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ABSTRACT: 

Introduction: Barrett’s oesophagus develops in some individuals with gastro-oesophageal reflux, and 

is the precursor to oesophageal adenocarcinoma. Proton pump inhibitors (PPIs) suppress gastric acid 

production and are used to treat reflux. Clinical trials suggest that COX inhibitors might prevent 

oesophageal cancer, although PPIs could offset this by increasing COX-2 expression in Barrett’s 

oesophagus. To investigate this, we evaluated the impact of a PPI on COX expression in oesophageal 

mucosal cells. 

Methods: The effect of the PPI esomeprazole on COX-1 and COX-2 mRNA levels in oesophageal 

cells was determined. Oesophageal cell lines OE33 (adenocarcinoma derived) and HET-1A 

(immortalized squamous cells), and a control intestinal cell line - HT29 (colon carcinoma), were treated 

for 24 hours with increasing concentrations of the esomeprazole. 

Results: COX-2, but not COX-1, mRNA levels, dose dependently increased in OE33 and HET-1A 

cells vs. esomeprazole concentration. COX-2 mRNA levels did not increase in HT29 cells. 

Conclusions: Exposure to esomeprazole increases COX-2 mRNA in oesophageal cells. This might 

contribute to the lack of benefit for COX inhibitors for oesophageal cancer prevention in recent clinical 

studies. 

Key words: cyclooxygenase, oesophageal epithelium, proton pump inhibitor, Barrett’s 

oesophagus. 

Abbreviations: COX, cyclooxygenase;  PPI, proton pump inhibitor; NSAIDs, non steroidal anti-

inflammatory drugs; CYP-1A1, Cytochrome P450-1A1; PGE-2, prostaglandin-E2. 
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INTRODUCTION 

Barrett’s oesophagus arises in a subset of patients with gastro-oesophageal reflux disease, and can 

progress to oesophageal adenocarcinoma 
1
. Reflux symptoms associated with Barrett’s oesophagus are

often treated with proton pump inhibitor (PPI) medication, and sometimes surgery. Some previous 

studies have suggested that PPI use in patients with Barrett’s oesophagus may be associated with a 

reduced risk of developing oesophageal cancer 
2-4

, although a recent meta analysis identified no

definitive evidence that either PPI treatment or anti-reflux surgery decreases the risk of cancer 

progression 
5
.

PPI-induced acid suppression in patients with Barrett’s oesophagus has been reported to correlate with 

increased cyclooxygenase-2 (COX-2/PTGS2) protein expression in the columnar epithelium 
6, 7

, and it

has been suggested that this may be the result of increased gastrin levels 
8
. Other studies have shown a

step-wise increase in COX-2 mRNA expression across the progression from normal squamous 

epithelium to Barrett’s oesophagus, and then to adenocarcinoma 
9-11

, with higher levels of COX-2

mRNA and protein expression also associated with poorer cancer survival 
12

,
13, 14

. Furthermore, long-

term consumption of non-steroidal anti-inflammatory agents (NSAIDs), which inhibit cyclooxygenase-

1 (COX-1/PTGS1) and COX-2, has been shown to be associated with a reduced risk of developing 

oesophageal adenocarcinoma in some studies 
15, 16

, and the COX-2 inhibitor celecoxib prevents the

development of oesophageal adenocarcinoma in a rat model 
17

. These observations suggest a role for

COX-2 in the development of oesophageal adenocarcinoma. 

However, a recent multi-centre clinical study showed no difference in oesophageal cancer risk in 

patients with reflux managed with PPIs, between those taking vs. those not taking aspirin 
18

, whereas in

studies undertaken before the introduction of PPIs long-term consumption of aspirin appeared to be 

associated with a significant reduction in oesophageal adenocarcinoma 
15, 16

. Furthermore, in a study
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which investigated the COX-2 inhibitor rofecoxib, there was no significant effect on the development 

of dysplasia in Barrett’s oesophagus in patients taking a PPI, and there was evidence that the PPI may 

have antagonized the effect of rofecoxib 
7
.  

 

The potential ability of PPIs to override any beneficial effect of COX inhibitors on oesophageal cancer 

development has received little attention. This is an important question as there is currently no 

definitive evidence that PPI treatment decreases the risk of dysplasia or cancer 
5
, and increased use of 

PPIs has not prevented the 8% per year increase in the incidence of oesophageal adenocarcinoma over 

recent decades 
19

. No studies have investigated whether there is a direct affect of PPIs on COX-2 

expression in oesophageal epithelial cells. This is an important question as for chemo-prevention with 

NSAIDs or COX-2 specific inhibitors to be effective, the inhibition of COX-2 within oesophageal 

epithelial cells is probably required 
20-23

. To investigate this further, we determined the effect of the PPI 

esomeprazole on both COX-1 and COX-2 expression in cell lines derived from oesophageal 

epithelium, and compared this to a colonic epithelium control. Cytochrome P450-1A1 (CYP-1A1) 

mRNA levels were also determined to investigate whether the effects of esomeprazole on COX-1 and 

COX-2 mRNA levels were related to differential responsiveness of the cell lines to esomeprazole. 
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MATERIALS AND METHODS 

Cell culture and esomeprazole treatments 

Three cell lines were used in this study; OE33, HET-1A, and HT29. OE33 is a cell line derived from a 

human oesophageal adenocarcinoma 
24

 . HET-1A is a keratinocyte cell line derived from the 

oesophagus of a human male and then immortalized with SV-40 large T antigen 
25

. HT29 is a human 

colon adenocarcinoma derived cell line 
26

. These cells were grown in culture and exposed to varying 

concentrations of the PPI – esomeprozole, following which COX-1 and COX-2 mRNA levels were 

determined. Cytochrome P450-1A1 (CYP-1A1) mRNA levels were also measured to determine 

differential responsiveness of the cell lines to esomeprazole, and whether this might impact on the 

effect of esomeprazole on COX-1 and COX-2 mRNA levels. 

 

OE33 cells and HT29 cells were grown in DMEM media supplemented with 10% foetal bovine serum, 

100 U/mL penicillin and 100 μg/mL streptomycin (CSL Biosciences, Australia) at 37
o
C with 5% CO2. 

HET-1A cells 
25

 were grown in LHC-9 medium (Biosource, Biofluids Cell Culture Products) 

supplemented with 100 U/mL penicillin and 100 μg/mL streptomycin (CSL Biosciences, Australia) at 

37
o
C with 5% CO2. For HET-1A cell culture tissue-culture flasks and plates were coated with 

0.03mg/mL rats-tail collagen, 0.01mg/mL fibronectin and 0.01mg/mL BSA (all from Sigma) in LHC-9 

media . Cells were passaged by using 0.05 %(w/v) Trypsin/ 0.53mM EDTA solution in DMEM to 

release the cells from the coated plastic. After the cells were released the trypsin was inactivated with 

0.1% trypsin soybean inhibitor in LHC-9 media. 

 

Esomeprazole was a gift from Astra Zeneca Australia (North Ryde, New South Wales, Australia). Two 

mls of phosphate buffered saline (PBS) was added to a vial containing 20 mg of esomeprazole 

(intravenous preparation for clinical use). Dilutions of esomeprazole were prepared in media (RPMI 

140 or LHC-9) by serial dilution from a 7.5 mM stock solution in PBS.  Control media were prepared 
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in the same way, by adding PBS instead of esomeprazole. The concentration range was chosen to cover 

the manufacturers estimated steady state apparent volume of distribution of 0.22 L/kg, which equates to 

6 µM for an 80 kg person with 40 mg esomeprazole (from Astra Zeneca, for intravenous use), and to 

cover the concentrations of PPIs used in previous in vitro studies 
27, 28

. 

 

OE33 cells, HET-1A, and HT29 cells were seeded at a density of 6 x 10
4
 cells/well (in 300 µl medium) 

in 24-well plates. The cells were cultured for 24 hours before treatment so that they were adhered and 

at approximately 40–50% confluence. Cells were then treated by the addition of 20 µl of esomeprazole 

or media for a further 24 hours. Media was then removed and 500 µl Trizol reagent added for 

extraction of RNA. Experiments were performed 3 times, each on different days. 

 

RNA extraction and reverse transcription 

RNA was extracted from cultured cells using Trizol (Invitrogen). The RNA was dissolved in 50 ul of 

Ultra Pure water (Fisher Biotech, Australia), and a 25 ul aliquot was treated with DNAse I (Ambion 

DNA-Free kit, Ambion, Austin, USA) according to the manufacturer’s instructions. RNA 

concentration was estimated using a Biophotometer (Eppendorf,  Hamburg, Germany). One µg of RNA 

was reverse transcribed with SuperscriptIII reverse transcriptase (Invitrogen, Carlsbad, USA). In brief, 

10 uL of DNAse-treated RNA was combined with 250ng of random hexamers (GE Healthcare Bio-

Sciences AB, Uppsala, Sweden), and the total volume was brought to 12uL using ultra pure water 

(Fisher Biotech, West Perth, Australia). The RNA/ hexamer mix was heated to 70
0
C for 3 minutes, and 

then snap chilled on ice. To each tube, 4uL of 5x first strand buffer, 4uL of 0.1M dithiothreitol, 1uL of 

deoxynucleotide triphosphates (10mM each, Promega, Madison, WI, USA), and 1uL of SuperscriptIII 

was added. Reactions were incubated at 25
0
C for 10 minutes before being heated to 50

0
C for 50 

minutes. Reverse transcription was stopped by incubation at 70
0
C for 15 minutes. Each reaction was 

diluted 1/30 using ultra pure water, and 6uL of this cDNA dilution was used for a PCR reaction.   
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Real-time PCR analysis of COX-1, COX-2, β-actin and CYP-1A1 expression 

The house keeping gene β-actin was used to normalize the levels of the genes of interest (COX-1, 

COX-2 and CYP-1A1) for differences in RNA estimates, and for differences in reverse transcription 

efficiency. β-actin was chosen because it was not affected by esomeprazole treatment. CYP-1A1 

mRNA levels were determined for quality control, to determine whether any effects of esomeprazole 

on COX-1 and COX-2 mRNA levels were related to differential responsiveness of cell lines to 

esomeprazole.  

 

PCR was performed in 20uL reactions using a Rotorgene 3000 real time PCR machine (Corbett 

Research, Sydney, Australia). For COX-1, β-actin and CYP-1A1 each reaction consisted of 10uL of 2x 

Quantitect Sybr Green real time PCR mix (Qiagen, Hilden, Germany), 2uL of each primer (5uM 

stock), and 6uL of cDNA. For COX-2 each reaction consisted of 10uL of 2x Quantitect real time PCR 

mix, 0.2uL of each primer (50 uM stock), 1.2uL of 25mM MgCl2, 2.4uL of ultra pure water and 6uL of 

cDNA.  

 

Reactions were heated to 95
0
C for 15 minutes, then subjected to 45 cycles of 95

0
C for 20 seconds, a 

gene-specific annealing temperature for 20 seconds (see primer details below), and 72
0
C for 20 seconds 

(acquisition at this step). After a final incubation at 72
0
C for 4 minutes, the melting profile was 

obtained by heating the reactions from 60
0
C to 99

0
C and acquiring the fluorescence at 0.5

0 
C 

increments. The identity of the PCR products were confirmed by sequencing, agarose gel 

electrophoresis, and melt profile. Variations in the amounts of RNA used in the reverse transcription 

reactions and differences in the efficiency of the reverse transcriptions were normalised by using the 

expression of ß-actin. 
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Cycle-thresholds were determined using the Relative Quantitation module in the Rotorgene Software (v 

1.7). This module uses the second derivative method 
29

. The cycle-thresholds were exported from the 

Rotorgene software to Microsoft Excel, and relative quantification was performed using the method of 

Muller et al (2002; qGene) 
30

, which use dilution-series derived amplification efficiency estimates for 

each gene to calculate efficiency-adjusted normalized relative levels. PCR reactions were performed in 

triplicate. Primers and PCR conditions were optimised to maintain precision errors below a coefficient 

of variation of 20%. 

 

Primer sequences and annealing temperatures were as follows, 5’ to 3’ –  

 

COX-1 F GGGGTTCTTATTTTGCATTCC 

COX-1 R ATTTGGGATACGAGCCACTGT 

Annealing temp: 60 C 

 

COX-2 F TTCTTTTCCACATCTCATTGTCACTG 

COX-2 R AGGCTTAAACACAGTTTATAACCATAG 

Annealing temp: 50 C 

 

CYP-1A1 F GGCTGAGCAATCTGACCCTA 

CYP-1A1 R GGGCAGAGGAATGTGATGTT 

Annealing temp: 55 C 

 

β-actin F  TTGCCGACAGGATGCAGAAG 

β-actin R  GCCGATCCACACGGAGTACT 
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Annealing temp: 60 C 

 

Statistical analysis 

mRNA expression data were analysed using SPSS v17 for Windows. Differences in mRNA expression 

between vehicle control and esomeprazole treatments were assessed for statistical significance using a 

one way ANOVA test.  
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RESULTS  

COX-2 mRNA levels increased dose-dependently in oesophageal adenocarcinoma-derived OE33 cells 

with increasing esomeprazole concentrations, up to 3.7 fold at 20 µM esomeprazole compared with the 

vehicle control (figure 1.A; p >0.0001), whereas COX-1 mRNA levels remained unchanged (figure 

1.B). In oesophageal squamous HET-1A cells there was a smaller 1.9 fold increase in COX-2 mRNA at 

20 µM esomeprazole (figure 1.A; p = 0.037)  with no corresponding change in COX-1 mRNA levels 

(figure 1.B). COX-2 mRNA levels were unchanged in colon carcinoma-derived HT29 cells by 

esomeprazole treatment (figure 1.A), however, COX-1 mRNA levels increased by 1.7 fold at 5 µM 

esomeprazole (figure 1.B; p = 0.005). 

 

CYP-1A1 mRNA levels were determined to assess the responsiveness of each cell line to 

esomeprazole, and are summarised in figure 1.C. In OE33 cells CYP-1A1 levels increased dose 

dependently with increasing esomeprazole concentrations up to 8 fold at 10 µM (figure 1.C; p = 0.005). 

In HT29 cells esomeprazole induced a dose dependent increase in CYP-1A1 mRNA (p = 0.000), with a 

25 fold increase at 20 µM esomeprazole. The effect in HET-1A cells was less pronounced, with a 2.5 

fold increase in CYP-1A1 mRNA at 20 µM esomeprazole (figure 1.C; p = 0.053). 

 

Archived at the Flinders Academic Commons: http://dspace.flinders.edu.au/dspace/ 



 11 

DISCUSSION 

Studies reported in the early to mid 1990’s suggested that aspirin might prevent the development of 

oesophageal adenocarcinoma 
15, 16

. However, since the introduction of PPIs, 7 out of 8 studies 

evaluating this have failed to replicate these earlier findings 
18, 31

. Further, none of the 5 studies 

evaluating non-aspirin NSAIDs have found any benefit 
31

. From these observations it is reasonable to 

hypothesise that PPIs might be counteracting a chemo-preventative effect of COX inhibitors. A 

potential mechanism for this concept is highlighted by evidence from in vivo studies in humans and rats 

which demonstrate that PPI use is associated with increased levels of COX-2 in the gastrointestinal 

tract 
6-8

. It is therefore possible that PPIs might reduce any beneficial effect of COX inhibitors by 

increasing the level of COX-2 in oesophageal mucosa. 

 

Some insights into the regulation of COX-2 by PPIs have come from animal studies. In rat stomach, 

PPI treatment resulted in increased COX-2, prostaglandin-E2 (PGE-2), and mucosal protection against 

ethanol. This protection was blocked, as expected, by specific inhibition of COX-2. The up-regulation 

of COX-2 was blocked by the gastrin receptor antagonist AG-041R 
8
, suggesting that PPI-induced up-

regulation of gastrin may be a mechanism of COX-2 activation in the stomach of rats. However, 

increased gastrin levels result from decreased gastric acid secretion. Therefore these findings do not 

explain the ability of PPIs to heal ethanol-induced gastric ulcers at doses too low to affect gastric acid 

secretion. At low doses, PPI-induced ulcer healing is associated with increased mucous secretion 
32

, 

and this is likely to be the result of increased COX-2 expression and synthesis of PGE-2. 

  

Chemo-prevention of oesophageal adenocarcinoma using NSAIDs or COX-2 inhibitors appears to 

require the inhibition of COX-2 within oesophageal epithelial cells 
20-23

. Therefore a critical question is 

whether increased COX-2 expression results from a direct affect of PPIs on oesophageal epithelial 

cells. In our study, COX-2 mRNA levels, but not COX-1, increased dose-dependently in oesophageal 
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adenocarcinoma derived OE33 cells exposed to the PPI esomeprazole. COX-2 mRNA levels also 

increased in HET-1A immortalized oesophageal squamous cells treated with esomeprazole, although to 

a lesser extent than in the OE-33 cells. While we have not investigated the effect of esomeprazole on 

COX protein levels in these cell lines, COX-2 is primarily regulated at the level of transcription and 

mRNA stability 
33

, so it is likely that these observed changes in COX-2 mRNA levels are biologically 

significant. A further limitation of this study is that we only investigated the effect of esomeprazole in 

two oesophageal cell lines. These observations will need to be confirmed in other human cell lines. 

 

The direct effects of esomeprazole on COX-2 mRNA levels in cultured oesophageal cells could be due 

to inhibition of vacuolar H+ K+ ATPases. In support of this, it has been reported that PPIs appear to 

inhibit vacuolar H+-ATPases
34

, and specific inhibition of vacuolar H+-ATPases has been shown to 

increase the level of COX-2 mRNA and protein in macrophages 
35

 . Esomeprazole might also increase 

COX-2 mRNA expression via activation of the aryl hydrocarbon receptor as there is evidence for this 

mechanism in lung cancer cells 
36

, and chromatin immunoprecipitation (ChIP) studies have shown an 

association of the aryl hydrocarbon receptor with xenobiotic response elements (XRE) harbored in the 

COX-2 promoter and CYP1A1 promoter oligonucleotides 
37

. 

 

In contrast to the OE33 and HET-1A oesophageal cells, COX-2 mRNA levels were not increased by 

esomeprazole in HT29 colon adenocarcinoma derived cells, suggesting the possibility that the effect of 

esomeprazole on COX-2 mRNA might be limited to oesophageal cell lines. We did, however, observe 

a small (1.7 fold ) but significant increase in COX-1 mRNA in HT29 cells. This is in agreement with a 

previous report showing that COX-1 can be up-regulated in HT29 cells by a physiological stimulus 
38

, 

and suggests that these cells are responsive to esomeprazole. To explore this further we investigated the 

response of the cell lines to esomeprazole via the mRNA expression of the drug metabolising enzyme 

CYP1A1.  
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CYP1A1 is a cytochrome p450 enzyme which has been reported to be up-regulated by PPI’s in 

cultured cells 
39, 40

. Esomeprazole causes transcriptional activation of the CYP1A1 gene via activation 

of the human aryl hydrocarbon receptor 
41

, which has been implicated in the regulation of COX-2 

mRNA expression 
36

. In our study we evaluated its expression to further evaluate whether the effects of 

esomeprazole on COX-1 and COX-2 mRNA levels were related to the responsiveness of the cell lines 

to esomeprazole. In our study 20 µM esomeprazole was associated with a 7.7 fold increase in CYP1A1 

mRNA levels in OE33 cells, a 2.5 fold in HET-1A cells, and  a 25 fold in HT29 cells. The large 

increase in CYP1A1 mRNA in response to esomeprazole in HT29 cells suggests the lack of effect on 

COX-2 mRNA levels is unlikely to be due to a relative unresponsiveness to esomeprazole. These 

results also suggest that HET-1A cells may be less responsive to esomeprazole than OE33 cells, and 

this correlates with the lower level of COX-2 induction in the HET-1A cells.  

 

Our finding that esomeprazole treatment was associated with an increased level of COX-2 in cell lines 

derived from oesophageal epithelium raises the possibility that PPI’s might counteract the previously 

suggested chemo-preventative effect of NSAIDs on the development of oesophageal adenocarcinoma. 

Our study, however, is a cell-line based in vitro study, and as such, its findings should be used to draw 

new hypotheses for testing in the clinical setting. We have shown a negative effect for the use of 

esomeprazole in this context. In the clinical setting, investigations are underway, although benefits are 

yet to be demonstrated. Aspirin is the main NSAID COX-inhibitor under investigation in the context of 

oesophageal adenocarcinoma. The main side-effect of aspirin is peptic ulcers; therefore co-

administration of aspirin with a PPI is an attractive treatment option. This combination is being 

evaluated in a large randomised trial of high and low dose esomeprazole with vs. without aspirin 
42

, 

although there is no control group in this trial which is not taking a PPI, and therefore testing the 

potential negative impact of esomeprazole on aspirin based chemo-prevention. Further investigation 
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may therefore be needed to determine whether COX-inhibition, or COX-2-specific inhibition, is 

beneficial for patients with Barrett’s oesophagus whose reflux symptoms are managed without the use 

of PPIs, such as following effective antireflux surgery.  
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FIGURE LEGENDS 

 

Figure 1 Effects of esomeprazole on COX-2, COX-1, and CYP1A1 mRNA levels. 

A.  COX-2 relative mRNA levels in OE33, HET-1A, and HT29 cells after treatment for 24 h with 

increasing concentrations of esomeprazole.   

B. COX-1 relative mRNA levels in OE33, HET-1A, and HT29 cells after treatment for 24 h with 

increasing concentrations of esomeprazole.   

C. CYP-1A1 relative mRNA levels in OE33, HET-1A, and HT29 cells after treatment for 24 h with 

increasing concentrations of esomeprazole. 
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