorter than a year between implantations appeared to show

a decrease over time in eV latency following stimulation of the second implant,

meaning that the latencies from both ears became similar. Theoretically, this may

aid the perception of ITDs (Gordon et al., 2007). For older children with a longer gap

between implantations, there was a sustained pattern of longer latencies following

stimulation of the second implant than following stimulation of the first implant.

Gordon et al. (2007) suggested that unilateral stimulation during the sensitive period

may lead to auditory brainstem pathways that are dominated by input from one ear,
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an idea which is supported by animal models of unilateral deafness. This leads to a

prediction that a shorter gap between sequential bilateral implantations will result in

better outcomes. However, the groups of children in the study by Gordon et al. (2007)

were not compared statistically, and the relationship between time and decreasing eV

latency in the second ear was weak even for children who had a short gap between

implantations (r2 = 0.27).

In summary, a shorter duration of deafness in both ears, and a younger age at

implantation in both ears, is correlated with better listening skills following bilateral

implantation. Listening skills may take time to emerge after bilateral implantation,

meaning that better outcomes are also correlated with greater experience with both

implants. Electrophysiological research indicates that the relationship between age

at implantation and outcome may be caused by a sensitive period during which the

auditory cortex undergoes major developmental change.

3.8 Variables affecting performance with bimodal

devices

A search of the literature did not reveal studies that assessed predictors of spatial

listening skill following the provision of bimodal devices. Instead, this section

provides an overview of studies that assessed predictors of bimodal benefit—the

difference between bimodal performance and implant-only performance. It should

be noted that the previous section reviewed predictors of performance with bilateral

implants (not the difference between bilateral and unilateral performance).

Intuitively, it seems likely that children with more residual hearing in the

nonimplanted ear will show more benefit from using a contralateral acoustic hearing

aid. However, several studies have failed to find such a relationship. Ching et al.

(2001) reported that hearing levels at 0.5, 1, and 2 kHz in the nonimplanted ear did not

correlate with binaural summation or bimodal benefit for sound-source localisation.

Similarly, Ching, Hill, et al. (2005) created a multiple regression model to predict

bimodal benefit for speech perception (measured by binaural summation and the

head-shadow effect) and found that the average hearing level in the nonimplanted ear

(measured at 0.25, 0.5, and 1 kHz) was not a significant predictor. Beijen et al. (2008)

used multiple regression to assess whether bimodal benefit for speech perception

(measured by binaural summation and the head-shadow effect) could be predicted by

hearing levels in the nonimplanted ear. Hearing level was divided into three separate

variables (frequencies under 0.5 kHz, 0.5–2 kHz, and over 2 kHz), none of which was

a significant predictor of outcome.

In contrast, Mok et al. (2009) found that a greater head-shadow effect was

associated with lower hearing levels at 0.25 and 0.5 kHz (i.e. more residual hearing)
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and higher hearing levels at 4 kHz (i.e. less residual hearing). A separate study of

the same children reported that higher thresholds at 2 and 4 kHz were associated

with greater SRM (Mok et al., 2007). The authors suggested that mid- to high-

frequency signals delivered by the hearing aid could conflict with those from the

implant. Consequently, to gain optimal benefit from bimodal stimulation, children

need good residual hearing in the low frequencies and poor residual hearing at higher

frequencies. Although similar results have been reported for adults (Mok, Grayden,

Dowell, & Lawrence, 2006), this evidence cannot be regarded as conclusive because it

is based on only nine children. Moreover, it is not clear why this relationship between

hearing level and bimodal benefit was not reported by Ching et al. (2001), Ching, Hill,

et al. (2005), and Beijen et al. (2008).

Fitting techniques that balance the loudness of the two devices may help children

to localise sources of sound (see section 3.3.1.2). A single study has reported that

a younger age at implantation is associated with a greater bimodal benefit for

sound-source localisation (Ching, Hill, et al., 2005). The same study found that the

duration of implant use and the duration of hearing aid use were not significant

predictors of the bimodal benefit for speech perception or sound-source localisation.

Similarly, Beijen et al. (2008) found that age, experience with both devices, and age

at implantation were not significant predictors of binaural summation or the head-

shadow effect. Ching’s group compared children who had used bimodal devices for 1

to 6 years with unilaterally-implanted children who had been fitted with an acoustic

hearing aid 2 months prior to testing (Ching, Hill, et al., 2005). There was no difference

in sound-source localisation performance between the two groups, suggesting that

long-term experience of bimodal stimulation is not necessary for a child to benefit

from a contralateral acoustic hearing aid.

To summarise, despite investigation by several studies, no variables have been

consistently identified as predictors of the benefit which unilaterally-implanted

children gain from a contralateral acoustic hearing aid. Consequently, it may be

difficult for clinicians and parents to decide whether a child is likely to gain the most

benefit from bimodal stimulation or bilateral implantation.

3.9 Conclusion

Unilateral implantation for children is effective in improving speech perception,

language skills, and quality of life. Some between-subjects comparisons indicate that,

compared to unilateral implantation, bilateral implantation for children is effective

in improving spatial listening skills. Other studies found no significant difference

between the listening skills of unilaterally- and bilaterally-implanted children, despite

using similar methods. These studies were nonrandomised and are at risk of several

types of bias. There is no evidence that bilaterally-implanted children have better
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language skills or a higher quality of life than unilaterally-implanted children. Thus,

although within-subjects comparisons demonstrate that there can be a benefit of

providing unilaterally-implanted children with either a second cochlear implant or

a contralateral hearing aid, it is not possible to conclude which of these interventions

will be more effective in enabling spatial listening skills.

3.10 Summary

• Compared to amplification using bilateral acoustic hearing aids, unilateral im-

plantation for severely-profoundly deaf children is associated with an improved

ability to perceive speech, a faster acquisition of language, higher educational

achievements, and a higher quality of life.

• It has been argued that implanting both ears gives children the potential to

develop binaural hearing, provides children with a backup device, and ensures

that the more-responsive auditory nerve is stimulated.

• Some nonrandomised between-subjects comparisons indicate that, compared

to unilaterally-implanted children, bilaterally-implanted children display supe-

rior skills in left-right discrimination, greater SRM, and a greater head-shadow

effect. Other studies found no significant difference between the listening skills

of unilaterally- and bilaterally-implanted children.

• Within-subjects comparisons show that children who use two devices (either

a second implant or an acoustic hearing aid) perform better when using both

devices than when using only one device, on tests of sound-source localisation

and the perception of speech in noise (as measured by binaural summation and

the head-shadow effect).

• Studies have found that bilaterally-implanted and bimodally-aided children

show SRM with noise contralateral to the first implant, but have not found that

these children show SRM with noise ipsilateral to the first implant.

• The majority of the published studies are at risk of selection bias, bias caused

by incomplete outcome data, detection bias, and/or reporting bias. None of the

studies used statistical techniques to control for either confounding variables or

missing data.

• For children with bilateral implants, better listening skills are associated with a

younger age at implantation in both ears, a shorter duration of deafness in both

ears, and increasing experience with both devices.
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• It is difficult to predict how much a unilaterally-implanted child will benefit

from a contralateral acoustic hearing aid, because the relationship with residual

hearing level is poorly understood.
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Chapter 4

Spatial Listening Skills of Children and

Adults with Normal Hearing

This chapter reports an experiment that measured the performance of normally-

hearing children and adults on a set of tests of spatial listening. The tests were found

to be suitable for children between the ages of 18 months and 7 years. Children as

young as 3 or 4 years performed at a similar level to adults on tests of the ability

to localise sound and of the ability to benefit from SRM when listening to speech.

Children’s SRTs in quiet and in noise decreased with age. The results will be used in

later chapters to compare the performance of children with normal hearing with that

of children with cochlear implants.

4.1 Introduction

There is worldwide interest in whether severely-profoundly deaf children should

receive unilateral or bilateral cochlear implants. It has been argued that bilateral

implants give children the potential to develop skills in spatial listening, meaning

the ability to use both ears together to localise sounds and to understand speech

in noise (see section 2.3). A set of tests of these skills has been developed, to

allow a comparison of outcomes for children with unilateral or bilateral implants.

This chapter describes the tests and reports a study of the spatial listening skills of

normally-hearing children.

A number of factors influenced the design of the test battery. Children with

implants show a range of listening abilities (Stacey et al., 2006), meaning that different

individuals may show floor or ceiling effects on the same test. Accordingly, the test

battery included a series of tests of the same listening skill, with increasing levels of

difficulty. Children with implants also differ in the extent of their vocabulary and their

ability to respond verbally. To minimise the impact of these variables on performance,

the tests required minimal vocabulary and children responded by pointing rather

than speaking. The tests were designed to be engaging and to be completed in a single
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session lasting under 3 hours. The youngest age at which children routinely receive

a cochlear implant in the UK is 12 months. Allowing 6 months for the child to adjust

to the implant before assessment, the simplest tests were designed to be suitable for

children from the age of 18 months. The reasons for including each test are explained

in sections 4.1.1 to 4.1.4. Previous assessments of these skills in normally-hearing

children were reviewed in section 2.5.

4.1.1 Sound-source localisation

A potential benefit of bilateral implants is an improved ability to localise the spatial

position of a source of sound on the horizontal plane. Accordingly, two tests of

sound-source localisation were developed. The first was designed for the youngest

children and assessed the ability to discriminate sound sources on the left from those

on the right (‘left-right discrimination’). The second was designed for older children

and assessed the ability to locate a single sound source in an array of three or more

possible source locations (‘localisation’).

The majority of studies that assessed left-right discrimination in normally-hearing

children have measured the MAA (see section 2.4.1). The MAA was not measured

in the present study because: a) the minimum separation between loudspeakers

in the laboratory was 15◦; and b) reliably assessing head turns towards sources

that are separated by less than 30◦ requires two observers and only one was

available. Accordingly, the principles of visual reinforcement audiometry (Bamford

& McSporran, 1993) were adapted to develop a test of left-right discrimination that

measured the proportion of correct head turns towards loudspeakers separated by

either 60◦ or 120◦. Based on measurements of the MAA (see section 2.5.1.1), one

would expect normally-hearing children to show high levels of performance on tasks

that use such a wide loudspeaker separation.

A more advanced test was developed to assess children’s ability to localise sources

of sound when presented with an array of three or five possible locations. The

maximum number of locations was restricted to five because only five video screens

were available. Studies using an array of between 9 and 13 possible locations showed

that children’s performance improves between the ages of 4 and 5 years, and that

children perform similarly to adults by the age of 5 or 6 years (Bess et al., 1986; Van

Deun et al., 2009).

4.1.2 Tracking moving sounds

Potentially, children with bilateral implants could be able to track moving sources

of sound more accurately than children with a unilateral implant. Accordingly, a

test of movement tracking was developed, with sources of sound on the horizontal

plane. Several previous studies have assessed the ability of normally-hearing adults
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to detect movement of a source of sound (Middlebrooks & Green, 1991), typically

using loudspeakers on rotating booms. None of the studies included children. The

tasks used with adults are too complex for young children and moving loudspeakers

were not available, so a test was developed in which stimuli were presented from a

sequence of static loudspeakers. The velocity and duration of apparent movement

were fixed. The test was scored by an observer who watched video-recordings of the

child’s responses during each trial. If the trajectory of movement could be deduced

from the child’s head-turns or pointing responses, it was inferred that the child could

track the apparently-moving source of sound.

4.1.3 Perception of speech in noise

A further potential benefit of bilateral implantation is an improved ability to perceive

speech in noise. SRM (see section 3.3) was chosen as the measure of binaural benefit

for speech perception because, for children with implants, SRM can be assessed

whilst the child listens with the device(s) they use every day. Alternative measures

(such as binaural summation, binaural squelch, and the head shadow effect) involve

switching off one device during testing, which confounds the unilateral condition

with unfamiliarity.

To measure SRM, a test of speech perception was used in which the speech was

presented from in front of the child and pink noise (meaning noise with equal energy

in each octave) was presented from the left, front, or right. The signal-to-noise ratio

was varied adaptively to measure SRTs. The results can be analysed in two ways: 1) the

raw SRTs in each condition, or 2) the difference in performance between the noise-

front and noise-side conditions, which shows the amount of SRM. There was also

a quiet condition in which no noise was presented and the level of the speech was

varied adaptively.

Regarding the raw scores, when speech perception in noise is measured using a

variety of tests, normally-hearing children consistently require a more advantageous

signal-to-noise ratio than adults (Garadat & Litovsky, 2007; Hall, Grose, Buss, & Dev,

2002; Johnstone & Litovsky, 2006; Litovsky, 2005). Similarly, in quiet conditions,

children require a more intense speech signal than adults (Litovsky; Papso & Blood,

1989; Summerfield, Foster, Moorjani, & Palmer, 2004). Summerfield et al. (2004) used

a version of the test of speech perception that was used in the present study (see

section 4.2.2.4 for details). The target stimuli were a closed set of 14 words, presented

over headphones. The level of the speech was varied adaptively to measure the SRT

at which the child could identify the target word on 70.7% of trials. The test was

completed by 113 normally-hearing children, both in quiet and with pink noise at

+60 dB(A) SPL. Children’s SRTs in noise decreased between the ages of 3 and 10 years,

and SRTs in quiet decreased up to the age of 15 years (Figure 4.1).

73



Chapter 4 Spatial Listening Skills of Children and Adults with Normal Hearing

Regarding SRM, normally-hearing 3- to 7-year-old children show SRM of between

5 and 11 dB (Garadat & Litovsky, 2007; Johnstone & Litovsky, 2006; Litovsky, 2005). It

is not clear if the benefit from SRM increases as children get older (see section 2.1).

Figure 4.1. The relationship between SRTs and age for normally-hearing children. SRTs
in quiet decreased with age for children up to 15 years old. SRTs in pink noise showed
a smaller decrease with age that appears to be marginal after the age of 10 years. Data
reprinted with permission from Summerfield et al. (2004).

4.1.4 The benefit of a difference in fundamental frequency for the

perception of speech in noise

When broadband complex sounds are processed by the normally-functioning cochlea,

the resulting signal can be thought of as several relatively narrowband signals, each

containing a slowly-varying envelope superimposed onto rapidly-varying temporal

fine structure (see section 2.1). Temporal fine structure conveys information about

fundamental frequency (F0), which is the main determinant of the pitch of a

person’s voice. Normally-hearing listeners can use a difference in F0 to segregate

concurrent talkers and hence improve the intelligibility of the target speech (Assmann

& Summerfield, 1990). The signal processing carried out by a cochlear-implant

system removes temporal fine structure (see section 3.1), which may limit implanted

listeners’ ability to segregate talkers on the basis of F0. Temporal fine structure is,

however, represented in the signal delivered by an acoustic hearing aid, so one might

expect bimodally-aided listeners to be more able than bilaterally-implanted listeners
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to segregate concurrent talkers on the basis of a difference in F0. On the other hand,

hearing-impaired listeners who use bilateral acoustic hearing aids show an impaired

ability to benefit from temporal fine structure (Hopkins et al., 2008; B. C. J. Moore,

2008), so one might expect both bimodally-aided and bilaterally-implanted listeners

to be limited in their ability to segregate on the basis of F0. The evidence regarding

segregation by bimodally-aided adults is reviewed in section 6.1.2.2.2.

A test was developed in which the difference in F0 between the target speech

and a masker was manipulated. The format was the same as for the test of speech

perception in noise, but the stimuli were modified. In one condition the speech and

masker had the same fixed F0 and in the other condition the F0 of the masker was

raised relative to that of the speech.

4.1.5 Aims and hypotheses

This study assessed the performance of normally-hearing children on tests of spatial

listening. The aim was to gather a set of data that can be compared with data from

implanted children in later studies. The design was cross-sectional with participants

stratified by age. A group of normally-hearing adults was tested to assess the upper

limit of performance. The data from adults were gathered by Shan Huang, as part of

an undergraduate project that was co-supervised by the author. To assist the planning

of future studies, the age at which children could complete the tests is reported.

The analyses tested whether children’s skills in spatial listening improved with age

and which groups of children showed poorer performance than adults. Test-retest

reliability was measured for a subset of the children. It was predicted that:

1. Older children would be able to complete more of the test battery.

2. Children would be able to discriminate sound sources on the left from those on

the right with almost perfect accuracy, for loudspeaker separations of 60◦ and

120◦.

3. Children’s performance on localisation tests would improve with age and be

similar to that of adults from the age of 5 years.

4. Older children would have lower SRTs than younger children, both in quiet and

in noise.

5. Children would show SRM with noise on either side of the head.

6. Children would show lower SRTs when there was a difference in F0 between

speech and a masker than when there was no difference in F0 between speech

and a masker.
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4.2 Method

4.2.1 Participants

Ten adults aged between 20 and 58 years were recruited from the University of York

participant pool. Fifty-eight children aged between 1.5 and 7.9 years were recruited

via schools and nurseries. Two children were excluded from the study: one because

of suspected hearing impairment, and one 22-month-old who was unwilling to sit

still. The number of remaining participants, their age and their gender are shown in

Table 4.1.

The adults had pure-tone thresholds equal to or better than 25 dB HL at octave

frequencies between 0.25 and 8 kHz, inclusive, measured using the British Society of

Audiology guidelines (1981). Due to time constraints, children’s pure-tone thresholds

were not measured. However, the children had passed National Health Service

hearing-screening tests (with the exception of two children who were not born in

the UK). The hearing-screening test had been completed before the first birthday

for 33 children, between the first and second birthdays for 12 children, and after

the second birthday for 9 children. Consequently, for some of the older children,

the hearing-screening test occurred several years before the child participated in

this study. According to parental report, the children had normal hearing, had been

in good health in the fortnight prior to testing, and had no disabilities or learning

difficulties. All children went to an English-speaking school or nursery and could

understand instructions in English. Approval was obtained from the Research Ethics

Committee of the Department of Psychology of the University of York. Parents and

adult participants gave written informed consent. The parents of child participants

were given an inconvenience allowance to cover their travel costs; adult participants

were paid for their time.

Table 4.1. Characteristics of the participants. The age range of the eight groups in the
study is listed alongside the number of participants in each group (N ), the mean age
of participants in each group (with standard deviations, SD , in parentheses) and the
number of females in each group. Ages are in years.

Age range N Mean age (SD) Number of
females

1.5 to 1.9 8 1.7 (0.2) 5
2.0 to 2.9 8 2.4 (0.4) 4
3.0 to 3.9 8 3.5 (0.3) 3
4.0 to 4.9 8 4.5 (0.3) 4
5.0 to 5.9 8 5.6 (0.3) 5
6.0 to 6.9 8 6.3 (0.3) 6
7.0 to 7.9 8 7.6 (0.3) 3

Adult 10 25.5 (11.5) 6
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4.2.2 Test battery

Testing took place in a 5.3 m × 3.7 m single-walled booth (Industrial Acoustics

Company) containing a circle of 24 loudspeakers (Böse Acoustimass 3 Series IV). The

circle had a radius of 1.65 m and the loudspeakers were mounted on 1 m high poles,

at 15◦ intervals, facing the centre of the circle. Only the front arc of 13 loudspeakers

was used, giving a range of spatial positions from −90◦ to +90◦. The loudspeakers

were controlled by software running on a personal computer. The software produced

simultaneous output via a 24 I/O channel, 24-bit MOTU digital to analogue converter

and an array of 24 power amplifiers. The array of loudspeakers was calibrated using

a Brüel and Kjaer Investigator sound-level meter (Type 2260) with a free-field 1/2”

microphone (Type 4189) in the centre of the ring at the height of the loudspeakers.

The output for each loudspeaker was adjusted so that the level of a one-octave band

of white noise centred on 1 kHz was the same for every loudspeaker (within ±0.1 dB).

Five independently-controlled video screens could be positioned below any five of

the loudspeakers.

The stimuli for the Toy Discrimination test (see section 4.2.2.4) were those

recorded by Summerfield, Palmer, Foster, Marshall, and Twomey (1994). All other

speech stimuli were recorded in the testing booth using a Sennheiser K3N/ME40

microphone and digitised at 44.1 kHz with 16-bit amplitude quantization. The

presentation levels of the stimuli were measured with the sound-level meter and

microphone arrangement described in the previous paragraph. The metering

software was set to display the peak value in dB(A) SPL in one-second intervals; the

maximum value was recorded for each stimulus.

The child sat in either a high chair or a child’s chair in the centre of the ring.

The parent sat behind their child. Some children sat on their parent’s lap, in which

case the parent listened to music via headphones to mask the acoustical stimuli. The

experimenter sat in a corner of the booth, in sight of the child. The experimenter

could see a live video feed of the child from a video camera at 0◦. The following

sections describe the procedure for testing children. The procedure for testing adults

was similar and is described in section 4.2.3.

4.2.2.1 Left-Right Discrimination test

The Left-Right Discrimination test used three video screens and loudspeakers

situated at −60◦, 0◦, and +60◦. At the beginning of a trial, an audiovisual cartoon

clip was presented from 0◦. The experimenter viewed the video feed showing the

child’s face. When the experimenter judged that the child was looking forwards and

paying attention, the cartoon was turned off and an audio-only speech stimulus was

presented from either −60◦ or +60◦. The experimenter judged whether the child

made an eye movement or a head turn to one side. The direction of the response
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was entered into the computer controlling the equipment. A response towards the

location of the source was rewarded by a display of an audiovisual cartoon at that

location. An incorrect response, or no response, resulted in no reward cartoon and a

short (c. 5 s) pause before the next trial. The cartoon clips were ordered so that they

told a story. The experimenter was blind to the location of the stimulus and listened

to music via headphones during the test.

There were two conditions of this test: the ±60◦ condition described above, and

the ±30◦ condition in which the video screens and loudspeakers were situated at

−30◦, 0◦, and +30◦. The ±60◦ condition began with four practice trials during which

the experimenter sat next to the child and pointed towards the source of sound.

Data from these trials were discarded. Children attempted 20 test trials in each

condition. The dependent variable was the percentage of correct responses. A few

young children were very active and/or talkative, which made it difficult to observe

their responses during the test. In these cases, an observer (who was blind to the

location of the stimuli) watched the video recording after the session had finished

and recorded the direction of the child’s responses.

The stimulus was a recorded woman’s voice saying, “Look over here”. The

repetitive nature of sound-source localisation tests makes it possible to learn the

monaural cues (meaning the level and spectrum of the sound arriving at one ear)

associated with a certain source location (Van Wanrooij & Van Opstal, 2004). In

everyday life, these monaural cues do not allow accurate localisation of unfamiliar

sources of sound on the horizontal plane. To introduce variability into the stimuli

for the Left-Right Discrimination test, there were five different talkers, one of whom

was selected randomly on each trial. In addition, the level of the stimulus was roved

from trial to trial. The average stimulus level was 70 dB (A) SPL, randomly roved by

±5 dB in 1 dB steps. Nonetheless, the spectrum on arrival at one ear will vary with

source location for these stimuli, which could provide a monaural cue to localisation.

In addition, a monaural listener could move their head and use the resulting changes

in level and spectrum to localise the source.

4.2.2.2 Toy Localisation test

The simplest condition of the Toy Localisation test used three video screens and

loudspeakers at −60◦, 0◦ and +60◦. Seven toy blocks, which differed in their colour

and shape, were placed on a table in front of the child. Each screen displayed

a photograph of a different block. The photographs were selected randomly and

changed following every trial. A speech stimulus was presented from a single

loudspeaker, selected randomly on each trial. The child’s task was to locate the

source of sound and pick up the block displayed on that screen (making this a three-

alternative forced-choice task). More advanced conditions used five screens and

loudspeakers, with adjacent loudspeakers separated by 30◦ or 15◦. The locations of
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the active loudspeakers for the different conditions are shown in Figure 4.2. Up to

four practice trials were presented, during which the experimenter stood next to a

screen and used live voice to present the speech stimulus. Data from these trials were

discarded. Children attempted 30 test trials in each condition. The average stimulus

level was 70 dB (A) SPL, randomly roved by ±5 dB in 1 dB steps. The root mean square

(RMS) error was calculated using the equation
√∑

(x−y)2

n , where x was the location of

the source in degrees, y was the location of the child’s response in degrees, and n was

the number of trials.

Figure 4.2. Location of the active loudspeakers for the three conditions of the Toy
Localisation test. There was a video screen below each loudspeaker. A) 60◦ separation
condition with three alternative locations. B) 30◦ separation condition with five
alternative locations. C) 15◦ separation condition with five alternative locations.
Configuration C was also used for the Toy Localisation test with distractors.

The stimuli were modified to reduce the utility of monaural cues to localisation.

The stimulus was a recording of a female voice saying, “Hello, what’s this?” There were

five talkers. For a single talker, each loudspeaker played slightly different stimuli—

loudspeaker 1 played stimulus s1, loudspeaker 2 played s2, and so on. Each stimulus

(s1-s5) was processed so that, when it arrived at a nominated ear (e.g. the right ear),

the level and spectrum were similar to those of all the other stimuli from that talker,

regardless of the source location. Another set of stimuli were processed to be similar

at the left ear. For each trial, the nominated ear and the talker were chosen randomly.

Thus, variation was introduced into the monaural cues to localisation. This variation

made the task difficult to perform on the basis of the monaural cues that are present

when the listener keeps their head still, yet it did not affect binaural cues to source

location (see Appendix A).

In the most demanding condition of the Toy Localisation test, two male talkers

speaking sentences from the corpus published by the Institute of Electrical and

Electronics Engineers (IEEE) were used as distractors (IEEE, 1969). The recordings

of the IEEE sentences were concatenated, then split into stimuli with a duration

of 4 seconds. Thus, a single distractor stimulus was not a single sentence. The

distractors began before, and finished after, the target phrase. The five possible target

locations are shown in part C of Figure 4.2. The distractors were presented from one

loudspeaker each, randomly selected from seven possible locations between −45◦

and +45◦. Target and distractor did not come from the same loudspeaker. The target
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was presented at 65 dB (A) SPL. The level of the distractors was varied adaptively to

estimate the signal-to-noise ratio at which the child performed with an accuracy of

70.7% correct. The adaptive routine was the same as that for the Toy Discrimination

test (see section 4.2.2.4). The maximum noise level was 76 dB (A) SPL.

4.2.2.3 Movement Tracking test

The Movement Tracking test assessed whether children could turn their head or point

to track sources of sound that appeared to move. The stimuli were recordings of either

footsteps or hoof beats, presented from a sequence of loudspeakers such that, when

normally-hearing adults sat in the centre of the ring of loudspeakers, they reported

that the sound source moved around the edge of the ring. The speed of movement

was 9.2 deg/s for the footsteps and 13.3 deg/s for the hoof beats. The stimuli were low-

pass filtered at 5.5 kHz and presented at 71 dB (A) SPL, on average. Four trials were

presented in a counterbalanced order: two each of the footsteps and hoof beats, each

with a different trajectory of movement (see Figure 4.3). An independent observer

attempted to deduce the trajectory of movement during each trial by watching a

video recording of the child’s responses to the sounds. Performance was scored as

the percentage of correct deductions. Pilot testing showed that instructions were

generally unnecessary, because most children turned their head to track the source of

sound prior to any instructions being given. Moreover, instructions to young children

occasionally confused the child. Therefore, children under the age of 4 years received

no instructions. Older participants were asked to “Point to show us where the sounds

come from.” There were no practice trials.

Figure 4.3. The four trajectories of apparent movement in the Movement Tracking test.
Arrows denote the apparent movement of the sound source.
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4.2.2.4 Toy Discrimination test

The Toy Discrimination test (Summerfield et al., 1994) was used to assess the ability

to perceive speech in pink noise. A set of 14 familiar toys was placed on a table in front

of the child. A recorded woman’s voice was presented saying, “Point to the toy-name,”

where toy-name was one of the toys. The task was to point to, or say the name of, the

correct toy. Younger children used only 4 or 10 toys. This is not a vocabulary test: the

experimenter checked that the child knew the names of the toys, and administered

some practice trials using live voice, before testing began.

The stimuli were recorded as a complete phrase (“Point to the toy-name”) and

then edited so that the introductory phrase ended after the fricative segment of “the”

and the toy-name phrase began with the vocalic segment of “the” (Summerfield et al.,

1994). An example pair of recordings would be “Point to th” followed by “e cow.” This

editing preserved the coarticulation of the voiced segment of “the”, whilst allowing a

single recording of the introductory phrase to be used in every trial. There was one

“toy-name” stimulus for each toy; the level of this stimulus was modified so that all of

the toy names were equally intelligible to young normally-hearing adults. The speech

was low-pass filtered at 10.5 kHz. There were 10 tokens of broadband pink noise, one

of which was randomly selected for each trial. Each token had a duration of 1.4 s with

linear onset and offset ramps of 0.2 s duration. The noise began 0.3 s after the start of

the speech, so that the noise began before, and finished after, the target word.

There were three conditions of the Toy Discrimination test in pink noise: with

noise from −90◦, 0◦, and +90◦. The speech was presented from 0◦. The average

level of the toy names was fixed at 50 dB(A) SPL and the level of the noise was varied

adaptively. A one-down one-up adaptive routine with a step size of 6 dB was used for

the first two reversals. A two-down one-up routine with a step size of 3 dB was used for

the following six reversals. The average of the midpoints of the final three ascending

runs was taken to estimate the 70.7% correct threshold (Levitt, 1971). This signal-to-

noise ratio will be referred to as the SRT. The maximum noise level was 69 dB (A) SPL.

If a child was inattentive or was talking during a trial, that trial was repeated.

A quiet condition of the Toy Discrimination test was included to ensure that

children could understand the speech at the level at which it was presented in noise.

The level of the speech was varied adaptively and there was no noise stimulus. The

other aspects of the adaptive routine were the same as for the conditions in pink noise.

4.2.2.5 Toy Discrimination test in pulsatile noise

The Toy Discrimination test in pulsatile noise was used to measure the ability to

perceive speech in the presence of a masker that either had the same F0 as the speech,

or a raised F0 relative to that of the speech. Both speech and masker were presented

from 0◦. The speech stimuli from the Toy Discrimination test were resynthesised

81



Chapter 4 Spatial Listening Skills of Children and Adults with Normal Hearing

using PRAAT signal processing software (Boersma & Weenink, 2008) on a fixed F0 of

200 Hz. The resulting stimuli had a monotonous pitch. The masker was an acoustical

pulse train. There were two conditions: in the Same-F0 condition the pulse train had a

repetition rate of 200 Hz; in the Raised-F0 condition it had a repetition rate of 356 Hz.

Thus, in the Raised-F0 condition, there was a difference of 10 semitones between the

F0 of the speech and the masker. Bird and Darwin (1998) showed that, for normally-

hearing adults listening to competing sentences, a difference of 10 semitones between

the F0 of target and masker resulted in greater intelligibility than smaller differences

in F0. The task and adaptive routine were the same as for the Toy Discrimination test,

except the speech was presented at 46 dB(A) SPL. The maximum masker level was

66 dB (A) SPL.

4.2.3 Procedure

Videos of normally-hearing children performing these tests can be viewed at

http://tinyurl.com/yorkspatial. Testing took place in a single session lasting up to

three hours. Encouragement was given after all trials (e.g. “good girl”, “well done”),

even if the child’s response was incorrect. The use of a test was terminated if children

became uninterested and unwilling to continue, or if they were unable to understand

the instructions. The order in which the tests were presented was tailored to the

interests and attention span of each child, and thus varied between participants.

Children took several short breaks between tests.

The following protocol was developed after pilot testing. The Left-Right Dis-

crimination test was attempted by all children. The ±60◦ condition was attempted

first, followed by the ±30◦ condition. The Movement Tracking test was attempted by

all children. The Toy Localisation test was attempted by children aged 2 years and

above. Children under 5 years attempted the 60◦ separation condition, followed by

the 30◦ and 15◦ separation conditions. Older children attempted the 30◦ separation

condition, followed by 15◦ separation and 15◦ separation with distractors. The Toy

Discrimination test was attempted by children over the age of 2 years. The conditions

of the Toy Discrimination test were presented in the following order, interspersed with

the other tests:

1. The three conditions in pink noise, in an order counterbalanced across

participants.

2. The quiet condition.

3. The two conditions in pulsatile noise, in an order counterbalanced across

participants.

An example order of tests for a 7-year-old child is shown in Figure 4.4. To assess test-

retest reliability, children in the age groups 3.0–3.9 and 7.0–7.9 years were invited to
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return for a second visit. These groups were selected because they were the youngest

who were able to provide data on all of the tests, and the oldest children in the study.

1) Left-Right Discrimination test, ±60◦ condition
2) Movement Tracking test, trial 1
3) Left-Right Discrimination test, ±30◦ condition
4) Movement Tracking test, trial 2
5) Toy Discrimination test in pink noise, condition 1
Play break
6) Toy Discrimination test in pink noise, condition 2
7) Movement Tracking test, trial 3
8) Toy Localisation test, 30◦ separation
Play break
9) Movement Tracking test, trial 4
10) Toy Localisation test, 15◦ separation
11) Toy Discrimination test in pink noise, condition 3
12) Toy Discrimination test in quiet
Play break
13) Toy Localisation test, 15◦ separation with distractors
14) Toy Discrimination test in pulsatile noise, condition 1
15) Toy Discrimination test in pulsatile noise, condition 2

Figure 4.4. An example order of tests for a 7-year-old child. The order of conditions of
the Toy Discrimination test in pink noise and in pulsatile noise were counterbalanced
across children.

The procedure for testing adults was the same as for children, with the following

exceptions. Adults used a touchscreen monitor to record their responses on all

tests except for Movement Tracking, for which they drew the trajectory of perceived

movement onto a diagram of the ring of loudspeakers. No feedback was given. The

adults did not undertake the 15◦ separation condition of the Toy Localisation test, nor

did they undertake the condition with distractors. The level of the speech during the

Toy Discrimination test in pink noise was 40 dB (A) SPL (i.e. 10 dB less intense than for

the children). The level of the speech during the Toy Discrimination test in pulsatile

noise was 41 dB (A) SPL (i.e. 5 dB less intense than for the children). Adults completed

two repetitions of all conditions of the Toy Discrimination test; their mean SRTs are

reported.

4.2.4 Measures of test-retest reliability

One measure of test-retest reliability is the correlation coefficient between the scores

from the first and second test sessions. A high correlation means that the second

score can be predicted from the first. However, a high correlation could be obtained

despite scores differing by a fixed amount, which could arise if performance improved

over time. Conversely, a low correlation may be obtained if there is little variability in
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scores.

An alternative measure of reliability is the within-subjects standard deviation of

scores (Plomp & Mimpen, 1979; Summerfield et al., 1994). If a single subject is tested

repeatedly on the same condition, the standard deviation of their scores (σ) can be

calculated. A reliable test, which gives similar results every time, will result in small

σ. However, researchers are generally more interested in the reliability of a test for a

group of participants. Thus, the members of a group can be tested a few times each.

The mean within-subjects standard deviation (σω) can then be calculated using the

equation:

σω =

√√√√∑k
i=1

∑n
j=1(xi j −µi )2

k(n −1)

where k is the number of participants tested, n is the number of repetitions of the test,

xi j is the ith participant’s score on the jth repetition, and µi is the ith participant’s

mean score (Summerfield et al., 1994). The probability of a randomly selected

participant’s true score lying within ±1.96σω of their observed score is ≥ 0.95.

A third measure of reliability is stability. If a child is tested twice in identical

conditions, the difference between the two scores can be calculated. The standard

deviation of these differences, σδ, represents the stability of scores for a group of

participants. If a child is tested on two different conditions (e.g. noise-front and noise-

left), the difference is significant at the p < .05 level if it is greater than 1.96σδ.

4.2.5 Analyses

Statistical analyses are presented separately for each test. The aim was to assess:

1. Whether performance on the tests improved with age, and whether children

showed poorer performance than adults.

2. For the Toy Discrimination test in pink noise, whether the noise location had

an effect on performance and whether there was an interaction between noise

location and age.

3. For the Toy Discrimination test in pulsatile noise, whether the condition had an

effect on performance and whether there was an interaction between condition

and age.

Statistics were computed using SPSS 16.0 for Windows. Throughout this thesis, all

p values are two-tailed and a comparison was considered statistically significant if

p < .05. Where multiple comparisons were carried out on the same data, a Bonferroni

correction was applied. Bonferroni-adjusted p values (pb f ) are reported, calculated

as p*n where n is the number of comparisons. Thus, for three comparisons, a p value

of .017 corresponds to a pb f value of .05. A comparison was considered statistically

significant if pb f < .05.
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4.2.5.1 Presentation of results

The scores from the Left-Right Discrimination, Toy Localisation, and Movement

Tracking tests did not distribute normally, so box plots were used to display the results.

There is a convention to show ‘whiskers’ on box plots to illustrate the 10th and 90th

percentile scores, and to plot individual data points that fall outside this range. There

were only eight participants in each group of children, meaning that the 10th and 90th

percentile scores could not be calculated. The scores of individual participants were

overlaid onto the box plots to illustrate the distribution of scores. Occasionally, several

children within an age group obtained the same score. Accordingly, a number to the

right of each data point shows how many children obtained that score. The SRTs from

the Toy Discrimination test had a normal distribution (confirmed by the Kolmogorov-

Smirnov test), so bar charts were used to display the mean and standard error. Some

children did not complete all of the tests—numbers at the top of each figure indicate

how many participants in each age group contributed data.

4.2.5.2 The relationship between age and performance

To assess whether there was an effect of age on performance on the Left-Right

Discrimination, Toy Localisation, and Movement Tracking tests, Kruskal-Wallis tests

were carried out with age group as the independent variable. There were eight age

groups, as defined in Table 4.1. Post-hoc Mann-Whitney tests with a Bonferroni

correction were used to assess whether the children performed worse than the adults.

The post-hoc analyses were carried out if: (a) the Kruskal-Wallis test was statistically

significant, and (b) the age group had a median score that was lower than that of the

adults.

Effect sizes for Mann-Whitney tests were calculated using the formula r = z/
p

N

where z is the standardised test statistic and N is the number of participants (Field,

2005). Effect sizes can be interpreted in a similar way as correlation coefficients—an

effect size of zero indicates that there was no relationship between the independent

variable and outcome, an effect size of one indicates a perfect relationship. The

proportion of variance accounted for by the independent variable is r 2. Cohen (1992)

suggested the following guidelines for interpreting effect sizes: r = 0.1 is a small effect,

r = 0.3 is a medium effect, and r = 0.5 is a large effect.

It was expected that the SRTs would be affected by the number of toys the

child used during the Toy Discrimination test. Accordingly, statistical analyses of

SRTs excluded children who used fewer than 14 toys (only a few children used 4

or 10 toys, so separate analyses of these groups would not be informative). To

assess whether there was an effect of age and/or noise location on SRTs in pink

noise, a two-way mixed analysis of variance (ANOVA) was carried out with the

factors of age group (eight levels) and noise location (three levels). There were no
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a priori predictions regarding which age groups would differ, so Tukey HSD post-hoc

comparisons were used to analyse the differences between groups. There was an a

priori prediction regarding the effect of noise location, so planned comparisons with

a Bonferroni correction were used to assess whether SRTs were lower in the noise-side

conditions than in the noise-front condition (i.e. whether the participants showed

SRM). Throughout this thesis, effect sizes for planned comparisons were calculated

using the formula r = √
F /(F +d fR ), where F is the test statistic for the planned

comparison and d fR are the residual degrees of freedom (Field, 2005).

To assess whether there was an effect of age on SRTs in quiet, a one-way

independent ANOVA was carried out with age group as the independent variable.

Tukey HSD post-hoc comparisons were used to analyse the differences between age

groups.

The SRTs in the two conditions of the Toy Discrimination test in pulsatile noise

did not have equal variance, meaning they could not be analysed using an ANOVA. To

assess whether there was an effect of age on SRTs in each condition, Kruskal-Wallis

tests were carried out with age group as the independent variable. Post-hoc Mann-

Whitney tests with a Bonferroni correction were used to assess whether children had

higher SRTs than adults.

Based on the results of Johnstone and Litovsky (2006) with adults, it was expected

that the difference in SRT between conditions of the Toy Discrimination test would

not be affected by the number of toys the child used during the test. Accordingly,

analyses of difference scores included all children. SRM was calculated by subtracting

the average of the SRTs in the noise-left and noise-right conditions from the SRT in

the noise-front condition. To assess whether there was an effect of age on SRM, a

one-way independent ANOVA was carried out with age group as the independent

variable. Post-hoc analyses were not necessary as the ANOVA was not statistically

significant. For the Toy Discrimination test in pulsatile noise, the difference between

conditions was calculated by subtracting the SRT in the Raised-F0 condition from the

SRT in the Same-F0 condition. A within-subjects t-test was used to assess whether,

for all participants together, the difference between conditions was significant. To

assess whether there was an effect of age on the difference between conditions, a one-

way independent ANOVA was carried out with age group as the independent variable.

Post-hoc analyses were not necessary as the ANOVA was not statistically significant.

4.2.5.3 Test-retest reliability

The scores from the Left-Right Discrimination, Toy Localisation, and Movement

Tracking tests did not distribute normally and had several tied ranks, so Kendall’s

rank-order correlation coefficients (tau) were calculated (Field, 2005). Pearson’s

product-moment correlation coefficients were calculated for the Toy Discrimination

test. Other measures of reliability were calculated according to the formulae in
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section 4.2.4.

4.3 Results

4.3.1 The relationship between age and the ability to complete

listening tests

The ability to complete each listening test was quantified by the number of trials

completed. The Toy Discrimination test is adaptive, so the number of conditions

completed was calculated: a condition was considered complete if the child finished

at least two reversals in the second phase of the adaptive routine. The number of

trials or conditions of each test that were completed by the seven groups of children

is shown in Table 4.2.

The maximum number of trials of the Left-Right Discrimination test was 40. All

children completed some trials of this test; all children aged over 3.8 years completed

40 trials. The maximum number of trials of the Toy Localisation test was not fixed

because the test with distractors used an adaptive routine. The test could not be

performed by children younger than 2.3 years. All children aged 3.0 years and above

completed at least 30 trials. Due to experimenter error, three 4-year-old children

did not attempt the 60◦ separation condition. The maximum number of trials of

the Movement Tracking test was four. All except two children (both aged 1.5 years)

completed four trials. The maximum number of conditions of the Toy Discrimination

test was six. The test could not be completed by children below 2.7 years. All children

aged over 3.2 years completed at least three conditions (the number required to

measure SRM with noise on either side of the head). Only two children under 5 years

old had the stamina to complete the Toy Discrimination test in pulsatile noise, as it

was usually attempted at the end of the session.

To summarise, older children completed more listening tests. All children

provided data on the Left-Right Discrimination test, all children over 1.6 years

completed the Movement Tracking test, all over 3.0 years completed 30 trials of the

Toy Localisation test, and all over 3.2 years completed three conditions of the Toy

Discrimination test.
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Table 4.2. The median (and range) of trials of each test that were completed by the
seven groups of children. For the Toy Discrimination test, the number of conditions
completed is shown. Practice trials are not included. Ages are in years.

Age range Left-Right Toy Movement Toy
Discrimination Localisation Tracking Discriminationa

1.5 to 1.9 38 (13–40) 0 (0–0) 4 (0–4) 0 (0)
2.0 to 2.9 40 (25–40) 0 (0–43) 4 (4–4) 0 (0–3)
3.0 to 3.9 40 (17–40) 60 (37–90) 4 (4–4) 4 (2–5)
4.0 to 4.9 40 (40–40) 90 (34–129) 4 (4–4) 4 (3–6)
5.0 to 5.9 40 (40–40) 94 (86–115) 4 (4–4) 6 (4–6)
6.0 to 6.9 40 (40–40) 90 (83–129) 4 (4–4) 6 (6–6)
7.0 to 7.9 40 (40–40) 90 (85–94) 4 (4–4) 6 (6–6)

a Includes the conditions in quiet, in pink noise, and in pulsatile noise.

4.3.2 Left-Right Discrimination test

The results of the Left-Right Discrimination test are shown in Figure 4.5. With two

exceptions, participant’s scores were better than would be expected by chance. There

was an effect of age on performance in the ±60◦ condition [H(7) = 26.05, p < .001]

and the ±30◦ condition [H(7) = 39.98, p < .001]. In the ±60◦ condition, the 2-year-olds

had lower scores than the adults [z = −3.18, p < .01, r = .75]. All other age groups had a

median score of 100% correct. In the ±30◦ condition, the 1- and 2-year-olds had lower

scores than the adults and the 3-year-olds had scores that were similar to those of the

adults (Table 4.3).
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Figure 4.5. Results of the Left-Right Discrimination test: ±60◦ condition (left panel)
and ±30◦ condition (right panel). The yellow boxes show the area between the 25th

and 75th percentile scores. The solid black horizontal lines within the boxes show the
median; the dotted orange lines show the mean. Where the median line is not visible,
the median is 100%. The circles show individual scores, the number to the right of each
circle indicates how many participants in that age group showed that score. For adults,
the whiskers show the 10th and 90th percentile scores. The black dashed lines show the
level of performance expected by chance. The numbers above the upper horizontal
axis indicate how many participants in each age group provided data.

Table 4.3. The results of Mann-Whitney tests to compare the scores of 1-, 2-, and 3-
year-olds with those of adults on the ±30◦ condition of the Left-Right Discrimination
test. All other age groups had a median score of 100% correct.

Comparison z pb f r

1-year-olds versus adult −3.22 < .01 .78
2-year-olds versus adult −3.37 < .01 .79
3-year-olds versus adult −2.03 .16 .48

4.3.3 Toy Localisation test

The results of the three conditions of the Toy Localisation test without distractors are

shown in Figure 4.6. With a single exception, participants’ scores were better than

would be expected by chance. There was an effect of age on performance in the 60◦

separation condition [H(3) = 15.66, p < .001]. The 2- and 3-year-olds had larger error

scores than the adults [2-year-olds: z = −3.43, pb f < .01, r = .95; 3-year-olds: z = −2.63,

pb f < .15, r = .73]. There was no significant effect of age on performance in the 30◦

separation condition [H(6) = 9.26, p = .16], or on performance in the 15◦ separation

condition [H(4) = 4.96, p = .29].
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Figure 4.6. Results of the Toy Localisation test without distractors. Left panel: three-alternative task with 60◦ separation between loudspeakers. Centre
panel: five-alternative task with 30◦ separation. Right panel: five-alternative task with 15◦ separation. The yellow boxes show the area between the 25th

and 75th percentile scores. The solid black horizontal lines within the boxes show the median; the dotted orange lines show the mean. Where the median
line is not visible, the median is on the lower boundary of the box. The circles show individual scores, the number to the right of each circle indicates
how many participants in that age group showed that score. The dashed line indicates the level of performance expected by chance. The numbers above
the upper horizontal axis indicate how many participants in each age group provided data. The 5, 6, and 7-years olds did not attempt the 60◦ separation
condition and the adults did not attempt the 15◦ separation condition.
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The results of the Toy Localisation test with distractors are shown in Figure 4.7.

There was no significant effect of age on performance [H(3) = 0.88, p = .83]. During

this test, a limit on the level of the noise was imposed by the software to prevent the

noise level becoming uncomfortable. Consequently, the minimum signal-to-noise

ratio was −11 dB. Thus, it is possible that some of the children with thresholds

between −9 and −11 dB (the two highest noise levels on the adaptive routine) were

scoring at ceiling.

Figure 4.7. Results of the Toy Localisation test with distractors. The yellow boxes
show the area between the 25th and 75th percentile scores. The solid black horizontal
lines within the boxes show the median; the dotted orange lines show the mean. The
circles show individual scores, the number to the right of each circle indicates how
many participants in that age group showed that score. The numbers above the upper
horizontal axis indicate how many participants in each age group provided data. The
adults did not attempt this test.

4.3.4 Movement Tracking test

The results of the Movement Tracking test are shown in Figure 4.8. With a single

exception, participants’ scores were better than would be expected by chance. All

age groups had a median score of 100% correct.
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Figure 4.8. Results of the Movement Tracking test. The yellow boxes show the area
between the 25th and 75th percentile scores. The solid black horizontal lines within the
boxes show the median; the dotted orange lines show the mean. Where the median line
is not visible, the median is 100%. The circles show individual scores, the number to
the right of each circle indicates how many participants in that age group showed that
score. For adults, the whiskers show the 10th and 90th percentile scores. The dashed
line indicates the level of performance expected by chance. The numbers above the
upper horizontal axis indicate how many children in each age group provided data.

4.3.5 Toy Discrimination test in pink noise

The results of the Toy Discrimination test in pink noise are shown in Figure 4.9. For

participants who used 14 toys, there was an effect of age on SRTs [F(5, 38) = 9.66,

p < .001]. Post-hoc tests revealed that the groups of children had thresholds that did

not differ significantly from each other [all p > .05]. All of the groups of children had

higher thresholds than the adults [all p < .05].

For participants who used 14 toys, there was an effect of noise location on SRT

[F(2, 76) = 67.86, p < .001]. Planned comparisons revealed that, compared to the

noise-front condition, SRTs were significantly lower in the noise-left [F(1,38) = 138.93,

pb f < .001, r = .89] and noise-right conditions [F(1,38) = 69.60, pb f < .001, r = .80].

These results indicate that, on average, participants showed SRM both when noise

was shifted to the left and when noise was shifted to the right. The interaction

between age group and noise location was not significant [F(10,76) = 1.23, p = .28].

The nonsignificant interaction indicates that, for participants who used 14 toys, SRM

did not vary with age. SRM is examined for the whole group of participants (including

those who used 4 or 10 toys) in the following section.
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Figure 4.9. Results of the Toy Discrimination test in pink noise for participants who used 4 toys (left panel) or 14 toys (right panel). The bars show the
mean SRT, error bars show the standard error of the mean. The circles show individual scores. Yellow bars and circles: noise-left condition. Blue bars and
circles: noise-front condition. Orange bars and circles: noise-right condition. The numbers above the upper horizontal axis indicate how many children
in each age group provided data. A single child used ten toys; these scores are shown by the triangles in the left panel.
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4.3.5.1 Spatial release from masking

The amount of SRM shown by all of the participants is plotted in Figure 4.10.1 With

one exception, the individual scores were positive, indicating that SRTs were lower

with noise from the side than with noise from the front. There was no significant

effect of age group on SRM [F(6,51) = 0.62, p = .71].

Figure 4.10. The amount of SRM shown by the eight age groups. SRM was calculated by
subtracting the average of the SRTs in the noise-left and noise-right conditions from the
SRT in the noise-front condition. The yellow bars show the mean SRM. The error bars
show standard error of the mean. The circles show individual scores, the number to
the right of each circle indicates how many participants in that age group showed that
score. The numbers above the upper horizontal axis indicate how many participants in
each age group provided data.

4.3.6 Toy Discrimination test in quiet

The results of the Toy Discrimination test in quiet are shown in Figure 4.11. All

children who completed the quiet condition displayed SRTs that were lower than the

level at which the speech was presented in pink noise (50 dB (A) SPL). For participants

who used 14 toys, there was an effect of age on SRTs [F(5,37) = 9.45, p < .001]. Post-hoc

tests revealed that the 3-year-olds had higher thresholds than the 7-year-olds [p < .01].

The 3- to 6-year-olds all had higher thresholds than the adults [p < .05], whereas the 7-

year-olds had thresholds that were not significantly different from those of the adults

[p = .18]. The other post-hoc comparisons were not significant.

1Figure 4.9 shows data from three 2-year-old children, whereas Figure 4.10 shows data from two
2-year-old children. The difference in the number of children arose because one 2-year-old child
completed only the version of the test with noise from the front, meaning it was not possible to
calculate SRM for that child.
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Figure 4.11. Results of the Toy Discrimination test in quiet. The yellow bars show mean
SRTs for participants who used 14 toys, the error bars show standard error of the mean.
The circles show individual scores for participants who used 14 toys, the triangles show
individual scores for two participants who used 4 toys. The numbers to the right of
each data point indicate how many participants in that age group showed that score.
The numbers above the upper horizontal axis indicate how many participants in each
age group provided data.
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4.3.7 Toy Discrimination test in pulsatile noise

The results of the Toy Discrimination test in pulsatile noise are shown in Figure 4.12.

Children aged 3 and 4 years were excluded from the analysis of SRTs, because only

small numbers of children in these age groups completed the test. There was an

effect of age on SRT in the Same-F0 condition [H(3) = 17.07, p < .01] and the Raised-F0

condition [H(3) = 20.47, p < .001]. In both conditions, the 5- 6- and 7-year-old children

had higher SRTs than the adults (Table 4.4).

Figure 4.12. Results of the Toy Discrimination test in pulsatile noise. For participants
who used 14 toys, the bars show mean SRTs for the Same-F0 condition (yellow bars) and
Raised-F0 condition (orange bars). The error bars show standard error of the mean.
The circles show individual scores for participants who used 14 toys, the triangles show
individual scores for the participant who used 10 toys. The numbers above the upper
horizontal axis indicate how many participants in each age group provided data.

Table 4.4. The results of Mann-Whitney tests to compare the SRTs of 5-, 6-, and 7-year-
olds with those of adults on the Toy Discrimination test in pulsatile noise.

Comparison z pb f r

Same-F0
5-year-olds versus adults −3.03 < .01 .73
6-year-olds versus adults −3.38 < .01 .80
7-year-olds versus adults −2.94 < .01 .69

Raised-F0
5-year-olds versus adults −3.42 < .01 .83
6-year-olds versus adults −3.56 < .01 .84
7-year-olds versus adults −3.56 < .01 .84
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The difference between conditions

The difference in SRT between the Same-F0 condition and the Raised-F0 condition is

plotted in Figure 4.13. A positive score indicates that SRTs were lower in the Raised-F0

condition than the Same-F0 condition. For the group of participants as a whole, the

mean SRT in the Raised-F0 condition [−15.12 dB] was lower than the mean SRT in the

Same-F0 condition [−7.33 dB; t(36) = 10.09, p < .001]. There was no significant effect

of age group on the difference between conditions [F(5,31) = 0.43, p = .82].

Figure 4.13. The difference in SRT between the Same-F0 condition and the Raised-
F0 condition of the Toy Discrimination test in pulsatile noise. The yellow bars show
the mean difference, the error bars show the standard error of the mean. The circles
show individual scores, the number to the right of each circle indicates how many
participants in that age group showed that score. The numbers above the upper
horizontal axis indicate how many participants in each age group provided data.

4.3.8 Test-retest reliability

One 7-year-old child was unable to return for a second visit, so data on test-retest

reliability are available for eight 3-year-olds and seven 7-year-olds. Some of the

3-year-olds did not complete all of the tests. The mean interval between test

sessions was 21 days (range 2–55 days). The test-retest statistics for the Left-Right

Discrimination, Toy Localisation, and Movement Tracking tests are shown in Table 4.5

and for the Toy Discrimination test in Table 4.6. As a guide to interpreting these

tables, consider the statistics for the 3-year-olds for the ±60◦ condition of the Left-

Right Discrimination test. A randomly-selected participant’s true score will lie within

±1.96σω of their observed score with a probability ≥ .95. Thus, a randomly-selected

3-year-old’s true score lies within ±6.21% of their observed score with a probability
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≥ .95. If a participant is tested in two conditions (e.g. aided and unaided), the

difference in scores is significant at the p < 0.05 level if it is greater than ±1.96σδ. Thus,

for a 3-year-old, a difference between conditions would be considered significant if it

were greater than 8.09%. The test-retest reliability statistics will be compared with

those from previous studies in section 4.4.5.

Table 4.5. Test-retest statistics for 3- and 7-year-old children for the Left-Right
Discrimination, Toy Localisation, and Movement Tracking tests. The Kendall’s tau
correlation coefficient (τ), the within-subjects standard deviation of scores (σω), the
standard deviation of the differences between children’s first and second scores (σδ),
and the number of children who provided data (N ) are listed.

3-year-olds 7-year-olds

Test τ σω σδ N τ σω σδ N

Left-right discrim.
± 60◦ condition −.52 3.17% 4.13% 6 a 0.00% 0.00% 7
± 30◦ condition +.30 4.12% 6.25% 6 a 2.67% 3.78% 7

Toy localisation
60◦ separation +.67 6.32◦ 7.03◦ 6 0
30◦ separation +.67 12.56◦ 19.04◦ 5 −.17 4.33◦ 5.38◦ 7
15◦ separation 0 +.44 1.98◦ 2.96◦ 7
15◦ separation 0 +.31 3.63 dB 5.27 dB 7
with distractors

Movement Tracking a 19.76% 26.73% 8 a 0.00% 0.00% 7
a Correlations could not be computed because all children had identical scores

in the second test session.
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Table 4.6. Test-retest statistics for the Toy Discrimination test for 3- and 7-year-
old children. The Pearson correlation coefficient (r ), the within-subjects standard
deviation of scores (σω), the standard deviation of the differences between children’s
first and second scores (σδ), and the number of children who provided data (N ) are
listed.

3-year-olds 7-year-olds

Test r σω (dB) σδ (dB) N r σω (dB) σδ (dB) N

Toy discrimination
Noise left −.40 3.18 4.68 5 +.48 1.98 2.60 7
Noise front −.53 3.38 4.46 6 +.34 3.09 3.07 7
Noise right +.25 2.52 2.72 5 +.59 2.44 2.52 7
Quiet +.39 3.73 3.01 3 +.35 2.76 3.86 7

Toy discrimination in pulsatile noise
Same-F0 a 5.30 a 1 +.08 4.36 5.18 6
Raised-F0 a 1.41 a 1 −.07 3.00 4.49 6

a Could not be computed because only one child completed the test in
both sessions.
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4.3.9 Summary

The age at which children could complete tests, and the age at which performance

was similar to that of adults, are summarised in Figure 4.14.

Figure 4.14. Summary of results. The yellow bars show the age at which all children
met a criterion of being able to complete a listening test. The striped bars show the age
at which performance was not significantly different to that of adults. Tests without
a striped bar indicate that the oldest group of children in the study did not perform
as well as adults. The criteria were: completed 13 trials (Left-Right Discrimination),
completed 4 trials (Movement Tracking), completed 30 trials (Toy Localisation),
completed 3 conditions (SRT in pink noise & SRM), completed 1 condition (SRT in
quiet), completed 2 conditions (SRT in pulsatile noise).

4.4 Discussion

4.4.1 Summary of main findings

The aim of this study was to assess the performance of normally-hearing children

and adults on tests of spatial listening, in order to allow comparisons with the

performance of implanted children in later studies. Normally-hearing children

showed high levels of performance on tests of left-right discrimination, localisation,

and movement tracking; by the age of 3 or 4 years children’s performance on these

tests was at ceiling and similar to that of adults. Both children and adults benefited

from SRM: a spatial separation of speech from noise improved SRTs by 5 dB, on

average. The amount of SRM did not differ significantly between the age groups.

On average, participants’ SRTs were 8 dB lower when there was a difference in F0

between speech and a pulsatile masker than when there was no difference in F0, and

the difference between conditions was similar for all of the age groups. In contrast,
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SRTs varied with age. On tests of speech perception in pink noise and in pulsatile

noise, 7-year-olds (the oldest children in the study) did not perform as well as adults.

4.4.2 Comparison with previous findings

These results are consistent with previous estimates of the spatial listening skills of

normally-hearing children (see section 2.5), with the following exceptions. Children’s

ability to discriminate a sound source on the left from a source on the right

improved between the ages of 1 and 3 years. This result was unexpected, as the

loudspeaker separations were greater than estimates of normally-hearing children’s

MAA (Ashmead et al., 1998; Grieco-Calub et al., 2008; Litovsky, 1997; Morrongiello,

1988). It is possible that the difference in results occurred because the present

study measured the percentage of correct responses, whereas previous studies used

an adaptive routine to measure MAA. Lapses in attention result in a decreased

percentage-correct score, but may have a smaller effect on scores that are calculated

from an adaptive routine. There are also differences in data analysis: the present

study included data from all trials, whereas Litovsky (1997) and Grieco-Calub et

al. (2008) discarded data from consecutive incorrect trials and trials on which the

child made no response. Similarly, Morrongiello discarded data from trials on which

children were inattentive.

On tests of sound-source localisation in which there were five possible locations,

children over 3 years old showed levels of performance that were similar to those of

adults, and many children performed at a ceiling level. Accordingly, this study may

under-estimate the age at which children’s localisation skills are similar to those of

adults. Previous studies using more complex tasks with at least nine possible sound-

source locations have found that performance improves up to the age of 6 years (Bess

et al., 1986; Van Deun et al., 2009). Regarding the ability to complete tests, Van

Deun and colleagues reported that, in a pilot experiment, 3-year-olds were unable

to discriminate among three loudspeakers at −90◦ , 0◦ , and +90◦. We found that 3-

year olds, and some 2-year-olds, were able to perform a similar task. The difference

between studies may be caused by the use of pointing responses in the present study,

which meant that children did not need to make a verbal response (in contrast to the

task used by Van Deun et al.).

Regarding speech perception, the present study found that the groups of children

aged between 3 and 7 years had similar SRTs in pink noise, on average. In contrast,

Summerfield et al. (2004) reported a trend for improved SRTs over this age range, and

Garadat and Litovsky (2007) found that 5-year-olds showed significantly lower SRTs

than 3-year-olds. In the present study, several 2- and 3-year old children completed a

version of the Toy Discrimination task with fewer than 14 toys, and were therefore not

compared with older children. It is possible that there would have been an effect of
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age if all children had completed the same test. Another anomalous result was that the

7-year-olds’ SRTs in quiet were similar to the SRTs of the adults, whereas Summerfield

et al. (2004) used the same test and found that SRTs improved up to the age of 15

years. It is possible that the present study was underpowered to detect the slower rate

of improvement in SRTs after the age of 6 years.

4.4.3 The causes of the improvement in speech perception with age

On average, children had higher SRTs than adults in quiet and in pink noise, a finding

that is a replication of several previous studies (Hall et al., 2002; Johnstone & Litovsky,

2006; Litovsky, 2005; Papso & Blood, 1989). A similar developmental trend is observed

for the detection of pure tones and noise bursts (Roche, Siervogel, Himes, & Johnson,

1978; Schneider, Trehub, Morrongiello, & Thorpe, 1986; Yoneshige & Elliott, 1981).

These differences in performance between children and adults may be due to sensory

variables (meaning variables related to the ear and auditory nervous system) and/or

non-sensory variables (such as attention, memory, and language skills). Evidence that

sensory variables may play a role comes from post-mortem studies, which indicate

that the auditory nervous system is still developing over the age range of the children

in the present study. Up to the age of 6 years, there is maturation of the projections

from the thalamus to the cortex; up to the age of 12 years there is maturation of the

connections within the auditory cortex (J. K. Moore & Linthicum, 2007).

Evidence that non-sensory variables contribute to the differences in performance

between children and adults comes from simulations of the effects of inattention or

forgetting task instructions: the simulations result in psychometric functions that

are similar to those measured in children (Wightman & Allen, 1992). It is possible

that children with better language skills are more familiar with the target words,

and are more able to generate potential answers from a partially-perceived word,

than children with poorer language skills. In support of this idea, scores on a test

of vocabulary predict children’s SRTs, even when the words in the test of speech

perception are familiar and within the child’s vocabulary (Elliott et al., 1979). On the

other hand, some studies have found that cognitive abilities do not correlate with

SRTs (Talarico et al., 2007).

4.4.4 The causes of the difference between the Raised-F0 and Same-

F0 conditions

On average, all of the age groups showed lower SRTs in the Raised-F0 condition than

the Same-F0 condition of the Toy Discrimination test in pulsatile noise. Potentially,

participants could use a difference in F0 to segregate the target speech from the

masking pulse train in the Raised-F0 condition but not the Same-F0 condition

(Assmann & Summerfield, 1990). Thus, segregation on the basis of F0 is likely to have
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contributed to the observed difference between conditions. However, segregation

on the basis of F0 may not have been the sole cause of the difference between

conditions. The maskers were presented at an equal level (in dB(A) SPL), but the

Same-F0 masker contained energy above 200 Hz whereas the Raised-F0 masker only

contained energy above 356 Hz. Consequently, low-frequency phonetic information

(such as the F0, which provides a cue to voicing) will have been distorted to a lesser

degree by the Raised-F0 masker than the Same-F0 masker. This difference in masking

at low frequencies may have contributed to the difference in SRT between conditions.

4.4.5 Test-retest reliability

On the Left-Right Discrimination, Toy Localisation, and Movement Tracking tests,

normally-hearing children often scored 100% correct. This may mean that the

estimates of σω and σδ for these tests are artificially low: the values may be higher

if measured in a sample that does not show ceiling effects (such as children with

cochlear implants). The test-retest reliability measures for the Toy Discrimination

test can be compared with those from Summerfield et al. (1994), who used the

Toy Discrimination test in quiet. For 136 children aged between 2 and 13 years,

the correlation coefficient between first-test SRT and second-test SRT was .95. The

average σω for all children was 2.5 dB, and children over the age of 4 years had values

of σω similar to that of adults (2.3 dB). The average σδ for all children was 3.5 dB.

In the present study, the test-retest correlation coefficients were typically lower, the

values of σω were typically higher, and the values of σδ were comparable to those

of Summerfield and colleagues. The present test-retest correlation coefficients were

higher and the values of σω were comparable to those of Ousey, Sheppard, Twomey,

and Palmer (1989). Thus, the Toy Discrimination test shows somewhat poorer test-

retest reliability than has been estimated previously. This is most likely because the

second test session took place on a different day to the first session, whereas previous

studies repeated the test on the same day.

4.4.5.1 Which test is the most reliable?

Identifying the most-reliable test within this battery is not straightforward, for a

number of reasons. Two of the measures of reliability (σω and σδ) are expressed in

the original units of measurement and therefore cannot be compared across tests.

The third measure of reliability (the correlation between the first and second test

scores) was calculated using Pearson’s r for the Toy Discrimination test (to allow

for comparison with previous studies) and Kendall’s tau for the other tests (because

the data were not normally distributed). Consequently, the correlation coefficients

cannot be compared across tests. In order to identify the most-reliable test, the

correlation between the first and second scores on the Toy Discrimination test was
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calculated using Kendall’s tau. For 3-year-old children, when using Kendall’s tau as

the measure of reliability, Toy Localisation with a separation of 60◦ or 30◦ was the

most-reliable test, and Left-Right Discrimination with loudspeakers at ±60◦ was the

least-reliable test. For 7-year-old children, when using Kendall’s tau as the measure

of reliability, Toy Localisation with a separation of 15◦ was the most-reliable test, and

Toy Localisation with a separation of 30◦ was the least-reliable test.

4.4.6 Evaluation of the tests of spatial listening

This battery of tests is suitable for assessing the spatial listening skills of normally-

hearing children between the ages of 18 months and 7 years. The tests measure

abilities in both sound-source localisation and speech perception in noise. The tests

of sound-source localisation employ a series of tasks with an ascending degree of

difficulty, and the tests of speech perception use an adaptive routine. Consequently,

the tests can be used with children who vary in age and in listening skill. Moreover,

the tests do not require verbal responses. Parents and children found the testing

environment to be comfortable and children found the tests engaging. On most of the

tests of sound-source localisation, and the measure of SRM, the performance of 3- to

4-year-old children was similar to that of adults. A lack of age effects is an advantage

when comparing outcomes for children with cochlear implants, because it can be

difficult to recruit groups of children of the same age.

The test sessions for this study took between two and three hours. This may be

rather long: it is possible that children would complete more tests, and show higher

levels of performance, if the tests were administered during several shorter sessions.

However, the data are suitable for comparisons with those for other children who were

tested in a single session.

The tests of spatial listening were designed for the assessment of children with

cochlear implants, but they could also be used in other areas of research. Some

children appear to have poor listening skills, despite normal hearing levels and an

absence of higher-level cognitive deficits (Witton, 2010). The listening skills of this

population of children could be assessed using the tests of spatial listening described

in this chapter.

4.4.7 Conclusion

Normally-hearing children as young as 3 years can localise sounds, track moving

sounds, and benefit from SRM. The ability to perceive speech in quiet and in noise

improves with age.
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4.5 Summary

• A battery of tests was developed to compare outcomes between children who

use a unilateral cochlear implant and children who use bilateral cochlear

implants.

• The tests were attempted by normally-hearing adults and normally-hearing

children between 18 months and 7 years old.

• Older children completed more tests, yet the two simplest tests were completed

by the majority of 18- to 24-month-old children.

• On tests of left-right discrimination, localisation, and movement tracking,

children’s performance was similar to that of adults by the age of 3 or 4 years.

• Older participants had lower SRTs in quiet and in noise.

• Both children and adults showed SRM with noise on either side of the head. All

age groups showed a similar amount of SRM.

• On average, participants’ SRTs were 7 dB lower when there was a difference in

F0 between speech and a masker than when there was no difference in F0, and

the difference between conditions did not vary with age.

• Test-retest reliability was somewhat poorer than had been estimated previously.
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Chapter 5

Spatial Listening Skills of Children with

Unilateral or Bilateral Cochlear

Implants

This chapter reports a study that compared the spatial listening skills of children

with unilateral or bilateral cochlear implants. The children attempted the tests of

spatial listening described in the previous chapter. On average, bilaterally-implanted

children performed better than unilaterally-implanted children on tests of left-right

discrimination, localisation, movement tracking, and SRM with noise ipsilateral to

the first implant. Significant differences between the groups were sustained following

imputation of missing data and statistical control of confounds. The group of

bilaterally-implanted children included those who had received two implants in a

single surgery and those who had a gap between surgeries. There were no significant

differences between the performance of these two subgroups.

5.1 Introduction

Recently, one of the issues facing clinicians and parents has been whether severely-

profoundly deaf children should receive bilateral cochlear implants rather than a

unilateral cochlear implant. It has been argued that bilateral implantation creates

the potential for binaural hearing, provides a backup in the event of device failure,

and ensures that the more-responsive auditory nerve is stimulated (see section 3.1.2).

Evidence that these benefits are realised by children with bilateral implants is required

to justify the additional surgery and incremental discounted lifetime cost of £27,000

per child (at 2007 cost levels, Bond et al., 2007). This chapter reports a between-

subjects study that assessed the effectiveness of bilateral implantation in enabling

spatial listening skills, meaning the ability to use both ears together to localise sources

of sound and to improve the perception of speech in noise. These skills may help
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children to avoid hazards outdoors and to understand speech better at home and at

school.

The review of the literature in Chapter 3 concluded that there is uncertainty

regarding the effectiveness of paediatric bilateral implantation in improving spatial

listening skills. The uncertainty arises because of three main factors. First, many

studies reported null results or contradictory results. Second, the majority of studies

used a within-subjects design in which the unilateral condition was confounded with

unfamiliarity. Third, the published studies are at risk of several types of bias, and did

not use statistical techniques to control for the effects of confounding variables and

missing data.

Some between-subjects comparisons reported significantly better left-right dis-

crimination skills in bilaterally-implanted children than unilaterally-implanted chil-

dren (Beijen et al., 2007; Litovsky, Johnstone, Godar, Agrawal, et al., 2006). Other

studies did not find a significant difference between the groups, despite using similar

methods and testing some of the same children (Litovsky, Johnstone, & Godar,

2006). No study has demonstrated that the SRTs of bilaterally-implanted children are

significantly lower than those of unilaterally-implanted children, when listening with

the device(s) they use everyday (Litovsky, Johnstone, & Godar, 2006; Mok et al., 2009;

Schafer & Thibodeau, 2006). An alternative measure of the binaural advantage for

speech perception in noise is SRM (see Figure 3.3 on page 35). A single study reported

that bilaterally-implanted children show significantly more SRM than unilaterally-

implanted children, with noise ipsilateral to the first implant (Mok et al., 2007). The

difference in SRM was small (less than 1 dB), and it was measured using a test in

which children reported the presence, rather than the content, of target speech. The

relationship between performance on this test and the ability to understand speech in

noise is unknown. Other studies found that SRM did not differ significantly between

bilaterally- and unilaterally-implanted children (Litovsky, Johnstone, & Godar, 2006;

Mok et al., 2009). Thus, previous between-subjects comparisons do not provide

consistent evidence that bilateral implantation for children is more effective than

unilateral implantation in enabling spatial listening skills.

As well as comparing the amount of SRM shown by bilaterally- and unilaterally-

implanted children, one can assess whether either group shows significant SRM

(see section 3.3.2). Normally-hearing children show significant SRM with noise on

either side of the head (Chapter 4; Garadat & Litovsky, 2007; Mok et al., 2007).

Bilaterally- and unilaterally-implanted children have shown significant SRM with

noise contralateral to their first implant (Litovsky, Johnstone, & Godar, 2006; Mok

et al., 2007, 2009; Peters et al., 2007). Given this finding, one would expect

bilaterally-implanted children to also show SRM with noise ipsilateral to their first

implant, because they use an implant in both ears. However, neither bilaterally- nor

unilaterally-implanted children have shown significant SRM with noise ipsilateral to
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their first implant (Litovsky, Johnstone, and Godar; Mok et al., 2007, 2009; Peters et

al.). If bilateral implantation is effective in improving speech perception in noise,

bilaterally-implanted children should, to a greater degree than unilaterally-implanted

children, show SRM with noise ipsilateral to their first implant.

There is also uncertainty regarding the effectiveness of bilateral implantation

in improving quality of life, an issue that is discussed in detail in Chapter 7. The

uncertainty surrounding the evidence was reflected by the decision-making process

of the National Institute for Health and Clinical Excellence (NICE), an independent

organisation responsible for providing national guidance on promoting good health

and preventing and treating ill health. In December 2007, NICE published provisional

guidance recommending that severely-profoundly deaf children should have the

option of receiving bilateral implants (NICE, 2007). Subsequent provisional guidance

recommended unilateral implantation only (NICE, 2008a). In January 2009, the

final policy was published and recommended bilateral implantation for children

(NICE, 2009). The study described in this chapter was carried out to provide

evidence about the effectiveness of bilateral implantation in improving children’s

spatial listening skills. The studies described in Chapter 7 provide evidence about

the effectiveness of bilateral implantation in improving children’s quality of life.

Provisional results from these studies were submitted to NICE and are referred to in

the final guidance.

5.1.1 Aims and hypotheses

This study compared the performance of bilaterally- and unilaterally-implanted

children on tests of spatial listening. A nonrandomised cross-sectional design

was used, which included an embedded comparison of outcomes from bilateral

implantation in a single surgery with bilateral implantation in sequential surgeries.

Variables which predict success with a unilateral implant were measured (see

section 3.1.1); confounding differences between the bilateral and unilateral groups

were controlled statistically. The performance of the bilaterally-implanted children

was compared with that of the entire group of normally-hearing children whose

results were described in Chapter 4. The results of the normally-hearing adults from

Chapter 4 are shown for comparison, but were not included in statistical analyses.

It was predicted that bilaterally-implanted children would show better perfor-

mance than unilaterally-implanted children on tests of left-right discrimination,

localisation, movement tracking, and SRM with noise ipsilateral to the first implant. It

was predicted that these differences would be maintained after imputation of missing

data and statistical control of confounds. It was expected that bilaterally-implanted

children would not perform as well as normally-hearing children. A search of the

literature did not reveal any studies that compared the performance of simultaneous
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and sequential bilaterally-implanted children. Therefore, it was not known whether

the performance of these two groups would differ.

In the UK, some unilaterally-implanted children use a contralateral acoustic

hearing aid and some do not. For example, the Yorkshire Cochlear Implant Service

provided 131 children with a unilateral implant between 2004 and 2008, inclusive.

At the end of 2008, 61 of these children were using a contralateral acoustic hearing

aid (S. Morgan, personal communication, February 19, 2010). Some children with

little residual hearing are encouraged to use a hearing aid in the hope, rather than

the expectation, that they will benefit. Consequently, the fact that a child uses a

hearing aid does not guarantee that they are obtaining benefit from it. The sample of

unilaterally-implanted children in this study included children who did, and children

who did not, use a contralateral acoustic hearing aid. The performance of the

two subgroups was compared, but the study was not designed to detect differences

between these subgroups.

5.2 Method

5.2.1 Participants

Eligible participants were children aged 2 to 16 years without disabilities that

precluded performance testing. They had a parental declaration of severe-profound

deafness and had been using unilateral or bilateral cochlear implants for over

six months. The participants used cochlear implants made by Advanced Bionics

Corporation (Sylmar, USA), Cochlear Ltd. (Lane Cove, Australia), or Med-El GmbH

(Innsbruck, Austria). The study was designed to detect differences of one standard

deviation between unilaterally- and bilaterally-implanted children with 90% power at

p < .05. The participants were sequential volunteers recruited via a charity and the UK

National Health Service. Seventy-five eligible families with deaf children contacted

the author. Eighteen families declined to take part (12 with a bilaterally-implanted

child). Two children were excluded following testing because they fell asleep or

did not sit still (both bilateral). Twenty unilaterally-implanted and 35 bilaterally-

implanted children completed the study.

Table 5.1 contains biographical data for the children who completed the study.1

Biographical data are also shown for the entire group of normally-hearing children.

Nine of the unilaterally-implanted children used a contralateral acoustic hearing aid.

Fifteen of the bilaterally-implanted children received their implants with under a

month between surgeries (simultaneous bilaterals); 20 had over a month between

1Lovett, Kitterick, Hewitt, and Summerfield (2010) presented the results of this experiment with
50 participants. Five extra participants were subsequently recruited to increase the power of the
comparison of simultaneous and sequential bilaterally-implanted children. Consequently, this
chapter and the published paper show slightly different results.
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surgeries (sequential bilaterals). For implanted children, the term ‘hearing age’

refers to the length of time for which the child has used at least one implant. For

normally-hearing children, hearing age is the same as chronological age. There

is some evidence that, on measures of outcome such as receptive vocabulary, the

performance of implanted children is, on average, appropriate for their hearing age

rather than their chronological age (Fagan & Pisoni, 2010). In the present sample of

children, the average hearing age was similar for unilaterally-implanted children, the

entire group of bilaterally-implanted children, and normally-hearing children.

Approval was obtained from the North West Research Ethics Committee of the

National Research Ethics Service. Parents gave written informed consent. The

parents of participants received a reimbursement of the costs of travel and overnight

accommodation (where necessary).
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Table 5.1. Biographical data for the participants. For ages and durations, means and standard deviations (SD) are in years. Hearing age is time since
first implantation for deaf children, and chronological age for normally-hearing children. Duration of deafness is time between diagnosis and first
implantation. N/A: not applicable.

Unilateral Bilateral Normally-hearing

ALL Simultaneous Sequential

Number of children 20 35 15 20 56

Chronological age, mean (SD) 7.20 (3.68) 6.83 (3.77) 4.90 (3.49) 8.28 (3.36) 4.52 (2.02)

Hearing age, mean (SD) 3.90 (3.03) 3.96 (2.99) 1.69 (0.89) 5.66 (2.89) 4.52 (2.02)

Family income, mean (SD) £59,000 (£29,600) £58,500 (£28,600) £58,300 (£32,200) £58,700 (£26,300) Data not gathered

Gender, n (%)

Male 8 (40.0) 17 (48.6) 8 (53.3) 9 (45.0) 26 (46.4)

Female 12 (60.0) 18 (51.4) 7 (46.7) 11 (55.0) 30 (53.6)

Number of additional disabilities, n (%)

None 18 (90.0) 28 (80.0) 13 (86.7) 15 (75.0) 56 (100)

One or more 2 (10.0) 7 (20.0) 2 (13.3) 5 (25.0) 0 (0)

Age at diagnosis of deafness,

mean (SD)

0.82 (1.00) 1.66 (2.58) 2.24 (3.32) 1.23 (1.82) N/A

Duration of deafness at time of

first implantation, mean (SD)

2.48 (2.07) 1.20 (1.03) 0.95 (0.92) 1.40 (1.09) N/A

Duration of deafness at time of

second implantation, mean (SD)

N/A 3.58 (3.57) 0.95 (0.92) 5.55 (3.55) N/A
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Table 5.1. (Continued). Biographical data for the participants. For ages and durations, means and standard deviations (SD) are in years. Hearing age is
time since first implantation for deaf children, and chronological age for normally-hearing children. Duration of deafness is time between diagnosis and
first implantation. N/A: not applicable.

Unilateral Bilateral Normally-hearing

ALL Simultaneous Sequential

Experience with current device(s),

mean (SD)

3.76 (3.08) 1.59 (0.93) 1.71 (0.88) 1.51 (0.97) N/A
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5.2.2 Listening tests

The listening tests were identical to those described in section 4.2.2, with the following

exceptions. During pilot testing, children with cochlear implants reported that the

level of the speech was too low in the Toy Discrimination test in pulsatile noise.

Accordingly, the level of the speech for this test was increased to 51 dB (A) SPL (5 dB

more intense than for normally-hearing children). For the Toy Discrimination test

in pink noise, two participants (in the main study rather than the pilot study) could

not identify the speech stimuli at the most advantageous signal-to-noise ratio in

the adaptive routine (+26 dB). For these two children, the level of the speech was

increased from 50 dB(A) SPL to 60 dB(A) SPL. The increased level of the speech was

taken into account when calculating SRTs. Due to time constraints, the deaf children

did not undertake the 15◦ separation condition of the Toy Localisation test, nor did

they undertake the 15◦ separation condition with distractors. The deaf children

attempted an additional test of sentence perception in quiet (see following section

for details).

5.2.2.1 Bamford-Kowal-Bench Sentences

Bamford-Kowal-Bench (BKB) sentences were used to assess children’s ability to

understand speech in quiet conditions (Bench, Kowal, & Bamford, 1979). There are

20 lists, each containing 16 sentences, with 50 keywords per list. The sentences were

spoken by a male talker and presented at 70 dB (A) SPL. Children were asked to repeat

the sentence. The child’s responses were scored using a loose keyword method in

which the root of the keyword had to be correct but other details, such as the inflexion

or precise word ending, did not need to be correct. The dependent variable was the

percentage of correct keywords.

For children with two devices (either two implants or an implant and a hearing

aid) there were three conditions of the BKB Sentence test: 1) both of the child’s

devices were switched on; 2) only the device on the left ear was switched on; and

3) only the device on the right ear was switched on. Bilaterally-implanted children

attempted the three conditions in an order counterbalanced across participants.

Bimodally-aided children attempted the binaural and implant-only conditions first,

in an order counterbalanced across participants, and then attempted the hearing-aid-

only condition. This order of conditions was chosen for the bimodally-aided children

because, during pilot testing, several children were unwilling to listen with only their

hearing aid. Children attempted one list of sentences per condition; the list for each

condition was selected at random and not repeated for that child. Children who used

a unilateral implant without a hearing aid completed a single list of sentences.
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5.2.3 Procedure

The protocol was the same as for normally-hearing children (described in sec-

tion 4.2.3), with the following modifications. Testing took place in a single session

lasting up to three hours, with the exception of one child who attended two sessions.

Regardless of their age, the children attempted the 60◦ separation condition of the Toy

Localisation test, followed by the 30◦ separation condition. (The normally-hearing

children did not attempt the 60◦ separation condition unless they were under the

age of 5 years.) Some older children completed two repetitions of the conditions

of the Toy Discrimination test; their mean SRTs are reported. The BKB sentences

were attempted at the end of the test session. For all tests except the BKB sentences,

children listened with the device(s) and settings that they used everyday. To gather

biographical information about the child, parents completed a questionnaire about

the child’s date of birth, age at diagnosis of deafness, age at implantation, and

disabilities in addition to deafness. Parents also estimated the annual family income.

5.2.4 Analyses

5.2.4.1 Calculation of spatial release from masking

For the remainder of this chapter, ‘device’ refers to either an implant or a hearing

aid. The child’s ‘first device’ was defined as the only implant (for unilaterals), the first

implant (for sequential bilaterals), or randomly assigned to be the left or right implant

(for simultaneous bilaterals). The child’s ‘second device’ was therefore a hearing aid

or no device (for unilaterals), the second implant (for sequential bilaterals), or the

implant contralateral to the first device (for simultaneous bilaterals).

SRM was calculated by subtracting the SRT with noise at the side from the SRT

with noise at the front, giving two measures of SRM: with noise ipsilateral, and

contralateral, to the first device. A positive score indicates that the child could tolerate

more noise in the condition with noise at the side. For normally-hearing children and

adults, a single measure of SRM was calculated: the mean of the SRM with noise on

the left and the SRM with noise on the right.

5.2.4.2 Setting age limits for tests

Older children completed more tests (the same tendency was observed with normally-

hearing children in Chapter 4). Some analyses involved the imputation of data

that were missing because children did not complete all of the outcome measures

(Donders et al., 2006). If imputation had been carried out on the entire data set, there

would have been a large amount of imputed data for the young children. Accordingly,

a post-hoc age limit was defined for each test. The sample of deaf children was

split into 12-month age bands starting from 24 months. For each test, the age limit
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was defined as the lower edge of the first band in which over 50% of deaf children

provided data. For the Left-Right Discrimination and Movement Tracking tests, the

limit was the same as the age of the youngest children in the study (24 months). For

the 60◦ separation condition of the Toy Localisation test the limit was 48 months;

for the 30◦ separation condition it was 72 months. For the Toy Discrimination test

the limit was 36 months. For the sake of consistency, children younger than these

limits who did provide data were excluded from all analyses of that test. For the 60◦

separation condition of the Toy Localisation test, two children were excluded (one was

bilateral). For the 30◦ separation condition of the Toy Localisation test, five children

were excluded (all were bilateral). For the Toy Discrimination test, no children were

excluded. The BKB Sentence test was not subjected to imputation of missing data, so

no age limit was set and no children were excluded. The age limits were also applied

to the data from normally-hearing children that are presented in this chapter.

5.2.4.3 Presentation of results

With the exception of the measures of SRM, the outcome measures did not distribute

normally. The primary aim of the study was to compare unilaterally- and bilaterally-

implanted children. Box plots, scatterplots, and tables of medians were used to

summarise the performance of these two groups; the results from the normally-

hearing children and adults from Chapter 4 were included for comparison and to

illustrate the upper limit of performance. Some children did not complete all of the

tests, so numbers at the top of figures indicate how many children in each group

contributed data. Tables of medians were used to summarise the performance of

subgroups.

5.2.4.4 Statistical analyses

In this and subsequent chapters, statistics were computed using SPSS 17.0 for

Windows. The aim of the statistical analyses was to assess:

1. Whether the performance of the bilaterally-implanted group was different to

that of the unilaterally-implanted group.

2. Whether the performance of the normally-hearing group was different to that

of the bilaterally-implanted group.

3. Whether the bilaterally-implanted group and/or the unilaterally-implanted

group showed SRM and a difference in SRT between the Same-F0 and Raised-F0

conditions of the Toy Discrimination test.

4. Whether statistically-significant differences between the bilateral and unilateral

groups were maintained following imputation of missing data and statistical

control of confounds.
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5. Whether biographical variables were related to the performance of unilaterally-

or bilaterally-implanted children.

6. Whether the performance of simultaneous bilaterally-implanted children was

different to that of sequential bilaterally-implanted children.

7. Whether the performance of unilaterally-implanted children who used an

acoustic hearing aid was different to that of unilaterally-implanted children

who did not use an acoustic hearing aid.

5.2.4.4.1 Comparing children with a unilateral implant, bilateral implants, or

normal hearing Mann-Whitney tests with a Bonferroni correction were used to

compare the performance of the unilateral and bilateral groups, and the bilateral and

normally-hearing groups. Effect sizes for Mann-Whitney tests were calculated using

the formula in section 4.2.5.2. Children were excluded from analyses of outcome

measures for which their data were missing.

5.2.4.4.2 Within-subjects comparisons of implanted children Wilcoxon signed-

rank tests with a Bonferroni correction were used to assess whether the groups

showed SRM and a difference in SRT between the Same-F0 and Raised-F0 conditions

of the Toy Discrimination test. Wilcoxon signed-rank tests with a Bonferroni

correction were used to assess whether there was an effect of condition on bilaterally-

implanted children’s performance on the BKB Sentence test. Unilaterally-implanted

children did not provide enough data on the BKB Sentence test to make statistical

comparisons between conditions. Children were excluded from analyses of outcome

measures for which their data were missing. Effect sizes for Wilcoxon tests were

calculated using the formula r = z/
p

N where z is the standardised test statistic and

N is the number of observations.

5.2.4.4.3 Analyses to control for missing data and confounds Missing data were

imputed as the median of the other group (either unilateral or bilateral). An alterna-

tive method of imputation is to predict, based on a subject’s known characteristics,

what their score on the missing variable might have been. Analyses can then be

repeated several times with different imputed values. This technique of multiple

imputation may give a more accurate estimate of the effect size than imputation

using the median (Donders et al., 2006). Multiple imputation was not used in the

present study because reliable predictors of which data were likely to be missing

could not be identified (C. Hewitt, personal communication, August 26, 2009).

Following imputation, multiple linear regression analyses were carried out to control

the influence of confounds. Two measures which met the assumptions of linear

regression (Bland, 2000) were analysed: 1) a composite localisation score, calculated
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as the mean of the scores for both conditions of Left-Right Discrimination, the 60◦

separation condition of Toy Localisation, and Movement Tracking; 2) SRM with noise

ipsilateral to the first device. For the calculation of the composite localisation score,

the Toy Localisation test was re-scored to yield the percentage of correct responses.

The lower age limit for the 60◦ separation condition of the Toy Localisation test was

48 months; accordingly, the analysis of the composite localisation score only included

children above this age. Likewise, the analysis of SRM only included children aged 36

months and above.

The number of variables in each regression model was limited to four by the

sample size (Bland, 2000). The following variables were included in each model:

group (unilateral or bilateral), number of additional disabilities, age at diagnosis

of deafness, and duration of deafness at time of first implantation. The choice of

variables was informed by differences observed between the groups (see Table 5.1),

and by previous research that demonstrated a relationship between these variables

and outcome (Stacey et al., 2006; Zeitler et al., 2008). The number of additional

disabilities had a skewed distribution, so it was transformed to a dichotomous

variable with the categories ‘none’ and ‘more than one.’

5.2.4.4.4 Analyses of the relationship between biographical variables and out-

come Kendall’s rank-order correlation coefficients (tau) were used to assess whether

the biographical variables in Table 5.1 were related to the listening skills of unilaterally-

or bilaterally-implanted children. The measures of outcome were the ±30◦ condition

of the Left-Right Discrimination test and SRM with noise ipsilateral to the first

device. These measures were chosen because they led to a range of performance and

few children had missing data. Children were excluded from analyses of outcome

measures for which their data were missing.

5.2.4.4.5 Subgroup analyses The performance of the simultaneous and sequential

bilaterally-implanted children was compared using Mann-Whitney tests, as was the

performance of unilaterally-implanted children who did or did not use a hearing aid.

Children were excluded from analyses of outcome measures for which their data were

missing. If fewer than five children in a subgroup provided data on a test, that test was

excluded from the subgroup tables and statistical analyses.
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5.3 Results

5.3.1 Comparing children with a unilateral implant, bilateral

implants, or normal hearing

5.3.1.1 Left-Right Discrimination test

The results of the Left-Right Discrimination test are shown in Figure 5.1. The

bilaterally-implanted children had higher scores than the unilaterally-implanted

children on the ±60◦ condition [z = −3.68, pb f < .01, r = .50] and the ±30◦ condition

[z = −3.25, pb f < .01, r = .46]. There was no significant difference between

the normally-hearing and bilaterally-implanted children on the ±60◦ condition

[z = −2.21, pb f > .05, r = .23]. The normally-hearing children had higher scores than

the bilaterally-implanted children on the ±30◦ condition [z = −4.26, pb f < .01, r = .45].

Figure 5.1. Results of the Left-Right Discrimination test: ±60◦ condition (left panel)
and ±30◦ condition (right panel). The yellow boxes show the area between the
25th and 75th percentiles for unilaterally-implanted children, bilaterally-implanted
children, normally-hearing (NH) children, and normally-hearing adults. The solid
black horizontal lines within the boxes show the median; the dotted orange lines show
the mean. Where the median line is not visible, the median is 100%. The whiskers show
the 10th and 90th percentiles, scores outside this range are plotted as black circles. The
dashed black line shows the level of performance expected by chance. The numbers
above the upper horizontal axis indicate how many participants in each group provided
data.

5.3.1.2 Toy Localisation test

The results of the Toy Localisation test are shown in Figure 5.2. The bilaterally-

implanted children had lower error scores than the unilaterally-implanted children

on the 60◦ separation condition [z = −2.84, pb f < .01, r = .47] and the 30◦ separation
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condition [z = −3.30, pb f < .01, r = .61]. The normally-hearing children had lower

error scores than the bilaterally-implanted children on the 60◦ separation condition

[z = −2.86, pb f < .01, r = .55] and the 30◦ separation condition [z = −4.60, pb f < .01,

r = .81].

Figure 5.2. Results of the Toy Localisation test: three-alternative task with 60◦

separation between loudspeakers (left panel) and five-alternative task with 30◦

separation (right panel). The yellow boxes show the area between the 25th and
75th percentiles for unilaterally-implanted children, bilaterally-implanted children,
normally-hearing (NH) children, and normally-hearing adults. The solid black
horizontal lines within the boxes show the median; the dotted orange lines show the
mean. Where the median line is not visible, the median is 0◦. The whiskers show the
10th and 90th percentiles, scores outside this range are plotted as black circles. The
dashed black line shows the level of performance expected by chance. The numbers
above the upper horizontal axis indicate how many participants in each group provided
data.

5.3.1.3 Movement Tracking test

The results of the Movement Tracking test are shown in Figure 5.3. The bilaterally-

implanted children had higher scores than the unilaterally-implanted children

[z = −3.33, pb f < .01, r = .45]. The normally-hearing children had higher scores than

the bilaterally-implanted children [z = −5.32, pb f < .01, r = .56].
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Figure 5.3. Results of the Movement Tracking test. The yellow boxes show the area
between the 25th and 75th percentiles for unilaterally-implanted children, bilaterally-
implanted children, normally-hearing (NH) children, and normally-hearing adults.
The solid black horizontal lines within the boxes show the median; the dotted orange
lines show the mean. Where the median line is not visible, the median is on the
upper edge of the yellow box. The whiskers show the 10th and 90th percentiles, scores
outside this range are plotted as black circles. The dashed black line shows the level
of performance expected by chance. The numbers above the upper horizontal axis
indicate how many participants in each group provided data.

5.3.1.4 Toy Discrimination test

The results of the Toy Discrimination test for participants who used 14 toys are shown

in Table 5.2. The bilaterally-implanted children had lower SRTs than the unilaterally-

implanted children in the condition with noise ipsilateral to the first device [z = −3.77,

pb f < .01, r = .69]. In the other conditions, the SRTs of the bilaterally- and unilaterally-

implanted children did not differ significantly [all pb f > .05]. The normally-hearing

children had lower SRTs than the bilaterally-implanted children on all conditions [all

pb f < .01]. Nine deaf children completed the Toy Discrimination test using 10 toys and

an additional seven deaf children used 4 toys. Due to the small numbers of children,

the SRTs from these data are not shown and were not included in these statistical

comparisons.
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Table 5.2. Results of the Toy Discrimination test for participants who used 14 toys. Noise front, Noise ipsi., and Noise contra. refer to conditions with noise
from the front, from the side ipsilateral to the first device, and from the side contralateral to the first device. The 25th percentile (25th), 50th percentile
(Median), 75th percentile (75th), and the number of participants contributing data (N ) are listed for each group. The scores for the Quiet condition are in
dB (A) SPL; the scores for all other conditions are a signal-to-noise ratio in dB. For normally-hearing children and adults, the rows for Noise ipsi. and Noise
contra. both show the mean of SRTs with noise on the left and SRTs with noise on the right.

Unilateral Bilateral Normally-hearing children Normally-hearing adults

25th Median 75th N 25th Median 75th N 25th Median 75th N 25th Median 75th N

Noise front −0.40 +0.60 +4.35 11 −1.40 +0.10 +2.10 19 −4.65 −3.90 −2.90 35 −8.65 −7.15 −5.65 10

Noise ipsi. +2.08 +4.83 +7.83 11 −4.17 −2.14 −0.14 19 −10.9 −9.66 −6.66 35 −15.2 −11.9 −11.0 10

Noise contra. −4.64 −3.48 −0.54 12 −7.67 −5.17 −2.64 19 −10.9 −9.66 −6.66 35 −15.2 −11.9 −11.0 10

Quiet +30.5 +34.7 +39.6 8 +30.3 +32.2 +33.4 18 +15.9 +19.4 +22.2 33 +10.7 +12.7 +14.2 10

Same-F0 −3.63 +1.37a +3.24 8 −2.63 +1.37a +3.87 15 −9.44 −5.63 −3.88 26 −14.6 −11.4 −9.9 10

Raised-F0 −5.36 −2.07a +3.30 8 −8.07 −2.07a +0.43 15 −16.1 −14.1 −11.1 26 −21.5 −20.6 −19.9 10

a The median scores were identical for the unilateral and bilateral groups in the Same-F0 and Raised-F0 conditions. Figure 5.5 plots

the median difference between these conditions, which was not identical for the unilateral and bilateral groups.
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5.3.1.5 Spatial release from masking

The amount of SRM shown by the participants is plotted in Figure 5.4 (including data

from children who used 4, 10, or 14 toys). With noise ipsilateral to the first device,

the bilaterally-implanted children showed more SRM than the unilaterally-implanted

children [z = −2.84, pb f < .01, r = .43] but less SRM than the normally-hearing children

[z = −2.53, pb f < .05, r = .31]. With noise contralateral to the first device, the amount

of SRM shown by the bilaterally-implanted children was similar to that shown by the

unilaterally-implanted children [z = −1.71, pb f > .05, r = .26] and the normally-hearing

children [z = −0.78, pb f > .05, r = .10].

Within-subjects comparisons SRM is significant if SRTs are significantly lower in

the condition with noise from the side than the condition with noise from the front.

On average, the bilaterally-implanted children showed significant SRM with noise

ipsilateral to the first device [z = −3.34, pb f < .01, r = .45] and with noise contralateral

to the first device [z = −3.99, pb f < .01, r = .54]. On average, the unilaterally-

implanted children did not show significant SRM with noise ipsilateral to the first

device [z = −0.98, pb f > .05, r = .17]. On average, the unilaterally-implanted children

did show significant SRM with noise contralateral to the first device [z = −3.41,

pb f < .01, r = .62].
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Figure 5.4. The amount of SRM shown by unilaterally-implanted children, bilaterally-
implanted children, normally-hearing (NH) children, and normally-hearing adults.
Left panel: with noise ipsilateral to the first device. Right panel: with noise contralateral
to the first device. For participants with normal hearing, the mean SRM is plotted.
The yellow boxes show the area between the 25th and 75th percentiles. The solid black
horizontal lines within the boxes show the median; the dotted orange lines show the
mean. The whiskers show the 10th and 90th percentiles, scores outside this range are
plotted as black circles. The numbers above the upper horizontal axis indicate how
many participants in each group provided data.

5.3.1.6 Toy Discrimination test in pulsatile noise

The results of the Toy Discrimination test in pulsatile noise are shown in Table 5.2 and

are plotted in Figure 5.5 as the difference in SRT between the Same-F0 and Raised-

F0 conditions. A positive score in Figure 5.5 indicates lower SRTs in the Raised-F0

condition than in the Same-F0 condition. On average, both groups of implanted

children showed a positive difference score; the groups did not differ significantly

[z = −0.70, pb f > .05, r = .14]. The normally-hearing children had a greater difference

score than the bilaterally-implanted children [z = −2.37, pb f < .05, r = .36].

5.3.1.6.1 Within-subjects comparisons The bilaterally-implanted children showed

significantly lower SRTs in the Raised-F0 condition than the Same-F0 condition

[z = −2.33, pb f < .05, r = .43]. The unilaterally-implanted children showed SRTs

that did not differ significantly between the Raised-F0 condition and the Same-F0

condition [z = −1.28, pb f > .05, r = .29].
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Figure 5.5. Results of the Toy Discrimination test in pulsatile noise for unilaterally-
implanted children, bilaterally-implanted children, normally-hearing (NH) children,
and normally-hearing adults. The difference in SRT between the Same-F0 and Raised-
F0 conditions is plotted. The yellow boxes show the area between the 25th and 75th

percentiles. The solid black horizontal lines within the boxes show the median; the
dotted orange lines show the mean. The whiskers show the 10th and 90th percentiles,
scores outside this range are plotted as black circles. The numbers above the upper
horizontal axis indicate how many participants in each group provided data.

5.3.1.7 BKB Sentence test

The results of the BKB Sentence test are shown in Figure 5.6. When listening with

the device(s) they used normally, the performance of the bilaterally- and unilaterally-

implanted children did not differ significantly [z = −1.40, p > .05, r = .28]. There

were insufficient data to make further between-subjects comparisons. For bilaterally-

implanted children, scores obtained when listening with the first device were not

significantly different to those obtained using both devices [z = −1.99, pb f > .05,

r = .34]. For bilaterally-implanted children, scores obtained when listening with the

first device were higher than those obtained when listening with the second device

[z = −2.55, pb f < .01, r = .45].
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Figure 5.6. Scatterplot of the results of the BKB Sentence test. The percentage of
keywords correct is plotted for three conditions: listening with the child’s normal
device(s) (left panel), listening with the first device only (centre panel), and listening
with the second device only (right panel). The yellow triangles show scores from
bilaterally-implanted children. The circles show scores from unilaterally-implanted
children: those who normally use a hearing aid are shaded in blue, those who do not
are shaded in orange. Within each panel, symbols are offset horizontally so that each
child’s score is visible.

5.3.2 Controlling for missing data and confounding variables

Forty deaf children were above the age limit for the composite localisation score:

data were imputed for four children on one of the tests used to form the composite,

and for one child on three of the tests. Accurate performance on the Left-Right

Discrimination, Localisation, and Movement Tracking tests is represented by a high

composite localisation score. The mean composite localisation score was 75.0% (95%

confidence interval 66.9 to 83.1) for the bilateral group and 53.1% (95% confidence

interval 44.7 to 61.6) for the unilateral group. Fifty deaf children were above the

age limit for the measure of SRM with noise ipsilateral to the first device: data were

imputed for seven children. The mean was +2.44 dB (95% confidence interval +1.20

to+3.69) for the bilateral group and−0.82 dB (95% confidence interval−3.06 to+1.42)

for the unilateral group.

When the influence of covariates was held constant, bilateral implantation was

associated with a significant increase of 20.3% in composite localisation score and

a significant increase of 3.5 dB in SRM with noise ipsilateral to the first device
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(Tables 5.3 and 5.4). The only statistically-significant covariate was the age at

diagnosis of deafness: an increase of one month in age at diagnosis was associated

with an increase of 0.3% in composite localisation score.

Table 5.3. Results of multiple linear regression with composite localisation score
as the dependent variable. The value of R2 for the model was .44 (p < .001).
The unstandardised regression coefficient, B (with 95% confidence interval, c.i., in
parentheses), and the standardised regression coefficient, β, are listed for each variable
in the model.

B (95% c.i.) β

Constant +50.3 (+29.5 to +71.1)
Group (unilateral or bilateral) +20.3 (+7.77 to +32.8) +0.46**
Number of additional disabilitiesa −4.11 (−18.9 to +10.6) −0.07
Age at diagnosis of deafness (months) +0.32 (+0.13 to + 0.51) +0.44**
Duration of deafness at time of first
implantation (months)

+0.11 (−0.19 to +0.41) +0.10

** p < .01; a Dichotomous: none or more than one.

Table 5.4. Results of multiple linear regression: the dependent variable was SRM with
noise ipsilateral to the first device. The value of R2 for the model was .23 (p < .05).
The unstandardised regression coefficient, B (with 95% confidence interval, c.i., in
parentheses), and the standardised regression coefficient, β, are listed for each variable
in the model.

B (95% c.i.) β

Constant +2.70 (−1.50 to +6.90)
Group (unilateral or bilateral) +3.47 (+0.82 to +6.11) +0.39*
Number of additional disabilitiesa −2.01 (−5.04 to +1.02) −0.18
Age at diagnosis of deafness (months) −0.04 (−0.08 to + 0.01) −0.23
Duration of deafness at time of first
implantation (months)

−0.03 (−0.09 to +0.03) −0.14

* p < .05; a Dichotomous: none or more than one.

5.3.3 The relationship between biographical variables and outcome

The correlations between biographical variables and two measures of spatial listening

skill for unilaterally-implanted children are shown in Table 5.5. The only significant

correlation indicated that children with a longer duration of deafness at first

implantation tended to show better performance on the Left-Right Discrimination

test. This result was unexpected, given previous demonstrations that a shorter

duration of deafness is associated with better listening skills (see sections 3.1.1

and 3.7). An examination of the data from the present study indicated that the

correlation was strongly influenced by two outliers.
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The correlations between biographical variables and spatial listening skills for

bilaterally-implanted children are shown in Table 5.6. The only significant correlation

indicated that children with an older chronological age tended to show better

performance on the Left-Right Discrimination test.

Table 5.5. Correlations between biographical variables and performance for
unilaterally-implanted children. For the ±30◦ condition of the Left-Right Discrimina-
tion test (N = 17) and SRM with noise ipsilateral to the first device (N = 16), the Kendall’s
tau correlation coefficient and p value are listed. The statistically-significant correlation
is emboldened. A positive correlation with gender indicates that girls tended to show
better performance.

Left-Right SRM noise
Discrimination ipsilateral
τ p τ p

Chronological age +.29 .11 −.16 .39
Hearing age +.11 .56 +.08 .65
Family income −.36 .06 +.01 .96
Gender +.14 .50 −.17 .43
Number of additional disabilities −.03 .88 −.36 .10
Age at diagnosis of deafness +.15 .43 −.08 .68
Duration of deafness at first implantation +.46 .01 −.35 .06
Experience with current device(s) +.11 .56 −.02 .93

Table 5.6. Correlations between biographical variables and performance for bilaterally-
implanted children. For the ±30◦ condition of the Left-Right Discrimination test
(N = 34) and SRM with noise ipsilateral to the first device (N = 27), the Kendall’s tau
correlation coefficient and p value are listed. The statistically-significant correlation
is emboldened. A positive correlation with gender indicates that girls tended to show
better performance.

Left-Right SRM noise
Discrimination ipsilateral
τ p τ p

Chronological age +.34 .01 −.15 .29
Hearing age +.14 .27 −.06 .65
Family income +.13 .33 −.05 .74
Gender −.10 .52 −.30 .07
Number of additional disabilities +.06 .67 −.14 .37
Age at diagnosis of deafness +.22 .08 −.12 .40
Duration of deafness at first implantation −.03 .83 −.09 .50
Duration of deafness at second implantation +.09 .45 −.01 .97
Experience with both devices −.01 .99 −.13 .34
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5.3.4 Analyses of subgroups

The results of the listening tests for the simultaneous and sequential bilaterally-

implanted children are shown in Table 5.7, along with the results of statistical

comparisons of these two subgroups. The subgroups did not differ significantly

on any of the listening tests. Seven simultaneous bilaterally-implanted children

completed some conditions of the Toy Discrimination test; five of these children used

fewer than 14 toys. Consequently, the SRTs for the Toy Discrimination test are not

shown.

The results of the listening tests for the two subgroups of unilaterally-implanted

children are shown in Table 5.8, along with the results of statistical comparisons of

these subgroups. The subgroups did not differ significantly on any of the listening

tests. Tests were omitted from Tables 5.7 and 5.8 if fewer than five children in a

subgroup provided data.
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Table 5.7. Results of the listening tests for the simultaneous and sequential bilaterally-implanted children. The second column shows the lower age limit.
The 25th percentile (25th), 50th percentile (Median), 75th percentile (75th), and the number of participants contributing data (N ) are listed for each group,
alongside the standardised test statistic (z), p value, and effect size (r) resulting from a Mann-Whitney comparison of the groups. SRM noise ipsi. and SRM
noise contra. refer to SRM with noise ipsi- or contra-lateral to the first device, respectively.

Age limit Simultaneous Sequential Mann-Whitney

(months) 25th Median 75th N 25th Median 75th N z p r

Left-Right ±60◦, percent correct 24 73.0 100.0 100.0 14 80.0 100.0 100.0 20 −1.01 .32 .17

Left-Right ±30◦, percent correct 24 52.2 77.0 100.0 15 77.5 85.0 95.0 20 −0.79 .44 .13

Localisation 60◦ separation, RMS error 48 0.0 11.1 82.0 5 24.5 36.3 50.9 17 −0.43 .69 .09

Movement Tracking, percent correct 24 25.0 75.0 100.0 20 25.0 50.0 93.8 20 −0.76 .48 .13

SRM noise ipsi., dB 36 +1.00 +4.78 +8.28 7 −0.44 +2.50 +5.18 20 −1.44 .16 .28

SRM noise contra., dB 36 +2.50 +3.25 +8.78 7 +2.40 +4.26 +7.65 20 −0.03 .99 .01
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Table 5.8. Results of the listening tests for two groups of unilaterally-implanted children: those who did, and those who did not, use a hearing aid. The
second column shows the lower age limit for each test. The 25th percentile (25th), 50th percentile (Median), 75th percentile (75th), and the number of
participants contributing data (N ) are listed for each group, alongside the standardised test statistic (z), p value, and effect size (r) resulting from a Mann-
Whitney comparison of the groups. Noise ipsi. and noise contra. refer to noise being presented ipsi- or contra-lateral to the child’s implant, respectively.
SRTs are shown only for participants who used 14 toys. SRM, and the difference between the Same-F0 and Raised-F0 conditions of the Toy Discrimination
test in pulsatile noise, are shown for all participants.

Age limit Used a hearing aid Did not use a hearing aid Mann-Whitney

(months) 25th Median 75th N 25th Median 75th N z p r

Left-Right ±60◦, percent correct 24 55.0 75.0 97.5 9 40.0 52.5 72.5 10 −1.72 .09 .39

Left-Right ±30◦, percent correct 24 38.5 70.0 85.0 7 38.9 52.5 62.5 10 −0.88 .40 .21

Localisation 60◦ separation, RMS error 48 32.9 63.9 77.5 7 49.0 67.5 74.1 7 −0.58 .62 .15

Movement Tracking, percent correct 24 0.00 0.00 50.0 9 0.00 25.0 25.0 11 −0.53 .62 .12

Toy Discrimination noise front, SRT (dB) 36 −1.52 −0.15 +3.04 6 +0.10 +3.10 +4.73 5 −1.19 .27 .36

Toy Discrimination, noise ipsi., SRT (dB) 36 +2.36 +6.33 +12.1 6 +1.97 +3.33 +5.20 5 −1.19 .27 .36

Toy Discrimination, noise contra., SRT (dB) 36 −4.64 −3.14 +0.36 7 −6.14 −4.14 −2.72 5 −1.30 .22 .38

SRM noise ipsi. (dB) 36 −9.73 −5.26 +1.75 7 −1.60 +0.28 +3.62 9 −1.85 .07 .46

SRM noise contra. (dB) 36 +1.78 +5.00 +6.25 7 +5.75 +7.71 +9.27 8 −1.74 .09 .45

Same-F0 minus Raised-F0 (dB) 36 −1.00 −0.06 +7.69 5 −1.81 +3.44 +4.69 5 −0.42 .74 .13
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5.3.5 Summary

Bilaterally-implanted children performed significantly better than unilaterally-implanted

children on tests of left-right discrimination, localisation, movement tracking, speech

perception with noise ipsilateral to the first device, and SRM with noise ipsilateral

to the first device. Significant differences between the bilaterally- and unilaterally-

implanted children were maintained following imputation of missing data and

control for confounds. The performance of the bilaterally- and unilaterally-implanted

children was similar on the following tests:

1. SRM with noise contralateral to the first device.

2. BKB sentences in quiet when listening with their normal device(s).

3. The Toy Discrimination test in quiet, with pink noise from the front, with pink

noise contralateral to the first device, and with pulsatile noise.

The normally-hearing children performed significantly better than the bilaterally-

implanted children on all tests except Left-Right Discrimination with loudspeakers

at ±60◦ and SRM with noise contralateral to the first device. The relationship

between biographical variables and performance was weak for both bilaterally- and

unilaterally-implanted children. The performance of the simultaneous and sequen-

tial bilaterally-implanted children did not differ significantly. The performance of the

unilaterally-implanted children who used a hearing aid did not differ significantly

from those who did not use a hearing aid.

5.4 Discussion

5.4.1 Summary of main findings

The bilaterally-implanted children displayed four important listening skills. On

average, they distinguished sounds on the left from sounds on the right, they

discriminated among three and five possible sound-source locations, they tracked

moving sounds, and they displayed improved speech perception when a masking

noise was moved from the front to either side of their head. On average, the

unilaterally-implanted children performed more poorly, at levels that were often close

to chance. Previous comparisons of unilaterally- and bilaterally-implanted children

have not shown consistent differences in sound-source localisation skills (Beijen

et al., 2007; Litovsky, Johnstone, Godar, Agrawal, et al., 2006; Litovsky, Johnstone,

& Godar, 2006), nor have they demonstrated that bilaterally-implanted children

show lower SRTs and greater SRM than unilaterally-implanted children (Litovsky,

Johnstone, & Godar, 2006; Mok et al., 2007, 2009; Peters et al., 2007; Schafer &

Thibodeau, 2006). By recruiting a larger sample, this study found such differences.
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The two groups of implanted children showed similar levels of performance on

tests of speech perception in which the signal-to-noise ratio was the same at both ears

(e.g. the Toy Discrimination test in quiet, the Toy Discrimination test with pink noise

from the front, and the BKB Sentence test). Thus, in these situations, this sample of

bilaterally-implanted children did not show a benefit from stimulation of the more-

responsive auditory nerve and/or an electrical signal being delivered to both ears.

Similar results were reported by Litovsky, Johnstone, and Godar (2006), Mok et al.

(2009), and Schafer and Thibodeau (2006).

5.4.2 Risk of bias

The sources of bias that can affect nonrandomised studies were summarised in

section 3.5. The present study is at risk of selection bias because it is nonrandomised.

There were confounding differences between the groups: the bilateral group had an

older age at diagnosis of deafness, a shorter duration of deafness, and a greater pro-

portion of children with additional disabilities than the unilateral group. Following

statistical control over these three confounding variables, significant differences in

performance between the bilateral and unilateral groups were sustained on measures

of sound-source localisation and SRM with noise ipsilateral to the first device. An

additional confound was that the bilateral group had less experience with their

current devices than the unilateral group. This confound was not controlled for,

because the number of variables that could be included in the analysis was restricted

by the sample size. However, less experience with the current device(s) is associated

with poorer listening skills in both unilaterally- and bilaterally-implanted children

(Litovsky, Johnstone, Godar, Agrawal, et al., 2006; Stacey et al., 2006; Steffens et al.,

2007). Thus, the omission of the confound of experience from the analyses is likely

to lead to an under-estimation, rather than an over-estimation, of the effectiveness of

bilateral compared to unilateral implantation.

The median family income of both the unilateral and bilateral groups exceeded

the national average of £30,000 (Office for National Statistics, 2008), which may

limit the external validity of the study. Outcomes from implantation are positively

associated with higher socioeconomic status (Stacey et al., 2006). Therefore,

both groups of implanted children may have shown atypically positive outcomes.

Nonetheless, the bilaterally-implanted children (and, by extension, the unilaterally-

implanted children) performed worse than normally-hearing children with a similar

average hearing age, showing that bilateral implantation had not restored normal

listening skills in this sample of children.

The study is at risk of bias because some children did not complete all of the

outcome measures. Following the imputation of missing data, significant differences

in performance between the bilateral and unilateral groups were sustained on
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measures of sound-source localisation and SRM with noise ipsilateral to the first

device. The method of imputation was deliberately conservative and may therefore

underestimate the effectiveness of bilateral implantation.

The study is at risk of detection bias because the experimenter was not blind

to whether the child had unilateral or bilateral implants. However, the tests were

designed to reduce detection bias. During the Left-Right Discrimination test, the

experimenter was blind to the correct answer and listened to music via headphones

to mask the acoustical stimuli. For the remaining tests, the child made responses that

could be scored relatively objectively (e.g. picking up a toy). To avoid reporting bias,

this chapter reports all of the outcome measures that were attempted by the children.

To summarise, the design, data analysis, and reporting of the study aimed to minimise

bias.

5.4.3 Effectiveness compared to efficacy

This study assessed the effectiveness of bilateral implantation for children when care

is provided by a number of programmes run by the UK National Health Service. The

study did not aim to assess efficacy, meaning the benefit of an intervention under

optimal conditions (Gartlehner et al., 2006). Children’s devices were not adjusted

prior to testing, despite demonstrations that fine-tuning the gain on both devices can

improve the localisation performance of bilaterally-implanted adults and bimodally-

aided children (Tyler, Noble, Dunn, & Witt, 2006 and Ching et al., 2001, respectively).

Moreover, the unilateral group may have performed better if all children had been

fitted with a contralateral acoustic hearing aid.

To assess the degree to which the participants of the present study showed

sub-optimal performance, the results can be compared with published studies of

efficacy. Unfortunately, previous studies of bilaterally-implanted children used

outcome measures that were not comparable to those in the present study (see

Chapter 3). Ching, Hill, et al. (2005) tested 18 bimodally-aided children using a five-

alternative localisation task. The stimulus was pink noise. After the loudness and

frequency response of the two devices had been adjusted, children’s median RMS

error was 49◦ (25th percentile 37◦, 75th percentile 54◦). The present study used a

similar test and obtained data from nine unilaterally-implanted children, four of

whom used a contralateral acoustic hearing aid. The group’s median RMS error

was 46◦ (25th percentile 38◦, 75th percentile 59◦). Thus, on average, the unilaterally-

implanted children in the present study showed localisation skills that were similar to

those of bimodally-aided children tested under optimal conditions.
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5.4.4 The results of within-subjects comparisons

5.4.4.1 Spatial release from masking

Bilaterally-implanted children showed significant SRM with noise on either side of the

head. This novel finding provides evidence that, when listening to speech in noise,

bilaterally-implanted children can attend to whichever ear has a better signal-to-

noise ratio. This skill may help children to understand speech in a noisy environment

such as a classroom. In contrast, unilaterally-implanted children showed significant

SRM only when noise was contralateral to their implant.

5.4.4.2 Speech in pulsatile noise

The Toy Discrimination test in pulsatile noise measured whether children could

tolerate a more adverse signal-to-noise ratio when there was a difference in F0

between speech and masker than when both speech and masker had the same F0.

It was thought that bimodally-aided children may have shown such a difference,

because acoustic hearing aids deliver an accurate representation of F0. However, the

group of unilaterally-implanted children showed no significant difference between

the Raised-F0 and Same-F0 conditions. The subgroup analysis indicated that

bimodally-aided children did not show a greater difference between conditions

than the unilaterally-implanted children who did not use a hearing aid (Table 5.8).

Furthermore, an examination of the data provided no evidence that the bimodally-

aided children who performed well on the sound-source localisation tasks (and were

therefore presumably gaining benefit from the hearing aid) were more likely to show a

difference between the Raised-F0 and Same-F0 conditions than the bimodally-aided

children who showed poorer localisation skills. Nonetheless, it is possible that a

greater difference between conditions would be shown by a sample of bimodally-

aided children with more residual hearing. A test of this prediction, using a simulation

of bimodal devices, is reported in Chapter 6.

Contrary to expectations, the bilaterally-implanted children were able to tolerate

a significantly more adverse signal-to-noise ratio in the Raised-F0 condition than

the Same-F0 condition. It is not clear why bilaterally-implanted children showed

this difference between conditions. It is possible that the two maskers differed

in the number of harmonics that fell within the passband of the filters in the

children’s cochlear-implant processors (see Figure 3.2 on page 24). Consequently,

some electrodes may have delivered a signal that was masked less in the Raised-

F0 condition than the Same-F0 condition (this idea is discussed in more detail

in section 6.4.5.4). However, it is not clear why a difference in masking between

conditions, after the signal had been processed, would lead to a difference in SRT

between conditions for the bilaterally- but not the unilaterally-implanted children.
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5.4.4.3 BKB Sentences in quiet

On the BKB Sentence test, the performance of bilaterally-implanted children when

listening with both implants was similar to their performance when listening with

only the first implant. In contrast, previous studies showed a significant advantage of

using both implants for similar tests (Gordon & Papsin, 2009; Kim et al., 2009; Kühn-

Inacker et al., 2004; Scherf et al., 2009b). There appears to have been a ceiling effect

in the present study: of the 17 bilaterally-implanted children who completed the test

using only the first implant, 11 children correctly reported over 90% of the keywords.

Thus, a more demanding test may reveal an advantage of using both implants rather

than just one.

The bilaterally-implanted children could perceive speech more accurately when

listening with the first implant than when listening with the second implant. This

difference may have arisen because, for some children, the second implantation

occurred after a sensitive period in the development of the auditory nervous system

(see section 3.7 and Graham et al., 2009). Alternatively, the difference between

conditions may have arisen because the children had less listening experience with

the second implant than with the first implant. In support of the first theory, children’s

scores with the second implant correlated with their age at second implantation

(Kendall’s τ = −.43, p < .05) but not with their experience with the second implant

(Kendall’s τ = +.06, p > .05). The unilaterally-implanted children did not provide

sufficient data on this test to enable within-subject comparisons.

5.4.5 The relationship between biographical variables and outcome

For both unilaterally- and bilaterally-implanted children, there were only weak

correlations between biographical variables and spatial listening skills when listening

with their usual device(s). It is possible that significant correlations were not observed

because the sample size in each group was limited. Studies of greater numbers

of bilaterally-implanted children found that better performance on tests of spatial

listening correlates with a shorter duration of deafness in both ears (Zeitler et al.,

2008), a younger age at the first and second implantation (Scherf et al., 2009b; Steffens

et al., 2007; Van Deun et al., 2010), and greater experience with both implants (Steffens

et al., 2007).

5.4.6 Simultaneous versus sequential bilateral implantation

There was no significant difference between the performance of children who

received bilateral implants in a single surgery and children who received bilateral im-

plants in sequential surgeries. However, the simultaneous group had a considerably

younger chronological age and hearing age, and less experience of using both devices,

135



Chapter 5 Spatial Listening Skills of Children with Cochlear Implants

than the sequential group. These differences probably arose because simultaneous

bilateral implantation is a relatively new intervention in the UK. Future work could

compare outcomes for simultaneous and sequential bilaterally-implanted children

with similar audiological histories. A younger age at the second implantation, and

a shorter duration of deafness, is associated with better listening skills with bilateral

implants (Steffens et al., 2007; Zeitler et al., 2008) and markers of normal development

of the auditory nervous system (see section 3.7; Bauer et al., 2006; Gordon et al.,

2007; Sharma et al., 2005). Consequently, it seems likely that simultaneous bilateral

implantation, or sequential bilateral implantation with a short interval between

surgeries, will result in better outcomes than sequential bilateral implantation with

a long interval between surgeries.

5.4.7 Unilaterally-implanted children: the benefit of a contralateral

acoustic hearing aid

There was no significant difference between the performance of bimodally-aided

children and unilaterally-implanted children who did not use a hearing aid. A

difference between these groups was expected, because bimodally-aided children

show better spatial listening skills when using both devices than when using just

their implant (Beijen et al., 2009; Ching et al., 2000, 2001; Ching, Hill, et al., 2005).

It is possible that the confound of unfamiliarity, or other sources of bias, caused

the difference between conditions in the within-subjects studies (see section 3.5).

On the other hand, the present study was underpowered to detect a difference

between unilaterally-implanted and bimodally-aided children, and a difference may

be revealed by a larger study.

5.4.8 Conclusion

The present study demonstrates, more rigorously than previous studies, that bilateral

implantation of severely-profoundly deaf children is associated with an improved

ability to localise sources of sound and to perceive speech in noise.

5.5 Summary

• On average, bilaterally-implanted children performed better than unilaterally-

implanted children on tests of left-right discrimination, localisation, movement

tracking, and SRM with noise ipsilateral to the first implant.

• On measures of sound-source localisation and SRM with noise ipsilateral to the

first device, significant differences between the bilateral and unilateral groups
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were sustained following imputation of missing data and statistical control of

confounds.

• Bilaterally-implanted children showed significant SRM with noise on either side

of the head, whereas unilaterally-implanted children showed significant SRM

only when noise was contralateral to their implant.

• The bilaterally- and unilaterally-implanted children showed similar levels of

performance on speech-perception tests in which the signal-to-noise ratio was

the same at both ears.

• On most tests, bilaterally-implanted children did not perform as well as

normally-hearing children.

• There were no significant differences in listening skill between simultaneous

and sequential bilaterally-implanted children. However, these groups differed

in their audiological histories.
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Chapter 6

Spatial Listening with Simulated

Unilateral or Bilateral Cochlear

Implants

This chapter reports a study in which normally-hearing adults attempted tests of

spatial listening using simulations of a unilateral implant, a unilateral implant with

contralateral acoustic hearing (bimodal devices), or bilateral implants. The simula-

tion of bilateral implants yielded better performance than the other simulations on

tests of sound-source localisation and SRM with noise ipsilateral to the simulated

first device. These results mirror the superior performance of bilaterally- compared to

unilaterally-implanted children on similar tests (Chapter 5). The concordance of the

two studies provides evidence that the differences in listening skill observed between

groups of children were primarily caused by a difference in the number of implants

the children used, rather than by confounds. In simulation, bimodal devices resulted

in better speech perception in noise than bilateral implants, but only when the former

condition provided a greater degree of acoustic hearing than is likely to be observed

in most cochlear-implant users.

6.1 Introduction

In Chapter 5, and in previous studies (see Chapter 3), it was inferred that differences

in performance between unilaterally- and bilaterally-implanted children were caused

by a difference in the number of implants the children used. This inference was

supported by the statistical analyses reported in section 5.3.2, which controlled

for some confounds. Nonetheless, it is possible that other confounds may have

caused, or contributed to, the observed differences in performance. The current

study measured the spatial listening skills of normally-hearing adults who listened

to simulations of unilateral or bilateral cochlear implants. If the adults showed
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differences in performance between simulations that were similar to those observed

between groups of implanted children, it would provide further evidence that the

children’s performance was primarily influenced by the number of implants they used

rather than by confounds. A within-subjects design ensured that differences between

the adult participants did not bias the results.

A second question of interest is whether some patients would be likely to

show better outcomes with bimodal devices rather than bilateral implants. A

simulation study allows one to parametrically vary the amount of acoustic hearing

the participant can use, and removes the need to control for differences between

participants. Furthermore, one can simulate bimodal listening with considerable

hearing in the nonimplanted ear, to the extent that patients who heard so well using

hearing aids may not have been eligible for implantation. Accordingly, the current

study assessed whether simulations of bimodal devices with varying degrees of

acoustic hearing yielded better performance than a simulation of bilateral implants.

A further aim was to compare absolute levels of performance between adults

listening to simulated implants and the implanted children whose results were re-

ported in Chapter 5. Interpreting the results of this comparison is not straightforward,

because there are multiple differences between the participants and the simulations

encompass only some aspects of listening with an implant. These issues are discussed

in section 6.4.3. The following sections describe the signal processing that can be used

to simulate a cochlear implant, and the additional processing required to simulate

spatially-separated sources of sound.

6.1.1 Vocoder simulations

The signal processing carried out by a cochlear-implant system can be simulated

using a noise vocoder (Figure 6.1; Shannon, Zeng, Kamath, Wygonski, & Ekelid, 1995).

The input signal is filtered into a limited number of channels and the amplitude

envelope is extracted from those channels. The amplitude envelope is used to

modulate a carrier signal (white noise in Figure 6.1). The signal is bandpass filtered

a second time to restrict it to the original channel bandwidth, then the channels are

combined. Thus, the temporal fine structure of the input signal is replaced by a carrier

signal whose temporal fine structure is unrelated to the input signal. The extent to

which a vocoder removes spectral detail depends upon the number of channels and

their bandwidth, an issue that is discussed in the following section. Normally-hearing

listeners report that noise-vocoded speech sounds like a harsh whisper. Vocoders

simulate the signal processing carried out by a cochlear-implant system, but they

do not replicate the effects of presenting stimuli via electrodes (such as the spread

of current within the cochlea), partial survival of spiral ganglion cells, or abnormal

processing in the auditory nervous system.
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Figure 6.1. Stages of processing in a noise vocoder with n channels. The input signal is
processed by n contiguous bandpass filters. The amplitude envelope is extracted using
half-wave rectification and low-pass filtering (Rect. & LPF) and then used to modulate
a source of white noise. The signal is bandpass filtered a second time to restrict it to
the original channel bandwidth, then the channels are combined. Image adapted from
Wilson et al. (2005).

6.1.1.1 The number of channels within a vocoder

A noise vocoder with only four channels allows normally-hearing adults to report 90%

of the words in sentences presented in quiet (Shannon et al., 1995). However, a greater

number of channels provides a higher degree of spectral resolution. Consequently,

when listening to vocoded speech in noise, performance improves with an increasing

number of channels (at least up to 20 channels; Dorman, Loizou, Fitzke, & Tu, 1998;

Friesen et al., 2001). Modern cochlear implants have between 12 and 22 processing

channels. The ability of implanted adults to perceive speech in noise improves as

the number of channels is increased up to around seven, but the addition of further

channels does not yield further improvements in performance (Fishman, Shannon, &

Slattery, 1997; Friesen et al.). It is possible that patients do not benefit from additional

channels because of the spread of current within the cochlea. Furthermore, the

ability to use additional spectral information may be limited if there is a mismatch

between the frequency range conveyed by a channel and the characteristic frequency

of the cochlear location stimulated by that electrode (known as a frequency-to-place

mismatch; Friesen et al.). With an eight-channel vocoder, the average performance

of normally-hearing adults on a test of sentence perception in noise is similar to the

performance of the best cochlear-implant users (Friesen et al.).

6.1.1.2 Noise versus tone vocoders

With a noise vocoder, fluctuations in the amplitude envelope of the noise source can

introduce extraneous fluctuations in the amplitude envelope of the vocoded signal,

which may create misleading phonetic cues (Whitmal, Poissant, Freyman, & Helfer,

2007). Accordingly, the present study used a tone vocoder in which the amplitude
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envelope from each channel was used to modulate a sine wave at the centre frequency

of the channel (Dorman et al., 1998; Hopkins et al., 2008; Stone, Füllgrabe, & Moore,

2008).

6.1.1.3 Practice effects with vocoded stimuli

In order to simulate a frequency-to-place mismatch in the cochlea, a vocoder can

be modified by setting the passbands of the output bandpass filters to a higher

frequency range than the passbands of the input bandpass filters (see Figure 6.1;

Rosen, Faulkner, & Wilkinson, 1999; Stacey & Summerfield, 2008). With this type of

simulation, the ability of normally-hearing listeners to understand speech continues

to improve after several hours of practice (Rosen et al.; Stacey and Summerfield). If

the vocoder does not simulate a frequency-to-place mismatch (as was the case in the

present study), normally-hearing listeners show high levels of performance after a

short practice session, at least on tests of speech perception in quiet (M. H. Davis,

Johnsrude, Hervais-Adelman, Taylor, & McGettigan, 2005; Friesen et al., 2001).

Although M. H. Davis et al. and Friesen et al. did not specify the duration of the

practice sessions, the descriptions imply that they were shorter than an hour.

To reduce the influence of short-term practice effects on the results of the present

study, participants completed a familiarisation phase in each condition prior to

data collection. M. H. Davis et al. (2005) compared two training procedures in

which participants heard a sentence three times. In one condition, the order of

presentation was vocoded, unprocessed, vocoded; in the other it was vocoded,

vocoded, unprocessed. The first condition yielded higher levels of performance with

novel sentences, and was therefore used in the current study.

6.1.2 Assessments of spatial listening skills with simulated cochlear

implants

To measure spatial listening skills with simulated bilateral implants, one could

present vocoded stimuli from an array of loudspeakers (Arbogast, Mason, & Kidd,

2002). This simulation preserves ITDs, whereas the signals delivered by bilateral

implants do not represent ITDs in the temporal fine structure. An alternative is to use

headphones to present stimuli that have been convolved with a head-related transfer

function (HRTF). An HRTF can be derived from recordings made with microphones

in the ears of a participant or a manikin. The function specifies the frequency-

and direction-dependent effects of the pinna, head, and torso on the level and

spectrum of a sound on arrival at each ear. When nonvocoded stimuli are convolved

with an HRTF and presented binaurally over headphones, normally-hearing listeners

typically perceive a source of sound located outside the head (Plenge, 1974; Wenzel,

Arruda, Kistler, & Wightman, 1993). Following processing with an HRTF, stimuli

141



Chapter 6 Spatial Listening with Simulated Cochlear Implants

can be vocoded and presented either monaurally or binaurally to create simulations

of unilateral or bilateral implants, respectively. To create a simulation of bimodal

devices, stimuli are convolved with an HRTF, then the signal to one ear is vocoded

and the signal to the other ear is low-pass filtered (to simulate low-frequency residual

hearing). The following sections review studies that measured the spatial listening

skills of normally-hearing adults using simulations of bilateral implants or bimodal

devices. A search of the literature did not reveal studies of spatial listening that used

a simulation of a unilateral implant without contralateral acoustic hearing.

6.1.2.1 Spatial listening skills with simulated bilateral implants

6.1.2.1.1 Sound-source localisation A thesis by Moy (2004) described a study in

which stimuli were processed using an HRTF followed by an eight-channel noise

vocoder. Three listeners attempted a seven-alternative localisation task with virtual

locations between −90◦ and +90◦. The stimulus was a sentence presented at a

constant level. The mean RMS error was 23◦ for the vocoded stimuli, compared to

12◦ for nonvocoded stimuli. A cross-correlation analysis confirmed that the vocoded

stimuli did not convey ITDs in the temporal fine structure, which may explain the

deficit in performance relative to nonvocoded stimuli.

6.1.2.1.2 Spatial release from masking Garadat, Litovsky, Yu, and Zeng (2009)

processed stimuli using an HRTF followed by a tone vocoder with 4, 8, or 16 channels.

Participants completed a closed-set word-identification task in which target speech

and masking speech were spoken by different male talkers. SRM was calculated as

the difference in performance between two conditions: 1) both target and masker

were presented from a virtual location of 0◦; 2) the target was presented from a virtual

location of 0◦ and the masker from a virtual location 90◦ to one side. The greatest

benefit of spatial separation was observed in the eight-channel condition, in which

participants showed 8 dB of SRM, on average. Moy (2004) reported 3 to 5 dB of SRM,

using a sentence-perception task in steady-state noise. These studies demonstrate a

benefit of SRM when vocoded stimuli are presented binaurally, even when the percept

of spatial separation is created by an HRTF rather than the listener’s own head and

torso.

6.1.2.2 Spatial listening skills with simulated bimodal devices

6.1.2.2.1 Sound-source localisation Francart, Bogaert, Moonen, and Wouters

(2009) processed stimuli using an HRTF, then created a simulation of bimodal devices.

The signal presented to the left ear was processed using an eight-channel noise

vocoder, and the signal to the right ear was low-pass filtered at 500 Hz. Participants

attempted a 13-alternative localisation task with virtual locations between −90◦ and
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+90◦. The stimulus was white noise and the presentation level was roved by ±6 dB.

The average RMS error was 48◦, a score which decreased to 34◦ when the ILDs

were artificially increased. A cross-correlation analysis confirmed that the processed

stimuli did not convey ITDs in the temporal fine structure. Accordingly, the limited

localisation skills with simulated bimodal devices must have been based on ITDs

in the envelope, ILDs (although these were reduced by the low-pass filter), and/or

monaural level or spectral cues.

6.1.2.2.2 Speech perception in noise A search of the literature did not reveal

any assessments of SRM with simulated bimodal devices, but several studies have

measured the ability to perceive speech in the presence of noise from the same spatial

location. The aim of many studies was to identify the acoustic or phonetic cues that

enable unilaterally-implanted patients to benefit from using a contralateral acoustic

hearing aid, even when the patient is unable to understand speech using just the

hearing aid (see section 3.3.2 and Kong et al., 2005). The difference in performance

between using both devices and using just the implant will be referred to as the

bimodal benefit, both for studies of patients and studies using simulated bimodal

devices.

It has been suggested that the bimodal benefit occurs because listeners combine

the representation of F0 in the acoustic signal with the relatively poor representation

of F0 in the signal from the implant, and then use F0 to segregate concurrent talkers

(Kong et al., 2005; Qin & Oxenham, 2006). Kong and Carlyon (2007) presented two

lines of evidence against this theory. First, there was a significant benefit of adding

low-pass filtered speech to vocoded speech, even when cues to F0 were removed from

the amplitude envelope of the vocoded speech. Second, a low-frequency harmonic

complex that reproduced variation in the F0 and amplitude envelope of the target

speech did not yield a bimodal benefit (except for a small benefit at the lowest signal-

to-noise ratio). The authors concluded that most of the bimodal benefit is due to

an improved perception of low-frequency phonetic cues (such as the first formant,

formant transitions, and voicing) and an enhanced ability to ‘glimpse’ the target

speech. Li and Loizou (2008) defined glimpsing as the ability to identify regions

in time and frequency that have a relatively beneficial signal-to-noise ratio. Li and

Loizou proposed that glimpsing allows listeners to detect the presence of target

speech and then to access phonetic cues, such as a formant peak.

The role of voicing cues and glimpsing is supported by data from Brown and

Bacon (2009). Vocoded speech was combined with a low-frequency tone that was

either: 1) modulated in frequency to represent changes in the F0 of the target speech

(TF0); 2) modulated in amplitude to represent the amplitude envelope of the target

speech (Tenv); or 3) unmodulated except for onsets and offsets that indicated when

the target speech was voiced. The task was to report the words in sentences, and
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a range of maskers were used. There was a significant benefit of adding any one of

the tones to the vocoded speech. The authors proposed that the TF0 and Tenv tones

helped listeners to identify moments with a relatively beneficial signal-to-noise ratio.

In addition, all three tones provided a cue to voicing. Two observations suggest that

the benefit of the TF0 tone was unlikely to be due to enhanced segregation. First, the

benefit of the TF0 tone was smallest when the difference in F0 between target and

masker was greatest. Second, a subsequent experiment demonstrated no benefit of a

tone that conveyed the F0 of the masking speech. Brown and Bacon acknowledge that

the significant benefit of the TF0 and Tenv tones contradicts the results of Kong and

Carlyon (2007), and state that further research is being conducted to find the cause of

the difference.

The phonetic cues that underlie the bimodal benefit for implant users may

depend upon the bandwidth of their residual hearing. One study of unilaterally-

implanted adults found that an acoustic signal that had been low-pass filtered at

125 Hz provided almost as much bimodal benefit as a wideband acoustic signal, on

tests of speech perception in quiet and in noise (Zhang, Dorman, & Spahr, 2010). The

authors suggested that the low-frequency representation of F0 and the amplitude

envelope helped listeners to perceive the manner and voicing of consonants, to

glimpse the target in noise, and to identify syllable structure and word boundaries.

A case study by Cullington and Zeng (2010) found that there was an additional benefit

of an acoustic signal with energy above 125 Hz, for a patient who had more residual

hearing than the participants in the study of Zhang and colleagues. Presumably, the

patient with more residual hearing used the wideband acoustic signal to improve the

perception of phonetic cues, such as the first formant, that are conveyed by sounds

over 125 Hz.

6.1.2.3 Comparisons of simulated bilateral implants with simulated bimodal

devices

A search of the literature revealed a single study that compared simulated bilateral

implants with simulated bimodal devices (Chang, Bai, & Zeng, 2006). In one

condition, tone-vocoded stimuli were presented diotically. In a sense, this condition

simulates two implant systems that convey identical signals (in contrast, current

processors use independent AGC and present signals that may not be aligned in

time). A simulation of bimodal devices was created by presenting a vocoded signal

to one ear and a signal that had been low-pass filtered at 500 Hz to the other

ear. The participants completed a speech-perception task in which there was no

spatial separation between target and masker (spoken by a male and a female talker,

respectively). The participants’ SRTs were 7 dB lower in the bimodal simulation than

in the condition with diotic vocoded stimuli.
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Interim summary

Sound-source localisation with either simulated bilateral implants or simulated bi-

modal devices is above the level expected by chance, but poorer than for unprocessed

stimuli. Normally-hearing adults show between 3 and 8 dB of SRM when listening

to simulations of bilateral implants. The bimodal benefit for speech perception in

noise appears to be due to an improved ability to glimpse the target speech, and an

improved representation of voicing and the lower formants. Differences in methods,

and a scarcity of published studies, make it difficult to compare spatial listening skills

with simulated bilateral implants or simulated bimodal devices. One study reported

that speech perception in noise was better with simulated bimodal devices than with

simulated bilateral implants.

6.1.3 Aims and hypotheses

This study measured the spatial listening skills of normally-hearing adults when

listening to simulations of cochlear implants presented over headphones. A repeated-

measures design was used in which five conditions simulated bilateral implants,

a unilateral implant with no contralateral acoustic hearing, and bimodal devices

with an increasing bandwidth of contralateral acoustic hearing. The tests of spatial

listening were similar to those attempted by implanted children in the study reported

in Chapter 5. The first aim was to assess whether the differences in performance

between conditions were similar to the differences in performance between the

groups of implanted children. The second aim was to measure whether simulations of

bimodal devices resulted in higher levels of performance than a simulation of bilateral

implants. The third aim was to compare absolute levels of performance between

adults in the present study and the implanted children in Chapter 5.

Based on the results from implanted children, it was predicted that performance

would be higher with simulated bilateral implants than with a simulated unilateral

implant (without contralateral acoustic hearing) on tests of left-right discrimination,

localisation, movement tracking, and SRM with noise ipsilateral to the simulated

first device. It was predicted that all of the simulations would result in similar

levels of performance on tests of sentence perception in quiet and SRM with noise

contralateral to the simulated first device. It was not known whether any of the

simulations of bimodal devices would yield better performance than the simulation

of bilateral implants. Regarding the absolute levels of performance, it was predicted

that adults listening to simulations of implants would, on average, perform better

than implanted children on tests of speech perception in noise (Friesen et al., 2001).

145



Chapter 6 Spatial Listening with Simulated Cochlear Implants

6.2 Method

6.2.1 Participants

Ten adults aged between 18 and 31 years (mean age 22.9 years, standard deviation

4.3 years) were recruited from the University of York participant pool. Two of the

participants were male. The participants had pure-tone thresholds equal to or better

than 20 dB HL at octave frequencies between 0.25 and 8 kHz, inclusive, measured

using the British Society of Audiology guidelines (1981). Approval was obtained from

the Research Ethics Committee of the Department of Psychology of the University of

York. Participants gave written informed consent and were paid for their time.

6.2.2 Creation of stimuli

6.2.2.1 Recording of stimuli

Recordings were made in the booth containing the ring of loudspeakers described in

section 4.2.2 (Figure 6.2). A head and torso simulator (Brüel & Kjaer Type 4128C) was

positioned in the centre of the ring facing the same direction as participants during

testing in Chapter 5. A HiRes Auria™ sound processor (Advanced Bionics, Sylmar,

USA) was placed behind each ear of the manikin with a T-Mic™ omnidirectional

microphone (Advanced Bionics) positioned over the concha. Each sound processor

was attached to a clinical programming interface (Advanced Bionics) that was

controlled by a personal computer. The clinical programming interface was set to

output the signal from the sound processor after the AGC circuitry but before further

processing. The signal from each clinical programming interface was digitised at

44.1 kHz with 16-bit amplitude quantization. The signals from the processor on

the left and right ear formed the left and right channels of the resulting stereo file,

respectively. The stimuli for the tests of spatial listening were presented from the

loudspeakers and recordings were made using this apparatus. Thus, the recordings

incorporated the effects of the microphones employed by cochlear implants and of

AGC in two independent devices (cf. Chang et al., 2006; Francart, Bogaert, et al., 2009;

Moy, 2004).

The stimuli for the tests of spatial listening were presented from the loudspeaker

locations that were used with children (see section 4.2.2). For the Left-Right

Discrimination and Localisation tests, stimuli were presented at the average level

used with children (70 dB (A) SPL) and the level was not roved. The stimuli for the

Movement Tracking and BKB Sentence tests were presented at the levels used with

children: 71 and 70 dB (A) SPL, respectively. There were five versions of the Toy

Discrimination test: three with pink noise (presented from the left, front, or right)

and two with pulsatile noise (either Same-F0 or Raised-F0, both presented from the

front). The speech stimuli were presented at the levels used with implanted children:
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Figure 6.2. Apparatus used to record the stimuli. The orange figure depicts a head
and torso simulator placed in the centre of a ring of loudspeakers (only the front 13
loudspeakers are shown). A cochlear-implant sound processor and microphone were
placed on each ear. A clinical programming interface (CPI) was used to output the
signal from each sound processor and the signals were digitised into a stereo file.

50 and 51 dB (A) SPL for the versions in pink and pulsatile noise, respectively. For

each version of the Toy Discrimination test, the level of the noise was manipulated so

that recordings of each toy name were made at signal-to-noise ratios at 3 dB intervals

between −21 and +33 dB, inclusive. The signal-to-noise ratio was calculated from

separate measurements of the level of the speech and noise, made using a free-field

microphone in the centre of the ring (see section 4.2.2 for further details of how

levels were measured). For the versions in pink noise, the noise token was selected

at random for each recording. To record stimuli for the familiarisation task, 40 of the

IEEE sentences (IEEE, 1969) were presented from each of seven loudspeakers (located

at −90◦, −60◦, −30◦, 0◦, +30◦, +60◦, and +90◦). One sentence was presented from one

loudspeaker at a time, at an average level of 61 dB (A) SPL.

6.2.2.2 Processing of stimuli

Stimuli for individual trials were extracted from the recording and periods of silence

before and after each stimulus were deleted using CoolEdit 2000 (Syntrillium Software

Corporation, Phoenix, USA). The subsequent stages of processing were implemented

in MATLAB (The MathWorks Inc., Natick, USA) and are summarised in Figure 6.3.

Each stimulus was processed in four different ways: using a tone vocoder or a low-

pass filter (zero-phase twelfth-order Butterworth) with a cut-off at either 1320, 880, or

440 Hz.

The vocoder used a series of zero-phase sixth-order elliptic bandpass filters
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to create eight channels (Table 6.1) whose centre frequencies were spaced at

equal intervals along the basilar membrane according to Greenwood’s formula

(Greenwood, 1990). The range of centre frequencies matched the typical range

used in a HiRes Auria™ sound processor (P. Boyle, personal communication, May

22, 2009). The amplitude envelope in each channel was extracted by half-wave

rectification and low-pass filtering at 160 Hz (zero-phase second-order elliptic filter).

The amplitude envelope was used to modulate a sine wave at the centre frequency of

the channel. Each channel was bandpass filtered using the same filter as in the initial

stage of processing, then the channels were summed.

The stereo files containing the processed stimuli were split into left and right

signals, and then combined to form five conditions: both left and right signal vocoded

(CI-CI); one signal vocoded and one signal silent (CI-0000); one signal vocoded and

one signal low-pass filtered at 1320, 880, or 440 Hz (CI-1320, CI-0880 or CI-0440,

respectively). Cosine onset and offset ramps of 25 ms duration were applied to

all stimuli. For each participant, a vocoded signal was presented to the same ear

throughout the experiment (the left ear for half of the listeners, the right ear for the

other half).

Figure 6.3. The principal stages of stimulus processing. Each stereo file was processed
in four different ways: using a tone vocoder or a low-pass filter (LP) with a cut-off at
either 1320, 880, or 440 Hz. Each file was split into left and right signals (black and red
dotted lines, respectively). Stimuli for five conditions were formed by combining one
left and one right signal: CI-CI, CI-1320, CI-0880, CI-0440, and CI-0000 (in which one
channel was silent). Half of the participants were presented with a vocoded signal to
the left ear in every condition (as illustrated here) and half to the right ear.

6.2.3 Procedure

Testing took place in a double-walled booth (Industrial Acoustics Company). Stimuli

were generated by a PC soundcard (Lynx One), processed by a 24-bit MOTU digital

to analogue converter and Tucker-Davis Technologies PA4 attenuator, and presented

using Sennheiser HD580 headphones. The five conditions were presented in an order

counterbalanced across participants, and one condition was completed per testing
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Table 6.1. The centre frequency and frequency range (2.5-dB down-points) for the eight
channels in the tone vocoder.

Channel Centre frequency (Hz) Frequency range (Hz)

1 350 269–446
2 561 446–696
3 857 696–1048
4 1275 1048–1544
5 1863 1544–2241
6 2691 2241–3224
7 3857 3224–4609
8 5500 4609–6558

session. The sessions lasted up to 2.5 hours and were completed on different days. At

the start of the study, participants were shown a diagram of the ring of loudspeakers.

They were told that the stimuli had been recorded using a manikin in the centre of the

ring, in order to create an illusion of sound sources at different locations. Participants

were informed that the stimuli had been processed to sound like cochlear implants

and/or hearing aids, but they were not told which condition they were attempting in

each session.

The following sections describe how the tests of spatial listening for children were

modified for this study (details of the original tests are in section 4.2.2). Due to time

constraints, only a subset of the tests for children was used. Each session began with

the familiarisation task, then participants completed half of the trials of each test

in the order in which the tests are described below. The remaining trials were then

completed, with the tests presented in the reverse order. Participants took breaks

between tests. Unless stated otherwise, a personal computer was used to record

participants’ responses. For the remainder of this chapter, ‘source location’ refers to

the location of the loudspeaker that presented the stimulus during recording.

6.2.3.1 Familiarisation task

A trial began with the presentation of a sentence from one of seven source locations.

The sentence had undergone the signal processing for the condition the participant

was attempting that day. Participants were asked to indicate the source location

using a response screen that showed a diagram of the possible locations. Feedback

was provided by illuminating the actual source location. The same sentence was

then repeated twice from the same location: once unprocessed (i.e. before vocoding

or low-pass filtering) and once processed. There were 168 trials, which took

approximately 45 minutes to complete.1

1In this and subsequent descriptions, the number of trials is the total completed per condition.
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6.2.3.2 Left-right discrimination

Participants completed 80 trials of the ±60◦ condition. The stimulus was presented

once and the participant responded by pressing one of two buttons (labelled ‘Left’ and

‘Right’). For children, the presence or absence of a reward video provided feedback.

To replicate this, the button pressed by the participant was illuminated green or red

to indicate a correct or incorrect response, respectively. The percentage of correct

responses was measured.

6.2.3.3 Localisation

Participants completed 120 trials of the three-alternative task with sources at −60◦,

0◦, and +60◦. The stimulus was presented once and the participant responded by

pressing one of three buttons (labelled ‘Left’, ‘Centre’, and ‘Right’). No feedback was

provided. The RMS error was measured.

6.2.3.4 Movement tracking

Each of the four trajectories was presented once, in an order counterbalanced across

conditions, then the four trajectories were presented again in the reverse order. The

stimuli were the sound of either footsteps or hoof beats, with four trials of each type.

After each trial, participants were asked to draw the location of the source of sound

onto a diagram of the ring of loudspeakers (Figure 6.4). Participants were informed

that the source was going to move. No feedback was provided. An independent

observer attempted to deduce which of the four trajectories had been presented on

each trial, based on the participant’s drawing. The percentage of correct deductions

was measured.

6.2.3.5 Toy Discrimination test in pink noise

The signal-to-noise ratio was varied adaptively. The test began at a signal-to-noise

ratio selected at random from +21, +24, and +27 dB. A one-down one-up adaptive

routine with a step size of 6 dB was used for the first three reversals. A two-down one-

up routine with a step size of 3 dB was used for the following 10 reversals. The average

of the final eight reversals was taken to estimate the 70.7% correct threshold (Levitt,

1971). This signal-to-noise ratio will be referred to as the SRT. One estimate of the SRT

was obtained for each noise location in an order counterbalanced across conditions,

then a second estimate was obtained for each noise location in the reverse order.

Participants responded by pressing one of 14 buttons labelled with the toy names.

No feedback was provided. The mean SRT was calculated for each noise location.
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Figure 6.4. Response sheet for the Movement Tracking test.

6.2.3.6 Toy Discrimination test in pulsatile noise

One estimate of SRT was obtained for each type of masker (Same-F0 and Raised-F0) in

an order counterbalanced across conditions, then a second estimate was obtained for

each type of masker in the reverse order. The adaptive routine and response interface

were the same as for the Toy Discrimination test in pink noise. The mean SRT was

calculated for each type of masker.

6.2.3.7 BKB Sentence test

In every condition, two lists (each of which contained 16 sentences) were presented

binaurally. In the CI-1320, CI-0880, and CI-0440 conditions, participants completed

two additional lists using monaural stimuli that had been low-pass filtered at 1320,

880 and 440 Hz, respectively. The monaural lists were presented after the first binaural

list. Participants were asked to repeat the sentence aloud and to guess any words

they were unsure of. Responses were scored by the experimenter, who listened to

the signal from a microphone inside the testing booth. The percentage of keywords

correct was measured using a loose keyword scoring method. A list was not repeated

with the same participant.

The aim of the monaural presentation was to set the bimodal simulations in

context. In the UK, adults are eligible for unilateral cochlear implantation if, whilst

using acoustic hearing aids, they report correctly under 50% of the keywords in BKB

sentences presented in quiet (NICE, 2009). If the results of the present study showed

a monaural score that was greater than 50% on average, it would indicate that the

corresponding bimodal simulation created a higher level of functional hearing in the
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nonimplanted ear than is likely to be observed in implanted adults. This conclusion

may not extrapolate to the amount of residual hearing shown by implanted children,

because the criteria of candidacy for children do not refer to the BKB sentences (NICE,

2009). However, the way in which the present study interprets the monaural BKB

sentences is supported by the study of implanted children, in which the three children

who completed the BKB Sentence test using only their hearing aid scored 4, 6, and

50% correct (see Figure 5.6 on page 125).

6.2.3.8 Presentation levels

In the CI-CI condition equal gain was applied to the left and right channels. In each

of the CI-1320, CI-0880 and CI-0440 conditions, the level of the low-pass filtered

stimulus was adjusted so that, for two pilot listeners, a stimulus from a source location

at 0◦ created a percept that was approximately centred. The presentation levels were

measured using a Brüel & Kjaer Investigator sound-level meter (Type 2260) with

a Brüel & Kjaer artificial ear (Type 4153) and 1/2” microphone (Type 4134). The

metering software displayed the peak value in dB(A) SPL in one-second intervals; the

maximum value was recorded for each stimulus. The average presentation levels are

shown in Table 6.2. The level of the stimuli for the Left-Right Discrimination and

Localisation tests was randomly roved by ±5 dB in 1 dB steps.

Table 6.2. The presentation levels of the stimuli. For the low-pass filtered stimuli (0440,
0880, and 1320) and vocoded stimuli (CI), the average level at one headphone in dB (A)
SPL is listed for each test. For the Toy Discrimination test, the level varied according to
the signal-to-noise ratio and noise location or type of masker. Accordingly, the range of
levels is stated for this test.

Test 0440 0880 1320 CI

Familiarisation task 62.6 63.8 63.4 66.7
BKB Sentences 67.3 72.4 71.7 75.4
Left-Right Discriminationa 60.0 65.8 65.3 69.8
Localisationa 61.1 68.0 67.9 67.3
Movement Trackinga 66.8 70.2 70.2 79.7
Toy Discrimination, pink noise 54.8–61.3 54.8–63.7 58.1–66.7 61.0–79.3
Toy Discrimination, pulsatile noise 44.8–59.7 56.8–63.4 56.4–63.3 63.2–78.6

a The average level for all source locations is stated.

6.2.4 Analyses

6.2.4.1 Presentation of results

The results are presented using bar charts showing means and 95% confidence

intervals, overlaid with the scores of individual participants. The score for each adult

is shown by a symbol that is the same throughout this chapter. For consistency, the
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results from implanted children are presented using bar charts even though these

data were not distributed normally. In all conditions except CI-CI, participants were

presented with a vocoded stimulus to one ear only. To enable an informative analysis

of the Toy Discrimination test, the participant’s left and right ears will be referred to

as either the first or second device, as defined in Figure 6.5.

Figure 6.5. Upper panel: the definition of the first and second device for adults in the
present study. Headphones are denoted by black circles. Lower panel: the definition of
the first and second device for implanted children (see section 5.2.4.1). In both panels,
the first device is illustrated in the left ear, although this was not always the case.

6.2.4.2 Statistical analyses

The aim of the statistical analyses was to assess:

1. For each test, whether the condition had an effect on performance.

2. For the Toy Discrimination test in pink noise, whether the condition and noise

location had an effect on performance and whether there was an interaction

between condition and noise location.

3. For the Toy Discrimination test in pulsatile noise, whether the condition and

masker type had an effect on performance and whether there was an interaction

between condition and masker type.

4. For each test, whether adults’ performance in the CI-CI condition differed from

the performance of children who used CI-CI.

5. For each test, whether adults’ performance in the CI-0440 condition differed

from the performance of children who used CI-HA.

6. For each test, whether adults’ performance in the CI-0000 condition differed

from the performance of children who used CI-only.
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6.2.4.2.1 Statistical analyses of the results from adults The results from the

binaural BKB Sentence test did not have a normal distribution. A Friedman’s ANOVA

was used to assess whether there was an effect of condition on performance, and

Wilcoxon tests with a Bonferroni correction were used to assess which conditions

differed. Effect sizes for Wilcoxon tests were calculated using the formula in

section 5.2.4.4.2.

The remaining outcome measures had a normal distribution (confirmed by the

Kolmogorov-Smirnov test). For each of the monaural BKB Sentence, Left-Right

Discrimination, Localisation, and Movement Tracking tests, a one-way repeated-

measures ANOVA was used to assess whether condition had an effect on perfor-

mance. There was an a priori prediction that performance would be higher in the

CI-CI condition than the CI-0000 condition, but there were no predictions regarding

differences between the other conditions. Accordingly, within-subjects t tests with

a Bonferroni correction were used to compare all of the conditions with each other.

Effect sizes for t tests were calculated using the formula r = √
t 2/(t 2 +d f ) where t is

the test statistic and d f are the degrees of freedom (Field, 2005).

To assess whether there was an effect of condition and/or noise location on SRTs

in pink noise, a two-way repeated-measures ANOVA was carried out with the factors

of condition (five levels) and noise location (three levels). Within-subjects t tests with

a Bonferroni correction were used to analyse the differences between conditions.

There was an a priori prediction regarding the effect of noise location, so planned

comparisons with a Bonferroni correction were used to assess whether SRTs were

lower in the noise-side conditions than in the noise-front condition (i.e. whether the

participants showed SRM). Planned comparisons with a Bonferroni correction were

used to interpret the interaction.

To assess whether there was an effect of condition and/or masker type on SRTs

in pulsatile noise, a two-way repeated-measures ANOVA was carried out with the

factors of condition (five levels) and masker type (two levels). Within-subjects t tests

with a Bonferroni correction were used to assess which conditions differed. Planned

comparisons with a Bonferroni correction were used to interpret the interaction.

6.2.4.2.2 Statistical comparisons of adults and children Mann-Whitney tests

were used to compare adults’ performance in the CI-CI, CI-0440, and CI-0000

conditions with the performance of children who used CI-CI, CI-HA, and CI-only,

respectively. These analyses were explorative so a Bonferroni correction was not used,

although there have been multiple comparisons of these data in this and previous

chapters. The BKB Sentence test was not analysed in this way because only small

numbers of children completed the test. For the Toy Discrimination test, the graphs

and statistical analyses only included children who used 14 toys. Effect sizes for

Mann-Whitney tests were calculated using the formula in section 4.2.5.2.
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6.3 Results

6.3.1 BKB Sentence test

The results of the BKB Sentence test are shown in Figure 6.6. For the sentences

presented binaurally, there was a significant effect of condition on performance

[χ2(4) = 10.5, p < .05]. Based on inspection of the ranked data, the CI-1320 condition

was compared to every other condition. None of the comparisons were statistically

significant [all pb f > .05]. For the sentences presented monaurally, there was a

significant effect of condition on performance [F(2,18) = 314, p < .001]. Performance

was higher in the 1320 condition than the 0880 condition [t(9) = 4.51, pb f < .01, r = .83].

Performance was higher in the 0880 condition than the 0440 condition [t(9) = 20.0,

pb f < .001, r = .99].

With monaural stimuli low-pass filtered at 880 or 1320 Hz, the majority of

participants correctly reported over 50% of the target words. Thus, when interpreting

the results of this study, it should be borne in mind that the CI-0880 and CI-1320

conditions simulate a higher level of functional hearing in the nonimplanted ear

than is likely to be observed in implanted adults in the UK. Accordingly, subsequent

analyses compared the performance of children who used CI-HA with that of adults

in the CI-0440 condition (rather than the CI-0880 or CI-1320 condition).

Figure 6.6. Results of the BKB Sentence test using binaural presentation (yellow bars) or
monaural presentation (orange bars). The bars show mean scores, error bars show 95%
confidence intervals, and black symbols show individual scores. The horizontal dashed
line shows the current criterion of candidacy for adult unilateral cochlear implantation
in the UK (NICE, 2009).
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6.3.2 Left-Right Discrimination test

6.3.2.1 Results from adults

The results of the Left-Right Discrimination test are shown in Figure 6.7. Mauchly’s

test indicated that the assumption of sphericity had been violated, so the degrees

of freedom were corrected using Greenhouse-Geisser estimates of sphericity (Field,

2005). There was a significant effect of condition on performance [F(2.56,23.0) = 23.6,

p < .001]. Post-hoc tests revealed that performance was higher in the CI-CI condition

than in all other conditions (Table 6.3). There were no other significant differences

between conditions.

6.3.2.2 Comparison of adults and children

Adults’ scores in the CI-CI condition were significantly lower than those of children

who used CI-CI [z = −2.25, p < .05, r = .33] (although the difference in the ranked

scores is not apparent in Figure 6.7, which shows mean scores). Adults’ scores in the

CI-0440 condition did not differ significantly from those of children who used CI-HA

[z = −1.88, p > .05, r = .43]. Adults’ scores in the CI-0000 condition did not differ

significantly from those of children who used CI-only [z = −1.67, p > .05, r = .37].

Figure 6.7. Results of the Left-Right Discrimination test. The left part of the graph
shows results from the present study of adults (yellow bars), the right part shows results
from the study of implanted children (striped bars). The bars show mean scores, error
bars show 95% confidence intervals, and black symbols show individual scores. For
children, the number to the right of each circle indicates how many children in that
group showed that score. The horizontal dashed line shows the level of performance
expected by chance. The numbers above the upper horizontal axis indicate how many
participants in each condition or group provided data.
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Table 6.3. The results of post-hoc comparisons of adults’ scores in the Left-Right
Discrimination test. The test statistic (t), Bonferroni-adjusted p value (pb f ), and effect
size (r) are listed. A positive test statistic indicates that the first condition in the
comparison had a higher mean score than the second condition. Degrees of freedom
were 9 for all comparisons. Statistically-significant comparisons are emboldened.

Comparison t pb f r

CI-CI vs. CI-1320 +8.79 < .01 .95
CI-CI vs. CI-0880 +8.05 < .01 .94
CI-CI vs. CI-0440 +9.67 < .01 .96
CI-CI vs. CI-0000 +6.03 < .01 .90
CI-1320 vs. CI-0880 +0.34 .99 .11
CI-1320 vs. CI-0440 +0.41 .99 .14
CI-1320 vs. CI-0000 −1.39 .99 .42
CI-0880 vs. CI-0440 +0.29 .99 .10
CI-0880 vs. CI-0000 −1.71 .99 .49
CI-0440 vs. CI-0000 −2.18 .58 .59

6.3.3 Localisation test

6.3.3.1 Results from adults

The results of the Localisation test are shown in Figure 6.8. Mauchly’s test indicated

that the assumption of sphericity had been violated, so the degrees of freedom

were corrected using Greenhouse-Geisser estimates of sphericity. There was a

significant effect of condition on performance [F(1.73,15.5) = 17.7, p < .001]. Post-

hoc tests revealed that error scores were lower in the CI-CI condition than in all other

conditions, and that error scores were lower in the CI-0000 condition than in the

CI-0440 condition (Table 6.4). There were no other significant differences between

conditions.

6.3.3.2 Comparison of adults and children

Adults’ scores in the CI-CI condition did not differ significantly from those of children

who used CI-CI [z = −0.41, p > .05, r = .07]. Adults’ scores in the CI-0440 condition

did not differ significantly from those of children who used CI-HA [z = −0.49, p > .05,

r = .12]. Adults’ scores in the CI-0000 condition did not differ significantly from those

of children who used CI-only [z = −0.88, p > .05, r = .21].
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Figure 6.8. Results of the Localisation test. The left part of the graph shows results
from the present study of adults (yellow bars), the right part shows results from the
study of implanted children (striped bars). The bars show mean scores, error bars show
95% confidence intervals, and black symbols show individual scores. For children, the
number to the right of each circle indicates how many children in that group showed
that score. The horizontal dashed line shows the level of performance expected by
chance. The numbers above the upper horizontal axis indicate how many participants
in each condition or group provided data.
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Table 6.4. The results of post-hoc comparisons of adults’ scores in the Localisation test.
The test statistic (t), Bonferroni-adjusted p value (pb f ), and effect size (r) are listed. A
negative test statistic indicates that the first condition in the comparison had a lower
mean score than the second condition. Degrees of freedom were 9 for all comparisons.
Statistically-significant comparisons are emboldened.

Comparison t pb f r

CI-CI vs. CI-1320 −4.56 .01 .84
CI-CI vs. CI-0880 −4.58 .01 .84
CI-CI vs. CI-0440 −5.02 < .01 .86
CI-CI vs. CI-0000 −4.80 .01 .85
CI-1320 vs. CI-0880 −0.53 .99 .17
CI-1320 vs. CI-0440 −0.71 .99 .23
CI-1320 vs. CI-0000 +1.07 .99 .34
CI-0880 vs. CI-0440 −0.29 .99 .10
CI-0880 vs. CI-0000 +1.54 .99 .46
CI-0440 vs. CI-0000 +3.94 .03 .80

6.3.4 Movement Tracking test

6.3.4.1 Results from adults

The results of the Movement Tracking test are shown in Figure 6.9. There was no

significant effect of condition on performance [F(4,36) = 2.39, p > .05].

6.3.4.2 Comparison of adults and children

Adults’ scores in the CI-CI condition did not differ significantly from those of children

who used CI-CI [z = −0.27, p > .05, r = .04]. Adults’ scores in the CI-0440 condition

did not differ significantly from those of children who used CI-HA [z = −1.08, p > .05,

r = .25]. Adults’ scores in the CI-0000 condition were significantly higher than those

of children who used CI-only [z = −2.11, p < .05, r = .46].
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Figure 6.9. Results of the Movement Tracking test. The left part of the graph shows
results from the present study of adults (yellow bars), the right part shows results from
the study of implanted children (striped bars). The bars show mean scores, error
bars show 95% confidence intervals, and black symbols show individual scores. For
children, the number to the right of each circle indicates how many children in that
group showed that score. The horizontal dashed line shows the level of performance
expected by chance. The numbers above the upper horizontal axis indicate how many
participants in each condition or group provided data.
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6.3.5 Toy Discrimination test in pink noise

6.3.5.1 Results from adults

The results of the Toy Discrimination test in pink noise are shown in Figure 6.10. There

was a significant effect of condition on SRTs [F(4,36) = 17.3, p < .001], a significant

effect of noise location on SRTs [F(2,18) = 59.6, p < .001], and a significant interaction

between condition and noise location [F(8,72) = 6.49, p < .001].

The results of post-hoc tests are listed in Table 6.5. Averaged across noise

locations, the CI-1320 condition resulted in lower SRTs than the CI-CI, CI-0440, and

CI-0000 conditions. The CI-0880 condition resulted in lower SRTs than the CI-0440

and CI-0000 conditions. The CI-CI condition resulted in lower SRTs than the CI-0000

condition. There were no other significant differences between conditions.

Planned contrasts revealed that, averaged across conditions, SRTs were lower with

noise contralateral to the first device than with noise from the front [F(1,9) = 84.0,

pb f < .001, r = .95]. Averaged across conditions, there was no significant difference

between SRTs with noise ipsilateral to the first device and SRTs with noise front

[F(1,9) = 1.28, pb f > .05, r = .35].

The interaction indicates that the effect of noise location differed according to the

condition. Table 6.6 shows the results of contrasts that compared all conditions to CI-

CI, and all noise locations to noise-front. Where a contrast is statistically significant,

it indicates that the effect of presenting the noise from the side rather than from the

front (i.e. SRM) was different for the comparator condition than the CI-CI condition.

To aid interpretation, the data are re-plotted to show SRM in Figure 6.11. With

noise ipsilateral to the first device, there was greater SRM in the CI-CI condition

than in the CI-0000 and CI-1320 conditions. With noise ipsilateral to the first device,

there was no significant difference between the CI-CI and CI-0440 conditions in the

amount of SRM, nor was there a significant difference between the CI-CI and CI-

0880 conditions. With noise contralateral to the first device, there was no significant

difference between the CI-CI condition and the other conditions in the amount of

SRM.
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Figure 6.10. Results of the Toy Discrimination test in pink noise. The left part of the
graph shows results from the present study of adults (non-striped bars), the right part
shows results from the study of implanted children (striped bars). Yellow bars: noise
ipsilateral to the first device. Blue bars: noise front. Orange bars: noise contralateral
to the first device. The bars show mean scores and error bars show 95% confidence
intervals. For clarity, individual data points are not plotted. The numbers above
the upper horizontal axis indicate how many participants in each condition or group
provided data.
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Table 6.5. The results of post-hoc comparisons of adults’ scores in the Toy
Discrimination test in pink noise. The test statistic (t), Bonferroni-adjusted p value
(pb f ), and effect size (r) are listed. A positive test statistic indicates that the first
condition in the comparison had a higher mean SRT than the second condition.
Degrees of freedom were 9 for all comparisons. Statistically-significant comparisons
are emboldened.

Comparison t pb f r

CI-CI vs. CI-1320 +3.86 .04 .79
CI-CI vs. CI-0880 +0.85 .99 .27
CI-CI vs. CI-0440 −2.27 .50 .60
CI-CI vs. CI-0000 −4.05 .03 .80
CI-1320 vs. CI-0880 −2.75 .22 .68
CI-1320 vs. CI-0440 −6.91 < .01 .92
CI-1320 vs. CI-0000 −5.79 < .01 .89
CI-0880 vs. CI-0440 −4.71 .01 .84
CI-0880 vs. CI-0000 −4.54 .01 .83
CI-0440 vs. CI-0000 −2.74 .23 .67

Table 6.6. The results of contrasts for the interaction between condition and noise
location for the Toy Discrimination test in pink noise. Only data from adults were
included in the analysis. The test statistic (F), Bonferroni-adjusted p value (pb f ), and
effect size (r) are listed. Degrees of freedom were 1,9 for all contrasts. Noise ipsi. and
noise contra. refer to noise presented from ipsilateral and contralateral to the first
device, respectively. Statistically-significant interactions are emboldened.

Condition comparison Location comparison F pb f r

CI-CI vs. CI-1320 Noise front vs. noise ipsi. 21.6 .02 .84
CI-CI vs. CI-1320 Noise front vs. noise contra. 7.07 .37 .66

CI-CI vs. CI-0880 Noise front vs. noise ipsi. 4.07 .99 .56
CI-CI vs. CI-0880 Noise front vs. noise contra. 0.01 .99 .04

CI-CI vs. CI-0440 Noise front vs. noise ipsi. 12.4 .09 .76
CI-CI vs. CI-0440 Noise front vs. noise contra. 0.38 .99 .20

CI-CI vs. CI-0000 Noise front vs. noise ipsi. 22.9 .01 .85
CI-CI vs. CI-0000 Noise front vs. noise contra. 0.44 .99 .22
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Figure 6.11. Spatial release from masking. The left part of the graph shows results
from the present study of adults (non-striped bars), the right part shows results from
the study of implanted children (striped bars). The yellow and orange bars show SRM
with noise ipsilateral and contralateral to the first device, respectively. The bars show
the mean and error bars show 95% confidence intervals. For clarity, individual data
points are not plotted. The numbers above the upper horizontal axis indicate how
many participants in each condition or group provided data.
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6.3.5.2 Comparison of adults and children

The results of statistical comparisons of adults and children are shown in Table 6.7.

With noise ipsilateral or contralateral to the first device, SRTs were lower for adults in

the CI-0440 condition than for children who used CI-HA. With noise from the front,

SRTs were lower for adults in the CI-0000 condition than for children who used CI-

only. Mann-Whitney tests were also used to compare the amount of SRM shown by

adults and children: there were no significant differences [all p > .05].

Table 6.7. The results of Mann-Whitney tests to compare the SRTs of adults and
children on the Toy Discrimination test in pink noise. The standardised test statistic
(z), p value, and effect size (r) are listed. Ipsi. and Contra. refer to noise presented
from ipsilateral and contralateral to the first device, respectively. The upper section
of the table lists comparisons of the adult CI-CI condition with children who use CI-CI.
The middle section of the table lists comparisons of the adult CI-0440 condition with
children who use CI-HA. The lower section of the table lists comparisons of the adult
CI-0000 condition with children who use CI-only. Statistically-significant comparisons
are emboldened.

Noise location z p r

Adult CI-CI compared to children with CI-CI
Front −1.24 .22 .23
Ipsi. −1.88 .06 .35
Contra. −0.46 .66 .09

Adult CI-0440 compared to children with CI-HA
Front −1.30 .21 .33
Ipsi. −2.17 .03 .54
Contra. −2.45 .03 .59

Adult CI-0000 compared to children with CI-only
Front −2.09 .04 .54
Ipsi. −1.10 .31 .28
Contra. −0.74 .51 .19

6.3.6 Toy Discrimination test in pulsatile noise

6.3.6.1 Results from adults

A ceiling effect occurred for this test: some participants could identify the target word

at the most adverse signal-to-noise ratio (−21 dB). If a participant responded correctly

on five consecutive trials at a signal-to-noise ratio of −21 dB, the adaptive routine was

stopped and the SRT was recorded as −21 dB. Across participants and conditions, 100

estimates of SRT were obtained for each masker. The adaptive routine was stopped on

34 estimates with the Raised-F0 masker and one estimate with the Same-F0 masker.
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The results of the Toy Discrimination test in pulsatile noise are shown in

Figure 6.12. There was a significant effect of condition on SRTs [F(4,36) = 8.79,

p < .001], a significant effect of masker type on SRTs [F(1,9) = 181, p < .001], and a

significant interaction between condition and masker type [F(4,36) = 5.95, p < .01].

The results of post-hoc tests are listed in Table 6.8. Averaged across maskers, the

CI-1320 condition resulted in lower SRTs than the CI-CI and CI-0000 conditions. The

CI-0880 condition resulted in lower SRTs than the CI-0000 condition. There were no

other significant differences between conditions.

The main effect of masker type showed that, averaged across conditions, SRTs

were lower with the Raised-F0 masker than the Same-F0 masker. The interaction

indicates that the effect of masker type differed according to the condition. Table 6.9

shows the results of contrasts that compared all conditions to CI-CI, and compared

the two maskers. Where a contrast is statistically significant, it indicates that the effect

of masker type was different for the comparator condition than the CI-CI condition.

To aid interpretation, the data are re-plotted to show the difference in SRT between

the two maskers in Figure 6.13. There was a greater difference between the maskers

in the CI-1320 condition than the CI-CI condition. The remaining contrasts were not

statistically significant.

Table 6.8. The results of post-hoc comparisons of adults’ scores in the Toy
Discrimination test in pulsatile noise. The test statistic (t), Bonferroni-adjusted p
value (pb f ), and effect size (r) are listed. A positive test statistic indicates that the
first condition in the comparison had a higher mean SRT than the second condition.
Degrees of freedom were 9 for all comparisons. Statistically-significant comparisons
are emboldened.

Comparison t pb f r

CI-CI vs. CI-1320 +4.11 .03 .81
CI-CI vs. CI-0880 +2.51 .33 .64
CI-CI vs. CI-0440 −0.42 .99 .14
CI-CI vs. CI-0000 −3.41 .08 .75
CI-1320 vs. CI-0880 +0.73 .99 .24
CI-1320 vs. CI-0440 −1.85 .97 .53
CI-1320 vs. CI-0000 −5.70 < .01 .89
CI-0880 vs. CI-0440 −2.86 .19 .69
CI-0880 vs. CI-0000 −5.39 < .01 .87
CI-0440 vs. CI-0000 −2.00 .76 .56
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Figure 6.12. Results of the Toy Discrimination test in pulsatile noise. The left part of
the graph shows results from the present study of adults (non-striped bars), the right
part shows results from the study of implanted children (striped bars). The yellow
and orange bars show results with the Same-F0 and Raised-F0 maskers, respectively.
The bars show mean scores and error bars show 95% confidence intervals. For clarity,
individual data points are not plotted.

Table 6.9. The results of contrasts for the interaction between condition and masker
type for the Toy Discrimination test in pulsatile noise. The test statistic (F), Bonferroni-
adjusted p value (pb f ), and effect size (r) are listed. Degrees of freedom were 1,9 for all
contrasts. The statistically-significant interaction is emboldened.

Condition comparison Masker comparison F pb f r

CI-CI vs. CI-1320 Same-F0 vs. Raised-F0 14.9 .03 .79
CI-CI vs. CI-0880 Same-F0 vs. Raised-F0 1.51 .99 .38
CI-CI vs. CI-0440 Same-F0 vs. Raised-F0 1.13 .99 .33
CI-CI vs. CI-0000 Same-F0 vs. Raised-F0 3.09 .99 .51
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Figure 6.13. The difference in SRT between the Same-F0 and Raised-F0 maskers. A
positive score indicates lower SRTs with the Raised-F0 masker. The left part of the graph
shows results from the present study of adults (non-striped bars), the right part shows
results from the study of implanted children (striped bars). The bars show mean scores,
error bars show 95% confidence intervals, and black symbols show individual scores.
For children, the number to the right of each circle indicates how many children in that
group showed that score. The numbers above the upper horizontal axis indicate how
many participants in each condition or group provided data.
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6.3.6.2 Comparison of adults and children

The results of statistical comparisons of the SRTs of adults and children are shown in

Table 6.10. For both types of masker, SRTs were lower for adults in the CI-CI condition

than for children who used CI-CI. Similarly, for both types of masker, SRTs were lower

for adults in the CI-0000 condition than for children who used CI-only. For the Raised-

F0 masker, SRTs were lower for adults in the CI-0440 condition than for children who

used CI-HA. However, the comparisons involving CI-only and CI-HA children should

be interpreted with caution, as only four children in each group provided data.

Table 6.10. The results of Mann-Whitney tests to compare the SRTs of adults and
children on the Toy Discrimination test in pulsatile noise. The standardised test
statistic (z), p value, and effect size (r) are listed. The upper section of the table lists
comparisons of the adult CI-CI simulation with CI-CI children. The middle section of
the table lists comparisons of the adult CI-0440 simulation with CI-HA children. The
lower section of the table lists comparisons of the adult CI-0000 simulation with CI-
only children. Statistically-significant comparisons are emboldened.

Masker z p r

Adult CI-CI compared to children with CI-CI
Same-F0 −3.89 < .01 .78
Raised-F0 −4.05 < .01 .81

Adult CI-0440 compared to children with CI-HA
Same-F0 −1.56 .14 .42
Raised-F0 −2.27 .03 .61

Adult CI-0000 compared to children with CI-only
Same-F0 −2.69 < .01 .72
Raised-F0 −2.55 .01 .68

6.3.7 Summary

For the Left-Right Discrimination and Localisation tests, adults responded more

accurately in the CI-CI condition than in the other conditions. For the Movement

Tracking test, variability was high and there was no significant effect of condition on

performance. For the Toy Discrimination test in pink noise and in pulsatile noise, the

CI-1320 condition resulted in lower SRTs than the CI-CI and CI-0000 conditions. CI-CI

was the only condition in which participants showed a benefit of SRM with noise both

ipsilateral and contralateral to the first device. Figure 6.11 summarises the results

of statistical comparisons between the CI-CI condition and each of the CI-0440, CI-

0880, and CI-1320 conditions. The CI-CI condition resulted in the best sound-source

localisation, whereas the CI-1320 condition resulted in the lowest SRTs.

On several of the outcome measures, adults’ performance in the CI-CI, CI-0440,
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and CI-0000 conditions did not differ significantly from the performance of children

who used CI-CI, CI-HA, and CI-only, respectively. The most marked exception was

the Toy Discrimination test in pulsatile noise, for which adults had lower SRTs than

all three groups of children. Compared to the children, the adults appeared to show

a greater difference in SRT between the two types of pulsatile masker, but there were

insufficient data to conduct statistical comparisons of the difference scores shown by

children and adults.

Table 6.11. Summary of statistical comparisons between the CI-CI condition and each
of the CI-0440, CI-0880, and CI-1320 conditions. The comparisons are shown in the
three columns on the right: each column lists which of the two conditions yielded
significantly better performance for each test (pb f < .05). An equals sign indicates that
there was no significant difference. SRM noise ipsi. and SRM noise contra. refer to SRM
with noise ipsilateral and contralateral to the first device, respectively.

Test CI-CI vs. CI-CI vs. CI-CI vs.
CI-0440 CI-0880 CI-1320

BKB Sentences = = =
Left-Right Discrimination CI-CI CI-CI CI-CI
Localisation CI-CI CI-CI CI-CI
Movement Tracking = = =
SRTs in pink noisea = = CI-1320
SRM noise ipsi. = = CI-CI
SRM noise contra. = = =
SRTs in pulsatile noiseb = = CI-1320
Same-F0 minus Raised-F0 = = CI-1320

a Averaged across noise locations. b Averaged across masker type.

6.4 Discussion

The first parts of the discussion relate to the three aims of the study: 1) to compare the

differences in performance between simulations with the differences in performance

between groups of implanted children; 2) to compare simulated bimodal devices with

simulated bilateral implants; and 3) to compare the absolute levels of performance

shown by adults and children. Subsequent sections consider the strengths and

limitations of the cochlear-implant simulations, and the causes of the observed

differences between conditions.

6.4.1 Similarities in the patterns of performance shown by adults

and children

Normally-hearing adults performed better with simulated bilateral implants than

with a simulated unilateral implant (with or without simulated contralateral acoustic
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hearing) on tests of left-right discrimination, localisation, and SRM with noise

ipsilateral to the first device. These results mirror the superior performance of

bilaterally- compared to unilaterally-implanted children on similar tests. The adults

did not show a difference in performance between simulations of bilateral and

unilateral implants on tests of sentence perception in quiet and SRM with noise

contralateral to the first device. The performance of bilaterally- and unilaterally-

implanted children did not differ on similar tests. These data reinforce the conclusion

that the differences in spatial listening skill observed between bilaterally- and

unilaterally-implanted children were due to a difference in the number of implants

the children used, rather than uncontrolled differences between the groups.

Nevertheless, the patterns of performance shown by adults and children were

not identical. On the Movement Tracking test, adults showed similar levels of

performance in all simulations, whereas bilaterally-implanted children performed

better than unilaterally-implanted children. The cause of this difference between

adults and children is not known. Anecdotally, some adults reported that the task

was difficult and that the sounds did not form a coherent pattern of movement.2

The Toy Discrimination test revealed two additional differences between the

patterns of performance shown by adults and children:

1. For adults, SRTs in pink noise and in pulsatile noise were lower for one of the

simulations of bimodal devices (CI-1320) than for the simulation of bilateral

implants. In contrast, the only significant difference in SRT between groups of

children was that the bilateral group had a lower SRT than the unilateral group

with pink noise ipsilateral to the first device.

2. For adults, the difference in SRT between the Raised-F0 and Same-F0 maskers

was greater for one of the simulations of bimodal devices (CI-1320) than for

the simulation of bilateral implants. In contrast, the difference in SRT between

the Raised-F0 and Same-F0 maskers was similar for both unilaterally- and

bilaterally-implanted children.

These two differences between adults and children probably arose because the CI-

1320 condition simulated a greater degree of hearing in the nonimplanted ear than

was enjoyed by the unilaterally-implanted children. Evidence for this interpretation

comes from the monaural BKB Sentence test—adult patients who achieved the scores

shown in the 1320 condition would not be eligible to receive an implant. The

simulations of bimodal devices with a lesser degree of acoustic hearing (CI-0880 and

CI-0440) resulted in SRTs, and a difference between maskers, that were similar to the

2Normally-hearing adults showed high levels of performance on the Movement Tracking test when
the stimuli were presented by the ring of loudspeakers (Figure 4.8). Thus, it is not the case that this test
is problematic for adults in general, but rather that this test is problematic for adults after the stimuli
have been processed to simulate cochlear implant(s).
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results with simulated bilateral implants. This pattern of results for adults is similar

to the pattern shown by unilaterally- and bilaterally-implanted children.

6.4.2 Comparison of simulated bimodal devices and simulated

bilateral implants

Performance on the Left-Right Discrimination and Localisation tests was better with

simulated bilateral implants than with any of the simulations of bimodal devices.

On tests of speech perception in noise, the CI-1320 simulation of bimodal devices

resulted in lower SRTs than the simulation of bilateral implants. The simulations of

bimodal devices with less acoustic hearing (CI-0880 and CI-0440) resulted in SRTs

that were similar to those with simulated bilateral implants. Only the simulation of

bilateral implants resulted in significant SRM with noise on either side of the head.

Thus, on this test battery, spatial listening skills with simulated bilateral implants were

either superior, or equal, to skills with simulated bimodal devices, when the latter

simulations created a level of functional acoustic hearing that is likely to be observed

in implanted adults.

Chang et al. (2006) reported that speech perception in noise was poorer with

simulated bilateral implants than with a simulation of bimodal devices in which

the nonvocoded stimulus was low-pass filtered at 500 Hz. In contrast, the current

study did not find a difference in SRTs between the simulation of bilateral implants

and the simulations of bimodal devices that were similar to the simulation used by

Chang and colleagues (CI-0880 or CI-0440). There are two possible reasons for the

difference in results. First, the vocoded stimuli in the present study contained greater

spectral detail than the four-channel vocoded stimuli used by Chang and colleagues.

The additional detail may have reduced the benefit of combining low-pass filtered

speech and vocoded speech. Second, the bimodal benefit is greater for tests of speech

perception with a speech masker (as used by Chang et al.) than a steady-state noise

masker, possibly because the latter reduces the opportunity to glimpse the target

speech (Li & Loizou, 2008; Qin & Oxenham, 2006). A replication of the current study,

using a test in which speech is masked by speech, may reveal greater advantages of

simulated bimodal devices over simulated bilateral implants.

6.4.3 The absolute levels of performance shown by adults and

children

To interpret the absolute levels of performance, it is helpful to consider factors that

could lead implanted children to perform better than the adults in the present study.

The children were experienced users of their devices, whereas the adults had only

45 minutes of training in each condition. The children listened to ITDs and ILDs
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generated by their own head and torso, and they could potentially turn their head

and use the resulting changes in spectrum and level to help localise sources of sound.

In contrast, the adults listened to interaural differences generated by a head and torso

simulator, and they could not use head turns. These factors may explain why, on the

Left-Right Discrimination test, bilaterally-implanted children performed better than

adults listening to simulated bilateral implants.

On the other hand, the adults perceived stimuli via normal acoustic hearing rather

than electrical stimulation, and they were unaffected by the perceptual consequences

of hearing loss. Normally-hearing adults typically show lower SRTs than normally-

hearing children, because adults have a fully-developed auditory nervous system and

mature attentional and cognitive abilities (Chapter 4; Elliott et al., 1979; Garadat

& Litovsky, 2007; Hall et al., 2002). These factors may explain why adults listening

to simulations of implants showed lower SRTs than implanted children, in pulsatile

noise and in some conditions in pink noise.

One factor that was shared by the children and adults was that the stimuli

had been processed in a similar way, by either a cochlear-implant system or a

vocoder. The performance of children and adults was remarkably similar on several

of the outcome measures, which suggests that the signal processing limited the

performance of both groups. It follows that the spatial listening skills of implanted

children may improve if the signal processing is improved, either to provide greater

spectral and temporal resolution (Rubinstein, 2004) or to coordinate the delivery

of signals to the two electrode arrays. Bilaterally-implanted adults show increased

sensitivity to ITDs when stimuli are delivered directly to their electrodes rather than

via their sound processor (Grantham et al., 2008; Poon et al., 2009), which suggests

that the sensitivity of implant users to interaural differences is not being fully utilised

by current processors. However, it is also possible that the adults in the present study

performed at a similar level to the implanted children because the factors discussed

in the previous two paragraphs fortuitously cancelled each other out.

6.4.4 Strengths and limitations of the cochlear-implant simulations

The simulations used in the present study reflected several aspects of the listening

environment that was experienced by implanted children during testing. The

recordings encompassed the effects of the microphone used in one type of cochlear-

implant system, and the location of that microphone over the concha. A head and

torso simulator, situated in the testing booth used by children, was used to capture

the interaural differences generated by the stimuli. Two independent devices applied

AGC to the signals. Furthermore, the signals that were presented to the two ears had

been processed in such a way that the temporal fine structure did not provide a cue

to ITDs.
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On the other hand, the simulations did not reflect some aspects of hearing via

cochlear implant(s). The study did not simulate a frequency-to-place mismatch

within the cochlea, although such a mismatch is common and is associated with

impaired speech perception in implanted adults (Skinner et al., 2002). The simula-

tions did not reflect the perceptual consequences of cochlear hearing loss, such as

abnormal frequency selectivity, loudness growth, and a limited ability to benefit from

temporal fine structure (B. C. J. Moore, 1996). The study employed the microphone,

AGC, and frequency range used in cochlear-implant systems made by Advanced

Bionics, and different results may be obtained using simulations of other systems.

Furthermore, the simulations of bimodal devices did not incorporate the signal

processing carried out by an acoustic hearing aid, and they created a rare situation

of normal acoustic hearing within a certain frequency range and almost no hearing

outside that range. Thus, although simulation studies are a useful way of comparing

the potential benefits of different devices, it is necessary to consider results from

studies of patients before making recommendations for clinical practice.

6.4.5 Causes of the differences between conditions

6.4.5.1 Tests of sound-source localisation

All of the conditions conveyed cues to source location that were somewhat distorted,

because of the way the stimuli were recorded and processed. The HiRes Auria™

processor applies AGC to signals above 63 dB SPL (P. Boyle, personal communication,

April 4, 2007). Consequently, the stimuli may have generated attenuated ILDs if the

AGC was active in one processor but not the other (although undistorted ILDs may

have been present at the onset of the stimulus, before the AGC was fully active).

The vocoder processing meant that none of the simulations conveyed ITDs in the

temporal fine structure (Francart, 2008; Moy, 2004). Despite the distorted cues,

performance with simulated bilateral implants was above chance levels on tests of

sound-source localisation. Presumably, participants responded on the basis of ITDs

conveyed by the amplitude envelope, ILDs, and/or monaural level and spectral cues.

Performance was poorer with simulated bimodal devices than with simulated

bilateral implants on tests of left-right discrimination and localisation. In the bimodal

simulations, the low-pass filtering removed the frequencies at which ILDs are greatest

(above 2 kHz, Fedderson et al., 1957). Moreover, it may have been difficult to detect

ILDs in the bimodal simulations, because the signals at the two ears only partly

overlapped in frequency (Francart & Wouters, 2007). For example, in the CI-0440

condition, the listener had to compare the gross energy in the lowest vocoder channel

(centred on 350 Hz) with the nonvocoded energy in the range 0–440 Hz. Accordingly,

it is likely that participants were less able to use ILD as a cue to source location in the

bimodal simulations than in the simulation of bilateral implants.
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Performance with a simulated unilateral implant (CI-0000) was above chance

levels on tests of left-right discrimination, localisation, and movement tracking.

This indicates that, following training, monaural cues can be used to perform the

Localisation test, despite the processing described in Appendix A. It is not clear why

performance on the Localisation test was better with a simulated unilateral implant

(CI-0000) than with simulated bimodal devices (CI-0440). Possibly, presenting a low-

pass filtered stimulus to one ear disrupted the ability of participants to attend to

monaural cues at the other ear.

6.4.5.2 Tests of speech perception in pink noise

Two of the simulations of bimodal devices (CI-1320 and CI-0880) resulted in lower

SRTs in pink noise than a simulation of bimodal devices with less acoustic hearing

(CI-0440) or a simulation of a unilateral implant (CI-0000). For this female target

talker, the signals that were low-pass filtered at 1320 or 880 Hz conveyed the first

formant and sometimes the second formant (Peterson & Barney, 1952). The low-pass

filtered signals also conveyed information about voicing. Presumably, this additional

phonetic information enabled participants to tolerate a more adverse signal-to-noise

ratio in the CI-1320 and CI-0880 conditions than the CI-0440 and CI-0000 conditions.

The phonetic information conveyed by the low-pass filtered signal also explains

why participants could tolerate a more adverse signal-to-noise ratio in the CI-1320

condition than in the CI-CI condition.

The simulation of bilateral implants resulted in lower SRTs in pink noise than the

simulation of a unilateral implant (CI-0000). This difference was mostly due to the

head shadow effect: with noise ipsilateral to the first device, SRTs were 6.5 dB lower

with simulated bilateral implants than with a simulated unilateral implant.

6.4.5.3 Spatial release from masking

The simulation of bilateral implants was the only condition in which participants

showed significant SRM with noise on either side of the head. In this condition, the

wideband vocoded signals allowed listeners to take advantage of the beneficial signal-

to-noise ratio that was created at a microphone when noise was presented from the

far side of the head. The same physical effect was present in the recordings for the

simulations of bimodal devices, but the low-pass filter removed the frequencies at

which the head shadow is greatest (Fedderson et al., 1957). Thus, the difference

in signal-to-noise ratio between the noise-front condition and the noise-ipsilateral

condition was smaller for the simulations of bimodal devices than the simulation of

bilateral implants, meaning that SRM was smaller in the conditions with simulated

bimodal devices.
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6.4.5.4 Tests of speech perception in pulsatile noise

In all conditions, SRTs in the Toy Discrimination test in pulsatile noise were lower

for the Raised-F0 masker than the Same-F0 masker. The following sections discuss

possible causes of the difference between maskers, first for the vocoded stimuli and

second for the simulations of bimodal devices.

6.4.5.4.1 Speech perception in pulsatile noise with vocoded stimuli The fre-

quency spectra of the vocoded stimuli are shown in Figure 6.14. A number of factors

may have contributed to the difference in SRT between maskers:

1) After vocoding, the total RMS power of the Raised-F0 masker was 1 dB less than

the Same-F0 masker. However, this difference is too small to account for all of the

observed difference in SRT, which was 5–7 dB on average.

2) The two maskers differed in the number of harmonics that fell within the

passband of the channel filters in the vocoder. Consequently, the sine waves at the

centre frequency of channels 5, 7, and 8 were of a lower amplitude for the Raised-

F0 masker than the Same-F0 masker. It is likely that, for this female target talker,

the frequency region conveyed by channel 5 (centred on 1.9 kHz) carried information

about the second formant (Peterson & Barney, 1952). This phonetic information may

have been masked less by the Raised-F0 masker than the Same-F0 masker. However,

the opposite argument could be applied to channels 1, 3, and 4, where evidence of the

first formant would have been conveyed.

3) The amplitude modulation of the carrier sine waves created sidebands,

meaning components whose frequency was above or below that of the carriers

(Figure 6.14). Prior to vocoding, the amplitude of each stimulus was modulated at

a rate equal to the F0 (which was 200 Hz for the speech and the Same-F0 masker, and

360 Hz for the Raised-F0 masker). The vocoder used a low-pass filter at 160 Hz to

extract the amplitude envelope, so one might expect amplitude modulations above

this frequency to have been removed. However, the second-order filter had a shallow

roll-off, so amplitude modulations at 200 Hz and 360 Hz were preserved (with some

attenuation of the modulations at 360 Hz). Consequently, for the Same-F0 masker

and the speech, sidebands occurred at integer multiples of 200 Hz above and below

the centre frequency of each channel. For the Raised-F0 masker, sidebands occurred

at integer multiples of 360 Hz above and below the centre frequency. Thus, the

sidebands of the speech were masked less by the Raised-F0 masker than the Same-F0

masker. If the sidebands conveyed phonetic information and listeners could resolve

the sidebands (Stone et al., 2008), the difference in masking may have contributed to

the difference in SRT. To investigate this possibility, the vocoded stimuli for the CI-

CI condition were processed to remove the components at and around the centre

frequency of each channel in the vocoder while leaving the sidebands intact. An

FFT filter was used to apply eight inverse Hanning windows, each centred on a
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centre frequency and approximately 200 Hz wide. Two normally-hearing listeners

completed the Toy Discrimination test in pulsatile noise using the filtered stimuli.

Both listeners had SRTs that were 9 to 10 dB lower with the Raised-F0 masker than

the Same-F0 masker. Thus, the difference between maskers persisted when only the

sidebands were present. This result is compatible with the idea that: (i) fluctuations in

the levels of the sidebands in the speech conveyed phonetic information, and (ii) the

fluctuations were masked more effectively by the sidebands of the Same-F0 masker

than by the sidebands of the Raised-F0 masker.

4) A percept of pitch, based on periodicity in the amplitude envelope, may have

helped listeners to segregate the speech from the Raised-F0 masker. Souza and Rosen

(2009) demonstrated that normally-hearing listeners can accurately report changes

in the F0 of sine-vocoded speech, if the low-pass filter used to extract the amplitude

envelope has a cut-off above the F0 of the speech. Although the present study used

a filter with a cut-off below the F0 of the speech, the filter had a shallow roll-off. As

a result, participants may have been able to segregate the speech from the Raised-F0

masker, but not the Same-F0 masker, on the basis of F0.

To summarise, sidebands in the vocoded speech signal were masked to a lesser

degree by the Raised-F0 masker than the Same-F0 masker, which appears to have

contributed to the difference in SRT between maskers. The difference in the

amplitude of the vocoded maskers probably added to the difference in SRT. Further

research is required to assess whether reduced masking of the second formant,

and/or segregation on the basis of F0, also contributed to the better performance with

the Raised-F0 masker.
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Figure 6.14. The frequency spectra of the vocoded stimuli for the Toy Discrimination test in pulsatile noise. Upper panel: Same-F0 masker. Centre panel:
Raised-F0 masker. Lower panel: a speech phrase (“Point to the cup”). The blue trace shows the frequency spectra. The vertical red lines indicate the centre
frequencies of the channels in the vocoder. The peaks between those centre frequencies indicate sidebands created by the amplitude modulation of the
carrier sine waves. Sidebands around the low-frequency carriers were removed by the second stage of bandpass filtering in the vocoder. The scale of the
vertical axis is the same for each graph.
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6.4.5.4.2 Speech perception in pulsatile noise with simulated bimodal devices

Listeners showed a greater difference between the Raised-F0 and Same-F0 maskers

with the CI-1320 simulation of bimodal devices than with the simulation of bilateral

implants. In the CI-1320 condition, listeners may have been able to segregate the

speech from the Raised-F0 masker on the basis of a difference in F0 (Assmann &

Summerfield, 1990). Relevant data come from Culling and Darwin (1993), who

presented normally-hearing adults with two concurrent vowels that had either: 1)

the same F0 throughout the frequency spectrum, or 2) a difference in F0 around the

region of the first formant and the same F0 in higher-frequency regions. The vowels

were identified more accurately in the latter condition. In the CI-1320 condition of

the present study, the first formant was represented by the nonvocoded signal. Based

on the findings of Culling and Darwin it is plausible that, in the CI-1320 condition,

listeners segregated the first formant from the Raised-F0 masker, allowing them to

tolerate a more adverse signal-to-noise ratio than with the Same-F0 masker.

Although both maskers were presented at an equal level in the ring of loud-

speakers, the Same-F0 masker contained energy above 200 Hz whereas the Raised-

F0 masker only contained energy above 356 Hz. Consequently, in the nonvocoded

signals in the bimodal simulations, low-frequency phonetic information (such as the

F0, which provides a cue to voicing) will have been distorted to a lesser degree by the

Raised-F0 masker than the Same-F0 masker. The reduced masking at low frequencies

may have contributed to the difference between maskers shown in all of the bimodal

simulations.

6.4.6 Conclusion

Normally-hearing adults showed differences in performance between simulations

of unilateral and bilateral implants that were similar to the differences observed

between unilaterally- and bilaterally-implanted children. This study provides further

evidence that the children’s performance was primarily influenced by the number of

implants they used, rather than by confounds. Spatial listening skills with simulated

bilateral implants were either superior, or equal, to skills with simulated bimodal

devices, if the latter simulations created a level of functional acoustic hearing that

is likely to be observed in implanted adults. The levels of performance shown by

the adults were remarkably similar to the levels of performance shown by implanted

children, which suggests that the signal processing carried out by the implant system

(or a simulation of that processing) limits the performance of both normally-hearing

adults and implanted children.
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6.5 Summary

• Normally-hearing adults attempted tests of spatial listening using stimuli

presented over headphones. The tests were designed to be similar to those used

in the study of implanted children.

• Five conditions simulated the signal processing carried out by a unilateral

implant, a unilateral implant with varying degrees of contralateral acoustic

hearing, and bilateral implants.

• Performance was better with simulated bilateral implants than with the other

simulations on tests of left-right discrimination, localisation, and SRM with

noise ipsilateral to the first device.

• Performance was better with simulated bimodal devices than with simulated

bilateral implants on tests of speech perception in steady-state noise. This

difference was not shown when the simulation of bimodal devices included a

lesser degree of contralateral acoustic hearing.

• All conditions yielded similar levels of performance on tests of sentence

perception in quiet, movement tracking, and SRM with noise contralateral to

the first device.

• The differences in performance between simulations reflect the differences

in performance between groups of implanted children, indicating that the

children’s performance was primarily influenced by their devices rather than

by confounds.
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Chapter 7

Quality of Life of Children with

Unilateral or Bilateral Cochlear

Implants

Measurements of quality of life contribute to the effectiveness component of cost-

effectiveness analysis, which is used by policy-makers in the UK and elsewhere to

prioritise spending within the healthcare system. Consequently, the question of

whether bilateral implantation improves quality of life compared with unilateral

implantation has implications for healthcare policy. This chapter reports two studies

that compared the quality of life of children with unilateral or bilateral cochlear

implants. The first study obtained estimates from the parents of unilaterally- and

bilaterally-implanted children, and found that the groups did not differ significantly

in quality of life. However, the estimate of the difference between the groups

had a confidence interval that embraced the minimum difference required for

bilateral implantation to be considered cost-effective. The second study obtained

estimates from informants who read descriptions of an implanted child. Bilateral

implantation was associated with a significant gain in quality of life relative to

unilateral implantation. These studies indicate that implanting both ears rather than

one may increase the quality of life of severely-profoundly deaf children, but the exact

extent of any increase remains uncertain.

7.1 Introduction

Healthcare systems around the world are faced with rising medical costs due to a

growing population, increasing longevity, demand for new treatments, and rising

expectations for healthy life. Healthcare systems whose resources are finite cannot

provide every possible intervention: they have to decide which interventions should

be funded and which should not. In England and Wales, the National Institute
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for Health and Clinical Excellence (NICE) is responsible for making such decisions

on behalf of the National Health Service. Decisions are based on safety, clinical

effectiveness, and cost-effectiveness (NICE, 2008b).

Cost-effectiveness analysis, which is also used outside the UK, enables one

to describe any healthcare intervention in terms of the costs it incurs relative to

its effectiveness (Drummond, Sculpher, Torrance, O’Brien, & Stoddart, 2005). To

enable comparisons between a range of different interventions, effectiveness can

be measured as the degree to which an intervention extends life and the degree

to which it improves health-related quality of life.1 The cost-effectiveness of an

intervention is assessed relative to the next-best alternative. Thus, for bilateral

cochlear implantation, the incremental costs and incremental gain in quality of life

are measured relative to unilateral cochlear implantation.

The studies reported in this chapter assessed the health-related quality of life

of children with either unilateral or bilateral implants, in order to estimate the

incremental gain in health-related quality of life associated with bilateral implanta-

tion. To set the studies in context, the following sections describe how costs and

effectiveness can be measured and how these measurements are combined to assess

cost-effectiveness. The subsequent sections review previous assessments of the

quality of life of bilaterally-implanted patients and the cost-effectiveness of bilateral

implantation.

7.1.1 Measuring costs

The cost of an intervention can be calculated from a number of perspectives: costs

may be incurred or averted by the health service, by other government services,

by the patient and their family, or as a result of changes in productivity. For

NICE, the primary perspective is that of the National Health Service in England and

Wales (NICE, 2008b). Costs are estimated as the total incremental cost of providing

the treatment, compared to the next-best alternative, over the expected remaining

lifetime of a cohort of patients. In some cases, NICE also considers a secondary

perspective that includes costs that are incurred or averted by government services

in addition to the National Health Service (NICE, 2008b). For example, in an analysis

of paediatric unilateral implantation commissioned by NICE, the estimated costs

incorporated savings in the cost of education that are associated with unilateral

implantation, compared to the provision of bilateral acoustic hearing aids (Barton

et al., 2006a; Bond et al., 2007).

1Other authors use the term ‘cost-utility analysis’ to refer to analyses in which effectiveness is
measured by the extension of life and the change in health-related quality of life (Drummond et al.,
2005). This thesis follows NICE in using the more general term of cost-effectiveness analysis.
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7.1.2 Measuring effectiveness

7.1.2.1 Measuring health-related quality of life

The first step in measuring effectiveness is to measure the incremental gain in health-

related quality of life associated with an intervention. The incremental gain can be

calculated as the difference in health-related quality of life between two groups of

patients: those who received the intervention of interest and those who received

the next-best alternative. The estimates of quality of life can be obtained from the

patients themselves, from the patients’ parents or carers, or from other members of

the public who have read a description of the health state. There are several methods

for measuring health-related quality of life, all of which can be thought of as obtaining

a person’s preference for a state of health (Drummond et al., 2005).

7.1.2.1.1 Formal measures of preference The term utility refers to a person’s

preference for a state of health, obtained under conditions of uncertainty, and

expressed using an interval scale on which perfect health takes the value one and dead

takes the value zero (Drummond et al., 2005). Utility is measured using the standard

gamble, in which the participant is presented with two alternatives (Drummond et

al.; Torrance, 1986). The first alternative is to opt for a treatment with two possible

outcomes: the participant may be healthy for their remaining years of life (with

probability p) or they may die immediately (with probability 1-p). The second

alternative is to continue living in the health-state i for the remaining years of life. The

participant is asked to vary p until they are indifferent between the two alternatives.

Their preference for the health-state i is equal to p. The advantage of the standard

gamble is that preference is measured under conditions of uncertainty, which reflects

the uncertain outcome of many healthcare interventions. However, the standard

gamble is time-consuming and conceptually complicated.

An alternative method for measuring a person’s preference for a state of health

is the time trade-off technique (TTO; Drummond et al., 2005; Torrance, Thomas, &

Sackett, 1972). The participant is again presented with two alternatives. The first

alternative is to live in the health-state i for their remaining expected years of life

(t). The second alternative is to live in a state of perfect health for x years. The

participant is asked to adjust the value of x until they are indifferent between the two

alternatives. Their preference for the health-state i is x / t. The results are expressed on

an interval scale on which perfect health takes the value one and dead takes the value

zero. Although the TTO incorporates an opportunity cost (the years given up), it does

not measure preference under conditions of uncertainty, so the results are referred

to as values rather than utilities (Drummond et al.). The TTO can be adapted for use

with parents whose children have the health-state i: the parent is asked to trade-off

years from the end of their own life in order for their child to have perfect health for
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the remainder of the child’s life. However, parents occasionally find this technique

difficult to understand or upsetting.

7.1.2.1.2 Visual-analogue scales A person’s preference for a state of health can be

measured using a visual-analogue scale (VAS; Drummond et al., 2005). Typically, the

scale is a line ranging from 0 (labelled dead) to 100 (labelled perfect health) and the

participant is asked to make a mark to indicate the quality of life associated with a

health state. VASs can be completed quickly and are easy to understand. VASs may

not give a measure of preference on an interval scale, because they are subject to

two types of bias (Torrance, Feeny, & Furlong, 2001). First, participants tend not to

make marks at the extreme ends of the scale. Second, VASs are affected by context:

when given a group of health states, participants tend to space out their answers on

the scale even if they assign similar utilities to those health states using the standard

gamble. Ratings from VASs are typically lower than preferences obtained using the

standard gamble or TTO, because of participants’ aversion to risk and unwillingness

to trade-off years of life (Torrance et al., 2001). To approximate the standard gamble or

TTO, VAS ratings can be compressed using a power formula of the form 1−(1−VAS)b .

Studies which used both VAS and TTO found that an exponent, b, of 1.6 resulted in

VAS values that were similar to values measured using TTO (e.g. Cheng et al., 2000;

Torrance, 1976).

7.1.2.1.3 Health-status questionnaires One can also measure health-related qual-

ity of life using a questionnaire that generates a description of health status. For

example, the Health Utilities Index Mark 3 (HUI) contains 15 questions relating to

eight dimensions of health: vision, hearing, speech, ambulation, dexterity, emotion,

cognition, and pain (Horsman, Furlong, Feeny, & Torrance, 2003). A high score on

each dimension is assumed to represent good health. A sample of the Canadian

public used the standard gamble to assign utilities to descriptions of health status

generated by the questionnaire (Feeny et al., 2002). These data were used to define

a function to convert questionnaire responses into utilities. Thus, a participant’s

response on the HUI can be converted to a utility which reflects the preferences of

the Canadian population. It is possible to obtain a negative utility, which indicates a

health state that the public considered to be worse than death. A parent-proxy version

of the HUI is suitable for the parents of children aged 5 years and above (Horsman et

al.).

A different questionnaire, the EuroQol EQ-5D, contains five questions relating to

mobility, self-care, usual activity, pain/discomfort, and anxiety/depression (EuroQol

Group, 1990). A function to convert EuroQol EQ-5D scores to TTO values was derived

from a study in which members of the public in the UK used the TTO to value health

states defined by the EuroQol EQ-5D (Dolan, 1997). The EuroQol EQ-5D does not
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contain questions about the ability to hear or the ability to speak. Consequently,

compared to the HUI, this questionnaire is insensitive to impairments in quality of

life caused by impaired hearing (Barton et al., 2005) and to improvements in quality of

life caused by interventions to improve hearing (Grutters et al., 2007; Sach & Barton,

2007). Moreover, the EuroQol EQ-5D was not designed for use with children under

the age of 12 years (EuroQol Group, 2010), nor is there a parent-proxy version for the

parents of children under the age of 12 years (NICE, 2008b).

7.1.2.1.4 The impact of deafness on health-related quality of life There is ev-

idence that the parents of some deaf children do not consider that deafness is

associated with a loss of health-related quality of life, but rather a loss of general

quality of life. Sach and Barton (2007) asked the parents of 160 unilaterally-implanted

children to complete two VASs, on which the endpoints were labelled either ‘best

and worst imaginable health state’ or ‘best and worst imaginable quality of life’. The

parents completed the scales for their child’s current health state and quality of life,

and also retrospectively based on their memories of their child prior to implantation.

The average increment associated with unilateral implantation was +0.14 (95%

confidence interval +0.10 to +0.18) on the scale labelled ‘health state’, and +0.35

(95% confidence interval +0.32 to +0.39) on the scale labelled ‘quality of life’. The

authors concluded that the benefits of cochlear implantation may be underestimated

if outcomes are measured only by the change in health-related quality of life.

7.1.2.1.5 Interim summary There are several techniques for measuring a person’s

preference for a state of health, and the results vary depending on which method

is used (Drummond et al., 2005). Guidance from NICE states that their preferred

measure of preference is the EuroQol EQ-5D, because the values reflect the prefer-

ences of the UK population (NICE, 2008b). However, other measures of preference are

considered by NICE if data from the EuroQol EQ-5D are unavailable or inappropriate

for a certain condition. The EuroQol EQ-5D, and VASs that refer to health-related

quality of life, are less sensitive to the benefits of unilateral cochlear implantation than

the HUI and VASs that refer to general quality of life.

7.1.2.2 Calculating quality-adjusted life years

Some interventions extend life whereas others, such as cochlear implantation,

improve quality of life. To enable comparisons between these interventions,

effectiveness can be summarised by the gain in quality-adjusted life years (QALYs):

the gain in quality of life integrated over the predicted lifetime of the patient

(Drummond et al., 2005). Any of the measures of quality of life described in

section 7.1.2.1 can be used to calculate QALYs, provided they use an interval scale
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from one (perfect health) to zero (dead). Consequently, a single year at perfect quality

of life is one QALY. Figure 7.1 shows a simple example of how QALYs are calculated.

Figure 7.1. Calculating quality-adjusted life years. Each figure plots the quality of life
of a hypothetical patient over 80 years of life. Plot A shows an intervention that extends
life and Plot B shows an intervention that improves life. Plot A: the patient had a quality
of life of 0.9 for 50 years (yellow area), at which point they would have died without the
intervention. Having received the intervention, they lived for a further 30 years with a
quality of life of 0.7 (orange area). The gain in QALYs was 0.7*30 = 21. Plot B: without
the intervention, the patient would have had a quality of life of 0.5 for 80 years (yellow
area), at which point they die. Having received the intervention at the age of 10 years,
their quality of life increased to 0.7 (orange area) for the remaining 70 years of life. The
gain in QALYs was 0.2*70 = 14.

7.1.3 The cost-effectiveness ratio and incremental net benefit

The ratio of incremental costs to incremental QALYs is known as the cost-effectiveness

ratio. For an intervention with an average incremental cost (∆C ) of £50,000 per patient

and an average incremental gain (∆Q) of 2 QALYs per patient, the incremental cost-

effectiveness ratio (∆C /∆Q) is £25,000 per QALY.2 It is difficult to perform informative

statistical analyses on ratios of incremental costs and QALYs, particularly given that

the increments can be negative. Therefore, the ratios can be converted (linearised) by

expressing them as values of incremental net benefit, calculated as r∆Q −∆C where r

is the amount that society is willing to pay to gain a QALY. For a given value of r , an

intervention is cost-effective if the incremental net benefit is positive. For the example

at the beginning of the paragraph, the incremental net benefit is +£10,000 for a value

2In practice, both costs and QALYS are discounted, meaning they are reduced by a certain
percentage per annum. Discounting reflects people’s preference to incur benefits sooner rather than
later, but to incur expenditure later rather than sooner. This is known as the principle of time
preference (Drummond et al., 2005).
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of r of £30,000, but the incremental net benefit is −£10,000 if society is willing to pay

only £20,000 to gain a QALY.

For the majority of interventions, the costs and QALYs vary from one patient to

another. To reflect this variability, one can construct a decision-analytic model which

defines the possible outcomes, the probability of each outcome, and the costs and

QALYs associated with each outcome (Briggs, Sculpher, & Claxton, 2006; Drummond

et al., 2005). Such a model provides a framework to calculate the incremental net

benefit. However, there is often uncertainty regarding the parameters in a model

(meaning the probability of different outcomes, the costs, and the QALYs), because of

random variation, lack of knowledge, and measurement error. To reflect uncertainty,

a probabilistic sensitivity analysis can be conducted by calculating the incremental

costs and QALYs many times (Briggs et al.). For every calculation, each parameter in

the model is sampled from the observed distribution of that parameter. This process

yields a distribution of incremental costs and QALYs, which can be summarised

by calculating the incremental net benefit and a confidence interval around that

estimate. In addition, one can calculate the probability that the incremental net

benefit is positive, for a given value of r .

Cost-effectiveness analysis can be used by policy-makers to prioritise interven-

tions that gain QALYs at an acceptable cost. Typically, NICE only recommends an

intervention if the incremental net benefit is positive for a maximum value of r of

£30,000 (NICE, 2008b; Rawlins & Culyer, 2004). In other words, NICE recommends

interventions with an incremental cost-effectiveness ratio less than £30,000. If

the cost-effectiveness ratio is higher than this threshold, it is necessary to make

“an increasingly stronger case for supporting the technology as an effective use of

National Health Service resources” (NICE, 2008b).

7.1.4 The quality of life of children with bilateral cochlear implants

There have been only two assessments of the quality of life of bilaterally-implanted

children. Beijen et al. (2007) asked the parents of five bilaterally- and five unilaterally-

implanted children to complete the Pediatric Quality of Life Inventory, a ques-

tionnaire that assesses physical, emotional, and social functioning. There was

no significant difference between the groups: the bilateral mean was 90.2%, the

unilateral mean was 89.4%, and the 95% confidence interval (c.i.) for the difference

was −11.0 to +12.6 (a positive difference indicates higher ratings for the bilateral

group). The descriptions of health status generated by the Pediatric Quality of Life

Inventory have not been valued by members of the public using the standard gamble

or TTO, and therefore this questionnaire does not yield a formal measure of health-

related quality of life. Despite finding no difference in quality of life, Beijen et al. did

find that there was a significant difference between the groups in parental ratings
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of listening skill: the bilateral group had higher scores than the unilateral group

on the spatial subscale of the Speech, Spatial, and Qualities of Hearing Scale (see

section 7.2.2.2.1 for further details of the questionnaire).

Bichey and Miyamoto (2008) obtained utility estimates from 23 participants (both

adults and children) who had received bilateral implants in sequential surgeries. The

participants completed the HUI three times: based on their memory of life with

no implant, based on their memory of life with one implant, and based on their

current state of health. The average utilities were 0.33, 0.69, and 0.81, respectively.

Thus, the increment in utility associated with unilateral implantation was +0.36 and

the increment associated with bilateral implantation was +0.12; both increments

were statistically significant (c.i. were not reported). The estimates from Bichey and

Miyamoto for utility with no implant and with a unilateral implant were similar to

those reported by Cheng et al. (2000), who obtained HUI utilities from the parents

of 22 unilaterally-implanted children. The average utility based on their memory

of the child’s life with no implant was 0.25 and the average utility for the child’s

current health was 0.64, giving a significant increment of +0.39 (95% c.i. +0.31 to

+0.46). Retrospective judgements may reveal disability, because sometimes patients

(or parents) realise how debilitating a condition is only after it has improved. On

the other hand, retrospective judgements are confounded with maturation: the

individual’s quality of life may have improved with time regardless of the intervention

they received. Moreover, retrospective judgements are at risk of recall bias (meaning

patients incorrectly recall their health status), and at risk of bias caused by gratitude

for healthcare received (or paid for) and by expectations of that healthcare.

To assess the degree to which the results of Bichey and Miyamoto (2008)

may be affected by bias, the results can be compared with studies that obtained

contemporary, rather than retrospective, estimates of health-related quality of life

using the HUI. Using the parent-proxy version of the HUI, Barton et al. (2006b)

found that the utility of 403 unilaterally-implanted children was 0.58 and the utility

of 290 unimplanted children with a similar hearing loss was 0.35. After controlling

for confounds, the greatest increment in utility shown by any of the subgroups

of implanted children was +0.23 (95% c.i. +0.18 to +0.28). Just over half of the

participants in the study of Bichey and Miyamoto were adults, so comparisons

with studies of adults are also informative. The UK Cochlear Implant Study Group

(2004a) administered the HUI to 311 adults prior to, and 9 months after, unilateral

implantation. The greatest increment in utility shown by any of the subgroups was

+0.23 (95% c.i. +0.20 to +0.27). Thus, Bichey and Miyamoto reported an increment in

utility associated with unilateral implantation that was greater than the maximum

increments shown by studies using contemporary estimates. Consequently, the

results of Bichey and Miyamoto appear to be at risk of bias, which casts doubt on

the validity of the reported increase in utility associated with bilateral implantation.
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7.1.5 The quality of life of adults with bilateral cochlear implants

Given the scarcity of data relating to the quality of life of bilaterally-implanted

children, it is helpful to review assessments of the quality of life of bilaterally-

implanted adults. Summerfield et al. (2006) reported a randomised controlled trial

that compared the HUI utilities of 12 unilaterally- and 12 bilaterally-implanted adults.

The utility of the unilateral group did not differ significantly from that of the bilateral

group, when the latter group was assessed 9 months after the second implantation

(mean +0.1 higher for bilateral, 95% c.i. −0.1 to +2.9). The unilateral group then

received a second implant. Accordingly, Summerfield et al. (2006) presented data

from a within-subjects comparison of the entire sample of 24 patients who completed

the HUI prior to, and 9 months after, receiving a second implant. The mean change

in utility following bilateral implantation was −0.02 (95% c.i. −0.11 to +0.08). The

decrease in utility was attributed to two of the patients who reported increased

annoyance from tinnitus following the second implantation (typically, a smaller

proportion of patients report this complication; Pan et al., 2009). When the effect

of worsening tinnitus was controlled statistically, the change in HUI associated with

bilateral implantation was +0.03 (95% c.i. −0.05 to +0.10). However, the within-

subjects comparison was confounded with gratitude for healthcare received and

with the passage of time (the patients’ quality of life may have improved over time,

regardless of the intervention).

A further study asked researchers and clinicians, who worked with hearing-

impaired people, to read descriptions of hypothetical adults with unilateral or

bilateral implants (Summerfield, Marshall, Barton, & Bloor, 2002). The participants

completed the TTO for each description. Their estimate of the incremental gain

in health-related quality of life associated with bilateral implantation was +0.03

(95% c.i. +0.02 to +0.04), which is congruent with the adjusted estimate reported by

Summerfield et al. (2006).

7.1.6 The cost-effectiveness of bilateral implantation for children

Cochlear implantation was evaluated by NICE between 2006 and 2009. One of the

most contentious issues was paediatric bilateral implantation: there was uncertainty

about whether this intervention resulted in improved quality of life and whether

any gain in quality of life was large enough to justify the additional cost compared

with unilateral implantation. The uncertainty was reflected in the decision-making

process: draft guidance recommended bilateral implantation for children (NICE,

2007), then revised draft guidance stated that unilateral implantation should be the

standard intervention (NICE, 2008a). The proposal was reversed again in the final

guidance, which recommends bilateral implantation for children (NICE, 2009).

The health economists commissioned by NICE used estimates of utility obtained
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from bilaterally-implanted adults as the basis of cost-effectiveness analyses of

bilateral implantation for children (Bond et al., 2007). The gain in utility of +0.03

from Summerfield et al. (2006) was used for the initial analysis, which found that the

average incremental cost-effectiveness ratio for paediatric bilateral implantation was

£36,040 per QALY. This is above the usual threshold of £30,000 per QALY. Subsequent

analyses reported that, if the increment in utility was as great as +0.04 or +0.05, the

average incremental cost-effectiveness ratio would be £27,886 per QALY or £22,740

per QALY, respectively (p. 20, NICE, 2009). Thus, the increment in health-related

quality of life associated with bilateral implantation would have to be at least +0.04

for the intervention to be considered cost-effective. Based on advice from clinical

experts, the committee appointed by NICE decided that a gain of +0.04 was plausible,

and therefore recommended bilateral implantation for children as a cost-effective use

of resources (pp. 28–9, NICE, 2009).

The aim of the two studies described in this chapter was to measure the

gain in health-related quality of life, and general quality of life, associated with

bilateral compared to unilateral implantation in children. The first experiment

obtained estimates of quality of life from the parents of implanted children; the

second experiment obtained estimates from informants who read descriptions of a

hearing-impaired child. The findings of the second study were incorporated into a

probabilistic decision-analytic model by Summerfield, Lovett, Batten, and Bellenger

(in press.).

7.2 Experiment 1: Parental estimates of the quality of

life of children with cochlear implants

7.2.1 Introduction, aims and hypotheses

This study obtained estimates of the quality of life of the unilaterally- and bilaterally-

implanted children whose listening skills were described in Chapter 5. Estimates

of quality of life were obtained from a parent rather than from the child, because

of the young age of some of the children. The HUI was used to measure health-

related quality of life, because it is easier to understand than the standard gamble or

TTO and more sensitive to hearing impairment than the EuroQol EQ-5D. A VAS was

used to measure general quality of life. The Speech, Spatial, and Qualities of Hearing

Scale was used to obtain parental ratings of children’s listening skills (Galvin, Mok, &

Dowell, 2007; Gatehouse & Noble, 2004).

The first objective was to compare the quality of life of unilaterally- and bilaterally-

implanted children. The second objective was to compare parental ratings of the

listening skills of unilaterally- and bilaterally-implanted children, in order to assess

whether the benefits of bilateral implantation demonstrated in laboratory tests were
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also evident in listening skills in everyday life. The third objective was to obtain

retrospective estimates of children’s general quality of life before and after receiving

bilateral implants, to allow comparisons with the study of Bichey and Miyamoto

(2008). The fourth objective was to compare parental estimates of quality of life and

listening skills for simultaneous and sequential bilaterally-implanted children. The

fifth objective was to assess whether parental estimates of quality of life correlated

with either parental ratings of listening skills or laboratory assessments of spatial

listening skills.

It was not known whether the unilateral and bilateral groups would differ in

parental estimates of general or health-related quality of life. It was predicted that

the parents of bilaterally-implanted children would rate their child’s listening skills

more highly than the parents of unilaterally-implanted children. It was predicted that

the parents of bilaterally-implanted children would rate their child’s current quality of

life more highly than their quality of life if they had received only one implant. Based

on the results of Chapter 5, it was predicted that the simultaneous and sequential

bilaterally-implanted children would have similar parental ratings of listening skills

and similar parental estimates of quality of life.

7.2.2 Method

7.2.2.1 Participants

One parent of each child who participated in the experiment reported in Chapter 5

took part. For the unilateral group, 16 of the 20 respondents (80%) were female

and their average age was 41.1 years (standard deviation 5.6 years). For the bilateral

group, 27 of the 35 respondents (77%) were female and their average age was 41.1

years (standard deviation 6.1 years). The study was approved by the North West

Research Ethics Committee of the National Research Ethics Service. Parents gave

written informed consent.

7.2.2.2 Procedure

The questionnaires were usually completed after the child had finished the listening

tests; occasionally they were returned by post. Parents were asked to complete

questionnaires in the following order.

7.2.2.2.1 The Speech, Spatial, and Qualities of Hearing Scale for Teachers of the

Deaf The Speech, Spatial, and Qualities of Hearing Scale was developed as a self-

report measure for hearing-impaired adults (Gatehouse & Noble, 2004). Galvin, Mok,

and Dowell (2007) modified the scale to create a version for parents and a version

for teachers: the Speech, Spatial and Qualities of Hearing Scale for Teachers of the

Deaf (SSQ). The teachers’ version was given to parents in the current study, because
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the question phrases are simpler than in the parents’ version. The question content

is similar in both versions. The SSQ is included in Appendix B; it contains three

subscales that measure hearing for speech (this subscale contains eight questions),

spatial hearing (five questions), and qualities of hearing (eight questions). An

example question from the speech subscale is, “You are talking to your child in a room

in which there are many other people talking. Can your child follow what you say?”

Parents responded using a horizontal VAS with endpoints marked 0 and 10 (labelled

“Not at all” and “Perfectly”, respectively). The responses on the VAS were converted

to a number with an accuracy of one decimal place, then averaged for each subscale.

This yielded a score from 0 to 10 for each subscale, with higher scores representing

greater ability.

7.2.2.2.2 The Health Utilities Index Mark 3 The parent-proxy version of the HUI

was completed by parents of children aged 5 years and above (the questionnaire is

not suitable for the parents of younger children). The format is multiple-choice with

between four and six alternative responses for each question (see Appendix C). The

HUI responses were converted to utilities using the function defined by Feeny et al.

(2002).

7.2.2.2.3 Visual-analogue scales Parents valued their child’s general quality of

life using a horizontal VAS with endpoints labelled “Worst” and “Best” imaginable

quality of life (see Appendix D). The scale was labelled numerically in 10-point

intervals from 0 to 100, with 100 representing the best quality of life. All parents

were given a VAS that asked about the child’s current quality of life (‘current VAS’).

The parents of bilaterally-implanted children were given a VAS that asked them to

imagine their child’s quality of life if the child had received only one implant (‘one-

implant VAS’). All parents were given a VAS that asked them to imagine their child’s

quality of life if the child had not received an implant (‘no-implant VAS’). The VAS

ratings were compressed (Cheng et al., 2000; Torrance, 1976)3 using the formula

1− (1−VAS/100)1.6.

7.2.2.3 Analyses

The outcome measures did not distribute normally, so medians were used to

summarise the results. To enable comparisons with the analyses of cost-effectiveness

commissioned by NICE (Bond et al., 2007), mean increments and 95% confidence

intervals are also reported in the text. The aim of the statistical analyses was to assess:

3Lovett et al. (2010) presented the results of this experiment without compressing the VAS scores.
Consequently, this chapter and the published paper report different data. The results of statistical
comparisons were the same for both compressed and noncompressed data.
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1. Whether there was a difference between the bilateral and unilateral groups in

parental responses on the SSQ, the HUI and the current VAS.

2. For the unilateral group, whether parental responses on the current VAS were

higher than on the no-implant VAS.

3. For the bilateral group, whether parental responses on the current VAS were

higher than on the one-implant VAS. Also for the bilateral group, whether

parental responses on the one-implant VAS were higher than on the no-implant

VAS.

4. Whether there was a difference between the simultaneous and sequential

bilaterally-implanted children in parental responses on the SSQ, the HUI and

the current VAS.

5. Whether parents’ responses on the SSQ, the HUI, and the current VAS were

correlated with each other.

6. Whether parents’ responses on the SSQ, the HUI, and the current VAS were

correlated with their child’s performance on the listening tests reported in

Chapter 5.

Mann-Whitney tests were used to compare the bilateral and unilateral groups and

to compare the simultaneous- and sequential-bilateral groups. Wilcoxon signed-rank

tests were used to assess whether VAS responses differed according to the question

that was asked. Throughout this chapter, effect sizes for Mann-Whitney and Wilcoxon

tests were calculated according to the formulae in sections 4.2.5.2 and 5.2.4.4.2,

respectively. No data were missing for the SSQ, current VAS, HUI, or one-implant

VAS. Two parents (one with a unilaterally-implanted child and one with a bilaterally-

implanted child) had missing data for the no-implant VAS. These two parents were

excluded from the analysis of the no-implant VAS questionnaire.

Kendall’s rank-order correlation coefficients (tau) were used for all correlational

analyses. One set of correlations assessed whether parents’ questionnaire responses

covaried with their child’s performance on the listening tests. If each questionnaire

had been correlated with every listening test, the likelihood of detecting statistically-

significant correlations after a Bonferroni correction was very small. Accordingly, only

two measures of listening skill were analysed: the ±30◦ condition of the Left-Right

Discrimination test and SRM with noise ipsilateral to the first device. These measures

were chosen because they led to a range of performance and few children had missing

data. A parent-child pair was excluded from a correlational analysis if either one of the

pair had missing data.

193



Chapter 7 Quality of Life of Children with Cochlear Implants

7.2.3 Results

7.2.3.1 Comparisons of children with unilateral or bilateral cochlear implants

The results of the SSQ, HUI and VAS are shown in Table 7.1. The bilateral group

had higher ratings than the unilateral group on the spatial-hearing subscale of the

SSQ. The two groups did not differ significantly in parental ratings on the speech-

hearing and qualities-of-hearing subscales of the SSQ, nor did they differ significantly

in parental estimates of quality of life using HUI or current VAS. The mean difference

in HUI was −0.01 (95% c.i. −0.11 to +0.09); the mean difference in current VAS was

+0.02 (95% c.i. −0.03 to +0.07). Positive values indicate a higher quality of life for

the bilateral group. The no-implant VAS for the unilateral group was higher than the

no-implant VAS for the bilateral group. The current VAS for the unilateral group was

higher than the one-implant VAS for the bilateral group [z = −4.90, pb f < .01, r = .66].

7.2.3.2 Within-subjects analyses of visual-analogue scales

For the unilateral group, the current VAS was higher than the no-implant VAS

[z = −3.82, p < .001, r = .62]. For the bilateral group, the current VAS was higher than

the one-implant VAS [z = −5.16, pb f < .001, r = .62]; the mean difference was +0.22

(95% c.i. +0.16 to +0.29). For the bilateral group, the one-implant VAS was higher

than the no-implant VAS [z = −5.01, pb f < .001, r = .61].

7.2.3.3 Comparison of children with simultaneous or sequential bilateral

implants

The results of the SSQ, HUI and VAS for the simultaneous and sequential bilaterally-

implanted children are shown in Table 7.2, along with the results of statistical

comparisons of the two groups. The two groups did not differ significantly on any

of the questionnaires.
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Table 7.1. Results of the parental questionnaires. The 25th percentile (25th), 50th percentile (Median, in emboldened text), 75th percentile (75th) and the
number of participants contributing data (N) are listed for each group alongside the standardised test statistic (z), p value, and effect size (r) resulting from
a Mann-Whitney comparison of the groups. N/A: not applicable.

Unilateral Bilateral Mann-Whitney

25th Median 75th N 25th Median 75th N z p r

SSQ speech 4.65 5.88 7.68 20 5.71 7.53 8.25 35 −1.93 .05 .26

SSQ spatial 2.43 4.85 5.88 20 6.20 7.46 8.82 35 −3.61 .01 .49

SSQ qualities 6.44 7.16 8.15 20 6.99 7.60 8.43 35 −1.42 .16 .19

HUI 0.69 0.78 0.85 14 0.65 0.83 0.85 22 −0.03 .98 .01

Current VAS 0.90 0.97 0.99 20 0.95 0.98 0.99 35 −1.40 .33 .19

One-implant VAS N/A N/A N/A N/A 0.71 0.78 0.86 35 N/A N/A N/A

No-implant VAS 0.26 0.43 0.63 19 0.15 0.30 0.46 34 −2.14 .03 .29
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Table 7.2. Results of the parental questionnaires for the simultaneous and sequential bilaterally-implanted children. The 25th percentile (25th), 50th

percentile (Median, in emboldened text), 75th percentile (75th) and the number of participants contributing data (N) are listed for each group alongside
the standardised test statistic (z), p value, and effect size (r) resulting from a Mann-Whitney comparison of the groups.

Simultaneous Sequential Mann-Whitney

25th Median 75th N 25th Median 75th N z p r

SSQ speech 4.75 7.14 8.16 15 6.34 7.78 8.40 20 −1.32 .19 .22

SSQ spatial 6.50 7.56 9.00 15 4.22 7.43 8.28 20 −1.08 .29 .18

SSQ qualities 6.66 7.28 7.92 15 7.49 7.84 8.72 20 −1.85 .07 .31

HUI 0.20 0.52 0.81 4 0.70 0.84 0.85 18 a a a

Current VAS 0.95 0.98 0.99 15 0.97 0.98 1.00 20 −0.30 .77 .05

One-implant VAS 0.67 0.81 0.87 15 0.72 0.77 0.86 20 −0.50 .63 .08

No-implant VAS 0.03 0.41 0.56 14 0.16 0.30 0.37 20 −1.11 .28 .19

a There were insufficient data to perform a statistical comparison.
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7.2.3.4 The relationship between questionnaires

The correlation matrix for the parental questionnaires is shown in Table 7.3. The

matrix includes data from parents of unilaterally- and bilaterally-implanted children.

The subscales of the SSQ all correlated with each other. The HUI utilities were

correlated with the scores for the speech-hearing and qualities-of-hearing subscales

of the SSQ; the current VAS scores were correlated with scores for the speech-hearing

subscale. The HUI utilites and current VAS scores were not correlated with each other

(although this correlation was statistically significant before the Bonferroni correction

was applied, p = .01).

Table 7.3. Correlation matrix for parental questionnaires. The Kendall’s tau correlation
coefficient and the number of participants (in parentheses) are listed.

SSQ SSQ SSQ HUI Current
speech spatial qualities VAS

SSQ speech — .41*** (55) .50*** (55) .36* (36) .27* (55)
SSQ spatial — — .45*** (55) .19 (36) .14 (55)
SSQ qualities — — — .34* (36) .11 (55)
HUI — — — — .31 (36)
Current VAS — — — — —

* pb f < .05; **pb f < .01; ***pb f < .001

7.2.3.5 The relationship between parental questionnaires and tests of spatial

listening skill

The correlations between scores for the parental questionnaires and two laboratory

tests of spatial listening skill are shown in Table 7.4, including data from both

unilaterally- and bilaterally-implanted children. The only significant correlations

were between scores for the ±30◦ condition of the Left-Right Discrimination test and

scores for the speech-hearing and spatial-hearing subscales of the SSQ.
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Table 7.4. Correlations between parental questionnaires and laboratory tests of
spatial listening skill. The second column shows the lower age limit for each
questionnaire. The Kendall’s tau correlation coefficient and the number of participants
(in parentheses) are listed for two measures of spatial listening skill: the ±30◦ condition
of the Left-Right Discrimination test and SRM with noise ipsilateral to the first device.

Age limit Left-Right SRM noise
(months) Discrimination ipsilateral a

SSQ speech 24 +.36* (51) −.08 (43)
SSQ spatial 24 +.32* (51) −.02 (43)
SSQ qualities 24 +.24 (51) −.05 (43)
HUI 60 +.20 (35) −.17 (35)
Current VAS 24 +.10 (51) −.07 (43)

a Lower age limit: 36 months. * pb f < .05.

7.2.3.6 Summary of Experiment 1

The bilateral and unilateral groups did not differ in parental estimates of health-

related quality of life using the HUI or in parental estimates of general quality of

life using the VAS. The bilateral group had higher ratings than the unilateral group

on the spatial-hearing subscale of the SSQ. When asked to provide retrospective

estimates using a VAS, parents reported significant increments in general quality of

life associated with both unilateral and bilateral implantation. For all questionnaires,

the responses for the simultaneous and sequential bilaterally-implanted children did

not differ significantly. The parental estimates of general and health-related quality

of life were correlated with scores for some subscales of the SSQ. The parental

estimates of general and health-related quality of life did not correlate with the child’s

performance on tests of spatial listening.

7.2.4 Discussion of Experiment 1

7.2.4.1 Results of between-subjects comparisons

Parental judgements indicated that, compared with unilaterally-implanted children,

bilaterally-implanted children displayed better skills in spatial listening. This result

mirrors the superior performance of the bilateral group on laboratory tests of sound-

source localisation and speech perception (see section 5.3). However, questionnaire

responses by the same parents did not reveal a difference between unilaterally-

and bilaterally-implanted children in either general or health-related quality of life.

Significant differences in questionnaire reports of everyday listening but not of quality

of life were also found in an observational comparison of five unilaterally- and

five bilaterally-implanted children (Beijen et al., 2007) and in a randomised trial
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comparing 12 unilaterally- and 12 bilaterally-implanted adults (Summerfield et al.,

2006).

There are a number of possible reasons why this study, and previous studies, have

not found a significant gain in quality of life associated with bilateral implantation

(Beijen et al., 2007; Summerfield et al., 2006). First, the improvement in listening

skill associated with bilateral implantation, and the potential reduction in anxiety

regarding device failure, may not be sufficient to improve quality of life. In support

of this theory, children’s performance on laboratory tests of spatial listening did

not correlate with parental estimates of general or health-related quality of life

(see section 7.2.4.4 for further details). Second, advantages in quality of life may

take longer to emerge than the 19 months post-second implantation that was the

average in this sample, or the 9- and 22-month follow-ups of the previous studies

(Summerfield et al., 2006 and Beijen et al., respectively). Spatial listening skills are

positively associated with experience with both implants (Litovsky, Johnstone, Godar,

Agrawal, et al., 2006; Steffens et al., 2007), so it is plausible that the same relationship

applies to improvements in quality of life. Third, in the current study and in a

previous study (Cheng et al., 2000), parents of unilaterally-implanted children gave

high estimates of their child’s quality of life, leaving little headroom for any advantage

associated with bilateral implantation to be shown.

It is possible that a gain in quality of life associated with bilateral implantation has

not yet been demonstrated because of a lack of statistical power. The increment may

be as small as +0.03 (Summerfield et al., 2002, 2006). Neither the present study, nor

previous studies (Beijen et al., 2007; Summerfield et al., 2006), were designed to detect

a difference of this size. Indeed, the present study was designed to detect differences

of one standard deviation: in the current sample, this was 0.18 for the HUI and 0.09 for

the VAS. For bilateral implantation to be considered a cost-effective intervention, the

increment must be at least +0.04. To detect a difference of this size between the HUI

utilities of bilaterally- and unilaterally-implanted children with 80% power at p < .05,

one would need a sample of 250 children in each group.

7.2.4.1.1 Simultaneous and sequential bilaterally-implanted children There was

no significant difference between the simultaneous and sequential bilaterally-implanted

children in parental reports of listening skill, health-related quality of life, or general

quality of life. This finding was expected, because these groups did not differ in

performance on tests of spatial listening (see section 5.3.4).

7.2.4.2 Hypothetical or retrospective judgements of quality of life

Parents of bilaterally-implanted children reported that the incremental gain in

general quality of life associated with bilateral implantation was +0.22, measured

using VASs. This value is greater than the increment of +0.12 obtained from adults
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and children who completed a self-report version of the HUI (Bichey & Miyamoto,

2008). One could argue that the present results demonstrate an association between

bilateral implantation and enhanced quality of life. However, the judgements were

retrospective (or, in the case of simultaneous bilateral implantation, hypothetical).

Retrospective judgements are confounded with maturation and are at risk of recall

bias (see section 7.1.4). Both retrospective and hypothetical judgements can be

biased by gratitude for healthcare and by expectations of that healthcare. These

sources of bias may explain two findings of the present study using VAS: 1) parents of

bilaterally-implanted children gave lower ratings for quality of life with one implant

than did parents of children who actually have one implant; 2) parents of bilaterally-

implanted children gave lower ratings for quality of life with no implant than did

parents of unilaterally-implanted children (see section 7.2.3.1).

The retrospective judgements do, however, show that this sample of parents of

bilaterally-implanted children perceived an association between bilateral implanta-

tion and improved general quality of life. Thus, the null results of the between-

subjects comparisons of general and health-related quality of life (see section 7.2.4.1)

cannot be attributed to parents’ insensitivity to the benefits of bilateral implantation.

Also, the null results cannot to be attributed to atypically poor outcomes for this

sample of bilaterally-implanted children, for two reasons. First, the bilaterally-

implanted children performed better on tests of spatial listening than the unilaterally-

implanted children. Second, the median HUI utility for the bilateral group in

the current study was 0.83, similar to the median of 0.85 reported by Bichey and

Miyamoto (2008).

7.2.4.3 The relationships between questionnaires

Parents’ ratings of listening skill were correlated with their estimates of utility using

the HUI. This relationship may have arisen because children’s listening skills

influenced their parents’ responses on both questionnaires. To investigate this

possibility, the scores on the hearing subscale of the HUI were examined. It was found

that 91% of the entire sample of children were at level three on the hearing subscale,

according to their parents (the scale is shown in Table 7.5). Thus, much of the

variation in HUI utilities resulted from the other subscales. Therefore, the correlation

between SSQ and HUI utility is not likely to be caused by the child’s listening skill,

but rather by another factor such as the number of additional disabilities. The lack

of variation in the hearing subscale occurred because only levels three and five are

applicable to implanted children: the other levels apply either to children who do

not use a cochlear implant or to children who cannot hear at all. Consequently,

although the HUI is sensitive to improvements in listening skill following unilateral

implantation, the HUI may not have the resolution to distinguish fine-grained

differences in listening skill between children who use cochlear implants.
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Table 7.5. The levels of the hearing subscale of the HUI. Adapted from Drummond et
al. (2005).

Level Description

1 Able to hear what is said in a group conversation with at least three
other people, without using a hearing aid or cochlear implant.

2 Able to hear what is said in a conversation with one other person in a
quiet room, without using a hearing aid or cochlear implant, but
requires a hearing aid or cochlear implant to hear what is said in a
group conversation with at least three other people.

3 Requires a hearing aid or cochlear implant to be able to hear what is
said in a group conversation with at least three other people or a
conversation with one other person in a quiet room.

4 Able to hear what is said in a conversation with one other person in a
quiet room without a hearing aid or cochlear implant, but unable to
hear what is said in a group conversation with at least three other
people when using a hearing aid or cochlear implant.

5 Able to hear what is said in a conversation with one other person in a
quiet room when using a hearing aid or cochlear implant, but
unable to hear what is said in a group conversation with at least
three other people when using a hearing aid or cochlear implant.

6 Unable to hear at all.

The two measures of quality of life (HUI and VAS) showed only a weak correlation

with each other (r = .31). The weak relationship probably arose because the end-

points of the VAS referred to quality of life, rather than health or health-related quality

of life. A stronger correlation between VAS and HUI (Pearsons’s r = 0.58) was reported

in a study that labelled the end-points of the VAS best and worst ‘health state’ (Rashidi,

Anis, & Marra, 2006).

7.2.4.4 The relationships between parental questionnaires and tests of spatial

listening

There was no significant correlation between HUI utilities and tests of spatial

listening, probably because much of the variation in HUI utilities was not caused by

variation in the hearing subscale. The absence of a correlation between VAS ratings

and tests of spatial listening perhaps indicates that, when asked to estimate their

child’s general quality of life, parents do not place much weight on spatial listening

skills. Children’s performance on a test of the ability to discriminate sound sources

on the left from those on the right correlated with their parent’s rating on the spatial

subscale of the SSQ. A similar correlation has been reported previously (Van Deun et

al., 2010), and is evidence for the validity of the parent-proxy version of the SSQ.
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7.2.4.5 Conclusion

In this sample of children, bilateral implantation was associated with a nonsignificant

average increment in health-related quality of life of −0.01 (as measured by HUI) and

a nonsignificant average increment in general quality of life of +0.02 (as measured

by VAS). The 95% confidence intervals for both estimates embraced +0.04, the

minimum increment required for paediatric bilateral implantation to be considered

cost-effective in the UK. Thus, considerable uncertainty surrounds the issue of

whether there is an increment in either health-related quality of life or general

quality of life associated with bilateral implantation. Accordingly, Experiment 2 was

conducted to gather additional data on the quality of life of children with unilateral

or bilateral implants.

7.3 Experiment 2: Informants’ estimates of the quality

of life of children with cochlear implants

7.3.1 Introduction, aims and hypotheses

The study of parents did not have sufficient statistical power to detect small

differences in quality of life between unilaterally- and bilaterally-implanted children.

If the standard deviation of the increment is 0.18 and the mean value is 0.04,

then two groups of 250 children would be required to detect the difference with

80% power at p < .05. There are two reasons why such a study could not be

conducted in the UK at the time of writing (February 2010). First, children in the

UK have routinely received bilateral implantation since January 2009 (NICE, 2009),

so a between-subjects comparison of contemporary groups of unilaterally- and

bilaterally-implanted children is not possible. Second, only 270 children receive

a cochlear implant every year in England and Wales (Bond et al., 2007). In

general, research studies successfully recruit only a small proportion of the potential

participants (Watson & Torgerson, 2006), so a study of 500 children would take a

substantial amount of time to complete.

Even if a larger study of parents could be conducted, it is possible that parents

are not the most objective judges: having done everything they can to maximise the

quality of life of their child, parents of implanted children might give uniformly high

estimates of quality of life, irrespective of the child’s listening skills. It is also possible

that some parents are not fully informed about the differences in listening skill

between unilaterally- and bilaterally-implanted children. The design of Experiment

2 took these issues into consideration. Adults, who were not the parents of hearing-

impaired children, acted as informants. The informants were asked to estimate the

quality of life of a hypothetical profoundly-deaf child who had either no implant, a
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unilateral implant, a unilateral implant and a contralateral acoustic hearing aid, or

bilateral implants. The experiment was designed to test whether estimates of quality

of life would be higher for the scenario with bilateral implants than for either of the

scenarios with a unilateral implant, and whether estimates would be higher for the

scenarios with a unilateral implant than for the scenario with no implant. The data

were gathered by Georgina Batten and Hannah Bellenger, as part of an undergraduate

project that was co-supervised by the author.

7.3.2 Method

The informants read a document that asked them to imagine they were 33 years old

and had a daughter who was born profoundly deaf and was now 6 years old (see

Appendix E). The age of 6 years was chosen because it was old enough to allow

for a tangible description of the child’s listening skills and their impact on everyday

life. In addition, Barton et al. (2006b) found that children’s health-related quality

of life improved over the first 4 years of implant use, so the age of 6 years allowed

time for the hypothetical child to show an increment in quality of life associated

with implantation. The age of 33 years was chosen to reflect the average age of

mothers of 6-year-old children in the UK (Office for National Statistics, 2003). The

child was described as being free from health problems other than impaired hearing.

The informants read descriptions of four scenarios in which their hypothetical

daughter: 1) had no implant (No-CI); 2) benefited from a unilateral implant (CI-

only); 3) benefited from a unilateral implant and an acoustic hearing aid (CI-HA);

and 4) benefited from bilateral implants (CI-CI). The descriptions encompassed the

child’s everyday functioning and future prospects, and were based on:

1. The results of studies that assessed the listening skills, educational achieve-

ments, and health-related quality of life of hearing-impaired children who used

either bilateral acoustic hearing aids or a unilateral implant (Barton et al.,

2006a; Stacey et al., 2006).

2. Preliminary results from the study of spatial listening skills reported in Chap-

ter 5.

3. A review of the literature regarding the spatial listening skills of children with

unilateral or bilateral cochlear implants (see Chapter 3).

4. A published report of interviews with the parents of unilaterally-implanted

children, in which the quality of life of the child was discussed (Sach & Barton,

2007).

5. Discussion boards on the websites of charities that support hearing-impaired

children and their families (Cochlear Implanted Children’s Support Group,
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2008; National Deaf Children’s Society, 2008; Royal National Institute for Deaf

People, 2008).

After they had read all four descriptions, the informants valued the general quality

of life of the child in each scenario using the VAS from Experiment 1 (see sec-

tion 7.2.2.2.3). The VAS ratings were compressed using the formula

1−(1−VAS/100)1.6. The informants also valued the health-related quality of life of the

child in each scenario using the TTO. The informants were told to imagine that they

had a further life expectancy of 50 years (this figure was based on population averages

for 33-year-olds in the UK; Office for National Statistics, 2009). The informants

estimated the number of years of life (y) that they would give up from the end of their

life in order for their hypothetical child to hear normally for the rest of her life. The

number of years given up (y) was converted to a value of preference using the formula

(50-y)/50.

7.3.2.1 Participants

The participants were a convenience sample of adults who were not the par-

ents of hearing-impaired children. The aim was to recruit adults who varied

widely in their age, experience of disability, and knowledge of the consequences

of impaired hearing. The sample could be divided into three subgroups: re-

searchers/clinicians, undergraduate students, and parents of normally-hearing chil-

dren. The researchers/clinicians worked in child health and/or with hearing-

impaired individuals. This subgroup attended lectures about cochlear implantation

at which questionnaires were distributed and, if the individual elected to participate,

returned by post. The students were contacted by email and attended an appoint-

ment to complete the questionnaire. The parents were recruited via a charity that

supports disabled children and their families; questionnaires were distributed and

returned by post. Participants were not offered any incentive to take part.

Of those invited to participate, the following proportions responded: 36/142 clini-

cians/researchers (25%), 83/108 students (77%), and 72/106 parents (68%). Data were

missing from the questionnaires returned by two clinicians/researchers, one student,

and six parents. These respondents were excluded. One clinician/researcher and

one parent were excluded because they had a hearing-impaired child.4 Biographical

data for the remaining 180 participants are shown in Table 7.6. Twenty-six of the 65

parents had a disabled child. The study was designed to detect a difference between

VAS ratings of 0.03 with 99% power at p < .05 (based on the variability observed in

Experiment 1). The study was approved by the Research Ethics Committee of the

Department of Psychology of the University of York.

4The exclusion of these two participants, and the inclusion of two replacement participants, means
that the participants in this study are not identical to those in the paper by Summerfield et al. (in press.).
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Table 7.6. Biographical data for the participants in Experiment 2. For each subgroup
and the entire group of participants, the number of participants (N), their mean age
in years (with the standard deviation, SD, in years in parentheses), and the number of
women (with the percentage of the group in parentheses) are listed.

N Mean age (SD) Number of women
(percentage of group)

Researcher/clinician 33 43.5 (8.7) 24 (73%)
Student 82 21.3 (0.7) 54 (66%)
Parent 65 46.0 (8.2) 49 (75%)
ALL 180 34.3 (13.4) 127 (71%)

7.3.2.2 Analyses

The outcome measures did not distribute normally, so medians were used to

summarise the results. Mean increments in quality of life (with 95% c.i.) are stated

in the text. The aim of the statistical analyses was to assess, for both VAS and TTO:

• For the group of participants as a whole and for each subgroup, whether the

values for No-CI differed from CI-only, whether the values for CI-only differed

from CI-HA, and whether the values for CI-HA differed from CI-CI.

• Whether the values for each scenario differed among the subgroups.

Wilcoxon tests with a Bonferroni correction were used to assess whether the values

differed according to the scenario. Kruskal-Wallis tests were used to assess whether

the values for each scenario differed among the subgroups. If a Kruskal-Wallis test was

statistically significant, post-hoc Mann-Whitney tests with a Bonferroni correction

were used to assess which subgroups differed.

7.3.3 Results

The informants’ estimates of quality of life using VAS and TTO are shown for each

scenario in Table 7.7. For the group as a whole, estimates using VAS were higher

for CI-only than for No-CI [z = −10.68, pb f < .001, r = .80], for CI-HA than for CI-

only [z = −10.79, pb f < .001, r = .80], and for CI-CI than for CI-HA [z = −11.15,

pb f < .001, r = .83]. These comparisons were also statistically significant for each of

the subgroups of participants [all pb f < .01].

Similarly, for the group as a whole, estimates using TTO were higher for CI-only

than for No-CI [z = −9.68, pb f < .001, r = .72], for CI-HA than for CI-only [z = −8.98,

pb f < .001, r = .67], and for CI-CI than for CI-HA [z = −9.08, pb f < .001, r = .68]. These

comparisons were also statistically significant for each of the subgroups [all pb f < .01].

There were no significant differences between the subgroups in their estimates

using VAS for No-CI, CI-HA, or CI-CI [all p > .05]. The subgroups differed significantly
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in their estimates using VAS for CI-only [H(2) = 6.76, p < .05]. Post-hoc tests revealed

that, for this scenario, the researchers/clinicians gave higher estimates than the

parents [z = −2.56, p < .01, r = .26]. The other post-hoc comparisons were not

statistically significant [p > .05]. There were no significant differences between the

subgroups in their estimates using TTO for any of the scenarios [all p > .05].

The results from the entire group of participants are summarised in Figure 7.2.

The mean increment in quality of life from CI-only to CI-CI was +0.13 (95% c.i. +0.12

to +0.15) when estimated using VAS and +0.11 (95% c.i. +0.09 to +0.12) when

estimated using TTO. The mean increment in quality of life from CI-HA to CI-CI was

+0.06 (95% c.i. +0.05 to +0.07) when estimated using VAS and +0.05 (95% c.i. +0.04

to +0.06) when estimated using TTO.
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Table 7.7. Informants’ estimates of the quality of life of deaf children. For each scenario, the results are listed as the 25th percentile (25), 50th percentile
(median, in emboldened text), and 75th percentile (75). The upper section of the table lists estimates using VAS, the lower section lists estimates using
TTO.

No-CI CI-only CI-HA CI-CI

25 Median 75 25 Median 75 25 Median 75 25 Median 75

VAS

Researcher/clinician 0.56 0.67 0.81 0.82 0.89 0.92 0.87 0.94 0.96 0.95 0.97 0.99

Student 0.50 0.72 0.83 0.74 0.85 0.93 0.85 0.92 0.97 0.94 0.97 0.99

Parent 0.43 0.62 0.77 0.68 0.80 0.90 0.82 0.89 0.95 0.92 0.97 0.99

ALL 0.49 0.67 0.81 0.74 0.85 0.92 0.85 0.92 0.96 0.93 0.97 0.99

TTO

Researcher/clinician 0.50 0.70 0.80 0.70 0.80 0.90 0.77 0.90 0.99 0.80 0.90 1.00

Student 0.60 0.70 0.80 0.70 0.84 0.90 0.80 0.90 0.94 0.90 0.94 0.96

Parent 0.50 0.74 0.80 0.62 0.80 0.84 0.70 0.80 0.91 0.80 0.90 0.96

ALL 0.60 0.70 0.80 0.70 0.80 0.90 0.80 0.88 0.94 0.80 0.90 0.98
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Figure 7.2. Summary of the results from the entire group of informants (N = 180). The
left part of the graph plots estimates using VAS, the right part plots estimates using TTO.
The yellow bars show the mean increment in quality of life from CI-only to CI-CI. The
orange bars show the mean increment in quality of life from CI-HA to CI-CI. Error bars
show 95% confidence intervals.

7.3.4 Discussion of Experiment 2

Participants who varied in their age, knowledge of hearing impairment, and expe-

rience of disability judged that bilateral implantation for children was associated

with higher general and health-related quality of life than unilateral implantation.

Although the subgroups of participants differed slightly in their estimates of the

quality of life for the child in each scenario, the increment in quality of life associated

with bilateral implantation was consistently positive and statistically significant.

Furthermore, the increment in quality of life from unilateral to bilateral implantation

was greater than +0.04 when measured using either VAS or TTO. An increment of

this magnitude would mean that bilateral implantation gained QALYs for less than

£30,000, and would therefore be viewed as a cost-effective intervention in England

and Wales (Bond et al., 2007; NICE, 2009).

A number of criticisms can be levelled at the methods used in this study. First, the

description of each scenario may not be representative of the functioning of hearing-

impaired children in real life. To assess whether the descriptions were accurate, the

increments in quality of life associated with unilateral implantation can be compared

with the increments reported by Barton et al. (2006b). In the present study, the

increment in VAS from No-CI to CI-only was +0.18 (95% c.i. +0.16 to +0.20) and from

No-CI to CI-HA was +0.25 (95% c.i. +0.23 to +0.28). The corresponding increments
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in TTO were +0.11 (95% c.i. +0.09 to +0.12) and +0.16 (95% c.i. +0.14 to +0.18),

respectively. The most comparable subgroup in the study of Barton et al. contained

children who had been implanted before the age of 5 years and who had used their

implant for at least 4 years. For this group of children, the mean increment in HUI

utility associated with unilateral implantation was +0.23 (95% c.i. +0.18 to +0.28).

It was not clear whether these children used a contralateral acoustic hearing aid.

Thus, when the informants used VAS, but not when the informants used TTO, the

descriptions in the present study yielded increments in quality of life associated with

unilateral implantation that were within the 95% confidence interval of the increment

reported by Barton et al.

A further criticism is that the description of the CI-HA scenario did not include

any potential advantages of using bimodal stimulation rather than bilateral implants.

Adult listeners show a better ability to understand speech and to recognise melody

when using bimodal stimulation than when using an implant alone (Kong et al., 2005).

It is possible that, for patients with residual hearing, bimodal stimulation could also

be superior to bilateral implantation for the perception of speech in noise and for

the enjoyment of music. Such potential benefits were not described because they

have not yet been demonstrated (Litovsky, Johnstone, & Godar, 2006; Mok et al., 2009;

Schafer & Thibodeau, 2006).

7.4 Summary of results

The two studies reported in this chapter generated estimates of the gain in quality of

life associated with paediatric bilateral implantation that ranged from −0.01 to +0.22,

on a scale from one (perfect quality of life) to zero (dead). Table 7.8 summarises the

results of both studies.

Table 7.8. Summary of estimates of the mean increment in quality of life associated
with bilateral implantation.

Increment (95% c.i.) Method Respondent

−0.01 (−0.11 to +0.09) HUI Parents of bilaterally- or unilaterally-implanted
children

+0.02 (−0.03 to +0.07) VAS Parents of bilaterally- or unilaterally-implanted
children

+0.22 (+0.16 to +0.29) VAS Parents of bilaterally-implanted children, retro-
spective/hypothetical estimates

+0.13 (+0.12 to +0.15) VAS Informant, CI-only to CI-CI
+0.11 (+0.09 to +0.12) TTO Informant, CI-only to CI-CI
+0.06 (+0.05 to +0.07) VAS Informant, CI-HA to CI-CI
+0.05 (+0.04 to +0.06) TTO Informant, CI-HA to CI-CI
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7.5 Discussion

The studies reported in this chapter obtained estimates of the incremental gain in

quality of life associated with bilateral implantation for children. The results from

the study of parents of implanted children were equivocal. Bilateral implantation

was associated with a nonsignificant decrement in health-related quality of life

when measured using the HUI, and a nonsignificant increment in general quality

of life when measured using the VAS. Both estimates had a confidence interval

that embraced +0.04, a value that is large enough to bring the average incremental

cost-effectiveness ratio below the criterion of £30,000/QALY. Thus, the study of

parents is compatible with the idea that bilateral implantation for children is cost-

effective, without providing unambiguous evidence that this is indeed the case. The

study of informants indicated that the gain in quality of life associated with bilateral

implantation was at least +0.04. Thus, individuals who were not the parents of

hearing-impaired children perceived sufficient benefit from bilateral implantation for

it to be considered cost-effective.

7.6 Conclusion

The studies reported in this chapter indicate that bilateral implantation may increase

the quality of life of deaf children: uncertainty remains regarding the extent of any

increase. To resolve the uncertainty, one would need to conduct a randomised

controlled trial with sufficient statistical power to detect a difference in health-related

quality of life of 0.04 between bilaterally- and unilaterally-implanted children. Given

that the policy in England and Wales is to provide children with bilateral implants,

such a trial would have to be conducted in another country.

7.7 Summary

• Parental estimates of health-related quality of life and general quality of life did

not differ significantly between bilaterally- and unilaterally-implanted children.

Both estimates had a confidence interval that embraced +0.04, a value that

is large enough for bilateral implantation for children to be considered cost-

effective.

• The same parents did report differences between the groups in spatial listening

skill, reflecting the association between bilateral implantation and improved

listening skill that was demonstrated in Chapter 5.

• Retrospective estimates by the parents of bilaterally-implanted children indi-

cated an improvement in general quality of life following bilateral implantation.
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However, such estimates may be biased.

• Simultaneous and sequential bilaterally-implanted children did not differ in

parental ratings of quality of life or listening skill.

• Informants, who were not the parents of hearing impaired children, reported

that bilateral implantation resulted in a gain in quality of life of at least +0.04.
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Chapter 8

Summary and General Discussion

This chapter summarises the findings of the studies reported in this thesis and

discusses the implications of those findings. Ideas for further research are suggested.

8.1 Recap of research aims

The overall aim of the studies described in this thesis was to assess whether bilateral

implantation for children is more effective than unilateral implantation in improving

spatial listening skills and quality of life. The first study measured the relationship

between spatial listening skills and age in normally-hearing children. The second

study compared the spatial listening skills of unilaterally- and bilaterally-implanted

children whilst attempting to minimise bias. The third study measured the spatial

listening skills of normally-hearing adults when listening to simulations of unilateral

or bilateral implants. The aim was to assess whether the differences in listening

skill that had been observed between unilaterally- and bilaterally-implanted children

would be replicated in a simulation study. The fourth and fifth studies obtained

estimates of the quality of life of unilaterally- and bilaterally-implanted children from

either parents or informants. The aim was to estimate the incremental gain in quality

of life associated with bilateral implantation.

8.2 Summary of findings

8.2.1 Main findings of the study reported in Chapter 4

1. Normally-hearing children aged between 18 months and 7 years showed high

levels of performance on tests of left-right discrimination, localisation, and

movement tracking. By the age of 3 or 4 years, children’s performance on these

tests was at ceiling and similar to that of adults.

2. The ability of normally-hearing children to perceive speech in quiet and in noise
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improved with age. On tests of speech perception in pink noise and in pulsatile

noise, normally-hearing 7-year-olds (the oldest children in the study) did not

perform as well as normally-hearing adults.

3. On average, normally-hearing children and adults showed SRM of 5 dB with

noise on either side of the head. The amount of SRM did not differ significantly

between the age groups.

8.2.2 Main findings of the study reported in Chapter 5

1. On average, bilaterally-implanted children performed better than unilaterally-

implanted children on tests of left-right discrimination, localisation, movement

tracking, and SRM with noise ipsilateral to the first implant. Significant

differences between the groups were sustained following imputation of missing

data and statistical control of confounds.

2. Bilaterally-implanted children showed significant SRM with noise on either side

of the head, whereas unilaterally-implanted children showed significant SRM

only when noise was contralateral to their implant.

3. Neither bilaterally- nor unilaterally-implanted children performed as well as

normally-hearing children on tests of spatial listening.

8.2.3 Main findings of the study reported in Chapter 6

1. Normally-hearing adults performed better with simulated bilateral implants

than with a simulated unilateral implant on tests of left-right discrimination,

localisation, and SRM with noise ipsilateral to the first device. These results

mirror the superior performance of bilaterally- compared to unilaterally-

implanted children on similar tests (see Chapter 5). The concordance of the two

studies provides further evidence that the differences in listening skill observed

between groups of children were primarily caused by a difference in the number

of implants the children used, rather than by confounds.

2. In simulation, bimodal devices resulted in better speech perception in steady-

state noise than bilateral implants, but only when the former condition

provided a greater degree of acoustic hearing than is likely to be observed in

most cochlear-implant users.

3. On several of the outcome measures, the performance of adults listening to

simulations of cochlear implants was similar to the performance of implanted

children. This pattern of results suggests that the signal processing carried out

by the implant system, or by the simulation of the implant system, limited the

performance of both adults and children.
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8.2.4 Main findings of the studies reported in Chapter 7

1. Parental estimates of health-related quality of life and general quality of life did

not differ significantly between bilaterally- and unilaterally-implanted children.

The mean increment in health-related quality of life associated with bilateral

implantation was −0.01 (95% c.i. −0.11 to +0.09). The mean increment in

general quality of life associated with bilateral implantation was +0.02 (95%

c.i.−0.03 to+0.07). An increment of+0.04 (on a scale where perfect health takes

the value one and dead takes the value zero) would be sufficient for bilateral

implantation for children to be considered cost-effective in England and Wales

(NICE, 2009).

2. Informants, who were not the parents of hearing impaired children, judged that

bilateral compared to unilateral implantation resulted in an incremental gain

of at least +0.05 (95% c.i. +0.04 to +0.06) in health-related quality of life and at

least +0.06 (95% c.i. +0.05 to +0.07) in general quality of life.

8.3 General discussion

8.3.1 The effectiveness of bilateral cochlear implantation for

children

The study reported in Chapter 5 demonstrated, more rigorously than previous

studies, that bilaterally-implanted children display better spatial listening skills than

unilaterally-implanted children. Similarly, normally-hearing adults showed better

spatial listening skills with a simulation of bilateral implants than with a simulation

of a unilateral implant (Chapter 6). Furthermore, the parents of bilaterally-implanted

children rated their child’s spatial listening skills more highly than did the parents

of unilaterally-implanted children (Chapter 7). Collectively, these studies provide

evidence that bilateral implantation is more effective than unilateral implantation

in enabling spatial listening skills. These skills may help children to avoid hazards

outdoors and to understand speech better in noisy environments at home and at

school.

It is not clear whether the improvement in listening skill associated with bilateral

implantation leads to an improvement in either health-related or general quality of

life. The study of parents (Experiment 1 in Chapter 7) was underpowered to detect a

small increment in quality of life associated with bilateral implantation. The study of

informants (Experiment 2 in Chapter 7) relied on descriptions of a deaf child that were

somewhat subjective. Consequently, although these studies indicate that bilateral

compared to unilateral implantation may be effective in increasing the quality of life

of deaf children, uncertainty remains regarding the exact extent of any increase.
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8.3.1.1 Translating research into recommendations for clinical practice

Any research study leads to results that are equivocal, to a greater or lesser degree.

The challenge facing researchers, and ultimately policy-makers, is to extrapolate from

imperfect data in order to generate evidence-based recommendations for clinical

practice. The main difficulty with the interpretation of the study of implanted

children reported in Chapter 5 (and the study of the children’s parents reported in

Chapter 7) was that children were not randomly allocated to receive unilateral or

bilateral implants. Consequently, the studies are at risk of selection bias. However,

significant differences in listening skill between the bilateral and unilateral groups

were sustained following statistical control over confounds.1 Furthermore, the

association between bilateral implantation and enhanced listening skill is supported

by the simulation study (Chapter 6). Overall, the available evidence supports a

policy of bilateral implantation for severely-profoundly deaf children, on the grounds

that bilateral implantation is more effective than unilateral implantation in enabling

spatial listening skills.

It is nonetheless possible that, for a subset of cochlear-implant candidates

who have residual hearing, bimodal stimulation will result in better listening skills

than bilateral implantation. A search of the literature did not reveal studies

which tested that hypothesis (Chapter 3), nor was the study of implanted children

(Chapter 5) designed to compare outcomes between bimodally-aided children with

residual hearing and bilaterally-implanted children who had residual hearing prior to

implantation. The study reported in Chapter 6 showed that a simulation of bilateral

implants resulted in better spatial listening skills than a simulation of bimodal

devices, when the latter condition provided a degree of acoustic hearing that is

likely to be observed in most cochlear-implant users. However, different results

may be obtained by a simulation study that employs different outcome measures

(such as a test of speech perception with a competing talker). Further research is

required to determine the best intervention for cochlear-implant candidates who

have substantial residual hearing (see section 8.4.2).

Regarding quality of life, the studies reported in Chapter 7 indicate that bilateral

implantation may be effective in improving the quality of life of deaf children.

Previous studies of bilaterally-implanted children used either retrospective estimates

of quality of life (Bichey & Miyamoto, 2008) or a questionnaire that does not yield a

formal measure of health-related quality of life (Beijen et al., 2007). Thus, the available

data do not exclude the possibility that bilateral implantation meets the criteria for

cost-effectiveness in England and Wales, but nor do the data provide robust evidence

1The analysis of parents’ questionnaire responses (Experiment 1 in Chapter 7) did not exercise
statistical control over confounds, for two reasons. First, the main outcome measures of quality of life
yielded null results. Second, none of the outcome measures were distributed normally, so they would
have to be transformed into categorical data and analysed using ordinal regression. Transformations
of this type entail a loss of statistical power.
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that bilateral implantation does meet those criteria.

8.3.2 The limitations of bilateral cochlear implantation for children

On average, bilaterally-implanted children showed poorer spatial listening skills than

normally-hearing children with a similar average hearing age (Chapter 5). Thus,

bilateral implantation had not restored normal listening skills in this sample of

children. The performance of bilaterally-implanted children was similar to that of

normally-hearing adults listening to a simulation of bilateral implants (Chapter 6),

which suggests that the signal processing carried out by the implant system (or

a simulation thereof) limited the performance of both children and adults. It is

possible that future innovations in signal processing will lead to improvements in

the listening skills of implanted patients. Considerable effort is being expended,

by both manufacturers and academics, to improve the temporal and spectral

resolution of cochlear implants (Rubinstein, 2004). Another line of enquiry concerns

the development of a binaural cochlear-implant processor (Chambers, US Patent

Application 20090030484, submitted January 29, 2009; Hartley and Faltys, US Patent

7292891, issued November 6, 2007). Such a processor could be a single unit that

controls the electrode array in both ears, or two units that deliver coordinated

signals. A binaural processor may deliver a more accurate representation of interaural

differences in timing and level than the current processors which are independent

at the two ears (see section 3.1.2.1 for a discussion of the limitations of current

processors).

If improvements in cochlear-implant technology do lead to improvements in

listening skill, then the incremental gain in quality of life associated with bilateral

implantation may in time be greater than the gains measured with current implant

systems (e.g. Experiment 1 in Chapter 7; Summerfield et al., 2006). As a result, bilateral

implantation for both children and adults may be more likely to be viewed as cost-

effective, but only if the increase in the cost of the implant system is proportionally

smaller than the increase in the gain in quality-adjusted life years.

8.3.3 Why has the campaign for bilateral implantation for children

gathered such momentum?

The review of the evidence presented in Chapter 3 revealed considerable uncertainty

about the effectiveness of bilateral compared to unilateral implantation for children.

The evidence mostly consisted of demonstrations of efficacy (meaning an interven-

tion can provide benefit under optimal conditions) rather than demonstrations of

effectiveness (meaning an intervention provides benefit in routine care). Demonstra-

tions of efficacy are a crucial stage in the assessment of a healthcare intervention, but

in isolation they do not typically warrant widespread adoption of that intervention
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(Gartlehner et al., 2006). Against this background, and prior to the publication of

the studies reported in this thesis, bilateral implantation for children has nonetheless

become increasingly common in the UK and elsewhere (Kühn-Inacker et al., 2004;

Papsin & Gordon, 2008; Peters et al., 2007; Van Deun et al., 2010).

The benefits of unilateral implantation are both proven and substantial, meaning

that cochlear implants are a popular technology with clinicians, researchers, parents,

and children. As a result, in several countries these groups campaigned for

bilateral implantation for children, based on the available evidence and the intuitive

assumption that stimulating both ears must be beneficial (Balkany et al., 2008; British

Cochlear Implant Group, 2007; Broekhuizen & Byrne, 2009). Advocates also argued

that society has a responsibility to do all it can to help deaf children, given the

disadvantages that this group has faced both historically and in contemporary life

(Broekhuizen & Byrne, 2009; Cochlear Implanted Children’s Support Group, 2008).

It is difficult to know why the Appraisal Committee at NICE recommended

bilateral implantation for severely-profoundly deaf children in England and Wales,

given the uncertainty surrounding the cost-effectiveness of this intervention (Bond et

al., 2007; NICE, 2009). Indeed, two commissioning groups in the National Health

Service lodged an unsuccessful appeal against the final guidance, on the grounds

that the available evidence did not show that bilateral implantation for children

met the criteria for cost-effectiveness (Reference Note 1). Some light is cast on the

decision-making process by the guidance document, which states that the decision

to recommend bilateral implantation was influenced by the clinical experts who gave

evidence to the committee (pp. 28–9, NICE, 2009). For the reasons outlined in the

previous paragraph, these clinicians are likely to have been supportive of bilateral

implantation. One can speculate that two additional factors played a role. First,

severe to profound permanent childhood deafness has a low stable prevalence (see

section 2.2.2). Therefore, the committee could be confident that the incremental cost

of providing bilateral implantation for children would not rise substantially over time,

provided that criteria of candidacy could be specified precisely and tightly controlled.

Second, one would need a study of 500 children to detect the minimum gain in

quality of life required for bilateral implantation to be considered cost-effective (see

Chapter 7). Although such a study may be an efficient use of resources (and there

are techniques to assess whether this is the case, Claxton & Sculpher, 2006), it would

take several years and the committee may have decided it was preferable to make an

immediate decision.
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8.4 Future research

8.4.1 The criteria of candidacy for cochlear implantation

The studies reported in this thesis indicate that bilateral implantation for severely-

profoundly deaf children is effective in enabling spatial listening skills. However, there

is uncertainty about which groups of children should receive bilateral implants. As

an extreme example, bilateral implantation would not be beneficial for normally-

hearing children because the surgery damages the cochlea. There is a need for

further research to define the point at which the advantages of bilateral implantation

outweigh the disadvantages: in other words, to specify criteria of candidacy for

bilateral implantation.

In adults, criteria of candidacy can be evaluated by measuring the listening

skills of patients before and after implantation (Dowell, Hollow, & Winton, 2004).

This approach cannot be used with congenitally-deaf children, who are assessed for

implantation between the ages of 1 and 2 years. Furthermore, outcomes following

implantation are variable, and outcomes for individual children cannot be predicted

accurately prior to implantation (Geers et al., 2003). To address the twin challenges

of the young age of implant candidates and variable outcomes, Boothroyd (1993)

developed an actuarial approach to defining candidacy for unilateral implantation.

The relationship between speech-perception performance and unaided HL was

measured for a group of children with acoustic hearing aids, and summarised by

a regression function. The speech-perception performance of a separate group of

children with cochlear implants was measured. The distribution of both sets of scores

allows one to calculate, for a young child with a known HL, the odds that the child

would perform better with an implant than with acoustic hearing aids, on tests of

speech perception administered later in life. Boothroyd proposed that an acceptable

criterion would be the HL associated with odds of 4:1, meaning an implant would

provide greater benefit than acoustic hearing aids for four out of five children with

that HL. The UK Cochlear Implant Study Group (2004b) demonstrated that, when

patients with odds of 4:1 or better were implanted, unilateral implantation in adults

was cost-effective.

It has been difficult for policy-makers to determine criteria of candidacy for

paediatric bilateral cochlear implantation based on the published literature (Bond et

al., 2007). There are three main reasons for this difficulty. First, the available evidence

pertains to unilateral, rather than bilateral, implantation. Second, the majority of

recent studies identified the HL at which children were equally likely to succeed with

hearing aids or with an implant (Eisenberg, Kirk, Martinez, Ying, & Miyamoto, 2004;

Nakisa et al., 2001; Rotteveel, Snik, Vermeulen, Cremers, & Mylanus, 2008). Arguably,

to justify implant surgery, the criterion should be set at a point where the odds of

success are higher with implants than with hearing aids. Third, the published studies
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generally measured outcomes using a test of speech perception in quiet (Boothroyd,

1993; Eisenberg et al.; Nakisa et al.; Rotteveel et al.). Additional measures, such as

tests of speech perception in noise and tests of sound-source localisation, would

provide important information about the functioning of hearing-impaired children in

everyday life. Measures of health-related quality of life would also allow the criterion

to be defined as the HL above which it is acceptably cost-effective to provide cochlear

implants rather than hearing aids.

To define criteria of candidacy, one would ideally conduct a study that compared

outcomes between three groups: 1) children with bilateral acoustic hearing aids;

2) children with bimodal devices; 3) children with bilateral implants. The technique

described by Boothroyd (1993) could be used to define two criteria: (i) the lowest HL at

which children are likely to achieve better outcomes with bimodal devices than with

acoustic hearing aids; and (ii) the lowest HL at which children are likely to achieve

better outcomes with bilateral implants than with bimodal devices. Children with

HLs greater than the first criterion would be eligible for unilateral implantation and

the provision of a contralateral acoustic hearing aid, whilst children with HLs greater

than the second criterion would be eligible for bilateral implantation. Unfortunately,

it would be difficult to conduct such a study in England and Wales, because the

current guidance only recommends bilateral implantation in a single surgical session

(NICE, 2009). The guidance does not permit a newly-diagnosed child to be provided

with a first implant and then, if the child gains insufficient benefit from a contralateral

acoustic hearing aid, to be provided with a second implant at a later date. As a result,

it seems likely that many parents will opt for immediate bilateral implantation, so it

would be difficult to conduct a comparison of the three groups defined at the start

of the paragraph. Instead, a study could compare outcomes between children with

bilateral acoustic hearing aids and children with bilateral implants, in order to define

criteria of candidacy for bilateral implantation.

8.4.2 Bimodal stimulation compared to bilateral implantation

Additional research is required to explore the potential advantages of bimodal

stimulation over bilateral implantation, and vice-versa, for patients who have residual

hearing. It would be interesting to replicate the simulation study reported in

Chapter 6 using additional outcome measures, such as tests of speech perception in

the presence of a competing talker and tests of music perception. These outcome

measures may reveal advantages in pitch perception associated with simulated

bimodal devices compared to simulated bilateral implants. The simulations of

bimodal devices that were used in Chapter 6 simulated low-frequency residual

hearing by low-pass filtering the signal to one ear. This type of simulation may

not reflect the limited abilities of severely-profoundly deaf individuals in frequency
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selectivity and pitch perception. Future simulations of bimodal devices could

incorporate a more sophisticated simulation of cochlear hearing loss. Andrew

Faulkner proposed a method whereby signals are vocoded using a noise vocoder

with two broadband channels centred on 250 and 500 Hz (personal communication,

March 8, 2010). The vocoded signal is then modulated at the period of the voice

F0. A simulation of bimodal devices could be created by presenting this low-

frequency signal to one ear, and a six- or eight-channel vocoded signal to the other

ear. Such processing would simulate the limited frequency resolution and pitch-

perception abilities of severely-profoundly deaf individuals more accurately than low-

pass filtering alone.

8.4.3 Short-electrode arrays

One advance in technology that has reached the stage of clinical trials is the

cochlear implant with a short electrode array (Dorman et al., 2009; Turner, Reiss, &

Gantz, 2008). Short electrode arrays are about half the length of standard electrode

arrays. The short arrays were developed for patients who have good residual

hearing at low frequencies (below about 500 Hz) and very little residual hearing

at higher frequencies. The aim of the device is to use electrodes in the basal

end of the cochlea to deliver a representation of mid- to high-frequency sounds,

whilst preserving low-frequency acoustic hearing towards the apex of the cochlea.

Potentially, the preserved low-frequency acoustic hearing could provide listeners with

better frequency resolution than traditional cochlear implants, which may enhance

the perception of speech in noise and the enjoyment of music (Turner et al., 2008).

Moreover, preserving low-frequency acoustic hearing in both ears could enhance the

ability to perceive ITDs, relative to standard bilateral cochlear implants, which may

lead to an improved ability to localise sources of sound (Dunn, Perreau, Gantz, &

Tyler, 2010). Children with short-electrode arrays were not included in the studies

reported in this thesis, because this intervention has been provided to only a handful

of children (Skarzynski & Lorens, 2010) and is not currently approved for use in

England and Wales (NICE, 2009). If the clinical trials with adults prove successful,

future work could assess whether there are groups of children who are likely to show

better outcomes with either unilateral or bilateral short electrode arrays, rather than

unilateral or bilateral standard electrode arrays.

8.4.4 The limitations of bilateral cochlear implants in everyday life

The study reported in Chapter 5 demonstrated that children with bilateral implants

display better spatial listening skills than children with unilateral implants. How-

ever, bilaterally-implanted children did not localise sources of sound as accurately

as normally-hearing children. This difference between bilaterally-implanted and
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normally-hearing children was observed in a sound-attenuated booth, which is

quieter and less reverberant than a classroom or most homes. Future research

could compare the localisation skills of normally-hearing and bilaterally-implanted

children in noisy and/or reverberant environments that more closely represent the

listening situations faced by children in everyday life.

When normally-hearing individuals attempt sound-source localisation tasks in

a reverberant environment, their responses tend to be strongly influenced by the

location of the source of the first sound that reaches the ears, rather than the source

of later sounds (which are often reflections of the first sound). The dominance

of the leading sound is known as the precedence effect (Litovsky, Colburn, Yost, &

Guzman, 1999). When normally-hearing adults listen to a simulation of bilateral

implants, their responses often indicate a single source of sound located inbetween

the sources of the leading sound and the lagging sound (Seeber & Hafter, 2007). In

other words, the precedence effect is reduced or absent. Two bilaterally-implanted

adults did not show the precedence effect, despite showing good performance on

tests of sound-source localisation in a sound-attenuating booth (Q. Summerfield &

P. Kitterick, personal communication, March 8, 2010). The lack of a precedence effect

with bilateral implants (or simulated bilateral implants) may occur because implants

do not convey temporal fine structure: the coherent temporal fine structure of the

leading sound and echoes of that sound may be one of the cues that enables normally-

hearing listeners to identify a single source and show the precedence effect, rather

than identifying two different sources.

Based on the data from adults, one would expect bilaterally-implanted children

to perform proportionally more poorly than normally-hearing children on tests of

sound-source localisation in reverberant environments compared to less reverberant

environments. It is possible that parental ratings of children’s listening skills would

correlate more strongly with performance tests of the child’s listening skills if the

tests were conducted in a reverberant environment. The correlation between

parental ratings of spatial listening skill and children’s performance on the Left-Right

Discrimination test was significant but weak (Kendall’s τ = .32) in the study reported

in Chapter 7.

8.5 Conclusion

Compared to unilateral implantation, bilateral implantation in severely-profoundly

deaf children is associated with an enhanced ability to localise sources of sound and

to perceive speech in noise. Bilateral implantation may also increase children’s quality

of life, but the extent of any increase remains uncertain.
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Reducing the utility of monaural cues

to source location

Sensitivity to interaural differences in timing and level (binaural cues) allows normally-

hearing listeners to localise sources of sound on the horizontal plane (see sec-

tion 2.4.1, Middlebrooks & Green, 1991). Monaural listeners are not able to use

binaural cues, but they can potentially move their head and use the resulting changes

in level and spectrum to localise sources of sound (Perrott et al., 1987). In a laboratory

test, monaural listeners can also learn the level and spectral cues associated with a

certain source location, if the same stimulus is presented repeatedly. This type of

learning has been demonstrated both in unilaterally-implanted adults and in adults

who are monaurally deaf but do not use an implant (Luntz et al., 2002; Van Wanrooij

& Van Opstal, 2004). Learning the monaural cues generated by a particular stimulus

will not help listeners to localise the unfamiliar or changeable sounds that occur in

everyday life.

This appendix describes the development of the Toy Localisation test. The aim

was to create a test of the ability to localise sounds on the basis of cues that are valid

in everyday life, with minimal influence from cues that are valid only in laboratory

tests. To reduce the repetition of the same stimulus, the test used speech stimuli that

were recorded from five different talkers. These stimuli were processed in order to

reduce the utility of monaural cues to localisation, whilst preserving binaural cues

and monaural cues resulting from head turns.1 Two sets of stimuli were created: one

set resulted in a similar level and spectrum on arrival at the left ear, regardless of

source location; the other set resulted in a similar level and spectrum at the right ear,

regardless of source location. Each set contained one stimulus for each loudspeaker

location. The subsequent sections describe the processing used to create the stimuli

and present the results of two experiments that assessed the effect of the processing

on the sound-source localisation skills of normally-hearing adults.

1In this appendix, ‘utility’ is used in its everyday meaning of usefulness, whereas in Chapter 7 ‘utility’
is used as a technical term to denote preference.
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A.1 Processing to reduce the utility of monaural cues

There were four principal stages of processing, as illustrated in Figure A.1.

Figure A.1. The four stages of processing that were applied to the stimuli. Further
details of each stage are given in the text. HATS refers to a head and torso simulator.

A.1.1 Stage 1: First set of recordings using HATS

The aim of the first set of recordings was to measure the effect of source location

on the spectrum of a sound on arrival at each ear. Recordings were made using

a head and torso simulator (HATS) with integral microphones at the entry to each

ear canal. The HATS (Brüel & Kjaer Type 4128C) was positioned in the centre of

a ring of loudspeakers (see section 4.2.2), facing the same direction as participants

during testing. The three conditions of the Toy Localisation test used loudspeakers

situated at −60◦, −30◦, −15◦, 0◦, +15◦, +30◦, and +60◦ (see Figure 4.2). Each one of

these loudspeakers in turn presented a 12-s sample of white noise at 60 dB(A) SPL.

The signal from the microphones was digitised at 44.1 kHz with 16-bit amplitude

quantization. A segment with a duration of 9 s was extracted from the middle of each

recording using CoolEdit 2000 (Syntrillium Software Corporation, Phoenix, USA).

For each loudspeaker and microphone, this segment will be referred to as the first-

recorded file. There were 14 first-recorded files (7 loudspeakers x 2 microphones).

Subsequent stages of processing were performed in MATLAB (The MathWorks

Inc., Natick, USA). Each first-recorded file was analysed using the fast fourier

transform (FFT), a technique that calculates the amplitude and phase of N sine waves

which, when summed together, best model the waveform. The results of the FFT

were used to calculate the average power of the first-recorded file in 50 Hz-wide non-

overlapping frequency bands up to 10 kHz. For each frequency band, the attenuation

level (in decibels) was calculated as the average power in that frequency band minus

the average power of the most intense frequency band for that first-recorded file. The

absolute values of these attenuation levels defined the frequency weights for each

first-recorded file.
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A.1.2 Stage 2: Spectral modification

The aim of the spectral modification was to reduce monaural spectral cues to source

location. The unprocessed stimulus was analysed using the FFT, and the results were

used to calculate the average power of the unprocessed stimulus in 50 Hz-wide non-

overlapping bands up to 10 kHz. The average power in each frequency band was

then boosted by the amount specified in the frequency weights for the first-recorded

file. This process was repeated for each first-recorded file, to yield 14 stimuli, each

of which was specific for a loudspeaker-microphone combination. These stimuli will

be referred to as stimuli with ‘weighted spectra’. The total RMS power of each of the

stimuli with weighted spectra was adjusted to match the total RMS power of the most

intense stimulus with a weighted spectrum.

A.1.3 Stage 3: Second set of recordings

The aim of the second set of recordings was to measure the effect of source location on

the level of a stimulus on arrival at each ear. The stimuli with weighted spectra were

presented from the array of loudspeakers and the signals from the microphones in the

HATS were digitised at 44.1 kHz with 16-bit amplitude quantization. These are known

as the second-recorded files. The total RMS power of each second-recorded file was

calculated. A boost factor for a loudspeaker-microphone combination was calculated

as the maximum RMS power across all second-recorded files divided by the RMS

power for the second-recorded file corresponding to that loudspeaker-microphone

combination.

A.1.4 Stage 4: Level modification

The aim of the level modification was to reduce monaural level cues to source

location. Each stimulus with a weighted spectrum was scaled by the boost factor for

its loudspeaker-microphone combination. The stimuli were low-pass filtered using

a finite impulse response filter with a cut-off at 10 kHz and 60 dB of attenuation

in the stopband. Linear onset and offset ramps of 50-ms duration were applied.

The resulting stimuli will be referred to as the processed stimuli. Each unprocessed

stimulus generated 14 processed stimuli (7 loudspeakers x 2 microphones).

A.1.5 Processing of noise stimuli

A sample of white noise with a duration of 10 s was processed in order to illustrate the

effect of the processing. The resulting ‘processed noise stimuli’ were presented via

the ring of loudspeakers and recorded using the microphones in the HATS. Figure A.2

shows the spectra of some of the recordings, alongside recordings of the unprocessed

noise stimulus. The processed noise stimuli shown in Figure A.2 had been processed
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to give a similar level and spectrum at the left ear. The left panel of Figure A.2

indicates that, for the unprocessed noise stimuli, the level and spectrum at the left

microphone varied with source location. The centre panel of Figure A.2 indicates

that, for the processed noise stimuli, the level and spectrum at the left microphone

were similar regardless of source location. In other words, the processing reduced

the monaural cues to source location conveyed by the stimuli on arrival at the left

ear. The right panel of Figure A.2 indicates that, for the processed noise stimuli, the

level and spectrum at the right microphone varied with source location, to a greater

degree than for the unprocessed stimuli. In other words, the processing enhanced the

monaural cues to source location conveyed by the stimuli on arrival at the right ear.
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Figure A.2. The spectra of the unprocessed and processed noise stimuli, measured using the HATS. The processed stimuli shown in this figure are those
that had been processed to give a similar level and spectrum at the left ear. Left panel: unprocessed noise stimuli measured using the left microphone.
Centre panel: processed noise stimuli measured using the left microphone. Right panel: processed noise stimuli measured using the right microphone.
The solid red line shows stimuli presented from a loudspeaker at −60◦ azimuth. The dashed green line shows stimuli presented from a loudspeaker at 0◦

azimuth. The dotted black line shows stimuli presented from a loudspeaker at +60◦ azimuth.
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A.1.6 Processing of speech stimuli

The unprocessed stimuli for the Toy Localisation test consisted of recordings of

five female talkers saying, “Hello, what’s this?”. Each recording was processed

using the four stages described in Figure A.1.2 The processed speech stimuli

were highly intelligible to normally-hearing adults. The following sections describe

two experiments that investigated the sound-source localisation skills of normally-

hearing adults, using either unprocessed or processed speech stimuli.

A.2 Experiment A1: The effect of processing on the

localisation skills of binaural or monaural listeners

A.2.1 Introduction

The first aim of this study was to assess whether participants could localise the source

of the processed speech stimuli when binaural cues were available. The second aim

was to compare monaural localisation performance using processed speech stimuli

with monaural performance using unprocessed speech stimuli, in order to assess

whether the processing had reduced the utility of monaural cues to source location.

Stimuli were presented by a ring of loudspeakers or by headphones. For the

headphone conditions, the HATS was placed in the centre of the ring of loudspeakers

and the participant listened to the output from the microphones in the ears of the

HATS. This arrangement created an illusion of sound sources at different locations

outside the head, whilst allowing for monaural presentation of the stimuli. The

study used a repeated-measures design. Three conditions used the processed stimuli,

which were presented: 1) by the ring of loudspeakers; 2) binaurally over headphones;

or 3) monaurally over headphones. An additional condition used the unprocessed

stimuli, which were presented monaurally over headphones.

A.2.2 Method

A.2.2.1 Participants

Eight adults aged between 19 and 37 years (mean age 22.8 years, standard deviation

6.0 years) were recruited via the University of York participant pool. Three of the

participants were male. The participants had pure-tone thresholds equal to or better

than 25 dB HL at octave frequencies between 0.25 and 8 kHz, inclusive, measured

using the British Society of Audiology guidelines (1981). Approval was obtained from

2The boost factors (see section A.1.3) for the speech stimuli with weighted spectra were the same
as the boost factors for the noise stimuli with weighted spectra. In other words, measurements of the
level of the noise stimuli were used to modify the level of the speech stimuli.
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the Research Ethics Committee of the Department of Psychology of the University of

York. Participants gave written informed consent and were paid for their time.

A.2.2.2 Outcome measure

Participants completed the 15◦ separation condition of the Toy Localisation test (see

section 4.2.2.2). Briefly, a stimulus was presented from one of five possible source

locations (between −30◦ and +30◦ in 15◦ intervals). The participant was asked to

indicate the source location using a response screen that showed five boxes, arranged

from left to right to reflect the arrangement of the loudspeakers. There were 120 trials

in each condition. The root mean square (RMS) error was measured. No feedback

was provided.

A.2.2.3 Procedure

For the condition which presented stimuli via loudspeakers, participants sat in the

centre of the ring of loudspeakers and responded using a touchscreen monitor. For

the conditions which presented stimuli via headphones (HP), participants sat in

a quiet room and responded using a mouse and computer monitor. For the HP

conditions, the HATS was placed in the centre of the ring of loudspeakers. The signals

from the microphones in the ear canals were processed by a pre-amplifier (Brüel &

Kjaer Type 2672) and then input to a Marantz solid-state recorder (Type PMD670).

During testing, stimuli were presented by the loudspeakers and participants listened

to the output from the solid-state recorder using Sennheiser HD580 headphones

(Figure A.3).

The stimuli were presented either at a fixed level or a roved level. Four conditions

were presented in an order counterbalanced across participants:

1. Processed stimuli with a roved level were presented by the ring of loudspeakers

(‘Ring’).

2. Processed stimuli with a roved level were presented binaurally by headphones

(‘HP binaural’).

3. Processed stimuli with a roved level were presented monaurally by headphones

(‘HP monaural’).

4. Unprocessed stimuli with a fixed level were presented monaurally by head-

phones (‘HP monaural unprocessed’).

For the conditions with monaural presentation, half of the participants listened using

the left ear and half used the right ear. Participants who listened monaurally with their

left ear were presented with stimuli that had been processed to reduce monaural cues

at the left ear, in all of the conditions with processed stimuli. Similarly, participants
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Figure A.3. The presentation of stimuli via loudspeakers (left panel) or headphones
(right panel). Both panels show an array of loudspeakers within a sound-attenuating
booth (indicated by the dashed line). Only the front 13 loudspeakers are shown. For
the condition with loudspeaker presentation, the participant (shown in yellow) sat
in the centre of the array of loudspeakers. For the conditions with presentation via
headphones, a head and torso simulator (HATS, shown in orange) was placed in the
centre of the array of loudspeakers. The participant sat outside the booth and listened
to the signal from the microphones in the ears of the HATS.

who listened monaurally with their right ear were presented with stimuli that had

been processed to reduce monaural cues at the right ear.

The loudspeakers presented the stimuli at an average level of 58 dB(A) SPL

(measured using a free-field microphone in the centre of the ring—see section 4.2.2

for further details of how the levels were measured). For the conditions with a level

rove, the level was randomly roved by ±5 dB in 1 dB steps. For the HP conditions, the

gain on the solid-state recorder was set so that stimuli were delivered at a comfortable

level.

A.2.2.4 Analyses

The data did not distribute normally, so the results are displayed using box plots

overlaid with the scores of individual participants. To assess whether condition had

an effect on performance, a Friedmans ANOVA was carried out followed by Wilcoxon

signed-rank tests with a Bonferroni correction. Bonferroni-adjusted p values (pb f )

are reported (see section 4.2.5). Wilcoxon tests were used to make the following

key comparisons: Ring compared to HP binaural, HP binaural compared to HP

monaural, HP monaural compared to HP monaural unprocessed. Effect sizes for

Wilcoxon comparisons were calculated using the formula r = z/
p

N where z is the

standardised test statistic and N is the number of observations in the analysis (see

section 4.2.5.2 for a discussion of how to interpret effect sizes).
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A.2.3 Results

The results are shown in Figure A.4. There was a significant effect of condition on

performance [χ2(3) = 20.7, p < .001]. Error scores were lower in the Ring condition

than the HP binaural condition [z = −2.38, pb f < .05, r = .60 ]. Error scores were lower

in the HP binaural condition than in the HP monaural condition [z = −2.52, pb f < .05,

r = .63 ]. Error scores in the HP monaural condition did not differ significantly from

those in the HP monaural unprocessed condition [z = −1.40, pb f > .05, r = .35 ].

Figure A.4. Results of Experiment A1. The yellow boxes show the area between the
25th and 75th percentile scores. The solid black horizontal lines within the boxes show
median scores; the dotted orange horizontal lines within the boxes show mean scores.
Circles show individual scores. The dashed line indicates the level of performance one
would expect by chance.

A.2.4 Discussion

Seven of the eight participants made no errors in sound-source localisation when

processed stimuli were presented via the ring of loudspeakers. Thus, normally-

hearing adults were able to localise the source of the processed stimuli when binaural

cues and/or level and spectral cues resulting from head turns were available. It is not

clear why one participant showed poorer performance than the other participants in

the Ring condition; the same participant performed similarly to the other participants

in the HP conditions.

Normally-hearing adults showed an impaired ability to localise sources of sound

when stimuli were presented binaurally via headphones rather than via a ring of

loudspeakers. This deficit may have arisen because the percept of spatial location
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was generated by the HATS rather than the listener’s own pinna, head, and torso.

Furthermore, with headphone presentation, listeners could not turn their head and

use the resulting changes in level and spectrum to localise sources of sound.

Normally-hearing adults showed an impaired ability to localise sources of sound

when stimuli were presented monaurally via headphones rather than binaurally

via headphones. Under monaural conditions, there was no significant difference

in performance between the processed and unprocessed stimuli, although some

individuals did appear to make smaller errors in the latter condition. On the basis of

these results, the processing to reduce the utility of monaural cues to source location

appears to be unnecessary—monaural performance was equally poor with both

processed and unprocessed stimuli. However, the adults in the present study did not

have an opportunity to practise the localisation task using the unfamiliar monaural

stimuli, whereas unilaterally-implanted children are experienced monaural listeners.

Moreover, future studies were planned in which listeners would receive training on

localisation tasks with monaural stimuli (see Chapter 6). Accordingly, Experiment

A2 measured the ability of experienced monaural listeners to localise the source of

processed and unprocessed stimuli.

A.3 Experiment A2: The effect of processing on the

localisation skills of practised monaural listeners

The aim of this study was to assess the localisation skills of practised monaural

listeners, using either processed or unprocessed speech stimuli. Throughout the

study, stimuli were presented monaurally via headphones, using the arrangement

described for Experiment A1 (see section A.2.2.3). The study used a within-subjects

design. During practice trials, stimuli were unprocessed. During test trials, stimuli

were either unprocessed or processed.

A.3.1 Method

A.3.1.1 Participants

Eight adults aged between aged 19 and 26 years (mean age mean 21.1 years,

standard deviation 6.0 years) were recruited via the University of York Department of

Psychology participant pool. Two of the participants were male. The participants had

pure-tone thresholds equal to or better than 25 dB HL at octave frequencies between

0.25 and 8 kHz, inclusive, in the ear that they used for the experiment. That ear was

chosen in a counterbalanced order. One participant took part in both experiments.

Approval was obtained from the Research Ethics Committee of the Department of

Psychology of the University of York. Participants gave written informed consent and
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were paid for their time.

A.3.1.2 Listening tasks

The training task was the same as the outcome measure for Experiment A1 (see

section A.2.2.2), except that feedback was given after each trial by illuminating the

correct response. Each participant completed 240 training trials at the beginning of

the experiment. Following training, the test trials used the same task but no feedback

was provided.

A.3.1.3 Procedure

The stimuli were delivered monaurally via headphones. Each participant used the

same ear throughout the experiment: the left ear for half of the participants, the right

ear for the other half. As for Experiment A1, in the conditions with processed stimuli,

participants who listened with their left ear were presented with stimuli that had

been processed to reduce monaural cues at the left ear. Similarly, in the conditions

with processed stimuli, participants who listened with their right ear were presented

with stimuli that had been processed to reduce monaural cues at the right ear. For

the training task, the stimuli were unprocessed and were presented at a constant

level. Following training, each participant completed 120 trials in each of three test

conditions:

1. Unprocessed stimuli were presented at a constant level (‘unprocessed’).

2. Processed stimuli were presented at a fixed level (‘processed-fixed’).

3. Processed stimuli were presented with a level rove of ±5 dB, in 1 dB steps

(‘processed-roved’).

Trials of each condition were presented in a random order.

A.3.1.4 Analyses

The data were analysed in the same way as for Experiment A1. Wilcoxon tests were

used to make the following key comparisons: unprocessed compared to processed-

fixed, processed-fixed compared to processed-roved.

A.3.2 Results

The results are shown in Figure A.5. There was a significant effect of condition on

performance [χ2(2) = 13.0, p <.001]. Error scores were lower in the unprocessed

condition than in the processed-fixed condition [z = −2.52, pb f < .01, r = .63 ]. Error

scores in the processed-fixed condition were not significantly different to those in the

processed-roved condition [z = −0.98, pb f > .05, r = .25 ].
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Figure A.5. Results of Experiment A2. The yellow boxes show the area between the
25th and 75th percentile scores. The solid black horizontal lines within the boxes show
median scores; the dotted orange horizontal lines within the boxes show mean scores.
Circles show individual scores. The dashed line indicates the level of performance one
would expect by chance.

A.3.3 Discussion

After practising the task for approximately 30 minutes, normally-hearing adults were

able to localise the unprocessed stimuli at a level better than would be expected

by chance. Binaural cues and cues resulting from headturns were not available, so

participants must have learnt the level or spectral cues that were associated with each

source location. The majority of participants performed at a level close to chance with

the processed stimuli. Thus, Experiment A2 demonstrated that the processing had the

desired effect of reducing the utility of monaural cues to source location. Experiment

A1 demonstrated that it was nonetheless possible to localise the processed stimuli

on the basis of binaural cues, and/or cues resulting from headturns. Therefore,

the processing described in this appendix reduces the utility of monaural cues to

source location, without affecting the utility of binaural cues or cues resulting from

headturns.

A.4 Stimuli used in the final version of the test

After these experiments were concluded, Advanced Bionics (a manufacturer of

cochlear implants) loaned equipment to our laboratory which enabled the output

from a cochlear-implant microphone to be recorded. The equipment is described

in section 6.2.2.1. The recordings and processing described in section A.1.6 were

repeated using a cochlear-implant microphone situated behind each ear of the HATS,
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rather than the integral microphones in the HATS. This arrangement meant that the

processing reflected the cues to source location that are picked up by a cochlear-

implant microphone. The implant microphone attenuated frequencies above 8 kHz,

so the processed stimuli were low-pass filtered using a finite impulse response filter

with a cut-off at 8 kHz and 60 dB of attenuation in the stopband. The resulting stimuli

were used throughout the rest of this thesis.

An analysis of the spectra of the processed stimuli (Figure A.2), and behavioural

testing (Experiment A2), indicated that the processing reduced the monaural cues to

source location at a nominated ear. However, Figure A.2 indicated that the processing

amplified the monaural cues to source location at the non-nominated ear. When

testing bilaterally-implanted or bimodally-aided children, this creates a dilemma:

which ear should receive the reduced monaural cues? Furthermore, if bilaterally-

implanted or bimodally-aided children were able to attend to the non-nominated

ear, it may be possible to localise the stimuli on the basis of monaural cues at

that ear. As a result, nominating one ear to receive reduced monaural cues could

give an advantage to bilaterally-implanted and bimodally-aided children that would

not be present in everyday life. Accordingly, during testing with all participants

throughout the rest of this thesis, the nominated ear was selected at random from

trial to trial. Consequently, the processed stimuli introduced variability into the level

and spectrum on arrival at both ears.
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The Speech, Spatial, and Qualities of

Hearing Scale for Teachers of the Deaf

This questionnaire asks about your child’s ability to hear and listen in everyday

situations. You should answer each question by making a mark on a horizontal line.

Here is an example question. The answer, marked by the cross on the line, shows that

the child has cornflakes for breakfast on most days, but not everyday. If you do not

know the answer to a question, please put a tick in the box labelled ‘I do not know’. If

the situation described in a question does not happen for your child, please put a tick

in the box labelled ‘This situation does not happen for my child’. The real questions

start on the next page.

1. Does your child have cornflakes for breakfast?

� I do not know � This situation does not happen for my child
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Section A: Speech

1. You are talking with your child and there is a TV on in the same room. Without

turning the TV down, can your child follow what you’re saying?

� I do not know � This situation does not happen for my child

2. You are talking with your child in a quiet, carpeted room. Can your child follow

what you’re saying?

� I do not know � This situation does not happen for my child
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3. Your child is in a group of about five people, sitting around a table. It is an

otherwise quiet place. Your child can see everyone else in the group. Can your child

follow the conversation?

� I do not know � This situation does not happen for my child

4. Your child is in a group of about five people, sitting around a table. It is a noisy

room, such as a busy classroom. Your child can see everyone else in the group. Can

your child follow the conversation?

� I do not know � This situation does not happen for my child
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5. You are talking with your child. There is a continuous background noise, such as a

fan or running water. Can your child follow what you say?

� I do not know � This situation does not happen for my child

6. Your child is in a group of about five people, sitting around a table. It is a noisy

room, such as a busy classroom. Your child cannot see everyone else in the group.

Can your child follow the conversation?

� I do not know � This situation does not happen for my child
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7. You are talking to your child in a place where there are a lot of echoes, such as a

school assembly hall. Can your child follow what you say?

� I do not know � This situation does not happen for my child

8. You are talking to your child in a room in which there are many other people

talking. Can your child follow what you say?

� I do not know � This situation does not happen for my child

239



Appendix B The Speech, Spatial, and Qualities of Hearing Scale

Section B: Spatial Hearing

1. Your child is outdoors in an unfamiliar place. A loud constant noise, such as from

an aeroplane, can be heard. The source of the sound can’t be seen. Can your child

tell right away where the sound is coming from?

� I do not know � This situation does not happen for my child

2. Your child is sitting around a table with several people. Your child cannot see

everyone. Can your child tell where any person is as soon as they start speaking?

� I do not know � This situation does not happen for my child
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3. Your child is sitting in between two people. One person starts to speak. Can your

child tell right away whether it is the person on their left or their right who is

speaking, without having to look?

� I do not know � This situation does not happen for my child

4. You and your child are outside. You call out their name. Can your child tell

immediately where you are without having to look?

� I do not know � This situation does not happen for my child
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5. Your child is standing in a corridor. A noisy group of children is approaching. Can

your child hear right away which direction they are coming from before seeing the

children?

� I do not know � This situation does not happen for my child
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Section C: Qualities of Hearing

1. Think about when there are two noises at once, for example, music playing and the

sound of knocking at the door. Is your child able to identify the two separate sounds?

� I do not know � This situation does not happen for my child

2. You are in a room with your child and music is playing. Will your child be aware of

your voice if you start speaking? Note that your child does not have to understand

what you say.

� I do not know � This situation does not happen for my child
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3. Can your child recognise familiar people by the sound of each one’s voice without

seeing them?

� I do not know � This situation does not happen for my child

4. Can your child distinguish between pieces of music such as different nursery

rhymes played on a cassette tape or CD? Note that producing relevant words or

movements can indicate recognition.

� I do not know � This situation does not happen for my child
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5. Can your child tell the difference between sounds that are somewhat similar, for

example, a car versus a bus, OR a school bell versus knocking at the door?

� I do not know � This situation does not happen for my child

6. Can your child easily judge another person’s mood from the sound of their voice?

� I do not know � This situation does not happen for my child
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7. Does your child have to put in a lot of effort to hear what is being said in

conversation with others?

� I do not know � This situation does not happen for my child

8. Can your child easily ignore other sounds when trying to listen to something?

� I do not know � This situation does not happen for my child

Thank you for completing this questionnaire
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The Health Utilities Index Mark 3

Instructions: This set of questions asks about your child’s day-to-day health. You

may feel that some of these questions do not apply to you, but it is important that we

ask the same questions of everyone.

Please read each question and consider your answers carefully. For each question,

please select one answer that best describes your child’s usual level of ability or

disability. Please indicate the selected answer by marking (X) the box beside the

answer.

A few of the questions are similar to others; please excuse the apparent overlap, and

answer each question independently. Thank you.

1. Which one of the following best describes your child’s usual ability to see well

enough to see pictures in a book?

� Able to see well enough without glasses or contact lenses

� Able to see well enough with glasses or contact lenses

� Unable to see well enough even with glasses or contact lenses

� Unable to see at all

2. Which one of the following best describes your child’s usual ability to see well

enough to recognize you across the room?

� Able to see well enough without glasses or contact lenses

� Able to see well enough with glasses or contact lenses

� Unable to see well enough even with glasses or contact lenses

� Unable to see at all
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3. Which one of the following best describes your child’s usual ability to hear what

is said in a group conversation with at least three other people?

� Able to hear what is said without a hearing aid or cochlear implant

� Able to hear what is said with a hearing aid or cochlear implant

� Unable to hear what is said, even with a hearing aid or cochlear implant

� Unable to hear what is said, but don’t wear a hearing aid or cochlear implant

� Unable to hear at all

4. Which one of the following best describes your child’s usual ability to hear what

is said in a conversation with one other person in a quiet room?

� Able to hear what is said without a hearing aid or cochlear implant

� Able to hear what is said with a hearing aid or cochlear implant

� Unable to hear what is said, even with a hearing aid or cochlear implant

� Unable to hear what is said, but don’t wear a hearing aid or cochlear implant

� Unable to hear at all

5. Which one of the following best describes your child’s usual ability to be

understood when speaking the same language with strangers?

� Able to be understood completely

� Able to be understood partially

� Unable to be understood

� Unable to speak at all

6. Which one of the following best describes your child’s usual ability to be

understood when speaking with people who know him/her well?

� Able to be understood completely

� Able to be understood partially

� Unable to be understood

� Unable to speak at all

7. Which one of the following best describes how your child usually feels?

� Happy and interested in life

� Somewhat happy

� Somewhat unhappy

� Very unhappy

� So unhappy that life is not worthwhile
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8. Which one of the following best describes your child’s usual level of pain and

discomfort?

� Free of pain and discomfort

� Mild to moderate pain that prevents no activities

� Moderate pain that prevents a few activities

� Moderate pain that prevents some activities

� Severe pain that prevents most activities

9. Which one of the following best describes your usual child’s ability to get

around?

� Able to walk, bend, lift, jump and run normally for age

� Walks, bends, lifts, jumps or runs with some limitations but does not require

help

�Requires mechanical equipment (such as canes, crutches, braces or wheelchair)

to walk or get around independently

� Requires the help of another person to walk or get around and requires

mechanical equipment as well

� Unable to control or use arms and legs

10. Which one of the following best describes your child’s usual ability to use

his/her hands and fingers? Note: Special tools refer to hooks for buttoning

clothes, gripping devices for opening jars or lifting small items, and other

devices to compensate for limitations of hands or fingers

� Full use of two hands and ten fingers

� Limitations in the use of hands or fingers, but do not require special tools or

help of another person

� Limitations in the use of hands or fingers, independent with the use of special

tools (do not require the help of another person)

� Limitations in use of hands or fingers, require the help of another person for

some tasks (not independent even with use of special tools)

� Limitations in use of hands of fingers, require the help of another person for

most tasks (not independent even with use of special tools)

� Limitations in use of hands or fingers require the help of another person for

all tasks (not independent even with use of special tools)

11. Which one of the following best describes your child’s usual ability to remember

things?

� Able to remember most things

� Somewhat forgetful

� Very forgetful

� Unable to remember anything at all
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12. Which one of the following best describes your child’s usual ability to think and

solve day-to-day problems?

� Able to think clearly and solve day-to-day problems normally for age

� Have a little difficulty when trying to think and solve day-to-day problems

� Have some difficulty when trying to think and solve day-to-day problems

� Have great difficulty when trying to think and solve day-to-day problems

� Unable to think or solve day-to-day problems

13. Which one of the following best describes your child’s usual ability to perform

basic activities?

� Eat, bathe, dress and use the toilet normally for age

� Eat, bathe, dress and use the toilet independently with difficulty

� Requires mechanical equipment to ear, bathe, dress and use the toilet

independently

� Requires the help of another person to eat, bathe, dress or use the toilet

14. Which one of the following best describes how your child usually feels?

� Generally happy and free from worry

� Occasionally fretful, angry, irritable, anxious or depressed

� Often fretful, angry, irritable, anxious or depressed

� Almost always fretful, angry, irritable, anxious or depressed

� Extremely fretful, angry, irritable, anxious or depressed, usually requiring

hospitalization or psychiatric institutionary care

15. Which one of the following best describes your child’s usual level of pain?

� Free of pain and discomfort

� Occasional pain; discomfort relieved by non-prescription drugs or self-

control activity without disruption of normal activities

� Frequent pain; discomfort relieved by oral medicines with occasional

disruption of normal activities

� Frequent pain, frequent disruption of normal activities; discomfort requires

prescription narcotics for relief

� Severe pain; pain not relieved by drugs and constantly disrupts normal

activities
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Visual-Analogue Scales for Parents

Part one: Visual-analogue scales for parents of unilaterally-implanted children

Question 1

To help people express their thoughts about their child’s quality of life, we have

drawn a scale. The best quality of life that you can imagine is marked 100, and the

worst quality of life that you can imagine is marked 0. We would like you to use the

scale to help us understand your thoughts on your child’s quality of life.

Please make a mark on the scale to show us how good or bad your child’s quality of

life is with his/her cochlear implant.

Question 2

Now we would like you to imagine how your child’s quality of life would be if it had

not been possible to get a cochlear implant for him/her.

Please make a mark on the scale to show us how good or bad your child’s quality of

life would be if he/she had not received a cochlear implant.
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Part two: Visual-analogue scales for parents of bilaterally-implanted children

Question 1

To help people express their thoughts about their child’s quality of life, we have

drawn a scale. The best quality of life that you can imagine is marked 100, and the

worst quality of life that you can imagine is marked 0. We would like you to use the

scale to help us understand your thoughts on your child’s quality of life.

Please make a mark on the scale to show us how good or bad your child’s quality of

life is with his/her two cochlear implants.

Question 2

Now we would like you to imagine how your child’s quality of life would be if it had

only been possible to get one cochlear implant for him/her.

Please make a mark on the scale to show us how good or bad your child’s quality of

life would be if he/she had only one cochlear implant.
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Question 3

Now we would like you to imagine how your child’s quality of life would be if it had

not been possible to get any cochlear implants for him/her. Please make a mark on

the scale to show us how good or bad your child’s quality of life would be if he/she

had not received any cochlear implants.
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Questionnaire for Informants

Please could you give us the following information about yourself:

Your date of birth: . . . /. . . /. . . . . .

Your gender: Male / Female

Are you the parent or guardian of any children?

Yes / No

If you answered ‘yes’, please could you tell us their age/s and whether they have been

diagnosed with any disability?

Age: Disability? . . . . . . . . . . . . . . . . . .

Age: Disability? . . . . . . . . . . . . . . . . . .

Age: Disability? . . . . . . . . . . . . . . . . . .

Age: Disability? . . . . . . . . . . . . . . . . . .

Do you have a family history of hearing loss or deafness?

Yes / No

If you answered ‘yes’, please could you give us brief details:

Have you worked with people who have hearing loss or deafness?

Yes / No

If you answered ‘yes’, please could you give us brief details:
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Instructions

We would like you to imagine that you are 33 years old. You have a daughter who is

profoundly deaf. You are in a stable relationship with your daughter’s mother/father

and you are financially secure.

We will now describe four scenarios that relate to your daughter’s deafness. Each

scenario is followed by two questions. Please start by reading all four of the

scenarios. Then, read through each scenario again and answer the two questions

that follow it. Please read the scenarios very carefully.

The questions ask about the quality of life of your imaginary daughter. There are no

right or wrong answers. We are simply trying to find out how people relate a

description of a child to the quality of life that they imagine the child might have.
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Scenario No. 1

Your child was born deaf and does not have a cochlear implant or a hearing aid

Your child was born profoundly deaf and is now 6 years old. The cause of her

deafness is not life-threatening, but there is no cure. She has so little hearing that

hearing aids cannot help her. She will be unable to hear throughout her life.

Physically, however, she is a completely healthy child.

• Your daughter is unable to hear everyday sounds, such as music, voices, and

traffic. She cannot hear the sound of her own voice.

• She can understand some of what you say by lipreading, but her main means

of communication is Sign Language. You are taking courses in Sign Language

in order to communicate with her.

• Your daughter attends a mainstream school, although she spends most of her

time in a specialised class for children with impaired hearing, where she works

with a small number of other children.

• Your child’s ability to use spoken language is progressing at a slower rate than

normal. She is finding it difficult to learn to read. You have been advised that

she is likely to find reading and writing difficult in the future.

• Socially, she gets on well with other hearing impaired children. She finds it

difficult to make friends with normally hearing children because of problems

with communication.

• You worry about your daughter’s safety when she is outdoors because she

cannot hear warning signals. You feel that you cannot give her as much

independence as you would like.

• Your child’s deafness sometimes places a strain on your family life because of

the level of assistance and attention which she requires.

• You have been advised that it is probable that your daughter will have

restricted job opportunities when she is an adult because of difficulties in

speaking on the telephone and in other situations that require spoken

communication.
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Questions about Scenario No. 1

Question 1

To help you express you thoughts about your imaginary child’s quality of life, we

have drawn a scale. The best quality of life that you can imagine is marked 100, and

the worst quality of life that you can imagine is marked 0. We would like you to use

the scale to help us understand your thoughts on your imaginary daughter’s quality

of life.

Please make a mark on the scale to show us how good or bad your daughter’s quality

of life is with no cochlear implant and no hearing aid. You may make the mark

anywhere on the scale not just at the points marked by the numbers.

Question 2

Now we would like you to think about your daughter’s quality of life in a different

way.

Remember, you are 33 years old. Imagine you will live for 50 more years until you are

83 years old.

Now, imagine that you could give up some years of your own life in order for your

child to have normal hearing. She would have normal hearing immediately and then

for the rest of her life. Imagine that the years you give up would be taken off the end

of your life. This question does not measure whether you are a good or bad parent —

it is simply a method of obtaining your judgement about how challenging this

scenario would be for your daughter.

Please write the number of years that you would give up in this box:

I would give up this number of years:
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Scenario No. 2

Your child was born deaf and has a cochlear implant in one ear

Your child was born profoundly deaf and is now 6 years old. When she was 2 years

old, she received a cochlear implant in one ear. (A cochlear implant is an electronic

device which surgically implanted in the inner ear. It helps deaf people to hear by

by-passing parts of the ear that are not working and stimulating the nerve of hearing

directly with electrical signals.) The operation was a success. There were no

complications.

• Your daughter can speak. Everyone can understand what she is saying without

much effort.

• She can understand most of what is said to her, especially if she can see the

talker’s face and lips.

• She finds it difficult to understand speech when there is background noise,

even at low levels where you have no difficulty.

• Your daughter’s spoken language is developing at the normal rate, but she is a

couple of years behind children with normal hearing.

• Your child attends a mainstream school where she is a member of a regular

class of children. She receives about 6 hours of help each week during lessons

from a learning support assistant. Even so, she is tired at the end of the school

day because of the need to concentrate when she listens.

• Your daughter is starting to read and write. She is making progress but she is a

bit behind many other members of her class.

• Most of the time, you and your child forget that she has a cochlear implant.

However, you have to keep an eye on her if she stars to play rough games that

could result in her receiving a blow on the side of her head where her implant

is.

• You are not too concerned about your daughter’s future in terms of academic

achievement, employment, and independent living. You have been advised

that it is likely that she will live a relatively normal life.

• You have to take a couple of days away from your usual activities each year for

routine hospital appointments to have her implant checked.

• Occasionally, you have to take time away from your usual activities at short

notice to attend unforeseen hospital appointments. For example, if your

daughter bangs her head or feels sick or dizzy, you need to check with a doctor
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to find out whether her cochlear implant has been damaged or is causing the

symptoms.

• Your child is unable to tell which direction sounds are coming from. Because of

this, she doesn’t always know where to look to see who is talking and you worry

a little about her safety when she is outdoors.

• You are slightly concerned that the cochlear implant could fail and that

another operation would be required to replace it. You have been advised that

there is a small possibility that it might not be possible to put a new implant in

the same ear. In which case, it would be necessary to implant the other ear.

You have been advised that there is a very small possibility that it might not be

possible to implant the other ear. If this happened, your daughter would be

permanently deaf.
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Questions about Scenario No. 2

Question 1

To help you express you thoughts about your imaginary child’s quality of life, we

have drawn a scale. The best quality of life that you can imagine is marked 100, and

the worst quality of life that you can imagine is marked 0. We would like you to use

the scale to help us understand your thoughts on your imaginary daughter’s quality

of life.

Please make a mark on the scale to show us how good or bad your daughter’s quality

of life is with a cochlear implant. You may make the mark anywhere on the scale not

just at the points marked by the numbers.

Question 2

Now we would like you to think about your daughter’s quality of life in a different

way.

Remember, you are 33 years old. Imagine you will live for 50 more years until you are

83 years old.

Now, imagine that you could give up some years of your own life in order for your

child to have normal hearing. She would have normal hearing immediately and then

for the rest of her life. Imagine that the years you give up would be taken off the end

of your life. This question does not measure whether you are a good or bad parent —

it is simply a method of obtaining your judgement about how challenging this

scenario would be for your daughter.

Please write the number of years that you would give up in this box:

I would give up this number of years:
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Scenario No. 3

Your child was born deaf and has a cochlear implant in one ear and a hearing aid

in the other ear

Your child was born profoundly deaf and is now 6 years old. When she was 2 years

old, she received a cochlear implant in one ear. (A cochlear implant is an electronic

device which is implanted surgically in the inner ear. It helps deaf people to hear by

by-passing parts of the ear that are not working and stimulating the nerve of hearing

directly with electrical signals.) The operation was a success. There were no

complications. Your child also uses a hearing aid in her other ear. (A hearing aid is an

acoustic device that amplifies sounds. It is fitted without an operation.) The hearing

aid enables your child to hear some very low-frequency sounds.

Your daughter has many of the same advantages and disadvantages as were

described in the previous scenario (Scenario No. 2) with some additional

advantages, as follows:-

• She has grasped the concept of “where” sounds come from. She can tell

whether a sound is coming from the left or right, though she finds it difficult to

be more accurate than that.

• She can sometimes tell whether a motor vehicle is coming from her left or her

right. Also, sometimes she knows where to look to see who is talking.

• As a result, you are a little less worried abut her safety when she is outdoors.
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Questions about Scenario No. 3

Question 1

To help you express you thoughts about your imaginary child’s quality of life, we

have drawn a scale. The best quality of life that you can imagine is marked 100, and

the worst quality of life that you can imagine is marked 0. We would like you to use

the scale to help us understand your thoughts on your imaginary daughter’s quality

of life.

Please make a mark on the scale to show us how good or bad your daughter’s quality

of life is with one cochlear implant and a hearing aid. You may make the mark

anywhere on the scale not just at the points marked by the numbers.

Question 2

Now we would like you to think about your daughter’s quality of life in a different

way.

Remember, you are 33 years old. Imagine you will live for 50 more years until you are

83 years old.

Now, imagine that you could give up some years of your own life in order for your

child to have normal hearing. She would have normal hearing immediately and then

for the rest of her life. Imagine that the years you give up would be taken off the end

of your life. This question does not measure whether you are a good or bad parent —

it is simply a method of obtaining your judgement about how challenging this

scenario would be for your daughter.

Please write the number of years that you would give up in this box:

I would give up this number of years:
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Appendix E Questionnaire for Informants: Quality of Life and Childhood Deafness

Scenario No. 4

Your child has two cochlear implants, one in each ear

Your child was born profoundly deaf and is now 6 years old. When she was 2 years

old, she received two cochlear implants, one in each ear. (A cochlear implant is an

electronic device which is implanted surgically in the inner ear. It helps deaf people

to hear by bypassing parts of the ear that are not working and stimulating the nerve

of hearing directly with electrical signals.) The operation was a success. There were

no complications.

Your daughter has all of the abilities described in Scenario No. 2, with some

additional advantages, as follows:-

• She has grasped the idea of “where”’ sounds come from. She can tell whether

sounds come from the left, straight ahead, or the right.

• She can hear speech better in noisy situations because she has the choice of

which ear to listen with and can therefore attend with the ear closer to the

talker.

• Your daughter can usually tell whether a motor vehicle is coming from her left

or her right. As a result, you are less worried about her safety when she is

outdoors.

• She can usually understand most of what is said to her, even when she cannot

see the talker’s face. Also, she usually knows where to look to see who is talking.

• Your child attends a mainstream school and only rarely needs help from a

learning support assistant.

• Overall, it is easier for her to listen. As a result, she is less tired at the end of the

school day.

• You are not worried about one cochlear implant failing, because she has a

backup in the other ear.

• You are less concerned about your daughter’s future in terms of academic

achievement, employment, and independent living.
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Appendix E Questionnaire for Informants: Quality of Life and Childhood Deafness

Questions about Scenario No. 4

Question 1

To help you express you thoughts about your imaginary child’s quality of life, we

have drawn a scale. The best quality of life that you can imagine is marked 100, and

the worst quality of life that you can imagine is marked 0. We would like you to use

the scale to help us understand your thoughts on your imaginary daughter’s quality

of life.

Please make a mark on the scale to show us how good or bad your daughter’s quality

of life is with two cochlear implants. You may make the mark anywhere on the scale

not just at the points marked by the numbers.

Question 2

Now we would like you to think about your daughter’s quality of life in a different

way.

Remember, you are 33 years old. Imagine you will live for 50 more years until you are

83 years old.

Now, imagine that you could give up some years of your own life in order for your

child to have normal hearing. She would have normal hearing immediately and then

for the rest of her life. Imagine that the years you give up would be taken off the end

of your life. This question does not measure whether you are a good or bad parent —

it is simply a method of obtaining your judgement about how challenging this

scenario would be for your daughter.

Please write the number of years that you would give up in this box:

I would give up this number of years:

Thank you for completing this questionnaire. Your answers will be stored securely

and will be treated confidentially.

264



Glossary

nAFC An n-alternative forced-choice task

AGC Automatic gain control

ANOVA Analysis of variance

BKB Bamford-Kowal-Bench

c.i. Confidence interval

CI-CI Listening with bilateral cochlear implants

CI-HA Listening with a unilateral cochlear implant and a contralateral

acoustic hearing aid

CI-only Listening with a unilateral cochlear implant only

CRISP Children’s Realistic Index of Speech Perception

F0 Fundamental frequency

FFT Fast fourier transform

HL Hearing level

HRTF Head-related transfer function

HUI Health Utilities Index Mark 3

ILD Interaural level difference

ITD Interaural time difference

JND Just-noticeable difference

MAA Minimum audible angle

NICE National Institute for Health and Clinical Excellence

QALY Quality-adjusted life year

RMS Root mean square

SRM Spatial release from masking

SRT Speech-reception threshold

SSQ Speech, Spatial and Qualities of Hearing Scale for Teachers of the

Deaf

VAS Visual-analogue scale
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