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          Neotropical nutmeg ( Virola sebifera  Aubl.; Myristicaceae) is 
a wide-ranging canopy tree found in mature tropical forests 
from Central America to the Amazon Basin and Guiana Shield. 
Like other species in its genus,  V .  sebifera  is dioecious, polli-
nated by small insects, and dispersed by vertebrates (primarily 
large birds) that consume the nutrient-rich red aril covering its 
seeds ( Howe, 1981 ). Given the high mobility and considerable 
seed loads of large avian dispersers, seed-mediated gene fl ow in 
 V. sebifera  may play an important role in maintaining genetic 
variation within and among populations. However, as increasing 
anthropogenic activities (e.g., hunting and landscape change) 
adversely impact the abundance and/or habitat of frugivores 
( Wright, 2003 ;  Vetter et al., 2011 ), it is important to investi-
gate how changing vertebrate densities may impact gene fl ow 
and population structure in  V. sebifera  and other tropical forest 
tree species. 

 To address these and other questions, we developed a set of 
polymorphic microsatellite DNA markers for  V .  sebifera , based 

on genomic DNA libraries obtained from French Guiana sam-
ples by shotgun 454 pyrosequencing ( Gardner et al., 2011a ,  b ). 

 METHODS AND RESULTS 

 Previously developed genomic libraries of  V. sebifera  ( Gardner et al., 2011a ,  b ) 
were obtained using the combined genomic DNA of six French Guiana indi-
viduals, sampled from tagged trees in trails or permanent forest inventory plots 
in three localities: Sentier la Mirande (4 ° 51 ′ N, 52 ° 20 ′ W; tag no. S35, S31), 
Sentier Rorota (4 ° 52 ′ N, 52 ° 15 ′ W; S104, S110), and Iracoubo (5 ° 25 ′ N, 53 ° 5 ′ W; 
S230, S235). Genomic DNA was isolated from each individual using Nucleo-
Spin Plant II (Macherey-Nagel, Düren, Germany), then pooled with equal con-
centrations (~0.8  μ g/individual) for subsequent 454 pyrosequencing. Standard 
GS-FLX Titanium library preparation was adopted. After DNA nebulization, 
small fragments of length <350 bp were removed. Fragmented DNA was then 
ligated with MID-tagged (MID5, ACGAGTAGACT) adapters. This barcoded 
 V. sebifera  DNA library was multiplexed with seven other species in a single 
run of GS-FLX Titanium, which rendered  V. sebifera  12.5% of the picotiter 
plate. 

 We used the program QDD version 2 ( Meglécz et al., 2010 ), set at default 
parameters, to search for simple sequence repeat (SSR) loci with  ≥ 5 uninter-
rupted motif repeats from 90,164 read sequences (mean read length = 367 bp) 
( Gardner et al., 2011a ,  b ). The SSR marker output was further restricted to A 
and B primer designs in QDD version 2, so as to exclude loci with complex 
fl anking regions (i.e., containing repeat units). We obtained a total of 526 
SSR loci, of which 315 contained dinucleotide motifs, followed by 182 tri-, 
21 tetra-, six penta-, and two hexanucleotide motifs. Following the suggestions 
of  Gardner et al. (2011a) , we fi rst focused on loci containing at least 10 pure 
repeat units of di-, tetra-, and pentanucleotide SSR motifs, which were expected 
to be more polymorphic than other motifs. However, because of an unexpected 
low rate of amplifi cation success and polymorphism, we also included compound 
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  •  Premise of the study:  Polymorphic microsatellite loci were characterized in the dioecious neotropical rainforest tree
 Virola sebifera . The markers will be used to study ecological and genetic impacts of hunting and landscape change in this
vertebrate-dispersed, insect-pollinated tree species.

 •  Methods and Results:  Simple sequence repeat (SSR) markers were screened from genomic libraries of South American
 V. sebifera  obtained by shotgun 454 pyrosequencing. Primer pairs were tested on Panamanian samples ( N  = 42). Approxi-
mately 52% of the 61 tested SSR markers amplifi ed, and 16% were polymorphic. Ten selected polymorphic SSR loci contained 
seven to 15 alleles per locus, and polymorphic information content averaged 0.694. Observed heterozygosity ranged from
0.465 to 0.905, and expected heterozygosity was between 0.477 and 0.876.

 •  Conclusions:  The 10 polymorphic loci will be useful in studying gene fl ow and genetic structure at local and regional spatial
scales in  V. sebifera .  

  Key words:  microsatellite loci; Myristicaceae; shotgun 454 pyrosequencing;  Virola sebifera . 
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motifs, and tri- and hexanucleotide microsatellite loci of  ≥ 9 repeats. The fi nal 
testing array contained 61 candidate SSR markers (57% in di-, 36% in tri-, 3% 
in tetra-, 2% in penta-, and 2% in hexanucleotide motifs). 

 We checked the amplifi cation rate and polymorphism of the 61 SSR primer 
pairs in 42  V. sebifera  adult trees (diameter at breast height [dbh]  ≥ 20 cm; 
voucher no.  Pérez 1806  and  Pérez 1930 , STRI herbarium, Panama), which were 
randomly collected from the 50-ha Forest Dynamics Plot in the plateau of Barro 
Colorado Island (9 ° 10 ′ N, 79 ° 51 ′ W), Panama. Genomic DNA was isolated from 
silica-dried leaves using the DNeasy Plant Mini Kit (QIAGEN, Valencia, Cali-
fornia, USA), quantifi ed using NanoDrop 2000 (Thermo Scientifi c, Wilming-
ton, Delaware, USA), and diluted to 1.5 ng/ μ L for subsequent PCR. The 6- μ L 
PCR cocktail contained 1.5 ng of DNA template, 0.05  μ M of M13-tagged (5 ′ -
TGTAAAACGACGGCCAGT-3 ′ ) forward primer, 0.4  μ M reverse primer, 
0.017  μ M 6FAM-labeled M13 primer (5 ′ -TGTAAAACGACGGCCAGT-3 ′ ), 
4 mM MgCl 2 , 3  μ L GoTaq Colorless Master Mix (Promega Corporation, Madison, 
Wisconsin, USA) with buffer (pH 8.5), 200  μ M of each dNTP, and 1 U  Taq  
DNA polymerase. PCRs were carried out in a Mastercycler ep thermocycler 
(Eppendorf, Hamburg, Germany) following an initial denaturation at 94 ° C 
for 4 min; 28 cycles of 94 ° C for 30 s, 55 ° C for 40 s, and 72 ° C for 60 s; 10 cycles 
of 94 ° C for 30 s, 52 ° C for 40 s, and 72 ° C for 60 s; and a fi nal extension at 72 ° C 
for 10 min. PCR product of 1.5  μ L was added to 12  μ L Hi-Di formamide (Ap-
plied Biosystems, Carlsbad, California, USA) and 0.05  μ L GeneScan 500 Rox 
Standard (Applied Biosystems) for subsequent fragment sizing in an ABI 3730 
DNA Analyzer (Applied Biosystems) by the DNA Sequencing Core Laboratory 
at the University of Michigan. Alleles were visualized and scored using Gene-
Marker version 3.7 (SoftGenetics, State College, Pennsylvania, USA). Marker 
polymorphism, including the number of alleles per locus, observed and ex-
pected heterozygosity, exclusion probability with one parent known, and Hardy–
Weinberg equilibrium (HWE), was estimated in GenAlEx version 6.4 ( Peakall 
and Smouse, 2006 ). Signifi cance levels for multiple tests of HWE ( α -level = 
0.05) were adjusted by sequential Bonferroni procedure ( Rice, 1989 ). In addition, 
polymorphism information content of each locus was measured using Power-
Marker version 3.0 ( Liu and Muse, 2005 ). We tested for the presence of null 
alleles, allelic dropout, and scoring errors (due to stuttering) using MICRO-
CHECKER version 2.2.3 ( Van Oosterhout et al., 2004 ). 

 Our results showed that 17 (49%) di-, 13 (59%) tri-, 1 (50%) tetra-, 0 penta-, 
and 1 (100%) hexanucleotide markers were amplifi able; but 3 (9%) di-, 6 (27%) 
tri-, 0 tetra-, 0 penta-, and 1 (100%) hexanucleotide SSRs were considered as 
polymorphic ( ≥ 6 alleles per locus) in the current study. These 10 polymorphic 
markers ( Table 1 )  had mean allelic richness of 10.3 alleles per locus ( Table 2 ) . 
Observed heterozygosity ranged from 0.465 to 0.905, and expected heterozygos-
ity was between 0.477 and 0.876. PIC per locus averaged 0.694 ( Table 2 ). No 
allelic dropout or scoring errors were detected, but one locus (VSE02) appeared 
to contain null alleles. Two (VSE02 and VSE36) of the 10 loci showed deviation 

  TABLE  1. Characteristics of 10 polymorphic SSR markers developed in  Virola sebifera . 

Locus Primer sequences (5 ′ –3 ′ ) a Repeat motif Size range (bp)  T  a  ( ° C) GenBank accession no.

VSE02  F: CGGTAGTCCATTGATTGGCA (AG) 12 266–296 55 JX415276
 R: GCTGTCATTGTGCATCTTCCT 

VSE11  F: TATAGATGCCTGCCATTGGA (AG) 10 237–267 55 JX415277
 R: TCGTGCGAAATTCCCTTCTA 

VSE30  F: CATGCATGCTGGTCCATA (AGT) 10 159–186 55 JX415278
 R: TTCAGCATATTCTCATGTTCCA 

VSE31  F: AACTAGGGCTCTCGCAGCTT (AAT) 12 183–210 55 JX415279
 R: CCAAAGAAGTGCTCCTCAGC 

VSE32  F: TGCCCAAGTGGGTTTCTCTA (AAT) 15 197–221 55 JX415280
 R: CCAGTGTTTCTTCTCTTGCATC 

VSE36  F: AGACGGATTGAGGAGAAGCC (ACC) 10 222–243 55 JX415281
 R: CGGAGCACAGGAATGAAATC 

VSE38  F: CCATTTGCTCTAAGCAATTCATC (ACT) 14 214–253 55 JX415282
 R: TCACATGCGAATTGTTCACAC 

VSE42  F: CACCGCTACTGTTTCCTGGT (AG) 3 G(AG) 3 G(AG) 14 283–306 55 JX415283
 R: GTGGGATGTGCCATAGAAGC 

VSE45  F: TGAAATTTGTTCCCTTCTGAGG (TCA) 5 (TCGTCA) 14 (TCA) 3 132–163 55 JX415284
 R: TGATCCATTATTCAGATGAGGC 

VSE55  F: GTTGGAGACTGTCCTCGGTG (AGT) 9 162–192 55 JX415285
 R: TGCTTAACAGCATGGAATGG 

 Note: T  a  = annealing temperature.
 a  M13 tail (TGTAAAACGACGGCCAGT) added to the 5 ′  end of each forward primer.

  TABLE  2. Summary statistics of SSR marker polymorphism screened in 
42  Virola sebifera  individuals located in the 50-ha Forest Dynamics 
Plot on Barro Colorado Island, Panama. 

Locus  A  H  o  H  e PE PIC

VSE02 15 0.487 0.876* 0.604 0.864
VSE11 12 0.810 0.834 0.511 0.816
VSE30 9 0.767 0.695 0.306 0.666
VSE31 10 0.762 0.764 0.384 0.734
VSE32 8 0.756 0.732 0.347 0.703
VSE36 7 0.465 0.477* 0.129 0.456
VSE38 12 0.905 0.827 0.491 0.806
VSE42 11 0.571 0.566 0.197 0.549
VSE45 10 0.561 0.544 0.178 0.524
VSE55 9 0.854 0.844 0.519 0.825
Mean 10.3 0.694 0.716 0.992 ¶ 0.694

 Note: A    = number of alleles per locus;  H  e  = expected heterozygosity;  H  o  = 
observed heterozygosity; PE = probability of exclusion with one parent 
known; PIC = polymorphism information content.

* Signifi cant deviation from Hardy–Weinberg expectations after sequential 
Bonferroni correction ( P  < 0.006).

 ¶  Probability of exclusion over all loci.

from Hardy–Weinberg proportions after sequential Bonferroni correction ( P  < 
0.006). The overall exclusion probability with one parent known was 0.992. 

 CONCLUSIONS 

 We found that trinucleotide SSR loci exhibited better marker 
properties, such as higher probability of polymorphism and less 
stuttering, than the other motifs, particularly dinucleotide SSRs. 
Although the 454 genomic libraries were obtained from French 
Guiana samples, the markers were developed for Panamanian 
individuals, despite the probable high levels of genomic diver-
gence between populations located east and west of the Andean 
cordilleras. Genomic divergence may partly explain the un-
expected low rate of amplifi cation (52%) and polymorphism 
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(16%) of the markers. Although one marker (VSE02) showed 
evidence of null alleles, and one other marker showed deviation 
from HWE, these markers may perform well in the South 
American populations. The 10 polymorphic loci characterized 
here will be useful for studies of gene fl ow and population 
structure in this widespread, vertebrate-dispersed, dioecious 
tree species. 
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